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Abstract 
Given a computed approximate solution x to Ax= b, it is of interest to find 

nearby systems with x as exact solution, and which have the same structure as A. 
In this paper, we show that the distance to these nearby structured systems can 
be much larger than for the corresponding general perturbation for Toeplitz and 
Vandennonde systems. In fact, even the correctly rounded solution x may require 
a structured penurbation of O(qllxll), not O(q) as might be expected. 

Introduction 

Given the linear system Ax = band a computed solution x, it is of interest 
to find nearby systems for which x is the exact solution. That is, to find 6A and 
6b such that 

(1.1) 

with c5A and c5b small. 

If we define the associated residual vector 

r = r(x) = b-Ax, 

then (1.1) becomes 

(6A)x = r + 6b (1.2) 

If we consider general perturbations 6A and c5b, then these conditions (1.1) 
or (1.2) do not specify them fully, and we must impose additional conditions 
(such as minimizing some measure of the size of 6A and 6b). If however the 
matrix A has some special fonn, and we are interested in maintaining this fonn 
in the allowable perturbations, then the solution of (1.1) or (1.2) becomes more 
complicated. In this paper, we consider the cases of A being of Toeplitz or . 
Vandermonde form. This issue of restricted perturbations for structured systems 
has also been considered by Higham and Higham [6]. 

Notice that the scaling of the problem is imponant; we assume throughout 
that IIAII = 0(1) and llbll = 0(1), so that ill-conditioning of A is reflected in llxtl 
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being (possibly) large, but not small. In fact 

llbll (llbll) u A II ~ II X u < ,c(A) m 
where K(A) = IIAII IIA-111 is the (standard) condition number of A in any norm. We 
also assume throughout that A is nonsingular. 

To get some sense of the siu of the residual r( if), it is useful to consider what 
happens in the best possible case, when if = x, the correctly rounded solution. 
Since 

where l77il ~ 77 = machine roundoff level, we can write 

x= (I+Dn)X 

and then 

r = r(x) = b-Ax = -ADnx 

giving 
llrll I llxll <,, IIAII-

(1.3) 

In particular, llrll /llxll = 0(77) independent of the solution x. We also 
remark that (1.3) implies 

lrl ~ 'IIAI lxl, (1.4) 

where the inequality is meant to be taken component-wise. 
Thus the most we can expect for a computed solution if is that llr(if)II / llifll = 

0(77). Such behaviour occurs, for example, with solutions computed by Gaussian 
elimination or Cholesky factom.ation. As a result, it is not appropriate in general 
to solve (1.1) or (1.2) by taking 6A = 0. This gives 6b = -r, which for llxll large 
means a large backward error ll6bll = llrll = 0(77 · llxll) even for the correctly 
rounded solution. Instead, one attempts to find solutions 6A, 6b with 

ll6AII = o(ltll) ll6bll = o(ltll) llxl l ' llxll . (1.5) 
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Allowing general perturbartions 6A, 6b, one can indeed find solutions satis­
fying (1.5), as has been known for some time, and we review this material in 
Section 2. See also the excellent survey paper by Higham [5]. Then in Section 
3 we consider Toeplitz perturbations of Toeplitz matrices. We are motivated to 
do this from interest in the stability properties of special methods available for 
solving Toeplitz systems, such as the Levinson method (see Golub and van Loan 
[4, page 183] for example). One might hope that the computed solution obtained 
from such a method is the exact solu.tion of a nearby Toeplitz system. Indeed, 
Bunch [3] refers to this behaviour as "strong stability0

• However, we find that 
under these restrictions, the perturbations 6A and 6b satisfy not (1.5) but 

ll6AII = O(llrll), ll6bll = O(llrll). (1.6) 

This means that for ill-conditioned Toeplitz systems, computed solutions 
(even correctly rounded solutions) satisfy Tocplitz systems which are as much 
as O(K(A) • 'f'J) away from the original system. We illustrate this behaviour with 
some numerical examples in Section 4, and finally in Section 5 we discuss the 
same problem for Vandennonde systems, where the conclusion is the same. 

