
The Logic of Constraint Satisfaction

by

Alan K. Mackworth

Technical Report 91-26
November 1991

Deparnnent of Computer Science
University of British Columbia

Rm 333 - 6356 Agricultural Road
Vancouver, B.C.

CANADA V6T 1Z2

1,

The Logic of Constraint Satisfaction

Alan K. Mackworth 1

Department of Computer Science
University of British Columbia

Vancouver, B.C. V6T 1 WS

November 1, 1991

Abstract

The Constraint Satisfaction Problem (CSP) formalization has been a produc­
tive tool within Artificial Intelligence and related areas. The Finite CSP (FCSP)
framework is presented here as a restricted logical calculus within a space of
logical representation and reasoning systems. FCSP is formulated in a variety of
logical settings: theorem proving in first order predicate calculus, propositional
theorem proving (and hence SAT), the Prolog and Datalog approaches, constraint
network algorithms, a logical interpreter for networks of constraints, the Constraint
Logic Programming (CLP) paradigm and propositional model finding (and hence
SAT, again). Several standard, and some not-so-standard, logical methods can
therefore be used to solve these problems. By doing this we obtain a specification
of the semantics of the common approaches. This synthetic treatment also allows
algorithms and results from these disparate areas to be imported, and specialized,
to FCSP; the special properties of FCSP are exploited to achieve, for example,
completeness and to improve efficiency. It also allows export to the related areas.
By casting CSP both as a generalization of FCSP and as a specialization of CLP
it is observed that some, but not all, FCSP techniques lift to CSP and, perhaps,
thereby to CLP. Various new connections are uncovered, in particular between the
proof-finding approaches and the alternative model-finding approaches that have
arisen in depiction and diagnosis applications.

1 Fellow, Canadian Insti1u1e for Advanced Research

1

r·

1. Logical Frameworks for Constraint Satisfaction

Informally, a Constraint Satisfaction Problem (CSP) is posed as follows.
Given a set of variables and a set of constraints, each specifying a relation on a
particular subset of the variables, find the relation on the set of all the variables
which satisfies all the given constraints. Typically, the given unary relation for
each variable specifies its domain as a set of possible values; the required solution
relation is a subset of the Cartesian product of the variable domains. If each
domain is finite the CSP is a Finite Constraint Satisfaction Problem (FCSP).

The formulation of the CSP paradigm has yielded substantial theoretical and
practical results [6,17]. It is important, though, not to conceive of the CSP
paradigm in isolation but to see it in its proper context - namely, as a highly
restricted logical calculus with associated properties and algorithms. The purpose
of this paper is to place CSP's in that context, to redevise some old results in new,
simpler ways, and to establish connections amongst the differing views of CSP's.
Essentially the paper can be seen as an extended answer to the question, "Does
the CSP framework make logical sense?" The ambiguity of the question lies in
the fact that it can be read as "Is it sensible to isolate the CSP paradigm?" or as
"Can we interpret the CSP paradigm using logical notions?" The paper can also
be seen as a response to a cynical critic who asks, "Is CSP merely old wine in new
bottles?" The paper is intended to lead to answers to the following questions:

• Can FCSP be posed in logical frameworks?
• Can standard logical methods be used to solve FCSP?
• Can the special properties of FCSP be exploited to get better algorithms?
• Are tractable classes of FCSP revealed?
• Do old results fall out?
• What are the relationships among the several logical views of FCSP?
• Can the approaches for FCSP be lifted to CSP?
• Do we get new results and systems?

2. An FCSP: The Canadian Flag Problem

To fix the ideas of this paper a trivial FCSP will be used as an example.
Consider the well-known Canadian Flag Problem. A committee proposed a new
design for the Canadian flag, shown in Figure 1. The problem is to decide how
to colour the flag. Only two colours, red and white, should be used; each region

2

should be a different colour from its neighbours, and the maple leaf should, of
course, be red. The problem is so trivial that its solution requires little thought,
even though the committee could not solve it, but it serves our purpose here.

