
Performance Prediction Modelling
of Multicomputers

by
H. V. Sreekantaswamy

S. Chanson and
A. Wagner

Technical Report 91-27
November 1991

Department of Computer Science
University of British Columbia

Rm 333 - 6356 Agricultural Road
Vancouver, B.C.

CANADA V6T 122

Performance Prediction Modelling of Multicomputers

H.V. Sreekantaswamy, S. Chanson and A. Wagner

Department of Computer Science,
University of British Columbia,

Vancouver, BC, Canada V6T 1 W5. '

Abstract

In order to effectively program Multicomputers users must be able to evaluate how
well the system performs for a given application. In this paper we present an efficient
execution model that can be used for tree structured computations. We provide a general
framework for analyzing the performance of this type of computation for any given topol­
ogy. This framework is used to derive models for two widely used parallel programming
strategies: Processor Farms and Divide and Conquer. These models were validated on
a large multicomputer and the accuracy of the model is i,uch that they can be used to
predict the performance of applications that use these strategies. We ctiscuss how these
models can be used to evaluate performance and how they could be used to restructur
the application to improve performance.

1 Introduction

A multicomputer is a network of microprocessors, each with its own memory, with hardware

support for message passing [9, 2, 8, 15]. The relative ease with which it is possible to build

inexpensive, high-performance microprocessor-based systems has made multicomputers very

popular. However, a major problem in this area is the difficulty in effectively programming

these systems. The focus of much recent work in this area has been on identifying program­

ming abstractions for managing and coordinating the activities of multiprocessor systems.

Many existing abstractions are based on well-known strategies for parallelizing programs

such as processor farms [14, 6], divide and conquer [4], compute and aggregate [13], and mul­

tipipelines (7]. Ultimately however, the success of these abstractions depend on the extent to

1

which they can make efficient use of the underlying architecture. It is therefore important

to cost these abstractions. This can be done by providing users and system designers with

analytic performance models that take into account both the hardware and software used to

implement a given abstraction. These models can be used as the basis for comparing and

evaluating different abstractions. It also provides insights into those parameters that most

affect performance, potentially allowing them to be tuned to optimize performance.

In this paper we describe analytic models for two important parallel programming strate­

gies: processor farm and divide and conquer. We describe a system that is simple, efficient

and general enough to implement processor farms and tree-structured computation. Briefly,

the system inputs a flow of tree-structured tasks that are distributed to the rest of the pro­

cessors. The system dynamically, depending on its load, either executes the task, or splits

and forwards it. This execution model is similar to one proposed by ZAPP[ll] and by [14].

Our analytic models relate the speed-up of an N-processor system to the number of tasks,

the size of these tasks, and the communication overheads of executing them in parallel.

This work differs significantly from other analytical models for parallel machines. First,

it models both the hardware and software of the system. Many of the models for multi­

computers are given only in terms of the hardware parameters and do not account for the

software overhead of executing tasks in parallel (14]. Secondly, it differs from the more gen­

eral analytic models that have appeared in the literature[5, 1]. Most of these models only

consider parallelism and not the communication costs involved in exploiting this parallelism.

As a result, these models cannot accurately predict the performance of programs for which

there are substantial communication overheads. In some cases, it may be possible to model

communication overheads as part of the computation. However, it is not clear where to in­

clude these overheads and what affect this has on the parameters to the model. Finally, it

2

also differs from more recent work on modelling processor farms and divide and conquer on

shared memory multiprocessors. In this case the overheads being modelled are quite different

and cannot be applied to the cases we have considered [10]. In addition, the analysis is not

an asymptotic one like[4], and takes into account the actual overheads in the system.

The paper is organized as follows. A description of the system is given in Section 2.

Section 3 begins with a general framework for analyzing tree structured computation. This

is followed by an analysis of the processor farm and divide and conquer paradigms. Section

4 describes the system and the results of the experiments that were performed. Finally, in

Section 5, we describe several practical applications of the use of this model.

2 The hardware and software system

In this section we describe the system that we are modelling.

2.1 Hardware parameters

There are a number of parameters that can be used to describe the performance of a mul­

ticomputer architecture. Following Stone (16], we can categorize the execution time of the

program (i.e., cost of execution) into the computation time and the communication time.

