
Leaders Election Without a Conflict
Resolution Rule - Fast and Efficient

Randomized Simulations among
CRCW PRAMs

by
Joseph Gil and Y ossi Matias

Technical Report 91-21
October 1991

Deparnnent of Computer Science
University of British Columbia

Rm 333 - 6356 Agricultural Road
Vancouver, B.C.

CANADA V6T 1Z2

Leaders Election Without a Conflict Resolution Rule -

Fast and Efficient Randomized Simulations among CRCW PRAMs *

Joseph Gil tt§
The University of British Columbia

Yossi Matias 11
University of Maryland and

Tel Aviv University

January 1991 **

Abstract

We study the question of fast leaders election on TOLERANT, a CRCW PRAM
model which tolerates concurrent write but does not support symmetry breaking.
We give a randomized simulation of MAXIMUM (a very strong CRCW PRAM) on
TOLERANT. The simulation is optimal, reliable, and runs in nearly doubly logarith
mic time and linear space. This is the first simulation which is fast, optimal and
space-efficient, and therefore grants true comparison of algorithms running on different
CRCW PRAMs. Moreover, it implies that the memory to which concurrent read or
concurrent write are assumed should never be more than linear-the rest of the mem
ory can always be addressed under the EREW convention. The techniques presented
in this paper tackle fundamental difficulties in the design of fast parallel algorithms.

Summary

Exclusive-Write PRAM models are known to be strictly weaker than the Concurrent Read
Concurrent Write PRAM models (CRCW). While the simple OR function of n bits requires
O(lgn) time on the Concurrent-Read Exclusive-Write (CREW) model, it can be solved in

• A previous version of this paper appeared as part of the first author Ph.D. dissertation [16] .
tPart of research was done while author was in the Hebrew University of Jerusalem.
*Research supported in part by the Leibniz Center for Research in Computer Science.
§ Author's address: Department of Computer Science, 6356 Agricultural Road, The University of British

Columbia, Vancouver, B.C. V6T 1Z2, Canada.
11Partially supported by NSF grant NSF-CCR-8906949.
II Author's address: Institute for Advanced Computer Studies, University of Maryland, College Park, MD

20742, USA.
0 Revised: September 1991

1

constant time on a CRCW. Moreover, there are quite a few more complex problems that
can be solved in doubly logarithmic time or even less on the CRCW model.

Any Concurrent-Write model must define a conflict resolution rule to account for the case
of several processors writing to the same cell. It may be thought that the power of CRCW
model results from the ability of a memory cell to perform a "computation", according
to write conflict resolution rule, in constant time on unbounded number of inputs. In an
attempt to disprove this and in exploration of the borderline between exclusive-write and
concurrent-write, we investigate the TOLERANT model, a very weak CRCW model. The
TOLERANT model is in fact so weak that it uses no conflict resolution rule, and aside from
tolerating an (unsuccessful) attempt for concurrent-write, it is identical to CREW.

A fundamental problem that captures the difference in power between the various PRAM
models is the leaders election problem. Given a partition of the processors into sets, according
to the memory cells to which they want to write, the problem is for each set to select a
distinguished processor from the set (the "leader"). The decision on which processor to
select depends on the model at hand.

We will limit the memory size used by our algorithms to be linear in the number of
processors. In addition to efficiency considerations, it is interesting to understand the power
of computation in bounded space. Boppana showed that the element distinctness problem
(deciding whether or not all input elements are distinct) requires S1(lgn/lglgn) time on a
deterministic n-processor PRIORITY with bounded space; "bounded-space" here means that
the space is not dependent on the input (but may be a function of n). We show that even
harder problems can be solved in O(lglgn) time on a randomized TOLERANT with linear
space. Another important implication of this result is that the effort of avoiding write
conflicts is the main obstacle in obtaining very fast CREW algorithms and not the fact that
these models are forbidden from using a strong rule for conflict resolution.

As a fundamental building block we show that picking the processor with the maximal
value amongst a set of anonymous processors (leader election) can be done in constant time
on the randomized TOLERANT model. We generalize and show that n instances of this
problem can be solved in O(lglgn) time on an n-processor randomized TOLERANT. Further,
we show that an n-processor machine, belonging to any of the CRCW models in common
use, is equivalent, up to an O(lglgn) randomized time factor, to an n-processor TOLERANT
machine. This includes also the strong and non-standard MAXIMUM CRCW model, in
which the conflict resolution rule is a maximum computation. The number of processors in
the simulating machine can be reduced to n/lglgn on the (stronger) COLLISION CRCW, or to
n/lglgnlg*n on the TOLERANT with a further slowdown factor of O(lg*n). These simulations
are optimal in the sense that the time-processor product (i.e., the number of operations) of
the simulating and simulated machine are the same, up to a constant factor.

These results improve on all previously published simulation algorithms in one or more
of the following aspects: time, optimality, strength of simulating machine, strength of simu
lating machine, and memory usage. It implies that an algorithm being designed for a strong
(and hence more convenient) model of computation such as the MAXIMUM can be automati
cally adapted to work on the relatively weak (and hence closer to reality) TOLERANT model,

11

with a certain small slowdown but without sacrificing efficiency. In addition to being opti
mal, our simulation is the first fast simulation that does not introduce a multiplicative fac
tor n increase in memory size. In fact, the extra memory in use is an additive O(n) factor.
Moreover, the (possibly large) memory being used by the simulated machine will be now
addressed only under the EREW convention. It follows that the space to be used under the
concurrent-read concurrent-write convention (in any standard model) should never be more
than linear.

An application of our result demonstrating the power of the TOLERANT model is an
improved optimal and reliable algorithm for the hashing problem: given n keys, build a hash
table that uses linear space, and supports 0(1) time lookup queries. All our algorithms run
with high probability, i.e., they successfully terminate within the stated time complexity
with probability 1 - n-k, for any constant k.

The techniques presented in this paper tackle fundamental difficulties in the design of
fast parallel algorithms. The potential applications are therefore beyond the scope of the
concrete problems considered here.

Postscript The ideas and techniques presented in this paper, together with other ideas,
have recently lead to extremely fast new simulations and leaders election algorithms that
take O(lg*n) time with high probability [GMV91].

111

1 Introduction

The simplicity and elegance of the Parallel Random Access Machine (PRAM) model for
parallel computation have attracted many researchers to use it as a model for the design
of parallel algorithms. (Overviews of PRAM theory: motivation, justification, complexity
issues, realizations, and algorithms can be found in (43, 11, 28, 30, 44, 27].) The PRAM
model is actually a collection of models differing by the rules they impose on concurrent
access to memory. In this paper we concentrate on the study of the Concurrent Read
Concurrent Write (CRCW) family of sub-models of PRAM. In this family concurrent read
and concurrent write accesses by more than one processors to the same memory cell are
permitted. Members of the family differ in the way they handle and resolve conflicts arising
from simultaneous attempts to write to the same cell.

Cook, Dwork and Reischuk [10] showed that the Concurrent-Write convention is essential
even for computing the basic OR function in o(lgn) time. Beame and Hastad [2] showed
that even this convention (which enables computing the OR function in constant time)
does not enable to compute any symmetric function in o(lgn/lglgn) time, using even a
polynomial number of processors. Any non-trivial computation that can be done faster
would be therefore interesting. In particular are interesting algorithms whose output is
an array of size n and that must involve global coordination between the input elements.
Our simulation algorithms belong to this class. Some examples for problems that can be
solved in doubly-logarithmic time or faster are the maximum finding [41, 39], merging (29],
chaining (20, 4, 36], and string matching [3]. Very few doubly logarithmic time or faster
randomized algorithms are known. They include "padded" sorting with random input (32],
hashing [17], and load balancing [15].