Figure 1. A Trivial FCSP: Colour The Canadian Flag

3. FCS as Theorem Proving in FOPC

The simplest standard logical CSP fonnulation is as theorem proving in a
restricted first order predicate calculus [16]. An FCSP decision problem can be
posed as Constraints f- Query? where Query has the fonn

or

Query;

Query: 3Xi3X2 ... 3XnPX1 (X1) I\ PX2(X2) I\ ... I\ PXn(Xn)I\

PX1X2(X1, X2) I\ PX1X3(X1, Xa) I\·., I\

PX1X2X3(X1, X2, Xa) I\ ... I\

PX1X2X3 ... Xn (X1, X2, Xa,, .. , Xn)

and Constraints is a set of ground atoms specifying the extensions of the
predicates

Constraints:

where the Ci are constants. Notice that in this fonnulation we are only specifying
the tuples allowed by a relation, not the tuples forbidden, since Constraints
consists of positive literals.

3

4. FCS Decision Problems

An FCSP is specified by a (Constraints, Query) pair. A common candidate
formulation of the FCS decision problem is to determine if it can be shown
that a solution exists or if it can be shown that a solution does not exist:
Constraints f- Query, or Constraints f- -,Query. However, given the
positive form specified for Constraints, it is never possible to establish that
Constraints f- -,Query so this candidate formulation is unacceptable. Later
when we consider the completion of Constraints we shall return to a variant
of this formulation.

The FCS Decision Problem (FCSDP) is to determine if it can be shown that a
solution exists or if cannot be shown that a solution exists: Constraints f- Query
or Constraints Y Query.

If the decision problem is posed in the form of FCSDP and the constraints
are supplied or discovered incrementally in the form of additional allowed tuples,
extending the set Constraints, then the answers to FCSDP are monotonic: a
'No' may change to 'Yes' but not vice versa.

Proposition FCSDP is decidable.
Proof For an FCSP specified by the pair (Constraints, Query) a decision
algorithm to determine if Constraints f- Query or Constraints Y Query is
required. The Herbrand universe H of the theory Constraints LJ-,Query is

H = { c I Pv(... , c, ...) E Constraints}

H is finite.

Consider the following algorithm

Decision Algorithm DA:

Success +- No

For each tuple (ci, c2, ... , en) E Hn

If Constraints f- QM atrix (c1, c2, ... , en) then Success +- Yes

Report Success

End DA

where Constraints f- QMatrix (ci,c2, ... ,cn) iff for each Atom mentioned in
QMatrix (c1, c2, ... , en) it is the case that Atom E Constraints.

4

DA always terminates. It reports 'Yes' iff Constraints I- Query. It reports
'No' iff Constraints ¥ Query. ■

The number of predicate evaluations made by DA is

(#atoms in QMatrix(X1, X2, ... , Xn)) X I H In

5. Completing the Constraints

Consider the completion of Constraints with respect to Query. Each
predicate mentioned in Query can be completed [2] in the following sense:

completion(Constraints) =
Constraints U {-,pv(c1, c2, ... , ck)lci E H, Pv(c1, c2, ... , ck) r/. Constraints}

In other words, the complete extension of each k-ary predicate over Hk is
specified, positively and negatively, in completion(Constraints).

Notice that Constraints I- Query iff completion(Constraints) I- Query
and Constraints }l Query iff completion(Constraints) I- -,Query.
Hence, DA reports 'Yes' iff completion(Constraints) I- Query and 'No' iff
completion(Constraints) I- -,Query.

Thus, we may choose to interpret the answer from DA in the original sense of
FCSDP or under the Closed World Assumption [23] that Constraints has been
completed. Both interpretations are correct.

6. The Flag FCSP in FOPC

Using the FCSP formalism presented above we can formulate the flag problem
as follows.

