
Speeding Up the Douglas-Peucker Line-Simpli�cation Algorithm

John Hershberger

DEC Systems Research Center

130 Lytton Ave

Palo Alto, CA 94305 USA

johnh@src.dec.com

Jack Snoeyink

Department of Computer Science

University of British Columbia

Vancouver, BC V6T 1Z2 Canada

snoeyink@cs.ubc.ca

Abstract

We analyze the line simpli�cation algorithm reported by Douglas and Peucker and show that

its worst case is quadratic in n, the number of input points. Then we give a algorithm, based

on path hulls, that uses the geometric structure of the problem to attain a worst-case running

time proportional to n log
2
n, which is the best case of the Douglas algorithm. We give complete

C code and compare the two algorithms theoretically, by operation counts, and practically, by

machine timings.

1 Introduction

An important task of the cartographer's art is extracting features from detailed data and represent-

ing them on a simple and readable map. As computers become increasingly involved in automated

cartography, e�cient algorithms are needed for the tasks of extraction and simpli�cation. Cartog-

raphers [1, 10] have identi�ed the line simpli�cation problem as an important part of representing

linear features. An ordered set of n + 1 points in the plane, fV0; V1; : : : ; Vng, forms a polygonal

chain|the sequence of line segments V0V1, : : : , ViVi+1, : : : , Vn�1Vn. Given a chain C with n

segments, the line simpli�cation problem asks for a chain C
0 with fewer segments that \represents

C well."

We further assume that our given chain C is simple|that is, C has no self-intersections. In

cartographic applications, self-intersections often indicate errors in digitization [10]. Although we

would like to require that the approximation C
0 should also be simple, there is some indication that

it is computationally infeasible do to so [5].

\Representing well" has many possible meanings. For example, it may require that C and C
0

are close in distance, that the area between C and C
0 is small, that the critical points of C are

incorporated into C
0, or that other measures of curve discrepancy are small. McMaster [9] gives

a detailed study of mathematical similarity and discrepancy measures. He also ranks the method

reported by Douglas and Peucker [4] as \mathematically superior." White [14] performed a study

of three simpli�cation algorithms, based on Marino's work [8] on critical points as a psychological

measure of curve similarity. She showed that the Douglas-Peucker method was best at choosing

critical points and also reports, \The generalizations produced by the Douglas algorithm were

overwhelmingly|by 86 percent of all sample subjects|deemed the best perceptual representations

of the original lines."

1

The Douglas method also has other advantages. First, it is easy to program; Whyatt and

Wade [15] give complete FORTRAN code in their paper. Second, the simpli�cation it produces

has a hierarchical structure that has been exploited by Cromley [2], following the work of Jones

and Abraham [6] on scale-independent cartographic databases. It should be no surprise that this

method has been independently proposed in other contexts. Two examples are papers of Ramer [12]

in image processing and Rote [13] in computational geometry.

In this paper we analyze two algorithms that implement the Douglas-Peucker simpli�cation

method using di�erent data structures. In the next section we give the basic simpli�cation method

and discuss how to compare algorithms. In section 3, we give a theoretical analysis of Douglas

and Peucker's implementation and show that its worst-case running time shows quadratic growth

as the number of input segments increases. In section 4 we give a new algorithm based on the

path hull data structure whose worst-case running time asymptotically the same as the best case

of the Douglas-Peucker algorithm. Subsections describe the geometric structure of the problem,

de�ne the path hull data structure to exploit it, and analyzes the new implementation that results.

Section 5 gives timings of sample runs.

2 The simpli�cation method of Douglas and Peucker

The method given in Douglas and Peucker [4] is best described recursively: To approximate the

chain from Vi to Vj , start with the line segment ViVj. If the farthest vertex from this segment has

distance at most �, then accept this approximation. Otherwise, split the chain at this vertex and

recursively approximate the two pieces. Algorithm 1 makes this more precise.

Given an array of vertices V , the call DPbasic(V; i; j) simpli�es the

subchain from Vi to Vj .

Procedure DPbasic(V; i; j)

1. Find the vertex Vf farthest from the line
 !
ViVj .

Let dist be its distance.

2. if dist > � then

3a. DPbasic(V; i; f) =� Split at Vf and approximate �=

3b. DPbasic(V; f; j) =� recursively �=

else

4. Output(ViVj) =� Use ViVj in the approximation �=

Algorithm 1: The basic line simpli�cation method

For those familiar with the original paper of Douglas and Peucker [4], this recursive procedure is

equivalent to their iterative \Method 2," which was a heuristic improvement by stacking \anchors."

Stated as a recursive procedure, one can see the justi�cation for their \anchor stacking."