Communication can be further broken down into that part that can be overlapped with com­

putation and that part that cannot be overlapped. Finally, execution costs can be further

categorized by whether or not they are charged on startup or on a per/byte (or per/bit) basis.

A summary of these costs are shown in Table 1. Startup costs are expressed as a fixed

time unit (microseconds) whereas byte costs are given as a computation or communication

rate (bytes/second). The three parameters shown in the table are the primary costs that we

investigate. In particular, we have found that non-overlapped start-up cost of communication

3

Communication
Computation overlapped non-overlapped

startup - - /3
per/byte e 1" -

Table 1: Hardware performance parameters

is an important cost that can limit speed-up irrespective of the number of processors used.

Where appropriate we indicate how the costs we have not considered affect the analysis.

2.2 Software System

The application software is represented as a collection of identical tree-structured task graphs.

Figure 1 shows an example of the type of task graph executed by the system. Following the

Figure 1: Software Structure

terminology of Cole [4] we can identify three generic computational processes for divide and

conquer: compute, split, and join. The split and join processes occur at the internal nodes of

the tree. They create subtasks and combine the results of subtasks. Tasks are completed by

the compute process at the leaf nodes of the tree.

Tasks enter the system at a single root processor. The remaining processors request tasks

4

from its parent processor. The parent of a processor is assigned statically at compile time and

may not correspond exactly to the physical configuration. On receipt of a task, a processor

either processes the task locally until completion, or divides the task into subtasks that are

then forwarded to its children processors. Subtasks are put on a single queue where requests

from children processors compete for the tasks on this queue. Subtasks return their results

to their parents. The three basic characteristics of the system are: there is a flow of tasks,

tasks are dynamically scheduled, and tasks are distributed from a single source.

An analytic model of this system could be used in several ways. First to determine the

peak operating point of the system [5]. This is the point beyond which adding more processors

does not substanially increase performance. The steady state of this model is particularly

important for applications, like computer vision, where there is a steady stream of tasks

into the system. Secondly, the model can be used to determine the affect of granularity on

performance. As we will show in Section 5, this model can be used to restructure the program

so as to increase granularity and improve performance. Finally, the model can be used to

compare different topologies and software structures for executing a given application.

3 Analytic models

In this section we present a general framework for analyzing the system introduced in the

previous section. We then derive analytic performance models for processor farms and divide

and conquer.

3.1 General framework

Let T = (V, E) be a tree structured task graph and let M denote the total number of tasks

to be executed. Let <p denote the parent relation of the topology (i.e., <p(i) = j specifies

5

that processor j is the parent of i). Let T8 , Te and Tj denote the computation time for

splitting, executing and joining tasks, respectively. The model assumes that the split, join,

and execution computation is identical for nodes on the same level of T. Later in Section 4.3,

we give the results of experiments for when this is not the case. This permits us to write an

expression for Tcomp(i), the execution time on ith processor, in terms of the number of splits,

joins and executions done at this processor.

where Ce(i) and Cs(i) are the number of tasks processor i computes and splits, respectively.

Similarly, we can write an expression for Tcomm(i), the non-overlapped communication

start-up costs, in terms of the number of tasks executed locally, the number of tasks forwarded

and the respective overheads.

where f3e is the communication start-up overhead for executing the process locally and {31 is

the start-up overhead for splitting a task and later joining its result.

The total time Ti spent by the ith processor assuming that the processor is either pro­

cessing a task locally or splitting a task so that the subtasks can be forwarded is given by

Now, let Ce(i) = fiM, where Mis the total number of tasks and /i is the fraction of the total

tasks executed by the ith processor. Let C.,(i) = FiM, where Fi is the fraction of the total

tasks split and forwarded by the ith processor. Therefore,

Ti= fiM (Te(i) + f3e) + FiM (Ts(i) + Tj(i) + f31).

6

Additionally there is the condition that

For the steady state analysis, we assume an ideal task distribution in which processors are

never idle as long as there are unprocessed tasks in the system. With the above assumption,

all Ti's will be equal and can be set to T. The Fi's can be written as a linear combination

of the Ji 's. The two overheads for communication, f3e and (3 J, depend on the underlying

hardware and software system. For a given implementation, their values are assumed to be

constant and can be measured experimentally. Altogether then we have a set of N +!linearly

independent equations with N + 1 variables - T and the Ji 's. Therefore this set of equations

has a unique solution, specifying both the ideal distribution of tasks to processors and the

total execution time of the system.

