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Abstract 

The Constraint Satisfaction Problem (CSP) formalization has been a produc­
tive tool within Artificial Intelligence and related areas. The Finite CSP (FCSP) 
framework is presented here as a restricted logical calculus within a space of 
logical representation and reasoning systems. FCSP is formulated in a variety of 
logical settings: theorem proving in first order predicate calculus, propositional 
theorem proving (and hence SAT), the Prolog and Datalog approaches, constraint 
network algorithms, a logical interpreter for networks of constraints, the Constraint 
Logic Programming (CLP) paradigm and propositional model finding (and hence 
SAT, again). Several standard, and some not-so-standard, logical methods can 
therefore be used to solve these problems. By doing this we obtain a specification 
of the semantics of the common approaches. This synthetic treatment also allows 
algorithms and results from these disparate areas to be imported, and specialized, 
to FCSP; the special properties of FCSP are exploited to achieve, for example, 
completeness and to improve efficiency. It also allows export to the related areas. 
By casting CSP both as a generalization of FCSP and as a specialization of CLP 
it is observed that some, but not all, FCSP techniques lift to CSP and, perhaps, 
thereby to CLP. Various new connections are uncovered, in particular between the 
proof-finding approaches and the alternative model-finding approaches that have 
arisen in depiction and diagnosis applications. 

1 Fellow, Canadian Insti1u1e for Advanced Research 
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1. Logical Frameworks for Constraint Satisfaction 

Informally, a Constraint Satisfaction Problem (CSP) is posed as follows. 
Given a set of variables and a set of constraints, each specifying a relation on a 
particular subset of the variables, find the relation on the set of all the variables 
which satisfies all the given constraints. Typically, the given unary relation for 
each variable specifies its domain as a set of possible values; the required solution 
relation is a subset of the Cartesian product of the variable domains. If each 
domain is finite the CSP is a Finite Constraint Satisfaction Problem (FCSP). 

The formulation of the CSP paradigm has yielded substantial theoretical and 
practical results [6,17]. It is important, though, not to conceive of the CSP 
paradigm in isolation but to see it in its proper context - namely, as a highly 
restricted logical calculus with associated properties and algorithms. The purpose 
of this paper is to place CSP's in that context, to redevise some old results in new, 
simpler ways, and to establish connections amongst the differing views of CSP's. 
Essentially the paper can be seen as an extended answer to the question, "Does 
the CSP framework make logical sense?" The ambiguity of the question lies in 
the fact that it can be read as "Is it sensible to isolate the CSP paradigm?" or as 
"Can we interpret the CSP paradigm using logical notions?" The paper can also 
be seen as a response to a cynical critic who asks, "Is CSP merely old wine in new 
bottles?" The paper is intended to lead to answers to the following questions: 

• Can FCSP be posed in logical frameworks? 
• Can standard logical methods be used to solve FCSP? 
• Can the special properties of FCSP be exploited to get better algorithms? 
• Are tractable classes of FCSP revealed? 
• Do old results fall out? 
• What are the relationships among the several logical views of FCSP? 
• Can the approaches for FCSP be lifted to CSP? 
• Do we get new results and systems? 

2. An FCSP: The Canadian Flag Problem 

To fix the ideas of this paper a trivial FCSP will be used as an example. 
Consider the well-known Canadian Flag Problem. A committee proposed a new 
design for the Canadian flag, shown in Figure 1. The problem is to decide how 
to colour the flag. Only two colours, red and white, should be used; each region 
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should be a different colour from its neighbours, and the maple leaf should, of 
course, be red. The problem is so trivial that its solution requires little thought, 
even though the committee could not solve it, but it serves our purpose here. 