X z

5

Query:

3X3Y3Z3Up(X) A q(Y) A s(Z) A t(U) A ne(X, Y) A ne(Y,Z) A ne(Y, U)

Constraints:
{p(r), p(w), q(r), q(w), s(r), s(w), t(r), ne(r, w), ne(w, r)}

H = { r, w} where r stands for Red and w for White.
H-4 = {(r,r,r,r),(r,r,r,w), ... ,(w,w,w,w)}

On the FCSP (Query, Constraints) algorithm DA returns 'Yes' succeeding
on the tuple (r, w, r, r).

7. Logical Representation and Reasoning Systems

Faced with a problem in representation and reasoning, a wide spectrum of
logical representation systems is available to us. In choosing an appropriate
system we can rely on two sets of criteria: descriptive and procedural adequacy
criteria [24]. These are often in conflict. The best advice is to use Occam's Razor:
choose the simplest system with the level of descriptive adequacy required. Some
representation and reasoning systems are shown, organized as a DAG, in Figure
2. If there is an downward arc from system A to system B then A's descriptive
capabilities are a strict superset of B's. In the previous section, for example,
FCS was shown to be equivalent to theorem-proving in a very restricted form
of FOPC. Horn FOPC restricts FOPC in only allowing Horn clauses, with at
most one positive literal. Definite Clause Programs (DCP), without predicate
completion, restrict Horn FOPC by allowing only one negative clause, the query.
Datalog restricts DCP by eliminating function symbols. FCS restricts Datalog by
disallowing rules, mixed Horn clauses. There are several further restrictions on
FCS possible with corresponding gains in tractability and some generalizations
of FCS with gains in expressive power. We shall examine various logical
formulations of FCS and investigate some of their interrelationships.

8. FCS as Theorem Proving in Propositional Calculus

The algorithm DA can be interpreted as implementing a view of FCS as
theorem proving in the propositional calculus. Query is a theorem to be proved.

6

~I/
First Order Predicate Calculus (FOPC)

/ ~
Function Free FOPC Horn FOPC Constraint Logic Programs

~ ------------Definite Clause Programs

Datalog Constraint Satisfaction

I ------------
Finite Constraint Satisfaction

/I"'
Figure 2. Some Logical Representation and Reasoning Systems

If a solution exists the theory Constraints LJ ,Query leads to a contradiction.

,Query: ,3X13X2 ... 3XnQMatrix(X1, ... , Xn)

\/X1 \/X2 ... \/Xn,QM atrix(X1, ... , Xn)

A solution exists iff Constraints U ,Query has no (Herbrand) models. There
are no universal quantifiers in Query and so there are no existential quantifiers in
the theory Constraints U ,Query. Hence no Skolem functions are introduced
when the theory is converted to clausal form. This important restriction guarantees
that the Herbrand universe H is finite. This allows us to replace each of
the universal quantifiers by the conjunction of the ,QM atrix(X1, X 2 , ••• , Xn)
clauses instantiated over nn. This rewritten theory has the same set of Herbrand
models as the original theory.

7

For the flag example the rewritten theory is:

{p(r), q(w), q(r), q(w), s(r), s(w), t(r), ne(r, w), ne(w, r)}

u
{,p(r), V,q(r) V ,s(r) V ,t(r) V ,ne(r, r) V ,ne(r, r),

,p(r) V ,q(r) V ,s(r) V ,t(w) V ,ne(r, r) V ,ne(r, w),

,p(r) V ,q(w) V ,s(r) V ,t(r) V ,ne(r,w) V ,ne(w,r), *

,p(w) V ,q(w) V ,s(w) V ,t(w) V ,ne(w,w) V ,ne(w,w)}
This theory, now a propositional formula in CNF, has a particular form; it consists
only of a set of unit positive clauses, arising from the constraints, and a set of
negative clauses, from the query. There are no mixed clauses. Note that it is
also always Horn. It is unsatisfiable iff the FCSP has a solution. Since it is
Horn SAT is linear time in the size of the formula [8], but, of course, there are
!Hin negative clauses in the formula. Also note unit resolution alone is complete
for this class of formulas. For the flag example, repeated unit resolution on the
clause marked * reduces it to the empty clause □, corresponding to the solution
{X=r, Y=w, Z=r, U=r}. Using subsumption (whereby if clauses of the form
C and C V D are both present, CV D is deleted) does not affect the completeness
result. Iterating unit resolution followed by subsumption leaves invariant the
special properties of the formula (only negative or unit positive clauses) and,
moreover, only decreases its size. Hence, it terminates (correctly). As, of course,
does the linear time HornSAT algorithm. The HornSAT algorithm exactly mimics
the algorithm DA. The propositional variable in each unit positive literal is set to
T and each negative clause is checked: if any clause has each (negative) literal
required to be F then the formula is unsatisfiable otherwise it is satisfiable;

9. FCS as Theorem Proving in Definite Theories

The methods discussed so far are not serious candidates for actually solving
an FCSP: they simply serve to clarify the semantics and methods of the serious
candidates. One such candidate is a Prolog interpreter, which is a theorem
prover for theories consisting of definite clauses. Since FCS is pure Prolog SLD­
resolution is a sound solution method. SLD-resolution is not, in general, complete

8

for Definite Clause Programs but it is for FCS. It is also, generally speaking, more
efficient than other resolution methods such as the one embodied in algorithm DA.
For the flag example, we can assert the constraints as ground facts in the Prolog
database then define and pose the conjunctive query to Prolog:

%prolog

I ?- [user] •

I p (r) . p (w) . q (r) . q (w) . s (r) . s (w) . t (r) .

I ne(r,w). ne(w,r).

yes

I ?- p(X),q(Y),s(Z),t(U),ne(X,Y),ne(Y,Z),ne(Y,U).

X = Z = U = r,
y = w

In finding the one solution the interpreter essentially checks every possible set of
bindings for the variables X, Y, z and u. By permuting the query one may reduce
the size of the search space: a partially completed set of bindings can be rejected
by a single failure. For the query

I ?- p (X), q (Y), ne (X, Y), s (Z), ne (Y, Z), t (U), ne (Y, U)

the search tree is somewhat smaller. Heuristics, such as instantiating the most
constrained variable next, can be used to re-order the query dynamically but, on
realistic problems, this tactic is doomed. In general, no variable ordering can
avoid thrashing by repeatedly rediscovering incompatible variable bindings [16].

Just as for the algorithm DA, we may interpret Prolog's failure to find a
proof as meaning either Constraints .r' Query or completion(Constraints) f-­
,Query

10. FCS as Datalog

Since FCS is a restriction of Datalog, the techniques developed in the rela­
tional database community are available [19]. The solution relation is the natural
join of the relations for the individual constraints. The consistency techniques
discussed below can be interpreted similarly; for example, making an arc consis­
tent in a constraint network can be interpreted as a semijoin. Results that exploit
this interpretation can be found in [21, 1,24,6, 17 ,28].

9

11. FCS in Constraint Networks

Consideration of the drawbacks of the SLD-resolution approach mentioned
above leads to a view of FCS in constraint networks. A constraint network
represents each variable in the query as a vertex. The unary constraint p x (X)
establishes the domain of X, and each binary constraint p XY (X, Y) is represented
as the edge (X, Y), composed of arc (X, Y) and arc (Y, X). This easily
generalizes to k-ary predicates using hypergraphs. The network for the flag
problem is shown in Figure 3.

{r,w} {r,w}

{r}

Figure 3. Constraint Network for the Flag Problem

An arc (X, Y) is consistent iff

VX {px(X) --+ 3Y[py(Y) A pxy(X, Y)]}

A network is arc consistent if all its arcs are consistent. An arc (X, Y) may
be made consistent without affecting the total set of solutions by deleting the
values from the domain of X that are not consistent with some value in Y.
The original flag network is not arc consistent because the single arc (Y, U) is
inconsistent. Deleter from the domain of Y. This now makes arcs (X, Y) and

(Z, Y) inconsistent. They can be made consistent by deleting w from the domains
of both X and Z, making the network arc consistent as shown in Figure 4.