The previous analysis holds only when the transfer time across the communication links

is not a limiting factor. In this case, assuming that r is the same for all links, throughput

is limited by the rate at which the the first processor can receive tasks, irrespective of the

number of processors or their processing capabilities. The maximum throughput that can be

obtained is

1

where Tr is the transfer time for a task.

In the remainder of this section we apply this framework to the processor farm and divide

and conquer paradigms. For the most part, a balanced binary tree topology is used for

the analysis. The recursive structure of this topology allows us to avoid explicitly solving

the system of equations that arise from the framework . However, in general, for different

topologies or more irregular tree structured computation it is necessary to explicitly solve the

7

system of equations to obtain the distribution of tasks to processors.

For each class of programs we first analyse the steady state and then give an analysis for

the start-up costs.

3.2 Processor Farm

One can view a processor farm as a degenerate case of divide and conquer where the tree

structure now consists of only a single node. In this case, processors can choose whether to

execute the task locally or forward it onto a child processor. Although we give the analysis

for a binary tree topology it can easily be extended to linear chains and k-ary trees.

Since tasks in this model are never split, we have for all processors i, Te(i) = Te, where

Te is the processing time of the task, and T8 (i) = Tj(i) = 0.

3.2.1 Steady State

Assume that processors on the same level of the tree execute the same number of tasks and

let Ji (for i = 1 ... N) denote the fraction of the total number of tasks executed by the

processors on the ith level of an N level tree. Levels are numbered from 1 at the leaves to

level N at the root.

The total execution time of a processor on level i of the tree is given by

where Ii is the fraction of the tasks executed locally and I:}:\ /j is the fraction of the M

tasks forwarded to the next level of the tree. We assume that tasks are evenly distributed to

the 2N-i processors on the ith level of the tree.

8

Let

(a)

where Fi represents the fraction of the total tasks processed by the processors in a subtree

rooted at a processor in the ith level. Rewriting Ti in terms of Fi and Fi-1,

By rearranging the above,

(b)

Let

(c)

denote the throughput of a subtree rooted at one of the processors in the ith le.vel. Substituting

(c) in (b) with the condition that for all i, Ti's are equal, we have

(d)

Solving the above recurrence, we obtain the steady state throughput of the system

(e)

By substituting (a) in (b) and solving the recurrence we can calculate the fraction of

tasks executed by the ith processor,

9

where

In general, a similar analysis gives the throughput of any balanced k-ary tree to be

(f)

The analytical results obtained are similar to the steady state results by Pritchard[14].

Our model differs from Pritchard's in that it considers the software overhead for scheduling

and distributing tasks. Pritchard's model neglects this cost and is based only on the hardware

communication overheads. Whereas there is only a single hardware overhead for setting up

communication, we found that two overheads, f3e and /31, had to be included in the model.

Experimentation showed that these two overheads are distinct from each other and cannot

be combined into a single cost.

3.2.2 Startup Cost

The analysis of the previous section is for steady state and holds only when no processor is

idle. In particular, the analysis does not hold on system startup. For applications with large

number of tasks, and in turn large execution time, startup time can be neglected compared

to the total execution time. For the cases in which both the number of independent tasks and

the total execution time are small, it is necessary to consider the startup time. Startup time

is more difficult to predict because it is affected by the scheduling strategy used to distribute

the tasks. Let us define the startup time to be the time it takes for the system to return the

first result. The time it takes for the first task to be passed to the Nth level of the tree and

then return the result is given by,

Tstartup = .(N - 1)(2T-r + /31) +Te+ f3e,

10

This assumes that Te is sufficiently large that after T 8 tartup all processors have a task and

that afterwards the tasks return at the rate given by the formula for steady state.

Therefore the execution time of an N level system is

M-1
T = Tstartup + SN , (g)

By substituting, we obtain the following expression for the speedup of a N level k-ary tree:

where

3.3 Divide and Conquer Paradigm

We now consider the more general case of divide and conquer. Again we ignore additional

routing overheads and assume that the processor topology is a tree with the same degree as

the task structure graph. We again derive the throughput formula where the task graph is a

binary tree. Once again, the analysis easily extends to arbitrary degree trees.