Notice that the algorithm uses a subset of the original vertices fV0; V1; : : : ; Vng to form the

approximate chain. The statement of line 1 can be seen as a way to choose a vertex as the splitting

vertex. The primary di�erence between the Douglas-Peucker algorithm and the path hull algorithm

is how they choose the splitting vertex. Notice also, for future use, that the calls 3a and 3b can be

made in either order.

2

Before we describe the two algorithms in the next two sections, let us say a few words about

how to compare them. Of course, we can compare implementations by timing them on sample

data|and we will do so in section 5. But such timings tell only about a given, speci�c problem

instance unless we know how to extrapolate from the timing to instances that we encounter in

practice. If we understand the capabilities of the algorithms|knowing what is the best and worst

case data|then we can design better test sets and interpret the results of the tests more accurately.

In the theoretical analysis of algorithms [7], one counts the number of operations that the

algorithm uses as a function of the number of input segments. (Those familiar with such analysis can

safely skip the remainder of this section.) Because of di�erences between machines and compilers,

the qualitative behavior of such counts can be more revealing than the quantitative behavior. Let us

de�ne the commonly used big-O notation and then illustrate with examples. For integer functions

f and g, we say that f(n) = O(g(n)) if there are constants a and N such that f(i) � ag(i) for

all i � N . We say that f(n) = �(g(n)) if f(n) = O(g(n)) and there is a positive constant c such

that f(i) � cg(i) for in�nitely many integers i.

A statement involving big-O gives an upper limit on the increase of the running time; a statement

involving big-� gives an upper and lower limit. For example, since each call to DPbasic() either

�nds a splitting vertex or outputs a line segment, we know there will be 2k � 1 calls to compute

an approximate chain C
0 having k segments. We could give weaker qualitative bounds as �(k)

calls or as O(n) calls, since k � n. Since di�erent computer systems have di�erent costs associated

with making a call, the actual count is often only slightly more informative than an asymptotic

count|and it can be much more di�cult to obtain.

In the next two sections we will see that the running times of Douglas and Peucker's algorithm

and of our path hull algorithm have worst cases of �(n2) steps and �(n log2 n) steps, respectively.

This qualitative di�erence implies that as the size of the problem increases by 4, the worst case

time of the former increases 16-fold. The latter increases by much less|a factor of 5 to go from

64 to 256 and less than 4.5 to go from 5000 to 20000. Furthermore, if technology improves 16-fold,

the former can handle a problem 4 times greater, while the latter allows jumps from 64 to 656 or

from 5000 to 61768.

The best case for both algorithms is �(n) when the chain C can be approximated by a single

segment. If C can only be approximated by itself, i.e. k = n, then the best cases are �(n log2 n)

and �(n), respectively. By way of remark, Cromley's data structure [2] gives a reason to look at

the case k = n. His key idea is to run a recursive simpli�cation algorithm with a tolerance of � = 0,

so that no simpli�cation occurs, and to keep track of the splitting points found and their distances.

Then, when a scale-dependent tolerance � is given and the algorithm is rerun, it need not search

for the splitting vertex.

Of course, when it comes to the practical implementation, factors of two or ten in the constants

matter. For example, the Douglas algorithm records less geometric structure so it can be expected

to have a lower constant than our algorithm. Thus, theoretical analysis is not a substitute for

running test cases and discovering (machine dependent) quantitative behavior. The qualitative

behavior that it reveals, however, is important for understanding the algorithm, designing test

cases, and interpreting results.

3

3 A simple implementation of step 1

An obvious way to �nd the splitting vertex in step 1 of algorithm 1, i.e., to �nd the point farthest

from the line
 !
ViVj , is to compute the distance of each point of fVi; : : : ; Vjg and keep the maximum.

Algorithm 2 implements this idea.

Find the splitting vertex Vf , which is farthest from the line
 !
ViVj ,

by evaluating all distances and keeping the maximum. Return the

distance dist of Vf .

Procedure FindSplit(V; i; j; f; dist)

set dist = 0

for k = i+ 1 to j � 1 do

distVk =

0
BBB@

�������

1 Vi:x Vi:y

1 Vj :x Vj :y

1 Vk:x Vk:y

�������
(Vi:x� Vj :x)2 + (Vi:y � Vj :y)2

1
CCCA

1=2

if distVk � dist then

set dist = distVk

set f = k

Algorithm 2: Douglas and Peucker's algorithm for �nding the splitting vertex

The most time-consuming part of this procedure is the evaluation of the distance formula, so

we count how often that occurs. If the original chain C has n line segments (points V0; V1; : : : ; Vn)

and the approximate chain C
0 has k segments, then we know that step one is executed k times and

each execution has at most n distance evaluations. Thus, an upper bound is O(kn).