Figure 1. A Trivial FCSP: Colour The Canadian Flag 

3. FCS as Theorem Proving in FOPC 

The simplest standard logical CSP fonnulation is as theorem proving in a 
restricted first order predicate calculus [16]. An FCSP decision problem can be 
posed as Constraints f- Query? where Query has the fonn 

or 

Query; 

Query: 3Xi3X2 ... 3XnPX1 (X1) I\ PX2(X2) I\ ... I\ PXn(Xn)I\ 

PX1X2(X1, X2) I\ PX1X3(X1, Xa) I\·., I\ 

PX1X2X3(X1, X2, Xa) I\ ... I\ 

PX1X2X3 ... Xn (X1, X2, Xa,, .. , Xn) 

and Constraints is a set of ground atoms specifying the extensions of the 
predicates 

Constraints: 

where the Ci are constants. Notice that in this fonnulation we are only specifying 
the tuples allowed by a relation, not the tuples forbidden, since Constraints 
consists of positive literals. 
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4. FCS Decision Problems 

An FCSP is specified by a (Constraints, Query) pair. A common candidate 
formulation of the FCS decision problem is to determine if it can be shown 
that a solution exists or if it can be shown that a solution does not exist: 
Constraints f- Query, or Constraints f- -,Query. However, given the 
positive form specified for Constraints, it is never possible to establish that 
Constraints f- -,Query so this candidate formulation is unacceptable. Later 
when we consider the completion of Constraints we shall return to a variant 
of this formulation. 

The FCS Decision Problem (FCSDP) is to determine if it can be shown that a 
solution exists or if cannot be shown that a solution exists: Constraints f- Query 
or Constraints Y Query. 

If the decision problem is posed in the form of FCSDP and the constraints 
are supplied or discovered incrementally in the form of additional allowed tuples, 
extending the set Constraints, then the answers to FCSDP are monotonic: a 
'No' may change to 'Yes' but not vice versa. 

Proposition FCSDP is decidable. 
Proof For an FCSP specified by the pair (Constraints, Query) a decision 
algorithm to determine if Constraints f- Query or Constraints Y Query is 
required. The Herbrand universe H of the theory Constraints LJ-,Query is 

H = { c I Pv( ... , c, ... ) E Constraints} 

H is finite. 

Consider the following algorithm 

Decision Algorithm DA: 

Success +- No 

For each tuple ( ci, c2, ... , en) E Hn 

If Constraints f- QM atrix (c1, c2, ... , en) then Success +- Yes 

Report Success 

End DA 

where Constraints f- QMatrix (ci,c2, ... ,cn) iff for each Atom mentioned in 
QMatrix (c1, c2, ... , en) it is the case that Atom E Constraints. 
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DA always terminates. It reports 'Yes' iff Constraints I- Query. It reports 
'No' iff Constraints ¥ Query. ■ 

The number of predicate evaluations made by DA is 

(#atoms in QMatrix(X1, X2, ... , Xn)) X I H In 

5. Completing the Constraints 

Consider the completion of Constraints with respect to Query. Each 
predicate mentioned in Query can be completed [2] in the following sense: 

completion(Constraints) = 
Constraints U {-,pv( c1, c2, ... , ck)lci E H, Pv( c1, c2, ... , ck) r/. Constraints} 

In other words, the complete extension of each k-ary predicate over Hk is 
specified, positively and negatively, in completion( Constraints). 

Notice that Constraints I- Query iff completion(Constraints) I- Query 
and Constraints }l Query iff completion(Constraints) I- -,Query. 
Hence, DA reports 'Yes' iff completion(Constraints) I- Query and 'No' iff 
completion(Constraints) I- -,Query. 

Thus, we may choose to interpret the answer from DA in the original sense of 
FCSDP or under the Closed World Assumption [23] that Constraints has been 
completed. Both interpretations are correct. 

6. The Flag FCSP in FOPC 

Using the FCSP formalism presented above we can formulate the flag problem 
as follows. 