The model differs from many of the models that have appeared in the literature[l3, 4] in

that the internal processors of the tree topology also does some of the computing.

3.3.1 Steady State

Let N be the number of levels of the hardware topology. Let J, represent the fraction of

the total number of tasks processed by the processors at the ith level. As before, levels are

numbered starting from 1 at the leaves. Now, we can write, in terms off,, a general expression

for the execution time of a processor on level i of the tree.

T; ~ J,M ['.f,(i) +/l,] + (~ /;) M [T,(i) + T;(i) +/l1],

11

where L}:,~ /j is the fraction of the tasks forwarded to the next level. Let

i

Fi= °Eh,
j=l

where Fi represents the fraction of the total tasks executed by all the processors in levels 1

through i. Then rewriting Ti in terms of Fi and Fi-1,

Ti (Fi - Fi-1)M[Te(i) +,Be]+ Fi-1M[Ts(i) + Tj(i) + ,61]

= FiM[Te(i) +,Be]+ Fi-1M[Ts(i) + Tj(i) + ,61 -Te(i) - ,Be]

By rearranging the above,

(h)

We have

(i)

where Si represents the throughput of a subtree consisting of the processors from levels 1 to

i, and S0 = 0. By using relation (i) in (h) with the condition that all Ti's are equal and

rearranging we obtain,

(j)

We do not have a closed form solution to this recurrence. The throughput of the complete

tree can be obtained by recursively evaluating the Si's up to level N.

Eventually, for sufficiently large N, throughput is limited by the rate at which subtasks

can be distributed to the leaf processors. This throughput is given by the inverse of the

maximum time spent by a task on any intermediate node before reaching the leaf nodes, i.e.,

the maximum of the sum of T8 (i), Tj(i) and ,61 among all the nodes in levels 2 to N. Let

12

Then the throughput limit, Smax, is given by the following expression

1
Smax =) ·

(tma x + /31
(k)

If S1 obtained by equation (j) is less than Smax, then SN obtained by the same equation

is the actual throughput that can be achieved. Otherwise, the throughput is Smax and in

this case, the intermediate nodes should not be used for processing subtasks as this will not

increase the throughput.

3.3.2 Startup cost

For an N level tree, the startup cost

N

Tstartup = L (2TT(i) + Ts(i) + Tj(i) + f3J) + Te(1) + f3e,
i=2

where T7 (i) is the actual transmission time of data for a subtask at the ith level. The speedup

of an N level tree is given by,

where SN is the steady state throughput as given by equation (j).

4 Validation of the model

The analytic models in Section 3 were validated by experiments on a 74 node T800 transputer

based multicomputer system. The system has several programmable crossbar switches that

are used to configure the system into different topologies. Each transputer consists of a

processor with its own local memory and four bidirectional bit-serial communication links.

Data transfer on the links can be overlapped with the computation, but link setup time can

not be overlapped and requires at least 50 clock cycles. The T800 has a microcoded scheduler

13

with both a low-priority and a high-priority process queue. Experiments were done using

Logical Systems C[12] and the Trollius Operating System[3].

To validate our performance model, experiments were conducted with various model pa­

rameter values. In our performance models we have assumed that the tasks are distributed

to the processors such that no processors will be idle during the steady state, i.e., a new task

is always immediately available as soon as a processor finishes its current task. To emulate

this ideal task distribution situation, we have used a "flood-fill" technique which is described

in the next section.

4.1 Task Distribution Strategy

The analysis in section 3 determines the fraction of the total number of tasks to be executed

on each processor. However, it does not determine an exact schedule. There is however an

efficient implementation of the system that is closely approximated by the analytic model.