To make a careful analysis of the worst case easier, let us assume that no actual simpli�cation

occurs; i.e., that k = n. Then, if we know the splitting behaviour, the total number of distance

evaluations can be counted as a function of the number of input segments n. The best outcome

would be for every split to lie in the middle of its chain. The number of distance evaluations then

satis�es a recurrence:

D(1) = 0

D(n) = n � 1 +D(bn2 c) +D(dn2e);

which has a solution (n� 2) log2 n � D(n) � n log2(n+ 1). Thus, D(n) = �(n log2 n).

In the worst case, however, a split could take just one segment o� either end of the chain:

D(1) = 0

D(n) = n � 1 +D(1) +D(n� 1)

This gives the worst case performance D(n) = (n�1)(n�2)=2 = �(n2). This qualitative di�erence

becomes signi�cant as larger and larger problem instances are considered|we will see concrete

evidence of this in section 5. Furthermore, the vast di�erence between the best and worst case can

4

be a problem in parallel applications, which are only as fast as the slowest task, and in interactive

applications, in which users want predictable response time.

The reason for the ine�ciency of the worst case is easy to see|one must look at all the vertices

to �nd the splitting vertex, but then the resulting split leaves a problem nearly as large as the

original. In the next section, we show how to exploit information about the geometric structure

of the problem to �nd a splitting vertex by inspecting at most log2 n vertices. We also see how to

maintain this structural information while performing the n splits. This allows us to improve the

worst case to O(n log2 n) time.

On a single-user batch system, one is less concerned with the worst-case performance and more

concerned with the \expected" running time on \typical" data. Mathematically, one could de�ne

a probability distribution that certain data would actually occur and then compute the expected

time by summing the running time times the probability of each possible instance. The only way

to exactly de�ne a distribution, however, is to look at all data sets ever or ever to be simpli�ed.

To compare two or more algorithms on these data sets would involve running each algorithm on

each data set to �nd out which is the fastest; but if the solutions are known, the fastest algorithm

is one that simply outputs the known solution. To de�ne a probability distribution that allows one

to predict \typical" running times without solving all possible problems is practically impossible.

To consider problems that may be more typical than the best or worst case, however, we can

look at the number of distance calculations when a random vertex is chosen as the splitting vertex.

This would give the recurrence relation

D(1) = 0 (1)

D(n) = n� 1 +
1

n� 1

X
1�i�n�1

(D(i) +D(n� i)) (2)

which has a solution ofD(n) = �(n log2 n). A carefull analysis shows that, if splits occur at random

vertices, the average running time is a factor of 2 log2 e � 2:885 greater than the best.

A programmer concerned with e�ciency should work with squares of the distance and of � (as

do Whyatt and Wade [15]) because computing square roots is time consuming. Also, the portions

of the determinant computation that do not depend on k can be taken out of the loop. These

changes are reected in the timings for the DPimproved algorithm in section 5.

4 The path hull algorithm

In this section, we give a new algorithm for the method of Douglas and Peucker with �(n log2 n)

worst-case running time. In subsection 4.1, we show that the splitting vertices for a chain must

be found on its convex hull. We then de�ne the path hull data structure and give the path hull

algorithm for line simpli�cation, momentarily assuming the existence of procedures to build and

split path hulls and to �nd extreme vertices. In subsection 4.2, we outline the structure of the path

hulls and the procedures that operate on them. Finally, we analyze the asymptotic running time

of the new implementation in subsection 4.3.

5

4.1 Splitting vertices and convex hulls

C

Figure 1:

Tangents to a

convex set

We begin with some de�nitions. A set C is convex if whenever points p and

q are in C, the segment pq � C. A line t is tangent to C if C intersects t and

lies entirely on and to one side of t. A closed set C has two tangents parallel to

a given direction, as illustrated in �gure 1. These tangents touch extreme points

of C.

Lemma 4.1 Given a convex set C and a line `, the points of C at max distance

from ` lie on the two tangents to C parallel to `.

Proof: The points at equal distance from ` lie on lines parallel to `. If a point p 2 C achieves

the maximum distance, then consider the line `0 through p and parallel to `. No point of C can

lie on the opposite side of `0 from `, so `
0 is a tangent to `.

The convex hull of a set of points P is the smallest convex set containing P . The boundary

of the hull, which we denote CH (P), is a polygon consisting of points of P and segments joining

them. According to lemma 4.1, only the vertices of CH (P) need be considered as farthest points

from `.

So, our central task will be to maintain and search convex hulls of subchains e�ciently. Dobkin

et al. [3] developed the path hull data structure for a similar hull maintenance problem; here, we

modify their structure slightly. We de�ne the path hull of the chain from Vi to Vj to consist of a

tag vertex Vm and a pair of boundaries of convex hulls for the subchains ending at that tag vertex,

namely CH (Vi; : : : ; Vm) and CH (Vm; : : : ; Vj). We assume three operations on path hulls.