{r} {r}

{r}

Figure 4. Arc Consistent Network for the Flag Problem

Arc consistency can be enforced in time linear in the number of binary
constraints; moreover, if the constraint graph is a tree, as it is for the flag, then arc
consistency alone suffices as a decision procedure for the FCSP [18]. Various other
graph theoretic properties of the constraint network can be used to characterize
and solve FCSPs [22,11,6].

12. Logical Interpreters for FCSP

Using these ideas we can implement an interpreter for FCS [16,27] which
could be called LINC (a Logical Interpreter for a Network of Constraints). Given

Query:

3X3Y3Z3Up(X) I\ q(Y) I\ s(Z) I\ t(U) I\ ne(X, Y) I\ ne(Y, Z) I\ ne(Y, U)

then, following [2], for LINC we choose to complete each predicate in
Constraints and represent it by its definition, its necessary and sufficient con-

11

ditions, so

Constraints: p(X) +-. ((X=r) V (X=w))
q(Y) +-. ((Y = r) V (Y =w))
s(Z) +-. ((Z=r) V (Z=w))

t(U) +-. (U=r)
ne(X, Y) +-. (X=r A Y=w) V (X=w A Y=r)

Restricting LINC to arc consistency, it non-deterministically rewrites
Constraints using the AC rewrite rule:

Px(X) {= Px(X) A 3Y[py(Y) A pxy(X, Y)]

Here:
q(Y) {= q(Y) A 3U[t(U) A ne(Y, U)]

{= (Y = r V Y = w) A 3U[U = r A (Y = r A U = w V Y = w A U = r)]

{= (Y=w)
Iterating the AC rewrite rule reduces the constraints to a fixpoint

p(X) +-. (X=r)
q(Y) +-. (Y=w)
s(Z) +-. (Z=r)

t(U) +-. (U=r)
ne(X, Y) +-. (X= r A Y=w) V (X=w A lf=r)

In general, LINC must interleave the AC relaxation with some non-deterministic
case analysis or higher order network consistency.

CHIP [27] is, amongst other things, an implementation of this approach.
Similarly, a Connection Graph theorem prover for full FOPC, as proposed in
[15], essentially performs AC relaxation on the possible sets of substitutions for
variables in the literals of each clause. Using such a prover with an SLD-resolution
strategy on a FCSP query would produce an effect isomorphic to using LINC.

13. CSP and CLP('.I>)

The FCS constraint form is a special case of the CLP(!>) rule form [12]:

p(X, Y, .. .) ~a1(X, Y, .. .) A a2(X, Y, .. .) A ... A

P1(X, Y, .. .) A P2(X, Y, .. .) A .. .

12

where ai(,) is a constraint on its arguments and p;(.) is a predicate.
In Definite Clause Programs ~ = H and the constraints are equalities on

terms.
A general Constraint Satisfaction Problem fits the CLP(~) scheme. Consider

the CSP represented by this CLP(v:\) program

and the

Constraints : p(X) +-- (1 S X) I\ (X S 3)

q(Y) +-- (0 s Y) I\ (Y s 2)
r(X,Y) +--X < Y

Query : 3X3 Y[p(X) I\ q(Y) I\ r(X, Y)]

Using the same AC rule that LINC used for finite CSP's Constraints can be
rewritten as

Constraints : p(X) +-- (1 S X) I\ (XS 2)

q(Y) +-- (1 ~ Y) I\ (Y ~ 2)

r(X, Y) +-- X ~ Y

This demonstrates that these ideas lift from FCSP to CSP and CLP. It is
an open research issue to determine the limits of their applicability and their
usefulness [3,26]

14. FCS as Model Finding in Propositional Logic

A radically different logical framework for FCS is as model finding in
propositional logic [24,4,14,20]. In [24] an account of depiction is presented. An ·
interpretation of an image is defined to be a logical model of a theory describing
the image, the scene and the mapping between them. Under certain assumptions
this theory reduces to a propositional theory whose models are identified with
possible states of the world. Finding those models corresponds directly to solving
an FCSP. In [4,20] the model-finding framework for FCSP is used to elucidate
the connection to truth maintenance systems.