Algorithm designers clearly prefer to work with stronger models of computation. It
enables one to avoid tedious implementation efforts that are due to the constraints being
posed by the weaker models. On the other hand, it is favorable to have algorithms that
work on weaker models of computation. A traditional way to bridge the gap would be to
have algorithms that simulate strong models on relatively weak models. Such simulations
enable automatic translations between algorithms. An algorithm designed for a strong (and
hence more convenient) model, can be translated into an equivalent algorithm that works
on a weaker model. Clearly, we would like the simulation algorithms to be efficient in all
complexity measures.

All previous simulation algorithms of strong CRCW models on weak CRCW models are
either relatively slow (time is nearly logarithmic) or are highly inefficient. Fast simulations
either have a logarithmic increase in the number of processors (and of work) or a polynomial
blowup in their memory size. We present a new fast and efficient randomized algorithm that
simulates an n-processor MAXIMUM-CRCW-PRAM on TOLERANT-CROW-PRAM. Using
an optimal number of processors the TOLERANT simulates the MAXIMUM in O(lglgnlg*n)
time (with high probability). Using n processors, the simulation time is O(lglgn). For the
stronger COLLISION model, there exists an O(lglgn) time simulation using an optimal number
of processors, with high probability. The simulation algorithms use O(n) space. As a result,
the possibly large memory into which the concurrent-read or concurrent-write operations of

1

the simulated machine are assumed can be addressed by the EREW convention!

The MAXIMUM and TOLERANT models differ in the outcome of the event of several
processors concurrently attempt a write operation (of possibly different values) into the same
memory cell. In the TOLERANT model the cell contents does not change; in the MAXIMUM

model, the maximum value is being written. The MAXIMUM is a powerful CRCW sub
mode!, while the TOLERANT is a weak one. Several other CRCW sub-models were used and
studied in the literature; they are described in the following section. The simulation results
apply to most of them as well.

Leaders election A simulation algorithm can be viewed as a leaders election algorithm:
from each set of processors writing into the same cell the one with the maximum value is
elected leader. An easier leaders election problem, in which an arbitrary processor is selected
to be leader, is closely related to two other fundamental problems: element distinctness and
hashing.

Given n keys drawn from some finite universe the element distinctness problem is to
decide whether they are all distinct. A leaders election algorithm can be easily used to solve
the element distinctness problem.

Let S be a set of n keys drawn from some finite universe U. Then the hashing problem
is to build a data structure for S (a "hash table") that uses 0(n) space, and supports lookup
queries in 0(1) operations [14]. A lookup query is: "is x E S?" for any key x E U. Our
leaders election algorithm enables to remove duplicate keys. The existence of duplicates was
one of the obstacles for achieving high probability ("reliable") hashing algorithm in [17].
Their hashing algoTithm runs in O(lglgn) expected time on COLLISION+. The presented
simulation algorithm may be used to improve this algorithm [18]. The improved hashing
algorithm is reliable and runs on TOLERANT.

2 Preliminaries

2.1 The CRCW Models

The following lists the most popular conflict resolution rules and the corresponding names
of the sub-models in the CRCW family:

COMMON (31] All processors that simultaneously write lnto the same cell, must be writing
the same common value. This results in the value written into the cell.

ROBUST [26] If two or more processors attempt to write into the same cell in a given step,
then no assumption is being made about the contents of this cell after this attempt,
as long as it is well defined.

TOLERANT (23] If two or more processors attempt to write to the same cell in a given step,
then the contents of that cell does not change. This model is called CANCELLATION

in [24].

2

COLLISION [12] If two or more processors attempt to write to the same cell in a given step,
then a special collision symbol U is written to that cell.

COLLISION+ [9] If the processors attempting to write to the same cell in a given step all
attempt to write the same value, then that value is written in that cell; if at least two
values differ, a special collision symbol U is written to that cell.

ARBITRARY [40] If two or more processors attempt to write to the same cell in a given
step, then one of them succeeds, but there is no rule assumed on the selection of the
successful processor.

PRIORITY [21] If two or more processors attempt to write to the same cell in a given step,
then the highest-numbered processor among them succeeds.

RANDOM [33] If two or more processors attempt to write to the same cell in a given step,
then the successful processor is selected at random with equal probabilities among
them.

MAXIMUM [1] If two or more processors attempt to write to the same cell in a given step,
then the processor trying to write the highest value among them succeeds.

FETCH&ADD [42] If two or more processors attempt to write to the same cell in a given
step, then their values are added to the value already written in the shared memory
location and all prefix sums obtained in the (virtual) serial process are recorded.

The TOLERANT model is similar to the Concurrent Read Exclusive Write (CREW)
model, except for the fact that it does not crash when concurrent-write is attempted. In
stead, the contents of cells involved in a write conflict remain unaltered. The COLLISION

model assumes a specific effect on cells that are subject to a concurrent-write attempt. This
model is a straightforward generalization of the Etherenet bus communication protocol [45],
in which if more than one bus client concurrently tries to master the bus, the bus contents
are corrupted, but the collision is detected. The ROBUST makes no particular assumption
about the contents of the cells subject to a concurrent-write attempt and is therefore weaker
than both COLLISION and TOLERANT.

The COMMON model is incomparable to COLLISION and to TOLERANT [23]. On one
hand, it enables a set of processors to change the content of a cell, while in both TOLERANT

and COLLISION only one processor can do that. On the other hand, it does not permit an
attempt of concurrent write of different values. The COLLISION+ model is a combination of
COMMON and COLLISION.

The ARBITRARY is a stronger model in the sense that even in a concurrent-write attempt
of different values one processor succeeds. The RANDOM model is even stronger since it
incorporates an assumption about the successful processor. The powerful PRIORITY model
has gained popularity despite the assumption of a maximum computation in each conflict
resolution. The MAXIMUM model seems to be so much stronger that it has not been generally
accepted as a standard model of a CRCW. Indeed, the choices of successful processors in
this model are value-dependent and, unlike the other models, involve a computation that is
at least as hard as computing the maximum of n arbitrarily large numbers.

3

2.2 Simulations

Let M be a generic model (e.g., COMMON, TOLERANT). Then M(n, m) denotes a machine
of this model with n processors which is restricted to use no more than m memory cells;
M(n) denotes a machine of this model that uses n processors (no statement about memory).
The comparison of the relative strengths of the sub-models is carried out by studying the
time required for a simulation of one step of a machine M 1 on another machine M 2•

A machine M 2 simulates M 1 with slowdown T, if at most T steps of M 2 are needed
to simulate one step of M1, A simulation of M1(n,m) by M 2(n',m') is processor-efficient
if the number of processors in the simulating machine is at most the number of processors
in the simulated machine, i.e., n' ~ n. The simulation is space-efficient if the space used
by M 2 is larger than the space used by M 1 by at most an additive factor of O(n), i.e.,
m' = m + O(n). Note that it might be the case that m ~ n and we therefore do not
allow even a constant blowup in the memory size. The simulation is efficient if it is both
processor-efficient and space-efficient, and it is also optimal if a slowdown Tis compensated
by an appropriate decrease in the number of processors in the simulating machine; that is, if
n' = O(n/T). Finally, we say that a simulation is fast if the slowdown is at most polynomial
in lglgn.

We are interested here only in fast simulations that are efficient and, preferably, optimal.
If there exists a simulation of M 1 by M 2 with a constant slowdown that is efficient (and hence
optimal) then we say that "M 2 is as powerful as Mi'' and we denote this by M 1 ::s M 2 •

A similar terminology was used in [8, 9, 26] but they only required the simulations to be
processor-efficient.

The following partial ordering can be trivially derived:

{

COMMON } {
ROBUST :S TOLERANT :S COLLISION+ :S ARBITRARY -<

COLLISION

PRIORITY :S MAXIMUM j FETCH&ADD .

