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Abstract: We study the problem of detecting the regularity degree deg(!) = max{ k : 
k ::; r, f E Ck} of functions based on a finite number of function evaluations. Since it is 
impossible to find deg(!) for any function J, we analyze this problem from a probabilistic 
perspective. We prove that when the class of considered functions is equipped with a Wiener­
type probability measure, one can compute deg(!) exactly with super exponentially small 
probability of failure. That is, we propose an algorithm which, given n function values at 
equally spaced points, might propose a value different than deg(!) only with probability 
0 ((n-1 lnn)(n-r)/4). Hence regularity detection is easy in the probabilistic setting even 
though it is unsolvable in the worst case setting. 
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1 Introduction 

\Ve study the problem of detecting the degree of regularity of a function J based on a finite 
number of its values J(xi) (1 ~ i ~ n). That is, for a cont inuous function J: (0 , 1]--+ IR. \\"e 
would like to compute the maximal integer k = k(J) such that f E Ck = Ck[O , l]. Since to 
approximate j(k) ( should it exist) at least k + 1 function values are needed, deciding whether 
f E Ck for k 2 n is impossible. Therefore we study t he following modi£ed problem: Given 
a positive integerr (r ~ n)/ compute deg(!) == max{k: k $ r , f E Ck} . 

Detecting regularity of functions is an important problem from a theoretical point of view. 
The theoretical optimality of many algorithms for various problems, such as integration or 
function approximation (see, e.g., [5, 6, 9, 10] and papers cited therein), depends on the 
regularity of the underlying class of functions, and in general d ifferent classes (say Ck1 

and Ck2 ) poses different optimal algorithms. Thus, if the regularity of functions under 
considerations is unknown, optimality results that assume known regularity need not be 
applicable. The knowledge of the regularity degree is also very helpful from a practical point 
of view since, without it, good decisions concerning an appropriate choice of algorithms 
as well as termination of an algorithm are difficult to make. To see it, consider briefly 
the integration problem where we want to approximate S(J) = Ji J ( x) dx. Suppose our 
algorithm uses a quadrature Q k that relies on the assumption f E Ck. If k =/- deg(!) then 
t wo scenarios could happen. In case of underes timating deg(!), Qk is much less efficj nt 
than Qdeg(J)· Furthermore since bounded (small) II J( deg(f))II need not imply small l!Jtkll l, 
the error of Qk could be very large. In case of overestimating deg(!), the rule Qk is, modulo 
a multiplicative constant, as good as Qdeg(f) (see e.g., [11]). However, the constant grows 
exponentially with k-deg(f). Moreover, since the actual error of Q k behaves asymptotically 
as the error of Qdeg(f), its converges is significantly slower than the anticipated convergence 
of Qk when applied to k-times differen tiable functions. This could resul t in premature 
termination of the algorithm. 

Thus, the precise knowledge of deg(!) is of a great deal of interest. However, as it is well 
known, without some very restrictive assumptions on the class of functions, computing deg(!) 
for all functions in the class is intractable in the worst case setting. This is why we address 
this problem from a probabilistic perspective. More precisely, by assuming the existence of 
a reasonable probability measure on the underlying class of functions, we give an algorithm 
that computes the correct deg(!) with a very high probability. This algorithm makes the 
decision based on the behavior of forward differences of function values. Since decisions 
on termination of algorithms in numerical quadratures are often based ( at least implicitly) 
on some form of differences, this result can also be viewed as a theoretical basis for these 
numerical techniques. When the regularity of the functions is known, a probabilistic analysis 
of numerical integration algorithms that use divided differences as termination criteria has 
been pursued in (3, 4]. 

The main result of the paper states that one can compute deg(!) exactly with super 
exponent ia lly small probability of failure. T hat .is, our algorithm might propose a valu 
different than deg(!) only with probability O ((n-1 lnn)(n-r)/4 ) . (Recall t hat n stands for 

th number of function valu s and r is the bound on the regulari ty d gree.) H nee t b 
regularity detection is an easy problem from the probabilistic complexity point of ,·iew, 
whereas it is unsolvable in the worst case setting. 
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We stress that functions arising in practice are more complicated than those studied in 
this paper. Indeed, in this paper we concentrate on functions that have the same regularity 
degree deg(!) in the whole domain [O, 1]. However, in practice we often deal with functions 
that are piecewise regular. That is, f consists of a number of regular pieces, f(x) = fi(x) 
for x E J; = (z;_1 , z;). In each subinterval, the degree of regularity degi = deg(Ji) can be 
different. Furthermore, at each singular point Zi = zi(J) that is unknown and varies with 
J, the function J can have a different (and unknown) degree Si of smoothness. Hence, for 
theoretical results to have an impact on practical applications, one needs to consider the 
more general regularity detection problem where f is piecewise regular, as described above, 
and the task is to approximate the intervals Ji = (z;_1 , z;) together with computing the 
regularity degree deg; off restricted to I;. 