Build(V; i; j;PH) Build the path hull PH of Vi; : : : ; Vj by choosing the middle vertex V
b(i+j)=2c as

the tag and computing the convex hulls of two subchains.

Split(PH ; V; k) Given the path hull PH of the chain Vi; : : : ; Vj, split the chain at Vk and return

a path hull of the subchain containing the tag vertex. (The path hull for the other subchain

will be rebuilt later.)

FindFarthest(PH; `) Find the farthest vertex of PH from a given line `.

Algorithm 3 uses these three operations to compute the same simpli�cation as that found by the

Douglas-Peucker algorithm. The next section eshes out the path hull data structure and its

operations.

4.2 Implementing path hulls

A path hull consists of two arrays storing the vertices of the two convex hulls: the left stores

CH (Vi; : : : ; Vm) and the right stores CH (Vm; : : : ; Vj). With each array is a history stack. In this

subsection, we outline e�cient implementations of the path hull operations used in algorithm 3.

Interested readers can compare with the path hulls in Dobkin et al. [3].

We begin with the implementation of the operation FindFarthest(PH ; `). To �nd the farthest

vertex from `, we can separately �nd the farthest in the left and right hull and select the correct

vertex. Thus, we concentrate on �nding the farthest vertex on a convex polygon CH (P).

6

If PH contains a path hull of the subchain Vi; : : : ; Vj+1, then the call

DPhull(V; i; j;PH) simpli�es the subchain.

Procedure DPhull(V; i; j;PH)

1. Vf = FindFarthest(PH ;
 !
ViVj)

2. if Distance(Vf ; `) � � then

3. Output(V; i; j) =� Accept approximation �=

else

4. if Vf is less than the tag vertex then

5. Split(PH ; V; f) =� Form PH for Vf ; : : : ; Vj �=

6. DPhull(V; f; j;PH)

7. Build(V; i; f;PH) =� Build PH for Vi; : : : ; Vf �=

8. DPhull(V; i; f;PH)

else

9. Split(PH ; V; f) =� Form PH for Vi; : : : ; Vf �=

10. DPhull(V; i; f;PH)

11. Build(V; f; j;PH) =� Build PH for Vf ; : : : ; Vj �=

12. DPhull(V; f; j;PH)

Algorithm 3: The path hull algorithm for line simpli�cation

positive
angle

l

Figure 2: Postive

angle from ` to

tangent

Suppose the edges of CH (P) are listed in counter-clockwise (ccw) order

and that ` is oriented from left to right as illustrated in �gure 2. A tangent

to the convex hull of P touches a vertex of CH (P). If we rotate the tangent

counter-clockwise, then it pivots around a vertex until it encounters the

outgoing segment of CH (P) and switches its pivot to the next vertex

in ccw order. This implies that the vertices with tangents parallel to `

separate CH (P) into two chains, one whose edges form positive angles

less than 180� with ` and one whose edges form negative angles. As an

abbreviation, we call these positive and negative edges.

We can �nd the farthest vertex by a three step process: First, �nd a

positive and a negative edge, which separate CH (P) into two pieces that

each contain one extreme point. Second, use binary searches to locate a

vertex on each piece where the edge angles change sign. Third, compute and compare the distances

to these extreme points to determine which is greater.

To perform the �rst step, choose an arbitrary edge e of CH (P) as a base edge. Let us assume

that e is positive, as in �gure 3, so that our task is to �nd a negative edge. Choose the edge e
0

that splits CH (P) into two equal pieces. If e0 is negative, we are done with the �rst step. If e0 is

positive, then look at a segment s (drawn dashed) from an endpoint of e to an endpoint of e0. If

s is also positive, then we can discard the hull edges before e
0 because they are all positive. If s

is negative, then we can discard the portion after e0. Then we choose a new e
0 that divides the

remaining portion in equal halves and repeat. We can perform this halving at most log2 n times

before �nding a negative edge e0.

7

+

+
e’

e +

+

+

−
−

−

−

−

l

Figure 3: Searching for

a negative edge

For the second step, we have a positive edge e and a negative edge e0

and we must search the portion between them for the vertex adjacent to

both positive and negative edges. As before, we look at a middle edge e00.

If e00 is positive, then we replace e with e
00; if e00 is negative, we replace

e
0 with e

00. After testing at most log2 n edges, we �nd the vertex with

tangent parallel to `.

The third step is the easiest|compute the two distances (or their

squares) and compare them. Thus, after O(log2 n) operations, we can

report the farthest point from ` if we have CH (P) available in an array.

For the Build() operation, we use a modi�cation of Melkman's con-

vex hull algorithm [3, 11]. This algorithm (and therefore our algorithm

as well) is valid only if the underlying path has no self intersections,

which is usually the desired case in cartograpic and vision applications.