RANDOM

PRIORITY

Grolmusz and Ragde [23] showed that COMMON and COLLISION are incomparable in the
sense of ":s" and that COMMON and TOLERANT are incomparable in the same sense. We
will show in Section 8 that when restricted to linear size memory, COLLISION and TOLERANT

are equivalent, i.e., each of them is as powerful as the other. We will also show in Section 3.2
that if the definition of :s is extended to include random simulations as well then

RANDOM :S MAXIMUM

2.3 On Teams and Anonymous Sets

If each processor of M1 is emulated by a processor of M 2 , then the main difficulty of
simulating MAXIMUM is in emulating the max conflict resolution rule. However, this problem

4

does not reduce to a plain maximum evaluation because a processor attempting a write
operation to a certain cell, does not in general know which other processors simultaneously
attempt the same operation, consequently, a major obstacle is in identifying the participants
in the maximum computation.

Let us use the following definitions for characterizing the two extreme cases of the knowl
edge state of members of processors sets:

Definition 1 A set of processors <I> is anonymous if every processor knows whether it belongs
to <I> or not, but no other information (such as cardinality} ordinal place etc.) is available to
the set members.

Definition 2 A team is a set of processors with consecutive indices, such that the starting
and the ending indices are known to all the set members.

A team is allocated to an anonymous set <I> if all members of <I>, as well as the first processor
in the team (the team leader), agree on this allocation.

The regular structure of the team makes it possible to use it as a sub-PRAM, and thus
facilitating ordinary parallel computations on it. We assume that each team has a private
memory of linear size in the cardinality of the team. This assumption does not add more
than 0(n) memory to the whole machine.

2.4 Probabilistic Analysis

Our algorithms work with high probability. Hence, each step must succeed with high prob
ability, for some proper definition of success. It will be convenient to use the following ter
minology.

Definition 3 An event _A = A(n) is n-negligible (or for short negligible} if Prob (A) =
o(n-') for some f > 0. We then say that A occitrs with n-negligible probability. The compli
ment event A is n-dominant (or for short dominant); we say that it occurs with n-dominant
probability.

Using this notation we write Chebyshev inequality in the following convenient form:

Fact 1 Let X be a positive valued random variable satisfying

Var (X) $ (E (X))2-s

for some constant 8 > 0. Then for any fixed f >, the event

(1 - E)E (X) ~ X ~ (1 + E)E (X)

is E (X)-dominant.

5

Definition 4 A probabilistic algorithm for a given problem of size n is solid if it solves the
problem within the stated complexity bounds with n-dominant probability.

Note that usually the success probability of a solid algorithm can be amplified by means of
repetitions to 1 - n-k for any constant k.

3 Simulation Results

3.1 Previous Work

Lower bounds Lower bounds for simulation algorithms were considered in [6, 37, 12, 13,
23]. Fie~ Ragde and Wigderson [13] proved that if simulating processors are forbidden to
communicate with those attempting to write into different cells then the slowdown of the
simulation of PRIORITY(n,n) on COMMON(n,n) is 0(lgn/lglgn). This bound holds even if
processors are allowed random decisions. Lower bound results concerning simulations of a
single-cell machine by a multi-cell one were given by Fich et. al [12]: the simulation time of

{i} PRIORITY(n, 1) on ARBITRA.RY(n, m),
{ii) ARBITRARY(n, 1) on COLLISION(n, m),
{iii) ARBITRARY(n, 1) on COMMON(n, m),
{iv) COLLISION(n, 1) on COMMON(n, m), and
(v) COMMON(n, 1) on CoLLISION(n, m)

is 0(lgn/lg(m + 1)). Fich, Meyer auf der Heide and Wigderson proved that the Element
Distinctness problem requires O(lglglgn) time on a deterministic CoMMON(n, oo) for large
enough inputs. This bound was improved to n(y'Tgn) in [37], and to O(lgn/lglgn) by
Boppana [6). The same problem can be solved in constant time by TOLERANT(n,oo),
thus implying lower bounds for deterministic simulations. Grolmusz and Ragde [23] showed
that COMMON(n, oo) and CoLLISION(n, oo) are incomparable and that COMMON(n, oo) and
TOLERANT(n, oo) are incomparable.

Upper bounds Numerous simulation algorithms among CRCW sub-models appear in
the literature. Table 1 gives a summary of processor-efficient simulations of PRIORITY or
stronger sub-models. Note that all previous fast simulations are not space-efficient: the
space has a blowup by a multiplicative factor of O(n) (!). (Recall that we do not allow even
a multiplicative constant factor.)

There is no fast processor-efficient simulation of MAXIMUM and the only optimal simu
lation is slow. Following [34, 17), parallel hashing may be used to modify the fast simula
tions into space-efficient (but not optimal) simulations with an increase in time. However,
the hashing algorithms work only on COLLISION+ and therefore do not help in simulations
on COLLISION or on TOLERANT. In fact, one application of our new simulation results is
the ability to implement the hashing algorithms on TOLERANT.

6

Simulated Simulating
Slowdown

Number of Additional
Reference

Machine Machine Processors Space

o(£) ~ FETCH&Aoo(n, m) COLLISION+ gn 0(n) [34]
(solid) (optimal)

FETCH&Aoo(n, m) ARBITRARY 0(&'1 g gn n~ gn 0(nl+t) [34]

PRIORITY(n, m) COMMON 0(£1 g gnl
n 0(nm) [13)

PRIORITY(n, m) TOLERANT O(\/'lgn) n 0(nm) (9]
PRIORITY(n, m) COLLISION+ 0 (lglgnlg<3)n) n 0(nm) [9]
PRIORITY(n, m) ARBITRARY O(lglgn) n 0(nm) [8]

PRIORITY(n, m) COLLISION+
O(lglgn)

n 0(nm) [9] (solid)

PRIORITY(n, m) ROBUST
O(lglgn)

n 0(nm) [26)
(solid)

MAXIMUM(n, m) TOLERANT
O(lglgn)

n 0(n) new
(solid)

O(lglgn) n

MAXIMUM(n,m) COLLISION lglgn 0(n) new
(solid) (optimal)

O(lglgnlg*n) !\

MAXIMUM(n, m) TOLERANT lfclgnlg•n 0(n) new
(solid) optimal)

Table 1: Efficient simulation algorithms of PRIORITY or stronger sub-models

The best previously known simulation results for MAXIMUM(n, m) are those derived
from [34]: an O(lgn/lglgn) expected slowdown simulation on COLLISION+(lgn/lgn, m+O(n))

and an O(lgn/lglgn) slowdown simulation on ARBITRARY(n(l'l:~:)
2

, m + nl+i) for any€> 0

(both for the stronger FETCH&ADD).

Comment: The first simulation in the table was originally stated with O(lgn) expected slowdown
on AR.BITRA R.Y. The result statedin the table is obtained by using the improved hashing algorithm
of [17) and the integer sorting algorithm in [35]. The model of computation can be further weakened
by using the results of the present paper. The second simulation in the table was originally stated
with O(lgn) (deterministic) slowdown on PRIORITY. The result stated in the table is obtained
by using the integer sorting algorithm of [5) . The simulation of PRTORJTY on ROBUST requires
O(lgn) time to detect failure; this is acceptable for slow algorlthms but is a major drawback for
fast algorithms.

Many simulation algorithms do not increase the number of processors. However, some
times auxiliary processors are used as well. For example, Kucera showed that if n' = n2 then
simulation of PRIORITY on COMMON can be done in constant time (31]. Such an increase
in the number of processors is usually unacceptable.

7

3.2 Results

Our main theorems expand the investigation of the relative power of the different variants
of the CRCW-PRAM:

Theorem 2 One step of MAXIMUM(n, m) can be simulated by an O(lglgn) time solid algo
rithm running on TOLERANT(n, m + O(n)).

Theorem 3 One step of MAXIMUM(n, m) can be simulated by an O(lglgn) time solid algo
rithm running on COLLISION(n/lglgn, m + O(n)) (optimal speedup).

Theorem 4 One step of MAXIMUM(n 1 m) can be simulated by an O(lglgnlg*n) time solid
algorithm running on ToLERANT(n/1glgnlg"'n, m + O(n)) (optimal speedup).