The optimal task distribution can be achieved by flood-filling the system and using buffers

to control the rate at which tasks flow into the system. The split and join processes execute at

high priority while the execute process is a low priority process. Thus, creating and forwarding

new tasks is always given higher priority over executing the tasks locally. Each processor is

provided with a queue for storing unprocessed tasks. These buffers are in addition to the

task being processed locally and the task (or tasks) being forwarded to the successor node

(or nodes). As soon as a task has been executed or forwarded, the execute or split process

takes another task from the queue. A processor accepts new tasks as long as the queue is not

full, when full it blocks, waiting for a free buffer. The size of this queue indirectly controls

the flow of tasks into the system. If the queue is large, then the processors away from the

root receive a large number of tasks, and thus the processors closer to the root may become

14

idle at the later stages of the processing. So, to ensure that no processor idles, the size of the

queue must be large enough to supply a steady stream of tasks yet small enough so as not to

overload the leaf processors. For sufficiently large M, a queue size of one or two was enough

to ensure that the execution model closely approximated the analytical model.

For small M, even a queue. size of one can overload the leaf processors and lead to a

suboptimal distribution of tasks. In this case, we can use the Ji M's obtained from the model

to control the flow of tasks. Processor i forwards tasks as long as the number of forwarded

tasks does not exce~d Fi-1M,

4.2 Experiments

In order to compare the analytical model with the actual execution it is necessary to deter­

mine f3e and fJJ, These constants depend on the underlying machine and system software.

They were determined experimentally, for several sets of test parameters, by substituting the

measured throughput in the model and then solving for f3e and fJJ, The values obtained were

consistent over the different test parameters used.

% Error

4

2

0

-2

I
I

I~ - - -
I - - - -I,' - -- ---

5 ,'

I
I

I
I

I

I
I

I
I

/ Te =
I

10 15 20

N processors

1 miliisec
-4 ', ,' ... ,,

Te = 10 miliisec

Te = 5 millisec ---
25

Figure 2: Comparison of predicted and measured speedup

15

Having determined f3e and !31 we ran several experiments to validate the analytic model.

Figure 2 shows the percentage difference in speedup for the cases with Te = 1, 5, and 10

milliseconds for the processor farm paradigm running on a binary tree. As shown in Figure 2,

the difference between the measured speedup and the speedup predicted by the model does

not exceed 5%. The experimental results for other cases such as processor farm running on

linear chain and divide and conquer running on a binary tree exhibited similar behaviours for

a range of input parameters.

4.3 Robustness

An assumption of our model is that Te is constant. To test the robustness of the model

with respect to this parameter, we tested two different distributions of task size, uniform

and exponential, against the results obtained by the model using the average task size. The

percentage difference between the measured and analytic speedup for exponential and uniform

distributions with average Te = 10 msec for different number of processors is given in Figure

3. Errors were again under 5% for both exponential and uniform distributions.

4

3
% Error

2

------ Exponential _____ ,
,,,. ,,,. --=-------- ------(,,,, ~-------::: __ ~--.::.=::--_:_ - - - - - - _ Constant

(,,/ - - - Uniform ,: ,.
1

j
,:
1

0 f 5 10 15 20 25 30

-1 '
N processors

Figure 3: Comparison of predicted and measured speedup

16

For the divide and conquer case, we have assumed in the model that the tasks were split

into equal size subtasks. To test the robustness of the model we conducted experiments in

which the tasks were split randomly into two parts. For this case also, the error did not

exceed 5%.

5 Discussion

In this section, we give two ways in which the models we have developed can be used.

The first way to use the model is to obtain the peak operating point of the system. Figure

4 shows a graph of speedup as a function of N, the number of processors connected as a linear

chain, for three values of Te, the processing time.

30

25

20
Speedup

1 5

10

5

0 20
N processors

Figure 4: Speedup for various size Te and N

10 millisec

5 miliisec

1 millisec

1 00

Observe that for fixed Te, the speedup increases with N and remains relatively constant

after some value of N. This can be used to determine the optimal size of the system to be

used for a given application. If more physical nodes are available than the optimal N for a

given application, the application can be split into two or more parts and run simultaneously

on two or more separate topologies. This would improve overall performance by effectively

17

making use of all the nodes available.