This paper does not address the general problem. It only constitutes another step in this 
direction. It is a continuation of our previous paper [12], where the problem of approximat­
ing singular points z(J) of piecewise regular functions has been studied. We proved there 
that, with a very high probability, one can approximate singular points very accurately with 
relatively low cost. Based on that and the results presented in this paper, in a forthcoming 
paper [2] we will show that under some relatively nonrestrictive assumptions (such as uni­
formly bounded and not too large number of pieces Ji) the general problem is tractable in 
the probabilistic case. 

2 Problem formulation and basic definitions 

Let F = C0 be the class of continuous functions defined on the 1nterval [O, 1). Let r be a 
positive integer, and let the regularity degree off be defined by 

deg(!)= max{k: k ~ r,f E Ck}. 

Here, Ck = {J : [O, 1) -+ IR : j(k) continuous}. Since F = uk=O Ck and Ck+l C Ck, the 
space F can be endowed with the following Borel probability measure Prob: 

and 

and the conditional probability 

Prob(! E Aldeg(J) = k) = Wk(A) V Borel set A~ ck. 

Here ak are nonnegative numbers such that ~k=O ak = 1 and Wk is the k-fold Wiener 
measure. That is, when deg(!) = k, the function f is distributed according to the k-fold 
Wiener measure wk, and the probability that deg(!) = k equals ak, 

The problem studied in this paper is to compute deg(!) for all functions f E F but a set 
of small probability Prob. More specifically, given n ~ r and 

we want an algorithm t/; : IRn -+ {O, ... , r} for which 

Prob( {J E F: t/;(Nn(f))-/- deg(!)}) is small. 
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In this paper, we assume that the points Xi are equally spaced in some interval [a, b] ~ [O, 1], 

Xi= a+ i h with 
b-a 

h=--. 
n 

Before presenting an algorithm that computes deg(!) with very high probability (see 
Section 3), we comment on the choice of the probability Prob. The numbers O'k are needed 
only for a precise definition of Prob. In this paper, we do not assume that they are known. 
Instead, we present an algorithm that works very well regardless of their values. The choice 
of k-fold Wiener measures wk is somewhat arbitrary. However, due to their interesting 
mathematical properties they are one of the most frequently used measures on function 
spaces in a variety of fields ( e.g., numerical analysis, operation research, physics, statistics). 
Furthermore, their properties provide an adequate model for what deg(!) means. A more 
detailed discussion of Wiener measures can be found in e.g., [l, 7, 9]. Here we briefly recall 
their basic properties which will be used in this paper. 

Fork= 0, w0 (the classical Wiener measure) is a zero-mean Gaussian measure with the 
covariance kernel 

K 0 (x,y) := { J(x)f(y)w0 (df) = min{x,y}. lco 
Equivalently, f is a zero-mean Gaussian stochastic process with the autocorrelation J{ 0 ( x, y) 
given al ove. For k 2:: 1, f distribut d according to Wk an be vi wed as a k-fold integrated 
Wiener process g, i.e., J(x) = JJ g(t)( x - t)t- 1 /(k - l)! dt with g is distributed accord ing to 
w0 . Hence, Wr is a zero-mean Gaussian measure with the the covariance kernel 

vVe end this section by the following remarks 

Remark 1 Note that wk concentrates on functions with f(j)(O) = 0 for O :s; j :s; k. This (a 
rather peculiar) property of Wk could easily be removed by taking f(x) = fi(x) + f2 (1 - x) 
with independent Ji, h, both distributed according to wk. It is possible to show, that 
our algorithm works as well for such a modified probability distribution; for the modified 
distribution, its probability of failure differs from Prob( {f : deg(!) =f 'lj;(Nn(J))}) only by 
a multiplicative constant of the order of unity. For piecewise regular functions that we will 
study in [2], their distribution will be specified by a distribution of pieces Ji, which in turn 
will be equal to fi(x) = 9i(x) or fi(x) = 9i(l - x) (for x close to zero) with 9i being a 
degi-fold Wiener process. Thus, f will not vanish at 0. 