Melkman's algorithm computes the right convex hull CH (Vm; : : : ; Vj) incrementally, by succes-

sively adding vertices Vm through Vj to a double-ended queue, which is implemented in the right

array. Initially, the queue contains, from bottom to top, Vm+1, Vm, and Vm+1. To insert Vl into

the queue storing the hull CH (Vm; : : : ; Vl�1) we do the following: While Vl is not to the right of

the hull edge from the top of queue, pop the top vertex from the queue. And, while Vl is not to

the right of the hull edge into the bottom of queue, pop the bottom vertex. If any vertex has been

popped, then push Vl onto the top and bottom of the queue. Thus, Melkman's algorithm computes

not only the desired convex hull, but also all intermediate hulls.

We modify his algorithm to store the sequence of pushes and pops, and the vertices involved, in

the right history stack. We also construct the left convex hull CH (Vi; : : : ; Vm) by adding vertices

from Vm down to Vi and record the pushes and pops in the left history stack. This completes the

Build() operation.

The Split(PH ; V; k) operation is now quite easy. We play back the history of the hull that

contains the splitting vertex Vk and undo the operations until we reach the operation that pushes

Vk.

4.3 Analyzing the running time

In this section we analyze the running time of the path hull algorithm, Algorithm 3. First we

consider the total cost of calls to FindFarthest(), then calls to Split() and Build().

Lemma 4.2 The total cost of calls to FindFarthest() is O(n log2 n)

Proof: We have already noticed in section 2 that there are O(n) calls to DPhull() and thus to

FindFarthest(). Each call performs O(log2 n) tests and halving operations, so the total cost

of all calls is O(n log2 n).

We can relate the cost of Split()s to the cost of Build()s.

Lemma 4.3 The cost of all calls to Split() is at most the cost of all calls to Build().

Proof: Since there are only O(n) calls to Split(), there are at most O(n) operations that do

not pop the history stack. Any operation that does pop the history stack is simply undoing the

e�ect of some Build().

8

Now we can account for the work done by Build() operations by a \credit" scheme, in which

each call to DPhull() is given some number of credits to pay for the Build()s in its body and its

recursive calls. We give O(n log2 n) credits to the �rst call to DPhull(), then show that all calls

have enough credits to pay for their own work and that of their recursive calls.

Lemma 4.4 The total cost of all Build() operations is O(n log2 n).

Proof: Let l and r be the number of internal vertices to the left and right of the tag vertex

in a given call to DPhull(). \Internal" means that we neglect the endpoints, because a chain

with only one edge cannot be split further. We show that if the call is given at least (l +

r) log2(maxfl; rg) credits, then it can pay for its own Build() operation and give the correct

number of credits to its recursive calls of DPhull() to pay for their Build() operations.

Credits are spent as follows. Let the index of the splitting vertex be f = i + s. Since the

algorithm and the credit function are both symmetric with respect to left and right, let us

assume that vf is to the left of the tag. In line 6 of Algorithm 3 the call to DPhull() must be

given

(l� s+ r) log2maxfl � s; rg � (l� s + r) log2maxfl; rg �

credits to pay for its calls to Build(). In line 7 we spend s credits in the call to Build(), which

constructs a path hull with at most bs=2c internal vertices on each side of the tag. Therefore,

in line 8, we give

s log2bs=2c � s(log2 s� 1) � s log2maxfl; rg� s ��

credits to the recursive call to DPhull().

Summing (�), (��) and the s credits spent on Build(), we �nd that the total expenditure is

at most (l+ r) log2(maxfl; rg) credits. Therefore, if we give the �rst call to DPhull() a total of

n log2 n credits, it has su�cient credits to pay for all calls to Build().

With this lemma, we have shown that the work done by each line of the algorithm can be

bounded by O(n log2 n). This completes the analysis.

5 Comparing running times

In this section we compare machine timings of three implementations of line simpli�cation al-

gorithms on a SUN 3/50. The �rst, DPbasic, is the basic Douglas-Peucker implementation as

described in section 3. The second, DPimproved, incorporates the suggestions given at the end of

that section for speeding up the search for a splitting vertex|squared distances are compared and

loop invariants are moved outside the loop. The third, DPhull, uses path hulls to �nd a splitting

vertex.

Based on the analysis that we have done in sections 3 and 4, we can run these algorithms on

inputs that reveal their best and worst cases. The �rst case is the example of Douglas and Peucker

with points evenly spaced on a circle. This is readily seen to be the best case for the standard

implementation, since all splits occur in the middles of chains, and the worst case for the path

hull algorithm, since the convex hull of any subchain includes all the points. Since the path hull

implementation records structural information not considered by the standard implementation, it

9

is not surprising that it is slower.