These results improve on all previously known simulation results in one or more of the
following aspects:

Time The O(lglgn) time (with high probability) is considerably better than the
O(lgn/lglgn) (expected) time of the best previously known simulation of MAXIMUM.

Strength of Simulated Machine The simulated machine is MAXIMUM which is stronger
than PRIORITY in at least two aspects:

(a) The range of values among which the maximum is selected is unbounded.
(b) Written values need not be distinct.

Strength of Simulating Machine Our simulations are done by the TOLERANT model.
The previous efficient simulation of MAXIMUM works on COLLISION+ that is strictly
stronger than TOLERANT [23].

Memory Blowup All previous fast simulations of PRIORITY use very large space. The
memory size of the simulating machine is O(nm), where mis the memory size of the
simulated machine. (Note that m might be much larger than n.) Our simulations
require only an additional space of size O(n). Furthermore, regardless the memory
size in the simulated machine, only an 0(n) segment of the memory in the simulating
machine is accessed under the CRCW convention. The rest of the memory is accessed
under the EREW convention.

Optimality Many simulation algorithms did not preserve optimality, i.e., their time
processor product was not 0(n). Optimal speedup simulations were first introduced
in [34] who argued that preserving optimal-speedup is a desirable property also for a
simulation algorithm. Our algorithm achieves optimal-speedup by using an additional
pre-processing simulation algorithm stage. This stage is different in nature than the
main algorithm, and we feel that it is also interesting in its own right.

8

The algorithms behind the theorems above are actually described for the COLLISION
model. We use the fact that the simulation algorithms use only linear memory together with
the following theorem to carry the simulations on the TOLERANT model as well.

Theorem 5 lfm = 0(n) then COLLISION(O(n),m) :::S ToLERANT(n,m).

The above simulations are valid also for the RANDOM model as can be seen from the
following simple lemma:

Lemma 6
There exists a solid simulation algorithm of RANDOM(n, m) on MAXIMUM(n, m + O(n))
with 0(1) slowdown.

Proof The simulation is carried out as follows. Before writing into a cell, each processor
chooses at random a number from a range of size O(n3

), and tries to write this value into
the cell. Only processors that succeeded in this writing will continue and write their actual
value. It is easy to verify that, with dominant probability, no value will be chosen by more
than one processor, and that the MAXIMUM write-conflict resolution rule ensures that the
processors selected are indeed chosen at random. ■

Comment: A related idea can lead to a solid algorithm simulating RANDOM on PRIORITY in
O(lg*n) time using an optimal number of processors. This is carried out by first computing a
random permutation using an algorithm from (35], and then processors shuffle their values according
to the permutation. A simple write step follows.

Boppana [6] gave an O(lgn/lglgn) time lower bound for any deterministic algorithm for
the element distinctness problem which runs on an n-processor PRIORITY with bounded
memory. "Bounded memory" means that the memory size is an arbitrary function of n but
not of the input values range. A consequence of our simulation result is that randomization
techniques allow to solve the element distinctness problem faster and on a much weaker
model using only linear memory:

Corollary 7 There exists a solid algorithm for the leaders election problem, running
in 0(lglgn) time on TOLERANT(n, 0(n)). This algorithm enables solving the element dis
tinctness problem and also the prnblem of removing all duplications from a given multi-set
of size n.

Postscript Recently, [19] presented a new simulation algorithm in the lg*n
time level. Specifically, they gave an algorithm that simulates MAXIMUM(n, m)
on TOLERANT(n/lg*n, m + O(nlgn)) in O(lg*n) time (optimal speedup), and on
ToLERANT(n/(lg*n)2, m+O(n)) in O((lg*n)2) time (optimal speedup) , both with high prob
ability. Their simulation algorithms use some techniques pioneered by this paper.

9

4 Statement of the Problem

In this section we identify the basic complication arising when simulating MAXIMUM, and
outline the rest of the paper.

The Find..Max Problem Consider the following problem: Let q> be an anonymous set
of processors, each processor P E q> has a value val (P), and all values are distinct. The
Find..Max(q>) problem is to single out a processor P"' E q> such that

VP E q>, val (P"') 2:: val (P) .

If q> is empty then the solution is vacuous. Denote by Find_Maxn,m the problem of simulta
neously solving m instances of Find..Max for the sets (some possibly empty) q>1 , q> 2 , ••• , q>m,
such that

Simulating the write step of MAX1MUM(n, m) can be viewed as FincLMax.i,m: q>i is the set
of all processors that wish to write to cell M,; vaJ(P;) = (YJ,j), where V; is the value P;
should write in this step. Lexicographic orderjng is to be used in comparisons of val (P ;).

Our main task is to design an algorithm for Find_Maxn,m• One of the difficulties is to
identify the non-empty instances, or equivalently reducing m to 0(n). Another is that it
cannot generally be assumed that there are processors available for solving Find..Max(q>)
other than those in q>.

In Section 5 we show that if an estimate is known on jq>j then Find_Max(q>) can be solved
using a team of external processors whose size depends on the estimate. The algorithm
presented runs jn 0(1) time with very high probability. T.his partial solution is used as
a subroutine in Section 6 to give a solid algorithm for Find_Maxn,n running in O(lglgn)
time. In Section 7 pseudo-random hash functions are used to extend this algorithm to so1ve
Find..Maxn,m within the same time frame. The above mentioned algorithms run on the
COLLISION model. Section 8 shows that the algorithms run on the TOLERANT model as
well by showing a linear memory equivalence of COLLISION on TOLERANT. We explain how
to achieve optimal speedup in Section 9.

5 The Basic Algorithm

The following is a generalization of the 0(1) time randomized algorithm for computing the
maximum on a team of Reischuk (38].

Theorem 8 Let d1 , d2 , (3 be any positi·ve integers. Let q> be an anonymous set, lq>I ~ 13d1 •

Then there exists a probabilistic algorithm, RandMax, which using a team of (3 processors on

COLLISION, solves Find_Max(q>) in 0(1) time with probability 2:: 1 - 13-d2 .

10

Comment: Note that the AND and OR functions can be computed on COLLISION in 0(1) time,
by a deliberate writing of the special collision symbol U- One i-eservation applies: the cell used for
the AND/OR computation must be properly initialized. If the processors having the inputs are
an anonymous set, then thls initialization is not simple. This will not be an obstacle for us since
AND/OR will be computed by teams only.

Proof outline In each iteration of RandMax, random allocation is used to map a sample
of size (30(1

) from the anonymous set <P to the team. The maximum value of the sample is
computed and <P is then adjusted to contain only processors with value not less than this
maximum. The rest of this section is devoted to the details of the proof.

5.1 Building Blocks

Lemma 9 Let d2 be fixed. Let <P be allocated with a team of (36 processors, for (3 2:: !<Pl.
Then Find..Max(<P) can be solved in 0(1) time with probability > 1 - 13-d2 .

Proof An array A[l, ,83] is used by the team. Each P E <P picks at random i E [1, /33],

and tries to write val (P) into A[i]. The team computes max {A[i] : 1 ::; i ::; /33
}. This is

implemented in constant time by doing all 0(/36
) possible comparisons and finding the value

that won all comparisons. Note that computation involves AND/OR functions.

The algorithm fails only if there was a collision in the random write step. The probability
of a collision in a single cell is at most (~) (3-6 and the probability of a collision in any cell

is hence no more than ,83
(~) /3-6 < j.

The COLLISION model allows for failure detection. By repeating the algorithm d2 times,
the failure probability becomes < 13-d2 • ■

The above algorithm may be useful even if it fails. Only processors with values exceeding
the maximum of the written values should continue, thus decreasing the size of <P. This
suggests a way for solving the Find..Max for larger sets:

{a) Select a random sample W from <P.
{b) Solve Find..Max(w).
{c) Let <P' be the set of processors from <P with values not smaller than max W.
(d) Continue the process with <P'.