X z 
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Query: 

3X3Y3Z3Up(X) A q(Y) A s(Z) A t(U) A ne(X, Y) A ne(Y,Z) A ne(Y, U) 

Constraints: 
{p(r), p( w), q( r), q( w), s( r), s( w), t( r), ne( r, w), ne( w, r)} 

H = { r, w} where r stands for Red and w for White. 
H-4 = {(r,r,r,r),(r,r,r,w), ... ,(w,w,w,w)} 

On the FCSP (Query, Constraints) algorithm DA returns 'Yes' succeeding 
on the tuple (r, w, r, r). 

7. Logical Representation and Reasoning Systems 

Faced with a problem in representation and reasoning, a wide spectrum of 
logical representation systems is available to us. In choosing an appropriate 
system we can rely on two sets of criteria: descriptive and procedural adequacy 
criteria [24]. These are often in conflict. The best advice is to use Occam's Razor: 
choose the simplest system with the level of descriptive adequacy required. Some 
representation and reasoning systems are shown, organized as a DAG, in Figure 
2. If there is an downward arc from system A to system B then A's descriptive 
capabilities are a strict superset of B's. In the previous section, for example, 
FCS was shown to be equivalent to theorem-proving in a very restricted form 
of FOPC. Horn FOPC restricts FOPC in only allowing Horn clauses, with at 
most one positive literal. Definite Clause Programs (DCP), without predicate 
completion, restrict Horn FOPC by allowing only one negative clause, the query. 
Datalog restricts DCP by eliminating function symbols. FCS restricts Datalog by 
disallowing rules, mixed Horn clauses. There are several further restrictions on 
FCS possible with corresponding gains in tractability and some generalizations 
of FCS with gains in expressive power. We shall examine various logical 
formulations of FCS and investigate some of their interrelationships. 

8. FCS as Theorem Proving in Propositional Calculus 

The algorithm DA can be interpreted as implementing a view of FCS as 
theorem proving in the propositional calculus. Query is a theorem to be proved. 
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~I/ 
First Order Predicate Calculus (FOPC) 

/ ~ 
Function Free FOPC Horn FOPC Constraint Logic Programs 

~ ------------Definite Clause Programs 

Datalog Constraint Satisfaction 

I ------------
Finite Constraint Satisfaction 

/I"' 
Figure 2. Some Logical Representation and Reasoning Systems 

If a solution exists the theory Constraints LJ ,Query leads to a contradiction. 

,Query: ,3X13X2 ... 3XnQMatrix(X1, ... , Xn) 

\/X1 \/X2 ... \/Xn,QM atrix(X1, ... , Xn) 

A solution exists iff Constraints U ,Query has no (Herbrand) models. There 
are no universal quantifiers in Query and so there are no existential quantifiers in 
the theory Constraints U ,Query. Hence no Skolem functions are introduced 
when the theory is converted to clausal form. This important restriction guarantees 
that the Herbrand universe H is finite. This allows us to replace each of 
the universal quantifiers by the conjunction of the ,QM atrix(X1, X 2 , ••• , Xn) 
clauses instantiated over nn. This rewritten theory has the same set of Herbrand 
models as the original theory. 
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For the flag example the rewritten theory is: 