In this framework a propositional formula F is constructed for the FCSP such
that each model of F corresponds to a solution of the FCSP. Each proposition in
F represents a possible binding of a variable to a value. For the flag example, the

13

proposition X :r means that variable X takes the value r. F may be in CNF with
a set of clauses representing the fact that each variable must take a value, e.g.

X:r V X:w, the fact that the values are pairwise exclusive, e.g. ,X:r V ,X:w, and
the constraints on related variables. The constraints may be encoded as clauses in
any suitable fashion. A 'negative' encoding [4,20] represents only the forbidden
tuples of the constraints, e.g. ,W:r V ,Y:r. Using that encoding for the flag
example, we have

F ={X:r V X:w, Y:r V Y:w, Z:r V Z:w, U:r,
,X:r V ,X:w, ,Y:r V ,Y:w, ,Z:r V ,Z:w,

,X:r V ,Y:r, ,X:w V ,Y:w, ,Y:r V ,Z:r, ,Y:w V ,Z:w, ,Y:r V ,U:r}

In this framework we have a SAT problem again. In the propositional proof­
finding framework the FCSP has a solution iff the formula has no models. Under
this model-finding framework each solution corresponds to a model of F. To
find the models we could use the Davis-Putnam algorithm. But we note that the
SAT problem has the same special form again: there are no mixed clauses in
this encoding. This can be exploited to simplify the formula before deciding if
there are any models. Two inference rules can be used - a form of negative
hyperresolution H2 and a form of unit resolution U.

H2 : p V q V r V ... V u

,pV,v

,qV ,v

,rV ,v

,uV ,v

U: pVqVrV ... Vu

,q

pVrV ... Vu

These rules of inference are supplemented with two subsumption rules: Sp
and Sn, Given two positive clauses C1 and C2 where all the literals in C1 appear

14

in C2 then Sp deletes C2, the subsumed clause. Sn deletes subsumed negative
clauses.

Now, we define the AC-resolution strategy: (H2 S! U Sp)*
A trace of AC-resolution on the flag example as it simplifies F is shown in

Figure 5.

X:r V X:w---------X:r

Y:r V Y:w-----Y:w

Z:r V Z:w----------- ---Z:r

U:r

,Z:r V ,Z:w

,Y:w V ,Z:w------------,Z:w

Figure 5. A Trace of AC-resolution on the Flag Problem

The resultant simplified formula is

Fs = { X:r, Y:w, Z:r, U:r, ,X:w, ,Y:r, ,Z:w}

15

which obviously has exactly one model.
Notice that resolution and subsumption are used here in a non-standard way,

namely, not to prove a theorem but to find models. It is easy to verify that the
AC-resolution strategy has the following properties:

1. The set of models is invariant under AC-resolution. The models of F
are the models of F8 • This follows from the Soundness Theorem [9].
F p F8 (every model of F is a model of Fs) because F I- F8 , and
Fs p F because Fs I- F.

2. No mixed clauses are generated so the separation into positive and
negative clauses is invariant.

3. The total number and length of clauses decreases monotonically.

4. AC-resolution is 0(e) where e is the number of constraints [18].

5. In general, AC-resolution is incomplete in the sense that it does not
always terminate with Fs either the empty clause □ or consisting only of
unit literals. It must be interleaved with search, such as assigning a truth
value to a proposition, or enforcing higher order network consistency,
which corresponds to other forms of hyperresolution [4], to determine
the models of F explicitly.

6. AC-resolution used for model-finding exactly mimics the behaviour of
the LINC interpreter using the AC rewrite rule on FCSP (and the
Connection Graph theorem prover) since each proposition, e.g. X:r,
reifies a possible substitution for a variable in the FOPC theorem-proving
framework.