It seems natural to expect that the decrease in l<PI will be by a factor equal to the sample
size. However, there is still a constant probability that this will not occur. The following
lemma gives a less ambitious estimate for the decrease. This estimate is accurate with
sufficiently high probability.

Lemma 10 Let W be a random sample of size /3 drawn from a set <P, and <P' be defined as
in the above. Then

Prob (l<P'I > l<PI/#) < 1/(3 •

11

Proof Rank processors in 4> according to their value, with the processor with highest value
ranked 1. The event 14>'1 > 14>1/.J/1 occurs exactly when the sample includes none of the
processors ranking 1,2, ... , 14>1/Ji,. The probability for this is smaller than in the case of

sampling with replacements for which this probability is exactly (1 - 1 / .Jl9"f3
< 1 //3 for

(3 ~ 2. (Note that the proof assumes that the values of 4> are distinct.) ■

5.2 Algorithm RandMax

Suppose that 14>1 :5 13d1 , where /3 ~ 2 and d1 are known. Then the following recursive
probabilistic algorithm implements the sampling idea to solve FincLMax(4>) in 0(1) time.
The failure probability will be at most 13-d2 • For simplicity, the algorithm is presented using
a team of size 13°<1>. It is easy to see that the implementation using a team of size (3 is
merely a matter of change in notations.

Algorithm RandMax(<I?,d1 ,d2);
INPUT: An instance 4> of Find.-Max.

OUTPUT: A set 4>' ~ 4> such that Find.-Max(4>') = Find_Max(4>).

Begin
if d1 :5 1 then

fi·
'

Apply the algorithm of Lemma 9 to solve Find_Max(4>) with failure prob
ability {3-d2 , and return the result.

loop rd22+1 l + 1 times
4>+-RandMax(4>, d1 - 1, d2 + 1);
if 14>1 = 1 then

return 4>;
fi·
' '11+-0;

Select a random sample W of 4> where each element is chosen with probability
C / 13d1 -3 , where C is a constant to be chosen late;.
Find the maximum value of the processors in W.
V +-max { val (P') : P' E \JI};
4>+-{P E 4> : val (P) ~ V} ;
end loop;
return 4>;

End RandMax;

Theorem 8 follows from

Lemma 11 If the input to Rand Max satisfies l<I?I :5 13d1 then

12

Proof The Lemma clearly holds for d1 $ 1. Induction on d1 is used to show that it is
correct for the entire range of l<I>I, It may be assumed that in the first rd22+

17 iterations

l<I>I > /3d1- 1 holds before the sample is taken. Otherwise, by the inductive hypothesis, the
recursive call in the next iteration will solve Find_Max(cl>) with sufficiently high probability.
Thus we can write

(1)

and since each element in cl> is selected to be in W with probability C / 13di-3

C /32 < E (1'111) $ C /33
• (2)

We say that an iteration is successful if it reduces l<I>I by a factor of /3. The possible iteration
failures are:

1. Find_Max(w) was not of sufficiently high rank to decrease cl> sufficiently: It follows
from Lemma 10 that if 1'111 2:: 4/32 this kind of failure occurs with probability at most
1/4/32

•

2. The sample size was too small for the conditions of Lemma 10: by using Chernoff
bounds [7] and (2) the constant C can be selected so that

3. Computing max { val (P') : Processor' E w} in constant time failed: By Lemma 9 if
IWI = 8/33 then using a team of size /30(1

) the failure probability can be made< 1/4/32
•

4. The sample size was too large for the algorithm of Lemma 9 to work: by using Chernoff
bounds the constant C can be selected so that

It follows that the total failure probability for an iteration is at most 1/ /32
• With probability

at least 1 - 1/ 13d2+1 ' one of the first rd22+1 l iterations will be successful, in which case the
inductive hypothesis guarantees that the following recursive call will fully solve Find_Max(cl>)
with probability at least 1 - 1/ 13d2+1. The total success probability is therefore no less than

which completes the inductive step.

Note that whenever Lemma 9 is applied, the algorithm may safely assume that the set
size is < 8/33 , and hence a team of size /30(I) will suffice. ■

13

5.3 Computing the Maximum Without a Team

Perhaps surprisingly, the memory array of a team is more significant than the processors of
the team for the purpose of Algorith~ RandMax.

Lemma 12 Let~ be an anonymous set. Let E > 0 be fixed. Then there exists a probabilistic
algorithm which, using an auxiliary array of size (3 ~ ~f, solves Find_Max(~) in 0(1) time
with (3-dominant probability.

Proof The algorithm is carried out by emulating Algorithm Rand Max using a virtual team
of size (3, which is created by the processors in ~, as follows. Assume, without loss of
generality, that E < l /2. Each processor selects a random i E [1, (3], and will function as the
ith processor in the team. This step is successful if each i E [1, (3] was selected by at least
one processor P E ~- This occurs with ,B-dominant probability. Clearly, a success in this
step creates an actual team on ARBITRARY.

We observe that the only write operations done by team's processors are for computing
OR or AND functions. This can be done by a virtual team on COLLISION, provided that
the given array is initialized to values other than the collision values.

Comment: (i) It is easy to verify whether or not the creation of a (virtual) team is successful. (ii)
The algorithm can be used even if Eis unknown: if it fails for /3, we repeat it with an array of size
.J/J, etc.

•

6 Simulating a Linear Memory Machine

In this section we show how Algorithm RandMax can be employed using random allocation
methods for solving many instances of Find_Ma,x.

Theorem 13 There exists a solid algorithm, MultiMax, running on COLLISION(O(n), 0(n))
which solves Find_Ma:xn,n in 0(lglgn) time.

In particular MultiMax can be used to produce a simulation of MAXIMUM(n,n) on
COLLISION(O(n), 0(n)).

Allocation of teams to instances of the problem is carried out using the following simple
observation: as the number of not yet solved instances of the problem decreases, the amount
of resources available for each remaining instance increases, and hence considerably more
instances can be solved. In our case, the main resource for solving the instances is the
processors array of size 0(n) which can be thought of as a team pool. We run MultiMax in
iterations: in iteration t, the processors array is partitioned into Wt teams of size .Bt• The
iteration itself consists of the following steps:

14

Stepl: (recruit) Each "active" instance of Find_Max selects a team at random. Using the
collision detection property an instance can detect if it has selected a private team and,
if this is the case, the team is recruited for solving that instance. Instances that failed
in this step carry on to the next iteration.

Step2: (solve) Recruited teams are employed in algorithm RandMax with the following
parameters:

• Team of size f3t.

• A guess that I 4> I < (3/1 .

• Failure probability of 13;d2 •

All sets for which the RandMaxfailed continue to the next iteration.

The dependency of Wt (and consequently that of f3t) on t as well as the exact values of d1
and d2 are set in the analysis.

Analysis We carry out the analysis of MultiMax by showing that the number of "living
instances" of the problem decreases at a doubly logarithmic rate. Specifically, let N(t)
denote the number of the non-empty anonymous sets for which Find_Max has not yet been
solved at the beginning of iteration t (t = 0, 1, ...) of algorithm MultiMax, and let N(t) be a
predetermined function of t:

N(t) = 22-2-1.st n .

Using induction on t we show that for a proper setting of Wt, f3t, d1 and d2 , the event

N(t)::; N(t) (3)

for all t 2:: 1 is n-dominant.

Observe that if N(t) is known to be less than ffe then MultiMax can finish in 0(1) time:
divide the processors' array into n314 teams of size ffe each. In the recruit step, with n
dominant probability, each instance is allocated with a team; RandMax is then invoked with
{i} 14>1 ::; n {ii} failure probability n-2 • It is easy to verify that with n-dominant probability
all instances of RandMax will succeed in solving Find_Max. We carry out the analysis under
the assumption that N(t) 2:: ffe.