{p(r), q(w), q(r), q(w), s(r), s(w), t(r), ne(r, w), ne(w, r)} 

u 
{,p(r), V,q(r) V ,s(r) V ,t(r) V ,ne(r, r) V ,ne(r, r), 

,p(r) V ,q(r) V ,s(r) V ,t(w) V ,ne(r, r) V ,ne(r, w), 

,p(r) V ,q(w) V ,s(r) V ,t(r) V ,ne(r,w) V ,ne(w,r), * 

,p(w) V ,q(w) V ,s(w) V ,t(w) V ,ne(w,w) V ,ne(w,w)} 
This theory, now a propositional formula in CNF, has a particular form; it consists 
only of a set of unit positive clauses, arising from the constraints, and a set of 
negative clauses, from the query. There are no mixed clauses. Note that it is 
also always Horn. It is unsatisfiable iff the FCSP has a solution. Since it is 
Horn SAT is linear time in the size of the formula [8], but, of course, there are 
!Hin negative clauses in the formula. Also note unit resolution alone is complete 
for this class of formulas. For the flag example, repeated unit resolution on the 
clause marked * reduces it to the empty clause □, corresponding to the solution 
{X=r, Y=w, Z=r, U=r}. Using subsumption (whereby if clauses of the form 
C and C V D are both present, CV D is deleted) does not affect the completeness 
result. Iterating unit resolution followed by subsumption leaves invariant the 
special properties of the formula (only negative or unit positive clauses) and, 
moreover, only decreases its size. Hence, it terminates (correctly). As, of course, 
does the linear time HornSAT algorithm. The HornSAT algorithm exactly mimics 
the algorithm DA. The propositional variable in each unit positive literal is set to 
T and each negative clause is checked: if any clause has each (negative) literal 
required to be F then the formula is unsatisfiable otherwise it is satisfiable; 

9. FCS as Theorem Proving in Definite Theories 

The methods discussed so far are not serious candidates for actually solving 
an FCSP: they simply serve to clarify the semantics and methods of the serious 
candidates. One such candidate is a Prolog interpreter, which is a theorem 
prover for theories consisting of definite clauses. Since FCS is pure Prolog SLD­
resolution is a sound solution method. SLD-resolution is not, in general, complete 
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for Definite Clause Programs but it is for FCS. It is also, generally speaking, more 
efficient than other resolution methods such as the one embodied in algorithm DA. 
For the flag example, we can assert the constraints as ground facts in the Prolog 
database then define and pose the conjunctive query to Prolog: 

%prolog 

I ?- [user] • 

I p (r) . p (w) . q (r) . q (w) . s (r) . s (w) . t (r) . 

I ne(r,w). ne(w,r). 

yes 

I ?- p(X),q(Y),s(Z),t(U),ne(X,Y),ne(Y,Z),ne(Y,U). 

X = Z = U = r, 
y = w 

In finding the one solution the interpreter essentially checks every possible set of 
bindings for the variables X, Y, z and u. By permuting the query one may reduce 
the size of the search space: a partially completed set of bindings can be rejected 
by a single failure. For the query 

I ?- p (X), q (Y), ne (X, Y), s (Z), ne (Y, Z), t (U), ne (Y, U) 

the search tree is somewhat smaller. Heuristics, such as instantiating the most 
constrained variable next, can be used to re-order the query dynamically but, on 
realistic problems, this tactic is doomed. In general, no variable ordering can 
avoid thrashing by repeatedly rediscovering incompatible variable bindings [16]. 

Just as for the algorithm DA, we may interpret Prolog's failure to find a 
proof as meaning either Constraints .r' Query or completion(Constraints) f-­
,Query 

10. FCS as Datalog 

Since FCS is a restriction of Datalog, the techniques developed in the rela­
tional database community are available [19]. The solution relation is the natural 
join of the relations for the individual constraints. The consistency techniques 
discussed below can be interpreted similarly; for example, making an arc consis­
tent in a constraint network can be interpreted as a semijoin. Results that exploit 
this interpretation can be found in [21, 1,24,6, 17 ,28]. 
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11. FCS in Constraint Networks 

Consideration of the drawbacks of the SLD-resolution approach mentioned 
above leads to a view of FCS in constraint networks. A constraint network 
represents each variable in the query as a vertex. The unary constraint p x ( X) 
establishes the domain of X, and each binary constraint p XY ( X, Y) is represented 
as the edge (X, Y), composed of arc (X, Y) and arc (Y, X). This easily 
generalizes to k-ary predicates using hypergraphs. The network for the flag 
problem is shown in Figure 3. 