2. General Backward Error 

Consider the basic equation (1.2) with (8A)ij = cij and (8b)i = Di, The 
equations decouple, and we consider the first one in detail: 

H r1= 0, we can take eu= ... = e1n= 81= 0. So assume r1= 0 and let 

where {ei}~ and fare fixed scaling factors and{zi}~ and y are to be detennined. 
Then the defining equation can be written 
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(2.1) 

or u,Tv = 1. 
Normally, besides satisfying the equation (2.1), we want to make the pertur­

bations as small as possible in some sense, which amounts to minimizing llvll for 
some nonn. In particular, if we use a Holder nonn llvll

9
, with dual= p, 

1 = Ii? vi ·~ llull,llvll9 

for any u and v satisfying (2.1), and 

We could use p = q = 2, but it is more natural to use p = 1, q = oo, giving 

. 1 1 

m:n llvlloo = llulh = f + Eeilxil (2.2) 

which is attained by using v 1 v, = sgn(ui)/llull1• 

This max nonn solution translates into 
+ r1 ei c _ ± r1 f 

e1i=---- o1 f + Ee,lxi l' - f + Eeilx,I 
which replicates the Oettli/Prager result [7] for general scaling factors E and f. 
One particular case deserves special mention: ei = IIAII, f = llbll- Then 

·- +r1 IIAII _ +r1llbll 
ei, - llbll + IIAll llx ll ' 61 

- llbll + IIAll llxll 
and similarly for the other rows. Notice that in this case, we do obtain 

ll8AI I = o(ll:.!l) ll6bll = o(ltll) 
IIAII llxll ' llbll . llx ll ' 

as predicted in Section 1. 
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3. The Toeplitz Case 
Now assume A is a symmetric positive definite Toeplitz matrix, and that we 

want 6A to be symmetric and Toeplitz as well. That is, 

[ eo 
e1 ... ••-'] 6A= 

e1 eo ... en-2 

En~l 

. . . . . 

... e:o 

In the defining equation (1.2), the key observation is to rewrite 
(6A)x as x,, where, is the vector (e:o, ... ,en-if and (for n odd): 

x1 
x2 

f3 

X= X(n+l)/2 

x2 
(x1 + x3) 
(.x2 + 2:4) 

(xn-2 + Xn) 
Xn-1 

X3 
f4 

(x1 + xs) 

(x1 + fn) 0 0 

For n even, the middle row and column are not present Notice that each Xi 
appears once in each row, and that I IX 1100 = I Ix I Ii. Also, notice that X can be 
singular: if Exi = 0 for example, then Xe = 0 for e = ( 1 , 1 , ... , 1 ) T. . 

Using this matrix, the defining equation (1.2) reads 

x,-.i = r. 

where .i = ob, which is n equations in the 2n unknowns '- and .i, This can also 
be expressed as 

(3.2) 
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Again, we ,would like the perturbation to be as small as possible, and thus we 
arc led to the constrained optimization problem 

min llvll J Gv = r. 
V 

Notice that we can include component-wise scaling factors in ,, .i by using 
diagonal scaling factors De, D6 giving G= (XDe -D6), 

Again the most natural norm is llvll00 giving a constrained Chebyshev opti­
mization problem. which can be rewritten using 6 = X c - r as the overdetermined 
discrete Chebyshev problem 

This problem is difficult to solve explicity, although algorithms have been 
developed to solve individual cases (sec [1] or [2]). The basic question here is 
whether the solution llvll00 = O(llrll/llxll), 

The following example shows that this is not always true, and that the 
consequence is that even for a rounded solution x, the closest perturbed symmetric 
Toeplitz system with x as exact solution, is O(r,llxll) away. 

Example: 

[ 

1 1- µ 1 - Q] 
A= 1-µ 1 1-µ 

1-o 1-µ 1 

with µ and o small and positive. (In fact,µ is not crucial in what follows.) One 
eigenvalue A1 = o with corresponding eigenvector (1, 0, -lf. 

Hence when b = (1,0,-l)T, the solution x = ¾(l,01 -1l. Now take the 
rounded solution x = ¼(1 + r,1, 0, -(1 + r,3)f. A shon calculation gives, using 
~ = 'll - '13, 
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and 
l [ 1 + '11 0 -(1 + '13)] 

X=- 0 r, 0 . 
a -(1 + 713) 0 1 + '11 

Thus the equations Gv = r arc: 

(1 + 171)v1 - (1 + 713)v3 - av4 = -fJ 

'7V2 - QV5 = -f7 
-(1 + 713)v1 + (1 + m)v3 - av6 = -iJ 

It is easy to sec that the minimax solution of these equations has all 

lvil = r,/( a+ r,). In fact, 

Hence for this example, we have explicitly 

llx - xll/llxll = o(,,), llr(x)II = o(,,/a), 
lloAII = ll6bll = 0(,, I a). 