Remark 2 Since our measure concentrates on functions with the same regularity every­
where in [O, l], r + 1 function values at points close to one another suffice to detect the 
correct deg(!) with a high probability. In fact, when the property that f vanishes at zero 
together with its first k derivatives is utilized, we could use only one value f( h) for a small 
h. The smaller h is the higher the probability of success. Hence the regularity detection 
problem as posed in this paper would be trivial when arbitrary function values are allowed. 
However, as stated in Introduction our eventual goal is to tackle the problem for piecewise 
regular functions. For piecewise regular functions, that is no longer the case. Because of 
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varying regularity in unknown subintervals Ii, one needs to use points across the whole in­
terval. This is why we have chosen Nn(J) consisting of function values at equally spaced 
points. The fact that the points we choose are equally spaced is not very crucial to our 
estimates. Similar conclusions can be drawn when values at O $ x 1 $ ... $ Xn $ l are used 
with mini(Xi - Xi-1) ~ maxi(Xi - Xi-1) ~ h. 

3 An algorithm 

We propose the following algorithm for deciding the regularity off. 
Fork= l, ... , r + 1 and i $ n - k, let Xk,i = Xk,i(J) be the kth forward difference off 

at Xi = a+ ih. Obviously, 

Xk,i = t ( ~ ) (-l)j J(xi+j) 
j=O J 

and xk,i = Xk-1,i+l - Xk-1,i with Xo,i = f(xi), 

For k = 1 . . .. , r + 1, define 

The decision algorithm is 

1/J(Nn(J)) = max {i: j s; rand Xj+1(J) s; bjhj} 

if such a k exists, and 
1/J(Nn(f)) = 0 

otherwise. Here bi = bj( n) are positive reals whose choice will be addressed in Section 4.2. 
The error of 7/J is defined by 

E('I/J) = Prob({/ E F: deg(!)# 1/J(Nn(f))}). 

4 Estimating E( 't/J) 

Let Ak be the set of functions with deg(!) = k for which 7/J delivers incorrect value. Then 

r 

E('lj)) s; L O'.kWk(Ak), 
k=O 

Denoting by A:;; and At the subsets of Ak on which 7/J underestimates and overestimates the 
degree k, respectively, we have wk(Ak) = wk(A:;;) + wk(At). Of course, At = A0 = 0 and 
thus · 

The sets 

and 

r r-1 

E('I/J) s; L akwk(A:;;) + L akwk(At). 
k=l k=O 

A:;; = { f : deg(!) = k. Vj ~ k : Xi+t > bihi} 

At = {! : deg(!) = k, :lj ~ k + l : Xi+i s; bihi)} 
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In this subsection k E {0, ... ,r} and j E {k + 1, ... ,r + l}. Since Wk is a Gaussian 
measure, the random variables Xj,I (0 :::; l :::; n - j) restricted to Ck are also Gaussian. Take 
11, l2 ::; n - j. Since 

the expected value of Xj,1t Xjh ( with respect to wk) is 

where ,0.{ is the jth forward difference operator at x 1• Thus, 

(2) 

From the well-know properties of B-splines we also conclude that for j = k+ 1, Ek(Xk+ 1,,Xk+1,1) 

does not depend on l and is bounded by 

where Nt+ 1 is the /th normalized B-spline of degree k + 1. 