{r,w} {r,w} 

{r} 

Figure 3. Constraint Network for the Flag Problem 

An arc ( X, Y) is consistent iff 

VX {px(X) --+ 3Y[py(Y) A pxy(X, Y)]} 

A network is arc consistent if all its arcs are consistent. An arc (X, Y) may 
be made consistent without affecting the total set of solutions by deleting the 
values from the domain of X that are not consistent with some value in Y. 
The original flag network is not arc consistent because the single arc (Y, U) is 
inconsistent. Deleter from the domain of Y. This now makes arcs (X, Y) and 



( Z, Y) inconsistent. They can be made consistent by deleting w from the domains 
of both X and Z, making the network arc consistent as shown in Figure 4. 

{r} {r} 

{r} 

Figure 4. Arc Consistent Network for the Flag Problem 

Arc consistency can be enforced in time linear in the number of binary 
constraints; moreover, if the constraint graph is a tree, as it is for the flag, then arc 
consistency alone suffices as a decision procedure for the FCSP [18]. Various other 
graph theoretic properties of the constraint network can be used to characterize 
and solve FCSPs [22,11,6]. 

12. Logical Interpreters for FCSP 

Using these ideas we can implement an interpreter for FCS [16,27] which 
could be called LINC (a Logical Interpreter for a Network of Constraints). Given 

Query: 

3X3Y3Z3Up(X) I\ q( Y) I\ s(Z) I\ t( U) I\ ne(X, Y) I\ ne( Y, Z) I\ ne( Y, U) 

then, following [2], for LINC we choose to complete each predicate in 
Constraints and represent it by its definition, its necessary and sufficient con-
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ditions, so 

Constraints: p(X) +-. ((X=r) V (X=w)) 
q(Y) +-. ( ( Y = r) V ( Y =w)) 
s(Z) +-. ((Z=r) V (Z=w)) 

t(U) +-. (U=r) 
ne(X, Y) +-. (X=r A Y=w) V (X=w A Y=r) 

Restricting LINC to arc consistency, it non-deterministically rewrites 
Constraints using the AC rewrite rule: 

Px(X) {= Px(X) A 3Y[py(Y) A pxy(X, Y)] 

Here: 
q(Y) {= q(Y) A 3U[t(U) A ne(Y, U)] 

{= (Y = r V Y = w) A 3U[U = r A (Y = r A U = w V Y = w A U = r)] 

{= (Y=w) 
Iterating the AC rewrite rule reduces the constraints to a fixpoint 

p(X) +-. (X=r) 
q(Y) +-. (Y=w) 
s(Z) +-. (Z=r) 

t(U) +-. (U=r) 
ne(X, Y) +-. (X= r A Y=w) V (X=w A lf=r) 

In general, LINC must interleave the AC relaxation with some non-deterministic 
case analysis or higher order network consistency. 

CHIP [27] is, amongst other things, an implementation of this approach. 
Similarly, a Connection Graph theorem prover for full FOPC, as proposed in 
[15], essentially performs AC relaxation on the possible sets of substitutions for 
variables in the literals of each clause. Using such a prover with an SLD-resolution 
strategy on a FCSP query would produce an effect isomorphic to using LINC. 

13. CSP and CLP('.I>) 

The FCS constraint form is a special case of the CLP(!>) rule form [12]: 

p(X, Y, .. . ) ~a1(X, Y, .. . ) A a2(X, Y, .. . ) A ... A 

P1(X, Y, .. . ) A P2(X, Y, .. . ) A .. . 
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where ai(,) is a constraint on its arguments and p;(.) is a predicate. 
In Definite Clause Programs ~ = H and the constraints are equalities on 

terms. 
A general Constraint Satisfaction Problem fits the CLP(~) scheme. Consider 

the CSP represented by this CLP(v:\) program 

and the 

Constraints : p( X) +-- ( 1 S X) I\ ( X S 3) 

q(Y) +-- (0 s Y) I\ (Y s 2) 
r(X,Y) +--X < Y 

Query : 3X3 Y[p(X) I\ q( Y) I\ r(X, Y)] 