Time (secs)

Algorithm 1000 pts 5000 pts 10000 pts

DPbasic 0.350 1.883 4.950

DPimproved 0.067 0.300 0.767

DPhull 0.200 1.050 2.600

The worst case for the standard implementation is a zig-zag or spiral where every split chops o�

only a single segment. Here the improvement given by the path hull implementation is dramatic.

Time (secs)

Algorithm 1000 pts 5000 pts 10000 pts

DPbasic 19.700 407.067 1993.817

DPimproved 2.150 43.883 235.500

DPhull 0.150 0.650 1.550

As mentioned in section 2 it is di�cult to test algorithms on \typical" data. The last test

set is a monotone chain with random y coordinates. On this input the DPimproved and DPhull

algorithms have comparable performances.

Time (secs)

Algorithm 1000 pts 5000 pts 10000 pts

DPbasic 1.050 7.717 25.800

DPimproved 0.133 0.833 2.883

DPhull 0.167 0.800 2.000

6 Conclusions

A mathematical analysis of the line simpli�cation algorithm reported by Douglas and Peucker [4]

shows that its worst-case running time is quadratic. That is, �(n2) time can be required to simplify

a polygonal line with n input points. Investigation into the geometry of their simpli�cation method

reveals how one can maintain enough structure to guarantee a running time of O(n log2 n), which

asymptotically matches the best case of the standard algorithm. Implementation shows the new

algorithm to be a factor of 2.5 to 3 slower than the best case of the standard algorithm, due to the

extra structural information that it maintains, but to be far faster (e.g. a factor of 150 on 10000

points) in the worst case of the standard algorithm. The fact that the variance of the running time

of the new algorithm is small may make it suitable for interactive and/or parallel applications.

References

[1] B. Butten�eld. Treatment of the cartographic line. Cartographica, 22:1{26, 1985.

[2] R. G. Cromley. Hierarchical methods of line simpli�cation. Cartography and Geographic

Information Systems, 18(2):125{131, 1991.

[3] D. Dobkin, L. Guibas, J. Hershberger, and J. Snoeyink. An e�cient algorithm for �nding the

CSG representation of a simple polygon. Computer Graphics, 22(4):31{40, 1988. Proceedings

of SIGGRAPH `88.

10

[4] D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the number of points required

to represent a line or its caricature. The Canadian Cartographer, 10(2):112{122, 1973.

[5] L. J. Guibas, J. E. Hershberger, J. S. B. Mitchell, and J. S. Snoeyink. Minimum link ap-

proximation of polygons and subdivisions. In W. L. Hsu and R. C. T. Lee, editors, ISA `91

Algorithms, number 557 in LNCS, pages 151{162. Springer-Verlag, 1991.

[6] C. Jones and I. Abraham. Line generalisation in a global cartographic database. Cartographica,

24(3):32{45, 1987.

[7] D. E. Knuth. Mathematical analysis of algorithms. In Proceedings of the IFIP Congress 1971,

pages 19{27. North-Holland, Amsterdam, 1972.

[8] J. S. Marino. Identi�cation of characteristic points along naturally occurring lines: An empir-

ical study. Can. Cartog., 16:70{80, 1979.

[9] R. B. McMaster. A statistical analysis of mathematical measures for linear simpli�cation.

Amer. Cartog., 13:103{116, 1986.

[10] R. B. McMaster. Automated line generalization. Cartographica, 24(2):74{111, 1987.

[11] A. A. Melkman. On-line construction of the convex hull of a simple polyline. Info. Proc. Let.,

25:11{12, 1987.

[12] U. Ramer. An iterative procedure for the polygonal approximation of plane curves. Comp.

Vis. Graph. Image Proc., 1:244{256, 1972.

[13] G. Rote. Quadratic convergence of the sandwich algorithm for approximating convex functions

and convex �gures in the plane. In Proc. Second Can. Conf. Comp. Geom., pages 120{124,

Ottawa, Ontario, 1990.

[14] E. R. White. Assessment of line-generalization algorithms using characteristic points. Amer.

Cartog., 12(1):17{27, 1985.

[15] J. D. Whyatt and P. R. Wade. The Douglas-Peucker line simpli�cation algorithm. Bulletin of

the Society of University Cartographers, 22(1):17{27, 1988.