A second way to use the model is for adjusting the granularity of the application. Observe

from figure 4 that as computation time Te increases the optimal value of N increases. This is

due to the fact that with larger Te, the ratio of computation to non-overlapped communication

overhead increases making it possible to effectively use a larger number of nodes. Thus, by

packetizing a number of tasks into one message and sending it as a single unit it is possible to

reduce the overall non-overlapped overheads and thereby increase the throughput. There is

however a limit to the number of tasks that can be packed together. The message transmission

time increases with the number of packets per message and at some point it may no longer be

possible to overlap communication with computation. Larger messages also increase start-up

costs. Figure 5 shows a graph of speedup, with startup included, as a function of granularity

and N. Here granularity is the number of original tasks put into a message.

processors

100
8 0

6 0
40Granularit.y

20

Figure 5: The affect of granularity on speedup

From this figure, observe that overall speedup starts to decrease after a certain value of

N, as granularity increases. The optimal operating point of the system is a complex function

of N, Te and the granularity.

18

6 Conclusions

Our goal is to obtain accurate performance prediction models for various classes of applications

on multicomputers. We have presented an efficient execution model and have developed

analytic performance prediction models for two paradigms with this execution model. We

have validated these models with a large number of experiments covering a broad range of

values for the model parameters. Startup costs are important for small applications and have

to be included in the performance model. We have shown how these models can be used

to obtain the peak operating p·oint of the system and to improve performance by adjusting

the granularity of the application. The results of the model are also used to achieve the

optimal distribution of tasks to processors when the total number of tasks is small. The

same system software used for validating the model has been used to implement a computer

vision application and a second numerical application. Further work will focus on extending

this work to other parallel programming paradigms and integrating performance prediction

models into our existing parallel program development environment.

References

[1] G. M. Amdahl. Valildity of the single-processor approach to achieving large scale com­

puting capabilities. In AFIPS Conference Proceedings. AFIPS Press, Reston, Va., 1967.

[2] William C. Athas and Charles L. Seitz. Multicomputers: Message-passing concurrent

computers. IEEE Computer, August 1988.

[3] \.foshe Braner, Gregory D. Burns, David L. Fielding, and James R. Beers. Trollius OS

for Transputers. In D. Stiles, editor, Transputer Research and Applications (NATUG 1},

1989.

19

[4] Murray Cole. Algorithmic skeletons: structured management of parallel computation.

MIT Press, Cambridge, Massachusetts, 1989.

[5] D.L. Eager, J. Zahorjan, and E.D. Lazowska. Speedup versus efficiency in parallel sys­

tems. IEEE Transactions on Computers, March 1989.

[6] Anthony J .G. Hey. Experiments in MIMD parallelism. In E. Odijk, M. Rem, and J .­

C. Syre, editors, PARLE: Parallel Architectures and Languages Europe, pages 28-42.

Springer-Verlag, New York, 1990. Lecture Notes in Computer Science 366.

[7] H. T. Kung. Computational models of parallel computers. In R. J. Elliot and C.A.R.

Hoare, editors, Scientific applications of multiprocessors. Prentice Hall, 1989.

[8] H.T. Kung et al. iWARP: An integrated solution to high-speed parallel computing. In

Proceedings of Supercomputing '88, Orlando, FL. IEEE Computer Society Press, 1988.

[9] INMOS limited. Tmnsputer development system. Prentice Hall, New Jersey, 1988.

[10] Sridhar Madala and James B. Sinclair. Performance of synchronous parallel algo­

rithms with regular structures. IEEE Transactions on Parallel and Distributed Systems,

2(1):105-116, January 1991.

[11) D. L. McBurney and M. R. Sleep. Transputer-based experiments with the ZAPP archi­

tecture. In J. W. de Bakker et al, editor, Lecture notes in Computer Science. 1988.

[12] Jeffrey Mock. Process, Channels and Semaphores (version 2). Logical Systems C Pr~

grammers Manual, Logical Systems, 1988.

[13) P.A. Nelson. Parallel Programming Paradigms. Ph.D. thesis, Department of Computer

Science, University of Washington, Seattle, WA, 1987.

20

[14] David J. Pritchard. Performance analysis and measurement on transputer arrays. In

Aad van der Steen, editor, Evaluating Supercomputers. Chapman and Hall, 1990.

[15] Daniel A. Reed and Richard Fujimoto. Multicomputer Networks: Message Based Parallel

Processing. MIT Press, 1987.

[16] Harold Stone. High Performance Computers. Addison-Wesley, 1988.

21