For the inductive base, t = 0, we have N(t) = n 2:: N(t). To prove the inductive step,
consider the reasons for an instance of Find_Max to remain active at the end of this iteration
t:

1. The instance may have failed to recruit a team in Stepl: The number of such failures
can be shown to be < 2N(t)2 /wt with wrdominant probability [16]. In our setting of
the parameters, N(t) is always ::; Wt and hence this probability is n-dominant as well.

15

2. A set may be too large for the activation of RandMax in Step2, i.e., the guess was
wrong: A simple counting argument shows that there are no more than n/f3td1 wrong
guesses.

3. The activation of RandMax in Step2 may fail even if its input is not too large: Recall

that the failure probability is 13;d2 , and that all invocations of Rand Max are indepen

dent. It follows from Chernoff bounds that the number of these failures is~ 2N(t){3;d2

with N(t)-dominant probability, and hence with n-dominant probability as well.

By the inductive hypothesis, N(t) ~ N(t). Therefore, with dominant probability,

and since N(t) ~ n,

(4)

We set d1 = d2 = 4, f3t = 21.5'-t/5, and Wt = 24-t/1·5n/ f3t- Note that the number of teams
decreases at a doubly exponential rate, which however is slower than the decrease of N(t),
and that the team size increases at an almost doubly exponential rate. Also note that Wtf3t,

the total number of processors used in the teams, decreases in an exponential rate; hence,
each processor participates in a team 0(1) times during the algorithm.

By examining the first term in the bound of Inequality (4) we get

2N2(t) = 2. 2-3-1.st-t/1.sn
Wt

and as can be easily verified

Hence,

which completes the inductive step in proving Inequality (3) and Theorem 13.

16

7 The General Simulation

Conducting Algorithm MultiMax for the general case m ~ n is possible provided only that
each non-empty <I>;, i :5 m, acts as one in the recruiting step. A possible solution for
Find..Maxm,n can thus be done by appointing a leader (i.e., a team of size 1) to each non
empty anonymous set <I>i, As shown in [17], an O(lglgn) hashing algorithm can be used for
(external) leader selection: using memory addresses as keys, the range m can be reduced to
O(n). However, when keys are not distinct (as it is the case in our problem), this hashing
algorithm uses the (relatively strong) COLLISION+ model.

We observe that unanimous random operation is somewhat easier than arbitration and it
can be achieved without a leader by using pseudo-random functions. Specifically, in iteration
t we build a global hash function ht: [O, m - 1] 1-+ [O, Wt - 1] for coordinating the recruit
step (Stepl) of processors that belong to the same instance of Find_Max; all the processors
in the set <I>i will select the team numbered ht(i).

It was shown in [18] that it is possible to construct in constant time a function for which
the number of collisions is at most 4N(t)2 /wt with n-dominant probability. In order for the
analysis of MultiMax to remain valid, we use twice as many teams of the same size in each
iteration (i.e., w; = 2wt and /3i = f3t), This increase in the assumed number of processors
can be translated to doubling the running time.

Algorithm MultiMax has to be further modified because collision will be sensed by all sets
with more than one element as well. We therefore apply Step2 in all cases and add another
step which implements late detection of recruiting failure:

Step3 The processor selected by Step2, writes the name of the set it belongs to into a des
ignated place in the team private memory region. Sets that detect that this processor
was not among their members, continue to the next iteration.

7 .1 Eliminating concurrent memory access

A simulation of a write step of MAXIMUMn,m is based on first running RandMax for each
anonymous set, and then having the selected leader write its value. It is clear that there is
never a concurrent write into any of the m memory cells of the simulated machine. (The
only concurrent write operations take place in the 0(n) memory used by the simulation
algorithm.) We now seek a method for eliminating concurrent reads from these cells . ..

Note that whenever a processor decides during the execution of algorithm MultiMax that
it does not have the maximum value, it does so after reading a cell with a greater value
belonging to a processor from the same anonymous set. The algorithm never reuses this cell,
and hence it can be used later for data broadcast from a processor with a high value to all
processors subsumed by it. It follows that MultiMax generates a channel of broadcast from
every elected leader to all of its sets members. Transmitting data along this channel takes
O(lglgn) time.

Suppose that the read step is also simulated using MultiMax, a processor Pi using i

17

as processor value. Then the only processor which needs to access a cell of the simulated
machine is the selected leader of the anonymous set of readers from this cell. This set leader
can now broadcast the cell value to all set members.

8 Implementing the Simulations on TOLERANT

The simulation algorithm as presented assumed the COLLISION model. Grolmusz and Ragde
in [23] showed that in general, COLLISION is strictly stronger than TOLERANT. However, the
fact that only linear memory was used, enables an implementation on TOLERANT with no
time increase. In this section we show that any algorithm running on COLLISION which uses
linear memory can be run with no time increase on TOLERANT. All algortihms presented
in this section are determinstic. Similar algorithms were obtained independently in [24].

8.1 Simulating COLLISION on TOLERANT

Grolmusz and Ragde in [23] described an algorithm illustrating the strength of the
TOLERANT model in computing the OR function in 0(1) time. Extending their algorithm
we show

Lemma 14 COLLISION(n, n) ~ TOLERANT(2n, n).

Proof The first n processors of the simulating machine, are used for a step by step simula
tion. The other n processors are allocated one for each memory cell. Let M be a fixed cell,
PM the processor allocated to it, and <I> the set of processors in the simulated machine try
ing to write into that cell. The write step of COLLISION is simulated by the following steps:

1. PM saves the previous value of M, and then clears it.

2. Each processor in <I> writes its value into M. Simultaneously, PM writes some value
into M.

3. If M is non-blank then <I> = 0 and PM restores the old value of M. This terminates
the simulation for that cell in this case.

4. All processors in <I> write their values into M.

5. If M remains blank then l<I>I > 1, and PM writes ~ into that cell, otherwise l<I>I = 1,
and M has the correct value.

■

Comment: The algorithm assumes that there is a reserved "blank" value which none of the
processors in ~ tries to write into M.

18

8.2 Simulating TOLERANT on TOLERANT

Simulating TOLERANT on TOLERANT with fewer processors is not immediate as it is for the
other models. The difficulty arises from the fact that simultaneous writing on TOLERANT
behaves differently than sequential writing, and this difference is used in the above algorithm,
so emulating two processors by one is not immediate. The following lemma shows how to
circumvent this obstacle.

Lemma 15 For any positive integer k, TOLERANT(kn, n/2) :j TOLERANT(n, n/2);

Proof The first n/2 processors of the simulating machine will each play the parts of 2k
processors in the simulated machine. The remaining n/2 processors are allocated to the n/2
memory cells, one for each cell. Let M, PM and q> be as in Lemma 14. Each write step is
simulated by the following stages:

1. PM saves the previous value of M, and then executes M +-- 0.

2. Emulators of members of q> together with PM cooperate to perform the assignment

M { lq>I If lq>I ::; 1
+-- 2 otherwise

3. If the value of M is 1 then the simulation for that cell terminates after the single
member of q> writes its value. The stage consists of 2k emulation rounds in which each
emulating processor acts for his 2k emulated processors.

4. PM restores the old value of M if its content immediately after Stage 2 was 0 or 2.

Stage 2 is carried out in 2k rounds. In each round the technique described in the above proof
enables PM to determine whether the n/2 processors emulated in the round contain 0, 1 or
at least 2 processors. By the end of the 2k rounds PM knows enough about q> to perform
the assignment. •

If memory is larger than n/2, this procedure can be activated for each n/2 memory segment
in turn, giving:

Corollary 16 /Jm = O(n) then TOLERANT(O(n),m) ~ TOLERANT(n,m).

Combining this with Lemma 14 completes the proof of Theorem 5.

Comment: Related results were independently described by Hagerup. The interested reader is
refered to [25] for further discussion and study of the self-simulation question.

19

9 Achieving Optimal Speedup

In order to get a simulation algorithm that uses an optimal number of processors, it is enough
to describe a pre-processing algorithm in which the number of "active" items decreases at
least geometrically. Given such algorithm the number of active items can be reduced to
p = n/lglgn in o(lglgn) time, using p processors,. by applying an "optimizer" [35]. After this
stage, the non-optimal algorithm can be employed.