Also, one can find a much closer general perturbation 6A with 

(A+ 6A)x = b; in fact 

6A=::J_[~ ~ =~] +o(,,2
) 2 1 0 -1 

Later on, we provide numerical evidence of the same behaviour, using rounded 
solutions, and solutions computed by the Cholesk.y and Levinson algorithms. All 
exhibit the same behaviour as above. 

Now return to the basic problem (3.2). Although an explicit form of the 
solution in the max norm is not available, we can find an approximate solution 
by solving the corresponding constrained least squares problem 
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minllvl'2 1 Gv == r. 

and hence the solutions differ in value by at most a factor ,In. 
Moreover, the least squares solution has a simple form: 

v = GTz, Gv = r 

that is, 

(3.3) 

Alternatively, one can solve the overdetermined problem 

m~nll(J),- (~)112 

with solution (I+ XT X), = XT rand o= X,- r. 

Notice that from this formulation, it easily follows that if r(x) is such that 
rT X = O, then , = 0 and §_ = - r, which gives a solution (as we mentioned 
earlier) that is unacceptably large when llxll is large. However this is by no 
means the only troublesome case, as we see below. 

Of course, the more acceptable computational method for finding 11, at least 
in cases where X is ill-conditioned, is to use the QR decomposition (Golub and 
van Loan [4]): 
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An even more explicit formulation of the minimum least squares solution can 
be derived from (3.3) using the SVD. 

Theorem 1: Let X = U DVT be the singular value decomposition of the 
matrix X in (3.1), and let r = E,Biu(i) be the expansion of r = r(x) in the 
singular vectors { u(i)}. Then the solution z to (3.3) has the expansion 

z = E( /3; )u(i) 
1 +cr7 • 

and the minimal least squares solution v has 

132 
I Iv I '2 = zT r = E • 2 • 

I+ CT· • 

Proof: by substitution. 

This theorem gives a complete description of the minimum restricted pertur­
bation in the £2 sense which makes f exact. This basic result can be applied in 
various ways, as we now explore. 

Theorem 2: Suppose the computed solution x is such that the SVD coeffi­
cients {/3i} of r(i) satisfy 

Then llvl'2 ~ c-Jri, '7 and the minimum perturbation ll6AII, ll6bll = 0(77). 
Proof: again, direct substitution. 

A result like this clearly can hold for solutions llxll = 0(1), whatever K(A) 
is, as long as the algorithm used to compute x produces r(x) = 0(17). Since 
IIXll00 == llxll1, 0(1) = u1(X) ~ cr2 > ... > crn, and hence all /3i = 0(77). 
Notice that near-singularity of X is immaterial. 
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Now consider large llxll, and recall that llxll can be as large as 1e(A). Assume 
that x produces a residual with llr(x)II = 0('7 • II.xii), as occurs with :i = x, the 
correctly rounded solution. Then~ {Pi} are also this large, and !Q!!!£ { u,} are 
0(llxll), If the large {,Bi} occur only for large {ui}, then Theorem 2 can still hold. 
However, experimental evidence with ill-conditioned symmetric positive definite 
Toeplitz systems indicates that in most cases!!! Pi = 0('lllxll), whether x was 
the correctly rounded solution, the Cholesky solution, or the solution computed 
using the Levinson algorithm. We present some examples in the next section. 
In such cases, as long as not all Ui = 0llxll (i.e. some O"i = 0(1) -or smaller), 
the minimum £2 perturbation is 0('lllxll), which can be 0(1'(A) • '7) if x fully 
reflects the ill-condition of A. Notice that this does not require X to have very 
small singular values, only that there is an appreciable spread in their range. 

4. Some Numerical Results 
The first example is the 3x3 matrix from Section 3: 

[ 

1 1- µ 1 - Q] 
A= 1-µ 1 1-µ . 