11

Appendix A: C code for DPhull()

#define EPSILON 0.00000000000 =� Error tolerance �=

#define EPSILON_SQ 0.00000000000000000 =� Error tolerance squared �=

#define HULL_MAX 10000

#define TWICE_HULL_MAX 20000

#define THRICE_HULL_MAX 30000

#define PUSH_OP 0 =� Operation names saved in history stack �=

#define TOP_OP 1

#define BOT_OP 2

#define XX 0

#define YY 1

#define WW 2

typedef double POINT[2];

typedef double HOMOG[3];

typedef struct { =� Half of a Path Hull: elt is a double ended queue

storing a convex hull, top and bot are the two ends.
The history stack is helt for points and op for opera-

tions, hp is the stack pointer. �=

int top, bot,

hp, op[THRICE_HULL_MAX];

POINT *elt[TWICE_HULL_MAX],

*helt[THRICE_HULL_MAX];

} PATH_HULL;

#define MIN(a,b) (a < b ? a : b)

#define MAX(a,b) (a > b ? a : b)

#define SGN(a) (a >= 0)

#define CROSSPROD_2CCH(p, q, r) =� 2-d cartesian to homog cross product �=

(r)[WW] = (p)[XX] * (q)[YY] - (p)[YY] * (q)[XX];

(r)[XX] = - (q)[YY] + (p)[YY];

(r)[YY] = (q)[XX] - (p)[XX];

#define DOTPROD_2CH(p, q) =� 2-d cartesian to homog dot product �=

(q)[WW] + (p)[XX]*(q)[XX] + (p)[YY]*(q)[YY]

#define LEFT_OF(a, b, c) =� Determine if point c is left of line a to b �=

(((*a)[XX] - (*c)[XX])*((*b)[YY] - (*c)[YY])

>= ((*b)[XX] - (*c)[XX])*((*a)[YY] - (*c)[YY]))

#define SLOPE_SIGN(h, p, q, l) =� Return the sign of the projection of h[q] � h[p]
onto the normal to line l �=SGN((l[XX])*((*h->elt[q])[XX] -

(*h->elt[p])[XX]) + (l[YY])*((*h->elt[q])[YY] - (*h->elt[p])[YY]))

12

#define Hull_Push(h, e) =� Push element e onto path hull h �=

(h)->elt[++(h)->top] = (h)->elt[--(h)->bot] = (h)->helt[++(h)->hp] = e;

(h)->op[(h)->hp] = PUSH_OP

#define Hull_Pop_Top(h) =� Pop from top �=

(h)->helt[++(h)->hp] = (h)->elt[(h)->top--];

(h)->op[(h)->hp] = TOP_OP

#define Hull_Pop_Bot(h) =� Pop from bottom �=

(h)->helt[++(h)->hp] = (h)->elt[(h)->bot++];

(h)->op[(h)->hp] = BOT_OP

#define Hull_Init(h, e1, e2) =� Initialize path hull and history �=

(h)->elt[HULL_MAX] = e1;

(h)->elt[(h)->top = HULL_MAX+1] = (h)->elt[(h)->bot = HULL_MAX-1]

= (h)->helt[(h)->hp = 0] = e2;

(h)->op[0] = PUSH_OP;

POINT *V; =� Vertices of the input chain �=

int n; =� Number of vertices in V �=

PATH_HULL *left, *right; =� The Path Hull: pointers to left hull, right hull,
and tag vertex PHtag. �=POINT *PHtag;

void Find_Extreme(h, line, e, dist) =� Return e, the extreme vertex of the hull h with

respect to line. Return also its distance dist. �=register PATH_HULL *h;

HOMOG line;

POINT **e;

register double *dist;

{

int sbase, sbrk, mid,

lo, m1, brk, m2, hi;

double d1, d2;

if ((h->top - h->bot) > 6) =� If there are > 6 points on the hull (otherwise we

will just look at them all.) �={

lo = h->bot; hi = h->top - 1;

sbase = SLOPE_SIGN(h, hi, lo, line); =� The sign of the base edge �=

do

{

brk = (lo + hi) / 2; =� Binary search for an edge with opposite sign �=

if (sbase == (sbrk = SLOPE_SIGN(h, brk, brk+1, line)))

if (sbase == (SLOPE_SIGN(h, lo, brk+1, line))) lo = brk + 1;

else hi = brk;

}

while (sbase == sbrk);

m1 = brk; =� Now, the sign changes between the base edge and

brk + 1. Binary search for the extreme point. �=while (lo < m1)

{

mid = (lo + m1) / 2;

if (sbase == (SLOPE_SIGN(h, mid, mid+1, line))) lo = mid + 1;

else m1 = mid;

}

13

m2 = brk; =� The sign also changes between brk and the base.
Binary search again. �=while (m2 < hi)

{

mid = (m2 + hi) / 2;

if (sbase == (SLOPE_SIGN(h, mid, mid+1, line))) hi = mid;

else m2 = mid + 1;

} =� Compute distances to extreme points found �=

if ((d1 = DOTPROD_2CH(*h->elt[lo], line)) < 0) d1 = - d1;

if ((d2 = DOTPROD_2CH(*h->elt[m2], line)) < 0) d2 = - d2;