In each iteration of the algorithm a constant fraction of the active elements become
inactive. An iteration consists of the following. For each of the m instances of Find_Max
we allocate a virtual array of size 2lgn. We assume first that the virtual arrays reside in a
space of size 2mlgn. Later on we show how they can be implemented using O(n) memory.
Into each array we do a geometric decomposition of the anonymous set associated with it:
each processor selects the ith array cell with probability 2-i; with probability 2-2lgn, no cell
is selected. A processor which selects a cell tries to write its name into that cell. If exactly
one of the processors succeeds in writing its name, it is called a pivot. Note that if a pivot
exists then it is selected at random. The following fact was proved in [22].

Fact 17 There exists a constant C > 0, such that for a set cl>, lcI>I :5 n, a pivot is selected
with probability at least C.

After the geometric decomposition, the pivot writes its name in a special predetermined
cell (for the set) called a throne, and all processors with values less than the pivot's value
deactivate themselves. If elements other than the pivot remain active in the set, they notify
that to the pivot. If the pivot is the only remaining element, it is the elected set leader, and
it deactivates itself.

Lemma 18 Suppose that a random pivot has been selected for a set with k active elements.
Let k' be the number of elements that remain active. Then

Proof Rank active processors by value, with the highest valued processor ranked 1. Then

■

Comment: The variance of k' is given by

20

= _! (k(k + 1)(2k + 1) _ l) _ (~ + _! _ !) 2

k 6 2 2 k

k2 11 1
= 12 + 12 - k2 •

Combining Fact 17 and Lemma 18 we get

Corollary 19 There exists a constant a < l such that if a set is of size k then the expected
number of set elements remaining active after the geometric decomposition is at most ak.

The analysis of the total number of active items is given assuming that sets are not too large.
Observe that our only concern is when K ~ n/lglgn, otherwise we are done.

Lemma 20 Let K be the total number of active elements at the beginning of an iteration,
and assume that K > n/ lglgn. Let K' be their number by the end of the iteration. Suppose
that all anonymous sets are of size at most n314

• Then, there exists a constant 1 < l, such
that K' ~ 1 K with n-dominant probability.

Proof Denote by ki (respectively kD the number of active elements in the set <I>i at the
beginning (respectively at the end) of the iteration. Then K' = Z::i=:1 ki, and since all the ki
are independent

m

Var (K') = L Var (kD
i=l

Also, Var (k:) ~ k;, and hence (by convexity arguments) the above sum is maximized if all
the non-zero kis equal n314 • Thus

Var (K') ~ nl/4(n3/4)2 = n7/4 .

We have E (K') ~ aK and K ~ n/loglgn. The lemma follows by using Chebyshev inequality .
•

Bounding the size of sets To obtain ki ~ n314 for all i = 1, ... , m, we apply the fol
lowing O(lglgn) time pre-processing step before the iterations. A sample (with replace
ments) of size n/lglgn is randomly taken from the input, by having each of the n/lglgn
simulating processors select one of the n simulated processors at random. We run the
non-optimal algorithm for this sample. For each anonymous set, consider the leader se
lected for its subset in the sample, if this subset is not empty. Deactivate all processors in
the set whose values are less than that of the subset leader. To implement this step, we
build a hash table for the leaders, using the hashing algorithm of [17], with the 0(n /lglgn)
leader IDs being the input set. Since this set consists of distinct keys, the hashing algo
rithm can be implemented on COLLISION(n/lglgn, O(n/lglgn)) and hence, by Theorem 5, on
TOLERANT(n/lglgn, O(n/lglgn)). Its time complexity is O(lglgn) with n-dominant proba
bility [18].

21

Lemma 21 Let ki be the number of active elements in <I>i after the pre-processing step. Then
with n-dominant probability, for all i = 1, ... , m, we have ki ~ n3l4 .

Proof For a set <I>i

(
3/4) n/lglgn

Prob (ki ~ n3/4) = 1 - n n < e-na/4 ;lglgn

The probability that there exists i for which ki ~ n3l4 is at most

-n314 /lglgn _ (1/) ne - o n, .

•

Implementing virtual arrays It remains to be shown how the virtual arrays can be
implemented in O(n) space. Let R be a (known) bound on the number of active elements
at the beginning of an iteration. Note that no more than R cells in the virtual arrays are
actually used. We map these cells into an array of size O(K), by means of hash function.
(The sequence of Rs will be shown to be decreasing geometrically in time, implying that the
total memory used for the hashing is 0(n).) We call the cell into which the pivot is writing
a throne. Whenever this mapping causes a throne to collide, the pivot associated with this
throne "fails" and all active elements in the cell remain active. It follows from [18] that if
all sets have fewer than n3/ 4 elements, then a hash function can be constructed in constant
time such that, using this function, at most a constant fraction of the active elements have
colliding pivots, with n-dominant probability. Combining with Lemma 20 we get that with
high probability, a constant fraction of the remaining active elements are deactivated. The
required geometric decrease is thus achieved.

Model of computation The algorithm described above can be implemented in a straight
forward manner on the COLLISION model of computation, thus achieving an optimal double
logarithmic solid simulation of MAXIMUM on COLLISION. Implementation on TOLERANT,

however, is more subtle. The difficulty is that it is not known, in general, how to simulate
TOLERANT(n) on TOLERANT(p) in O(n/p) time. Since not all write operations of the sim
ulated processors can be implemented simultaneously, it might occur that a simulated pro
cessor succeeds in writing even when other simulated processors are writing to the same cell.
This may obstruct collision detection in the algorithm. Indeed, the optimizer in [35] assumes
that OR computation can be done in constant time. It is not known how to compute the
OR function efficiently in constant time on TOLERANT without collision detection. In ad
dition, the selection of pivots in the algorithm above uses collision detections-the pivot is
the only element in a set that does not collide after the geometric decomposition. We show
below how to implement an optimizer and the pivots selection step on TOLERANT.

22

Optimizer For an implementation on TOLERANT we replace the optimizer. It has been
shown in [17] that if the number of active elements decreases at least geometrically, a load
balancing algorithm can be used as an optimizer. Specifically, load balancing should only
be invoked O(lg*n) times. Using the O(lglgn) time load balancing algorithm of [15], which
runs on ROBUST (a model weaker than TOLERANT), we get an optimal O(lglgnlg*n) time
solid implementation of the simulation algorithm on TOLERANT.

Pivots selection Assume that a step of the simulated machine is executed in r rounds.
A set <I> i is partitioned into r subsets <I>], ... , <I>i where <I>{ consists of the processors in <I>i
that are simulated in round j. The idea is to consider the collection of rm subsets { <1>1}
instead of the m sets { <I>i}. The pivot selection process for each subset is done in one round
and is therefore identical to the algorithm described above. The analysis of decrease in the
number of active elements is therefore valid also for the collecbon {<I>{}. One issue is still
common to all subsets: a pivot must learn whether it is alone in its set , in which case it is
selected leader and deactivates itself. In order to enable this, the throne will be common
to all subsets, by using the same hash function in all rounds. The implementation is then
straightforward: the common throne is used first to keep only the highest value pivot for
each set and then, by executing a second sequence of rounds, to notify the pivot if it is not
alone in its set. A consequence is that collisions may now occur with thrones occupied in
previous rounds. Yet this is of no obstacle as in the analysis (of the non-optimal algorithm)
such collisions were already taken into account.

Acknowledgments

We thank Faith Fich for valuable comments on a previous version of this paper. Stimulating
discussions with Uzi Vishkin are gratefully acknowledged.

References

[1] B. Awerbuch and Y. Shiloach. New connectivity and MSF algorithms for Ultracomputer
and PRAM. In Proc. International Conference on Parallel Processing, pages 175-179,
1983.