Using the same AC rule that LINC used for finite CSP's Constraints can be 
rewritten as 

Constraints : p(X) +-- (1 S X) I\ (XS 2) 

q(Y) +-- (1 ~ Y) I\ (Y ~ 2) 

r( X, Y) +-- X ~ Y 

This demonstrates that these ideas lift from FCSP to CSP and CLP. It is 
an open research issue to determine the limits of their applicability and their 
usefulness [3,26] 

14. FCS as Model Finding in Propositional Logic 

A radically different logical framework for FCS is as model finding in 
propositional logic [24,4,14,20]. In [24] an account of depiction is presented. An · 
interpretation of an image is defined to be a logical model of a theory describing 
the image, the scene and the mapping between them. Under certain assumptions 
this theory reduces to a propositional theory whose models are identified with 
possible states of the world. Finding those models corresponds directly to solving 
an FCSP. In [ 4,20] the model-finding framework for FCSP is used to elucidate 
the connection to truth maintenance systems. 

In this framework a propositional formula F is constructed for the FCSP such 
that each model of F corresponds to a solution of the FCSP. Each proposition in 
F represents a possible binding of a variable to a value. For the flag example, the 
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proposition X :r means that variable X takes the value r. F may be in CNF with 
a set of clauses representing the fact that each variable must take a value, e.g. 

X:r V X:w, the fact that the values are pairwise exclusive, e.g. ,X:r V ,X:w, and 
the constraints on related variables. The constraints may be encoded as clauses in 
any suitable fashion. A 'negative' encoding [4,20] represents only the forbidden 
tuples of the constraints, e.g. ,W:r V ,Y:r. Using that encoding for the flag 
example, we have 

F ={X:r V X:w, Y:r V Y:w, Z:r V Z:w, U:r, 
,X:r V ,X:w, ,Y:r V ,Y:w, ,Z:r V ,Z:w, 

,X:r V ,Y:r, ,X:w V ,Y:w, ,Y:r V ,Z:r, ,Y:w V ,Z:w, ,Y:r V ,U:r} 

In this framework we have a SAT problem again. In the propositional proof­
finding framework the FCSP has a solution iff the formula has no models. Under 
this model-finding framework each solution corresponds to a model of F. To 
find the models we could use the Davis-Putnam algorithm. But we note that the 
SAT problem has the same special form again: there are no mixed clauses in 
this encoding. This can be exploited to simplify the formula before deciding if 
there are any models. Two inference rules can be used - a form of negative 
hyperresolution H2 and a form of unit resolution U. 

H2 : p V q V r V ... V u 

,pV,v 

,qV ,v 

,rV ,v 

,uV ,v 

U: pVqVrV ... Vu 

,q 

pVrV ... Vu 

These rules of inference are supplemented with two subsumption rules: Sp 
and Sn, Given two positive clauses C1 and C2 where all the literals in C1 appear 
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in C2 then Sp deletes C2, the subsumed clause. Sn deletes subsumed negative 
clauses. 

Now, we define the AC-resolution strategy: (H2 S! U Sp)* 
A trace of AC-resolution on the flag example as it simplifies F is shown in 

Figure 5. 

X:r V X:w---------X:r 

Y:r V Y:w-----Y:w 

Z:r V Z:w----------- ---Z:r 

U:r 

,Z:r V ,Z:w 

,Y:w V ,Z:w------------,Z:w 

Figure 5. A Trace of AC-resolution on the Flag Problem 

The resultant simplified formula is 

Fs = { X:r, Y:w, Z:r, U:r, ,X:w, ,Y:r, ,Z:w} 
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which obviously has exactly one model. 
Notice that resolution and subsumption are used here in a non-standard way, 

namely, not to prove a theorem but to find models. It is easy to verify that the 
AC-resolution strategy has the following properties: 

1. The set of models is invariant under AC-resolution. The models of F 
are the models of F8 • This follows from the Soundness Theorem [9]. 
F p F8 (every model of F is a model of Fs) because F I- F8 , and 
Fs p F because Fs I- F. 