The model-finding framework shows the relevance of a variety of serial and
parallel complexity results on special cases of SAT, such as planar SAT [25], 2-
SAT and HomSAT. If the variables in an FCSP have a maximum domain size of
2 and the constraints are only unary or binary (as is the case for the Flag Problem)
then this encoding results in a 2-SAT problem which is 0(e) serial ·time [10] and
poly-logarithmic parallel time since it is in NC [13,14].

Other encodings, beside the negative encoding, can be useful. Consider di­
rected constraint networks [7] which are a specialization of FCSP. In a directed
constraint network, for each constraint some subset of its variables can be con­
sidered as input variables to the constraint with the rest considered as output

16

variables. The projection of the constraint relation on the input variables is the
universal relation - that is, they are unconstrained. A constraint relation that
is functional on the input variables has this form. A directed constraint that is
not functional can be made functional by inventing additional input variables to
discriminate between the different output values for the same values of the orig­
inal input variables. The topology of the constraint network must respect this
distinction between input and output variables.

A suitable mixed encoding of a directed constraint network in the model­
finding framework can be arranged as a propositional theory, as follows. The
theory has a positive clause for each variable and a set of negative clauses for each
variable, as before, but it has definite clauses for all the multivariable constraints.
If the values for the input variables to the network are known, the theory essentially
collapses to become Hom as a modified HomSAT algorithm determines the entire
state of the network in O (e) time [8]. On the other hand, determining the input
values required to produce a given output can be much harder. Diagnosis of the
internal state of a causal system can also be put in this framework: the unknown
states of the components constitute additional input variables [5].

15. Conclusions

In summary, all of the questions posed in Section 1 of this paper have
been answered affirmatively except, of course, the one posed by the cynical
critic. The basic approach has been to see Finite Constraint Satisfaction as
a restricted logical calculus in a space of logical representation and reasoning
systems. The FCSP framework has been formulated in a variety of logical settings:
theorem proving in FOPC (which reduces to propositional theorem proving and
hence SAT), the Prolog and Datalog approaches, constraint network algorithms,
a logical interpreter for networks of constraints, the CLP paradigm and forms of
propositional model finding (and hence SAT, again). Several standard, and some
not-so-standard, logical methods can therefore be used to solve these problems. By
doing this we obtain a specification of the semantics of the common approaches.

This synthetic treatment also allows algorithms and results from many of these
disparate areas to be imported, and specialized, to FCSP; the special properties
of FCSP are exploited to achieve, for example, completeness and to improve
efficiency. It also allows export to the related areas. By casting CSP both
as a generalization of FCSP and a specialization of CLP it was observed that

17

some, but not all, FCSP techniques lift to CSP and, perhaps, thereby to CLP.
Various new connections have been uncovered, in particular between the proof­
finding approaches and the alternative model-finding approaches that have arisen
in depiction and diagnosis applications.

Acknowledgments

The contents of this paper benefitted from discussions with Johan de Kleer,
Alex Kean, Nick Pippenger, David Poole, Ray Reiter, Ron Rensink and Zhang
Ying. This research was supported by the Canadian Institute for Advanced
Research, the Natural Sciences and Engineering Research Council of Canada
and the Institute for Robotics and Intelligent Systems Network of Centres of
Excellence.

References

[1] Bibel, W. Constraint satisfaction from a deductive viewpoint. Artificial
Intelligence 35 (1988), 401-413.

[2] Clark, K. L. Negation as failure. In Logic and Databases, H. Gallaire and
J. Minker, Eds. Plenum Press, New York, 1978, pp. 293--322.

[3] Davis, E. Constraint propagation with interval labels. Artificial Intelligence
32 (1987), 281-331.

[4] de Kleer, J. A comparison of ATMS and CSP techniques. In IJCAI-89
(Detroit, Michigan, Aug. 1989), IJCAI, pp. 290-296.

[5] de Kleer, J., Mackworth, A. K., and Reiter, R. Characterizing diagnoses.
In Proc. 8th National Conference on Artificial Intelligence (Boston, July
1990), pp. 324-330.