Proposition 1 For every k E { 1, ... , r}, 

(3) 

Proof: Let Bk = wk( {J E A; : Xk+l > bkhk} ). Then wk(A;) ::; Bk. Since Xk+l (J) > bk// 
is equivalent to IXk+1,i(f)! > bkhk for some l E {O, ... ,n - k - 1}, we get 

n-k-1 
Bk :::; L wk( {J E ck : IXk+1,il > bkhk} ). 

l=O 

Denote o- = Ek(Xk+1,,Xk+1,1)- Since Xk+i,I has a normal N(O, o-) distribution, 

where /3k,n = bkhk / fo. Hence, (3) completes the proof. D 

Since At = uj>k+l {J: deg(!)= k, Xj+l ::; bjhj}, we estimate wk(At) by studying first 
the probability of Xj+i ::; bjhj, separately for each j. 
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Proposition 2 For every k E {O, ... , r - 1} and j 2 k + lJ 

({d (!) k v· < b hj}) < l (hj-k-1/2b ~ )(n-j)/2 Wk eg = . : ..-'lj+l - j - . n +I jCk,j , 
r(211), 

where 

and 
_ (2j - k - l)!J(j + 1)(2j + 1)(2j - k - l) 
Ck,j = j!21rj-k-l . 

To prove this proposition we need the following two Lemmas. 

Lemma 1 Let j, m, i be integers satisfying j 2 k + l, m 2 0, and l ::S i ::S n - m - j - 1. 
Let S = (s11 h) be an (i xi) matrix with the entries 

which obviously is positive definite. Then 

where 
(i + j - k - l)!Ji(i + j)(i + j - k - l) 

Ck,i,j = 7rJ-k-l(i - 1)!\/2 

Proof: Due to the equivalence of \ \ · \ loo and \ I · I \2 on IR,i, we have 

(4) 

where(·, ·) 2 is the standard inner product on IR,i and A(S) is the minimal eigenvalue of S. 
To estimate A(S), note that 

where b81 ,s2 equals 

Hence 

(6) 
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with JV;+ 2 being a normalized B-spline of degree k + 2. 
From (5) we get 

( 7) 

where Bis a (i + j - k - 1) x (i + j - k - 1) matrix whose (s 1 , s 2 )th entry is given by (6), 
m - (j - k) + 1 ~ s1 , s 2 ~ m + i - 1. The matrix V equals 

v = wi • wi+1 • ... • Wj+i-k-2 

where Wi is the following l x ( l + 1) matrix 

-1 1 0 0 0 0 0 0 
0 -1 1 0 0 0 0 0 

W1= 
0 0 0 0 0 - 1 1 0 

0 0 0 0 0 0 - 1 1 

Due to (7), 
>.(S) ~ >.(B)>.(VVT), 

where >.(B) and >.(VVT) are the minimal eigenvalues of B and VVT, respectively. 
\Ve first estimate 

'(B) . (Ba, a),, 
11 = Dl ln _ ". 

&effi.i+1- i.-1 ( a, a)2 

(S) 

Lettingga(x) = ~~+~-(j-k)+2asN;+ 2(x), (6) implies (Ba,a)2 = h2k+ 2 llg5IIL- Sincesuppg5 ~ 
[xm-j, Xm+i], 

ll9allLoo ~ /(i + j)h/2llg~IIL2· 

It is well known, see e.g., [8] (Thm. 4.44), that ll9allL00 ~ lliilloo(2/7r)k+2
• Since iialloo/lliilb ~ 

(i + j - k - 1)-1! 2 , we get 

~ ~ hk+l/2...fj, (~)k+2 

/(i+j)(i+j-k-1) 7r 
(9) 

To estimate >.(VVT) note that 

j+i-k-2 
>.(vvr) ~ II >.(vVi lrV{) 

l=i 

Since W1 Wt is an l x l tri-diagonal matrix with diagonal elements equal to 2 and codiagonal 
elements equal to -1, it is well known that >.(W1Wt) = 4sin2 (7r/(2l)) ~ (7r/l)2. Hence 

j-k-1 

J>.(VVT) ~ fl{~:-k-2 1 · (10) 

Hence ( 4), (8), (9), and (10) imply 

IIS112fflloo ~ llffl'2hk+1/2 7rj-k-l v2 
/i(i + j)(i + j - k - l) TI;!rk- 2 z 

This completes the proof. □ 
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Lemma 2 Let J: m, i be as in Lemma 1. Then 

Wk ({1 Eck: max 'IXj+1.1U)I :::; bjh1
}) :S (hj-k-If'b;i:,,,,;)' , 1 )' 

m+19:Sm+i [' ( } + j 

where ck.i.j = Ck,i,j/ \1'2. 