[2] P. Beame and J. Hastad. Optimal bounds for decision problems on the CRCW PRAM.
In Proc. of the 19th Ann. ACM Symp. on Theory of Computing (STOC '87), pages 83-
93, 1987.

[3] 0. Berkman, D. Breslauer, Z. Galil, B. Schieber, and U. Vishkin. Highly parallelizable
problems. In Proc. of the 21st Ann. ACM Symp. on Theory of Computing (STOC '89),
1989.

23

[4] 0. Berkman and U. Vishkin. Recursive *-tree parallel data-structure. In Proc. of the
30th IEEE Annual Symp. on Foundation of Computer Science, pages 196-202, 1989.

[5] P. C. P. Bhatt, K. Diks, T. Hagerup, V. C. Prasad, T. Radzik, and S. Saxena. Improved
deterministic parallel integer sorting. Technical Report TR 15/1989, Fachbereich Infor
matik, Universitat des Saarlandes, D-6600 Saarbriicken, W. Germany, November 1989.

[6] R. B. Boppana. Optimal separations between concurrent-write parallel machines. In
Proc. of the 21st Ann. ACM Symp. on Theory of Computing (STOC '89), pages 320-
326, 1989.

[7] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the
sum of observations. Annals of Math. Statistics, 23:493-507, 1952.

[8] B. S. Chlebus, K. Diks, T. Hagerup, and T. Radzik. Efficient simulations between
concurrent-read concurrent-write PRAM models. In Proc. of 13th Symposium on Math
ematical Foundations of Computer Science, Springer LNCS 324, pages 231-239, 1988.

[9] B. S. Chlebus, K. Diks, T. Hagerup, and T. Radzik. New simulations between CRCW
PRAMs. In FCT '89, pages 95-104, 1989.

[10] S. A. Cook, C. Dwork, and R. Reischuk. Upper and lower time bounds for parallel
random access machines without simultaneous writes. SIAM J. Comput., 15:87-97,
1986.

[11] D. Eppstein and Z. Galil. Parallel algorithmic techniques for combinatorial computation.
Ann. Rev. Comput. Sci., 3:233-283, 1988.

[12] F. E. Fich, P. L. Ragde, and A. Wigderson. Relations between concurrent-write models
of parallel computation. SIAM J. Comput., 17:606-627, June 1988.

(13] F. E. Fich, P. L. Ragde, and A. Wigderson. Simulations among concurrent-write
PRAMs. Algorithmica, 3:43-51, 1988.

(14] M. L. Fredman, J. Komlos, and E. Szemeredi. Storing a sparse table with 0(1) worst
case access time. J. ACM, 31:538-544, July 1984.

[15] J. Gil. Fast load balancing on PRAM. Manuscript, also in Technical Report 91-14, The
University of British Columbia, Nov. 1990.

[16] J. Gil. Lower Bounds and Algorithms for Hashing and Parallel Processing. PhD thesis,
The Hebrew University of Jerusalem, Israel, Nov. 1990.

[17] J. Gil and Y. Matias. Fast hashing on a PRAM. In SODA '91, pages 271-280, Jan.
1991.

(18] J. Gil and Y. Matias. Polynomial hash functions are reliable. Manuscript, Aug. 1991.

24

[19] J. Gil, Y. Matias, and U. Vishkin. Towards a theory of nearly constant time parallel
algorithms. In to appear in the Proc. of the 32nd IEEE Annual Symp. on Foundation
of Computer Science, Oct. 1991..

[20] J. Gil and L. Rudolph. Counting and packing in parallel. In Proc. International Con
ference on Parallel Processing, pages 1000-1002, 1986.

[21] L. M. Goldschlager. A universal interconnection pattern for parallel computers. J. ACM,
29(4):1073-1086, July 1982.

[22] A. G. Greenberg and R. Ladner. Estimating the multiplicity of conflicts in multiple
access channels. In Proc. of the 24th IEEE Annual Symp. on Foundation of Computer
Science, pages 384-392, 1983.

[23] V. Grolmusz and P. L. Ragde. Incomparability in parallel computation. In Proc. of the
28th IEEE Annual Symp. on Foundation of Computer Science, pages 89-98, 1987.

(24] V. Grolmusz and P. L. Ragde. Incomparability in parallel computation. Discrete Applied
Mathematics, 29:63-78, 1990.

[25] T. Hagerup. Self-simulation on the PRAM. Manuscript, Oct. 1990.

(26] T. Hagerup and T. Radzik. Every robust CRCW PRAM can efficiently simulate a Pri
ority PRAM. In 2nd Annual ACM Symposium on Parallel Algorithms and Architec
tures (SPAA '90), pages 117-124, 1990.

[27] J. JaJa. Introduction to Parallel Algorithms. Addison-Wesley, Reading, MA, 1991.

[28] R. M. Karp and V. Ramachandran. A survey of parallel algorithms for shared-memory
machines. Technical Report UCB/CSD 88/408, Computer Science Division (EECS) U.
C. Berkeley, 1988.

[29] C. Kruskal. Searching, merging, and sorting in parallel computation. IEEE Trans. on
Comp, C-32:942-946, 1983.

[30] C. P. Kruskal, L. Rudolph, and M. Snir. A complexity theory of efficient parallel
algorithms. Theoretical Comput. Sci., 71:95-132, 1990.

[31] L. Kucera. Parallel computation and conflicts in memory access. Inf. Process. Lett.,
14:93-96, 1982.

[32] P. MacKenzie and Q. Stout. Ultra-fast expected time parallel algorithms. In SODA
'91, 1991.

(33) C. U. Martel and D. Gusfield. A fast parallel quicksort algorithm. Inf. Process. Lett.,
30:97-102, 1989.

(34) Y. Matias and U. Vishkin. On parallel hashing and integer sorting. In Proc. of 17th
!GALP, Springer LNCS 443, pages 729-743, 1990. Also to appear in Journal of Algo
rithms.

25

[35] Y. Matias and U. Vishkin. Converting high probability into nearly-constant time - with
applications to parallel hashing. In Proc. of the 23rd Ann. A CM Symp. on Theo1·y of
Computing {STOC '91}, pages 307-316, 1991. Also in UMIACS-TR-91-65, Inst. for
Advanced Computer Studies, Univ. of Maryland.

(36] P. L. Ragde. The parallel simplicity of compaction and chaining. In Proc. of 17th
!GALP, Springer LNCS 443, pages 744-751, 1990.

[37] P. L. Ragde, W. Steiger, E. Szemeredi, and A. Wigderson. The parallel complexity of
element distinctness is n(y'Tgn). SIAM Journal on Disceret Mathematics, 1(3):399-
410, Aug. 1988.

[38] R. Reischuk. A fast probabilistic parallel s<?rting algorithm. In Proc. of the 22nd IEEE
Annual Symp. on Foundation of Computer Science, pages 212-219, 1981.

[39] Y. Shiloach and U. Vishkin. Finding the maximum, merging, and sorting in a parallel
computation model. J. Algorithms, 2:88-102, 1981.

[40] Y. Shiloach and U. Vishkin. An O(lgn) parallel connectivity algorithm. J. Algorithms,
3:57-67, 1982.

[41] L. Valiant. Parallelism in comparison problems. SIAM J. Comput., 4:348-355, 1975.

[42] U. Vishkin. On choice of a model of parallel computation. Technical Report TR 61,
Dept. of Computer Science, Gou.rant Institute, New York University, 1983.

[43] U. Vishkin. Synchronous parallel computation - a survey. Technical Report TR 71,
Dept. of Computer Science, Courant Institute, New York University, 1983. Also: Annual
Paper Collection of ccDatalogforeningen" (The Computer Science Association of Aarhus,
Denmark), 1987, 76-89.

[44] U. Vishkin. Research on parallel algorithms. In UM/ACS 1989 Annual Report. , 1990.

[45] D. Willard. Log-logarithmic selection resolution protocols in a multiple access channel.
SIAM J. Comput., 15:468-477, 1986.

26