[6] Dechter, R. Constraint networks: A survey. In The Encyclopedia of AI,
S. Shapiro, Ed., second ed. John Wiley, New York, 1991.

18

[7] Dechter, R., and Pearl, J. Directed constraint networks: A relational
framework for causal modeling. Tech. Rep. R-153, UCLA, Los Angeles,
California, Oct. 1990.

[8] Dowling, W. F., and Gallier, J. H. Linear-time algorithms for testing the
satisfiability of propositional Hom formulae. Journal of Logic Programming
3 (1984), 267-284.

[9] Enderton, H. B. A Mathematical Introduction to Logic. Academic Press,
Orlando, Florida, 1972.

[10] Even, S., Itai, A., and Shamir, A. On the complexity of timetable and
multicommodity flow problems. SIAMJournal of Computing 5, 4 (1976),
691-703.

[11] Freuder, E. C. Complexity of k-tree structured constraint satisfaction
problems. In Proc. 8th National Conference on Artificial Intelligence
(Cambridge, Massachusetts, July 1990), pp. 4-9.

[12] Jaffar, J., and Lassez, J. L. Constraint logic programming. In Proc. 14th
ACM Principles of Programming Languages Conf (Munich, 1987), pp. 111-
119.

[13] Jones, N. D., Lien, Y. E., and Laaser, W. T. New problems complete for
nondeterministic log space. Mathematical Systems Theory 10 (1976), 1-17.

[14] Kasif, S. Parallel solutions to constraint satisfaction problems. In Proc.
First International Conf on Principles of Knowledge Representation and
Reasoning (Toronto, May 1989), pp. 180-188.

[15] Kowalski, R. A proof procedure using connection graphs. JACM 22, 4
(Oct. 1975), 572-595.

[16] Mackworth, A. K. Consistency in networks of relations. Artificial Intelli­
gence 8 (1977), 99-118.

[17] Mackworth, A. K. Constraint satisfaction. In The Encyclopedia of Al,
second ed. John Wiley, New York, 1991.

19

[18] Mackworth, A. K., and Freuder, E. C. The complexity of some polyno­
mial network consistency algorithms for constraint satisfaction problems.
Artificial Intelligence 25 (1985), 65-74.

[19] Maier, D. The Theory of Relational Databases. Computer Science Press,
Rockville, Maryland, 1983.

[20] McAllester, D. Truth maintenance. In Proc. 8th National Conference on
Artificial Intelligence (Boston, July 1990), pp. 1109-1116.

[21] Montanari, U. Networks of constraints: fundamental properties and appli­
cations to picture processing. Information Sciences 7 (1974), 95-132.

[22] Montanari, U., and Rossi, F. Constraint relaxation may be perfect. Tech.
Rep. TR-21/89, University of Pisa, Pisa, Italy, 1989.

[23] Reiter, R. Nonmonotonic reasoning. In Exploring Artificial Intelligence,
H. E. Shrobe, Ed. Morgan Kaufmann, San Mateo, Ca, 1988, pp. 439-482.

[24] Reiter, R., and Mackworth, A. K. A logical framework for depiction and
image interpretation. Artificial Intelligence 41 (1989), 125-155.

[25] Seidel, R. A new method for solving constraint satisfaction problems. In
Proc. 7th International Joint Conf on Artificial Intelligence (Vancouver,
BC, 1981), pp. 338-342.

[26] Sidebottom, G., and Havens, W. S. Hierarchical arc consistency applied
to numeric processing in constraint logic programming. Tech. Rep. CSS-IS
TR 91-06, Simon Fraser University, Burnaby, B. C., 1991.

[27] van Hentenryck, P. Consistency techniques in logic programming. Thesis,
University of Notre-dame, Namur-Belgium, 1987.

[28] Zhang, Y., and Mackworth, A. K. Parallel and distributed algorithms for
constraint satisfaction problems. In Proc. 3rd IEEE Symposium on Parallel
and Distributed Processing (Dallas, Texas, Dec. 1991).

20