Proof: Let L denotes wk ( {J E Ck : maxm+l:Sl:Sm+i IXj+l,t(f)I :::; bjhj} ). The random vec­

tor [Xi+l,m+l, ... , Xj+1,m+iV has a normal N(O, S) distribution with S given in Lemma 1. 
Hence 

L l f . ( /5-1 ... ... ) /?) d ... = --;::==== };; exp -\ x,x - x . 
J(27r)idet(S) .rEilli,llxlloo:SbjhJ 2 

Changing the variables, y := s-1l 2x, we get 

. L = (27r)-i12 r exp(-ll'illl~/2)dy:::; (27r)-i12 p; ({'i!E IRi: 11s112 'illloo:::; bjhj})' 
}111i'lloo :Sb;hJ 

where /l; is the Lebesgue measure on IR,i. Due to Lemma 1, we have 

Ri-i/ 2 R1: 
L < (2 )-i/2 . ({ ... rn_i · 11 ... 11 < R}) - ('J )-i/2 ,, - ---

- 7r /li y E . y 2 - - -71' r(i / 2 + 1) - -_i/iI'(i/'... + 1) 

with R = hi-k-1l2bi/ck,i,j• This completes the proof. D 

Proof of Proposition 2: Recall that for given k and j ~ k+l, nj = l(n - 2j - 1)/(2(j + l))J. 
Define 

and 

½+1,n +1U) = . max . IXj+1,1U)I 1 n-J'.Sl$2(nj+l){J+l) 

with the convention that ½+1,ni+1 = 0 if n - j > 2(nj + l)(j + 1). Lemma 2 with i = j + 1 
yields 

({f Ck y b / i}) ( j-k-1/2b A )j+l 1 
Wk E : j+l,s :::; j i :::; h jCk,j+l,j r ( ¥) 

for s = 0, ... , nj, and with i* = (n - j - 2(nj + l)(j + 1))+ yields 

w, ( {! E C' : Y;+1,n;+l 'o b;h'}) 'o ( hj-k-If'b;i:,,j+I,j )'" f ( .tp) ,gn(i" ; 

since i" :::; j and (ck,i•,j( /r(i .. /2 + 1) :::; (ck,i+l,j( /f((j + 3)/2). Finally define 

Yi+1U) = max l1j+1,sU)I. o::;~~n,+1 

Obviously, 1;+1 :::; Xj+l, and therefore 
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Since Xj+l,I are Gaussian, (2) implies that Yj+l,s are independent. and therefore 

, nj+l 
Wk ( {f E ck : xj+l S bjhj}) S II Wk ( {f Eck : Yi+1,m, S bjhj}) · 

, s=O 

Hence, due to (11) and (12), 

({ 
k '}) 1 ( ·-k-l/2 A )(j+l)(nj+l)+i• 

Wk f E C : Xj+l s bjh1 s r ( ~r,+l h1 bjck,j+l,j 

Since (j + 1 )( n j + l) + i* 2:: ( n - j) /2, this completes the proof. D 

From Proposition 2 we immediately get 

Proposition 3 For OS k Sr - 1, 

4.2 Main Result 

Wk(At) S t (hj-k-l/ 2 bjck,j)(n-j)/2
. 

j=k+l 

Recall that the probability measure Prob depends on the the values ak, Therefore, the 
probability of failure depends on ak's as well, E('I/J) = E('I/J; a) with a= [ao, ... , ar]- Since 
from a practical point of view it is unreasonable to assume that these values are known, our 
main result provides an estimate of the probability of failure for the worst possible choice of 
ak's. That is, we estimate 

sup E( "Pi a) s max Wk(Ak), 
a O~k~r 

Using the upper bounds obtained in Propositions 1 and 3 to estimate wk(Ak), we obtain 
an upper bound that is minimized (asymptotically for large n) when the values bk satisfy: 

with 
di = (n - k + 2)h 

2 ( 
(b-a)4 )

2
h 

a
nd d2 = k(k + 1)(2k + 1) /2f; 

Then we arrive immediately at the following 

Theorem 1 Let bk satisfy (13). Then 

s~p E( ,P; ii) :', 2 ( (n - r + 2)(b - ;~;(r + l)(2r + l) ln(n/(b - a))) (n-•I/• (1 + o(l )) . 

(13) 

The term o(l) tends to zero exponentially fast with n tending to infinity, and is small even 
for n close to r. 

The theorem shows that the probability of wrong decision is super exponentially small 
in the number of function evaluations. 
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