*dist = (d1 > d2 ? (*e = h->elt[lo], d1) : (*e = h->elt[m2], d2));

}

else =� Few points in hull|search by brute force �=

{

*dist = 0.0;

for (mid = h->bot; mid < h->top; mid++)

{

if ((d1 = DOTPROD_2CH(*h->elt[mid], line)) < 0) d1 = - d1;

if (d1 > *dist)

{ *dist = d1; *e = h->elt[mid]; }

}

}

}

void Hull_Add(h, p) =� Add p to the hull h. Implements Melkman's convex

hull algorithm. �=register PATH_HULL *h;

POINT *p;

{

register int topflag, botflag;

topflag = LEFT_OF(h->elt[h->top], h->elt[h->top-1], p);

botflag = LEFT_OF(h->elt[h->bot+1], h->elt[h->bot], p);

if (topflag || botflag) =� If the new point is outside the hull �=

{

while (topflag) =� Pop points until convexity is ensured �=

{

Hull_Pop_Top(h);

topflag = LEFT_OF(h->elt[h->top], h->elt[h->top-1], p);

}

while (botflag)

{

Hull_Pop_Bot(h);

botflag = LEFT_OF(h->elt[h->bot+1], h->elt[h->bot], p);

}

Hull_Push(h, p); =� Then push the new point on the top and bottom
of the deque �=}

}

14

void Build(i, j) =� Build the Path Hull for the chain from vertex i
to vertex j. �=POINT *i, *j;

{

register POINT *k;

PHtag = i + (j - i) / 2; =� Make the middle vertex the tag �=

Hull_Init(left, PHtag, PHtag - 1); =� Build left hull �=

for (k = PHtag - 2; k >= i; k--) Hull_Add(left, k);

Hull_Init(right, PHtag, PHtag + 1); =� Build right hull �=

for (k = PHtag + 2; k <= j; k++) Hull_Add(right, k);

}

void Split(h, e) =� Split the hull h at the point e, leaving the hull

from the tag to e. �=register PATH_HULL *h;

POINT *e;

{

register POINT *tmpe;

register int tmpo;

while ((h->hp >= 0) =� Loop until we reach the PUSH OP for e. �=

&& ((tmpo = h->op[h->hp]), ((tmpe = h->helt[h->hp]) != e) || (tmpo != PUSH_OP)))

{

h->hp--;

switch (tmpo) =� Undo the operation �=

{

case PUSH_OP: h->top--; h->bot++; break;

case TOP_OP: h->elt[++h->top] = tmpe; break;

case BOT_OP: h->elt[--h->bot] = tmpe; break;

}

}

}

POINT *DPhull(i, j) =� Recursively simplify the chain from vertex i to j.
Returns the last point on the simpli�ed chain. �=POINT *i, *j;

{

POINT *lextr, *rextr; =� Extrema on left and right hulls and their dis-

tances �=double ldist, rdist;

HOMOG line;

double len_sq;

POINT * tmp;

CROSSPROD_2CCH(*i, *j, line); =� Compute line through i and j. �=

len_sq = line[XX] * line[XX] + line[YY] * line[YY];

if (j - i <= 1) =� If no vertices between i and j, then simpli�cation
is complete. �=return(j);

else

{

Find_Extreme(left, line, &lextr, &ldist);

Find_Extreme(right, line, &rextr, &rdist);

if (ldist <= rdist) =� See if a split occurs at the right or left �=

15

if (rdist * rdist <= EPSILON_SQ * len_sq)

return(j); =� No split needed if within tolerance �=

else

{

if (PHtag == rextr) Build(i, rextr); =� If the split occurs at the tag, rebuild otherwise
split the end o� the right. �=else Split(right, rextr);

OutputVertex(DPhull(i, rextr)); =� Simplify before the split. �=

Build(rextr, j); =� Rebuild path hull and simplify after split. �=

return(DPhull(rextr, j));

}

else

if (ldist * ldist <= EPSILON_SQ * len_sq)

return(j); =� No split needed if within tolerance �=

else

{

Split(left, lextr); =� Split the end o� the left. Simplify after the split,

and save the output for later. �=tmp = DPhull(lextr, j);

Build(i, lextr); =� Rebuild path hull and simplify after split. �=

OutputVertex(DPhull(i, lextr));

return(tmp);

}

}

}

void main() =� Read in the points, build the �rst path hull, and

call DPhull() to simplify. �={

n = Get_Points(V); =� Get points and allocate memory �=

Init(V);

Build(V, V + n - 1); =� Build the initial path hull �=

OutputVertex(V);

OutputVertex(DP(V, V + n - 1)); =� Simplify �=

}

16