2. No mixed clauses are generated so the separation into positive and 
negative clauses is invariant. 

3. The total number and length of clauses decreases monotonically. 

4. AC-resolution is 0( e) where e is the number of constraints [18]. 

5. In general, AC-resolution is incomplete in the sense that it does not 
always terminate with Fs either the empty clause □ or consisting only of 
unit literals. It must be interleaved with search, such as assigning a truth 
value to a proposition, or enforcing higher order network consistency, 
which corresponds to other forms of hyperresolution [4], to determine 
the models of F explicitly. 

6. AC-resolution used for model-finding exactly mimics the behaviour of 
the LINC interpreter using the AC rewrite rule on FCSP (and the 
Connection Graph theorem prover) since each proposition, e.g. X:r, 
reifies a possible substitution for a variable in the FOPC theorem-proving 
framework. 

The model-finding framework shows the relevance of a variety of serial and 
parallel complexity results on special cases of SAT, such as planar SAT [25], 2-
SAT and HomSAT. If the variables in an FCSP have a maximum domain size of 
2 and the constraints are only unary or binary (as is the case for the Flag Problem) 
then this encoding results in a 2-SAT problem which is 0( e) serial ·time [10] and 
poly-logarithmic parallel time since it is in NC [13,14]. 

Other encodings, beside the negative encoding, can be useful. Consider di­
rected constraint networks [7] which are a specialization of FCSP. In a directed 
constraint network, for each constraint some subset of its variables can be con­
sidered as input variables to the constraint with the rest considered as output 
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variables. The projection of the constraint relation on the input variables is the 
universal relation - that is, they are unconstrained. A constraint relation that 
is functional on the input variables has this form. A directed constraint that is 
not functional can be made functional by inventing additional input variables to 
discriminate between the different output values for the same values of the orig­
inal input variables. The topology of the constraint network must respect this 
distinction between input and output variables. 

A suitable mixed encoding of a directed constraint network in the model­
finding framework can be arranged as a propositional theory, as follows. The 
theory has a positive clause for each variable and a set of negative clauses for each 
variable, as before, but it has definite clauses for all the multivariable constraints. 
If the values for the input variables to the network are known, the theory essentially 
collapses to become Hom as a modified HomSAT algorithm determines the entire 
state of the network in O ( e) time [8]. On the other hand, determining the input 
values required to produce a given output can be much harder. Diagnosis of the 
internal state of a causal system can also be put in this framework: the unknown 
states of the components constitute additional input variables [5]. 

15. Conclusions 

In summary, all of the questions posed in Section 1 of this paper have 
been answered affirmatively except, of course, the one posed by the cynical 
critic. The basic approach has been to see Finite Constraint Satisfaction as 
a restricted logical calculus in a space of logical representation and reasoning 
systems. The FCSP framework has been formulated in a variety of logical settings: 
theorem proving in FOPC (which reduces to propositional theorem proving and 
hence SAT), the Prolog and Datalog approaches, constraint network algorithms, 
a logical interpreter for networks of constraints, the CLP paradigm and forms of 
propositional model finding (and hence SAT, again). Several standard, and some 
not-so-standard, logical methods can therefore be used to solve these problems. By 
doing this we obtain a specification of the semantics of the common approaches. 

This synthetic treatment also allows algorithms and results from many of these 
disparate areas to be imported, and specialized, to FCSP; the special properties 
of FCSP are exploited to achieve, for example, completeness and to improve 
efficiency. It also allows export to the related areas. By casting CSP both 
as a generalization of FCSP and a specialization of CLP it was observed that 
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some, but not all, FCSP techniques lift to CSP and, perhaps, thereby to CLP. 
Various new connections have been uncovered, in particular between the proof­
finding approaches and the alternative model-finding approaches that have arisen 
in depiction and diagnosis applications. 
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