1-o 1-µ 1 

We took o = 10-6, µ = o/3. A has then two eigenvalues near 10-6 • For 
various data vectors b, we computed solutions to Ax = b as follows: 

(i) x = Cholesky solution 

( ii) i = Levinson solution 

(iii) x = Correctly rounded solution, obtained from x using 

double precision iterative refinement 

Working precision was long precision on an IBM mainframe, with special 
routines for "double long" calculations, so '1~10-16 • For each approximate so­
lution, we computed the residual r, the minimal least squares solution v = ( 6) 
from (3.3), the singular values ui(X), and the coefficients /3i(r). 

In Case 1, b reflects the ill-condition of A, and llxll is large. For each 
approximate solution, the closest Toeplitz system with that exact solution is 
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O(77llxll) away. In Case 2 however, llxll = 0(1) and even though Xis singular, 
the closest perturbation is now only 0(77). 

x 
x 
x 

x .... 
X 

x 

Case 1: b = (-0.72,0.55,0.22f llxll00 = 4.8x106 

cr,(X) : l.0x107, 2.9 xl06
, 0.32 

llrlloo llvminlb /3 

1.ox10-10 4. 7x10-11 -.25x10- 10 , -.14x10-9 , .50x10-10 

s.2x10-10 9.9x10-11 - .15x10-9 , -.99x10- 9 , - .41x10- 10 

1.BxJ0-10 8. 7x10-11 - .86x10-10 ' .2sx10- 9 , -.92x10-10 

Case 2 : b = (-0.58, -.58, 0.58f llxll00 = 0.19 
u;(X) : .60, .21, .84x10-9 · 

llrlloo llvminlb /3 

1.ox10-11 1.4x10-17 -.16x1o-16 , .41x10-18 , .99x10-18 

2.4x10-17 s.2x10-11 -.97x10-16, .97x10-11, .s1x10-11 

2.1x10-11 s.1x10-11 .96x10-16 , -,40x10- 17, -.88x10-16 

As a second example, consider the prolate matrix (see Slepian [8]) of order 

11 with a;; = ,1;-il, 

sin(1rk/2) l/2 'Yk = 1rk , /0 = • 

This matrix is positive definite symmetric and Toeplitz, and its smallest 
eigenvalue .\1 is 0(10-7). The behaviour generally with various data vectors 
b is similar to that of the first example, and we mention only one case, where b is 
the eigenvector corresponding to .\1• For this case (and for b= other eigenvectors 
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as well), the matrix X is near-singular, but this does not affect the perturbation 
behaviour. The P-coefficicnts are all 0(10-10). 

b = first eigenvector, llxlloo = 5.4x106 

O'i(X) : 3.3x107, ••• , 7.3x10-8 

llrlloo llvminlb 

x 3.lx10-10 2.sx10-10 

x 1.5x10-10 1.lxl0-10 

i 3.7x10-11 2.1x10-11 

S. The Vandermonde Case 
Now consider the (primal) Vandennonde system Ax= b, 

A = [ i, ~2 ::, ] ' 

0 1 Qn 

and again image a computed solution x as the exact solution of a nearby system 
of the same fonn Ax= b + 6b. Notice that the perturbation from A to A is no 
longer linear, as in the Toeplitz case. 

One could again derive the equations satisfied by the penurbations, but one 
can see the extent of the penurbation required much more simply. Consider the 
first equation of the perturbed systems: since 'iii; = ai; = 1, the equation gives 

where 61 is the first component of 6b. As we have already seen, the residual 
nonn llr(x)II is at best 0(77llxll) even for the correctly rounded solution, so 
unless the first component r1 is unusually small (for large II.xii), we already 
have 1611 = 0(77llxll) and thus the full perturbation required is at least this 
large. However there is no reason to believe that r1 = b1 - :Exi will be 
unusually small, and this can be easily verified numerically. Indeed, typically 
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lr1 I = 0( T/ I Ix 11) for x- the Gaussian elimination solution, the solution using the 
special Bjorck/Pereyra methods ((4], page 178), or the correctly rounded solution. 

So again for Vanderrnonde systems, as in the Toeplitz case, the size of the 
restricted perturbations required can be much larger than for general perturbations, 
by a factor llxll, which can be as large as "(A). 
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