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ABSTRACT 

NaDSet in its extended form has been defined in several previous papers describing its applications. 

It is a NBtural lleduction based ~ theory and logic. In this paper the logic is shown to enjoy a 

form of c.o-consistency from which simple consistency follows. The proof uses transfinite induction 

over the ordinals up to £0, in the style of Gentzen's consistency proof for arithmetic. A 

completeness proof in the style of Henkin is also given. Finally the cut rule of deduction is shown 

to be redundant. 
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1. INTRODUCTION 

The NaDSet of this paper is a Natural D,eduction based S'1 theory and logic that is an extension of 

the theory of the same name described in [Gilmore86]. It is the theory described in [Gilmore89] 

and in [Gilmore&Tsiknis90a,90b,91] and in [Tsiknis91]. NaDSet is presented here as a sequent 

calculus, although as demonstrated in [Gilmore&Tsiknis91], it can be presented in other natural 

deduction formats as well. 

To keep the paper self-contained, the elementary and logical syntax of NaDSet, as described in 

[Gilmore89], is repeated in§§ 2, 3.1 and 3.2 in a somewhat abbreviated form. To demonstrate the 

significance of the abstraction rules of NaDSet, an elementary proof of the consistency of 

NaDSet*, which is NaDSet without abstraction rules, is given in§ 3.3. NaDSet* is barely 

stronger than first order logic. In § 3.4 the concept of a global substitution is introduced along 

with a generalized form of the cut rule that depends upon a global substitution. 

The consistency proof for NaDSet begins in § 4. It is a simplified and clarified version of the 

proof offered in [Gilmore90]. Terminology for derivations is introduced in §4.1 and the definition 

of the degree of an occurrence of a formula in a derivation in § 4.2. This definition is critical for 

the proof of consistency which is an adaptation of Gentzen's second proof of the consistency of 

arithmetic [Gentzen38] [Szabo69]. The proof uses transfinite induction up to eo to prove that no 

derivation of the empty sequent exists. The proof proceeds by defining in § 5.1 five 

transformations of such derivations and proving in § 5.2 that at least one of them can always be 

applied. In § 6 the proof of consistency is completed by assigning in § 6.1 an ordinal less than eo 
to each derivation of NaDSet, and proving that each of the five transformations of a derivation of 

the empty sequent transforms the derivation into one with a smaller ordinal. The consistency 

portion of the paper ends in § 6.3 where the form of ro-consistency proved for NaDSet is 

compared with the form introduced in [Godel31] 

In § 7 a semantics for NaDSet is described which is a direct extension of the semantics defined for 

NaDSet* in § 3.3. In § 8, a proof of completeness is given that is modeled on the completeness 

proofs offered in [Henkin49,50]. A consequence of the completeness theorem is that cut is a 

derivable rule of deduction. 

The main theme of [Gilmore89] was that the general form of Cantor's diagonal argument cannot be 

justified in NaDSet because it involves what amounts to an abuse of use and mention. The general 

form of the argument is needed to prove what was called Cantor's lemma in [Gilmore89], namely 
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that for each enumeration P of sequences of O's and 1 's, there is a sequence not enumerated by P. 

In§ 9, Cantor's lemma is shown to be not derivable by using the methods developed in§ 8 to 

construct an interpretation of NaDSet that does not satisfy the sequent expressing Cantor's lemma. 

It is a pleasure to repeat the acknowledgements of [Gilmore90] which was written while I was 

visiting the University of Amsterdam: I am grateful to Johan van Benthem for the invitation to 

spend a term in the Department of Mathematics and Computer Science of the University of 

Amsterdam and for the material and technical help I received. Conversations with my colleagues 

Kees Doets, Dick de Jongh, and Anne Troelstra have been particularly helpful. In addition thanks 

are due to my student and colleague George Tsiknis whose critical reading of an earlier version of 

this paper helped in the writing of this version. Also comments by a referee of the papers 

[Gilmore89,90] are acknowledged with thanks; questions and concerns regarding those papers 

have suggested revisions and improvements. 

The financial support of the Natural Sciences and Engineering Research Council of Canada is 

acknowledged with gratitude. 

2. ELEMENTARY SYNTAX 

Five kinds of strings form the basis for the elementary syntax. They are: 

• variables that may be bound by quantifiers or abstraction terms, 

• first and second order constants, and 

• first and second order parameters. 

The particular notation used for these objects is unimportant. It is only necessary to assume that 

there are five distinct notations that admit denumerably many objects of each kind. 

To simplify the description of NaDSet and reduce the number of cases that must be considered in 

subsequent proofs, only a single logical connective '.J..' and only a universal quantifier 'V' are taken 

to be primitive. The connective ',i..' is joint denial, so that (F .J..G) has the same truth table as 

( ~F A ~G). However, other logical connectives and the existential quantifier will be freely used 

when convenient. 

In the following definition, as throughout the paper, bold letters or pairs of letters represent 

metavariables over particular sets of strings. 
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2.1. Deflnjtion of Elementary Syntax 

2.1.1. Elementary Terms 

- • A variable is a 1CDJ1. The single occurrence of the variable in the term is a ~ 

occurrence in the term. 

• Any parameter or constant is a igm. No variable has a free occurrence in the 

term. 

2.1.2. Formulas 

• If r and s are any terms, then r:s is a formula. A free occurrence of a variable 

in r or in s, is a free occurrence of the variable in the formula. 

• If G and H are formulas then (GJ..H) is a fonnula. A free occurrence of a 

variable in G or in H is a free occurrence in (GJ..H). 

• If Fis a formula and v a variable, then 'v'vF is a formula. A free occurrence of 

a variable other than v in F, is a free occurrence in 'v'vF; no occurrence of vis 

free in 'v'v F. 

2.1.3. Abstraction Terms 

Let t be any term in which there is at least one free occurrence of a variable and 

no occurrence of a parameter. Let F be any formula. Then { t I F} is an 

abstraction term and a .tenn. A free occurrence of a variable in F which does not 

also have a free occurrence int, is a free occurrence in {t IF}. A variable with 

a free occurrence in t has no free occurrence in { t I F}. 

2.1.4. First & Second Order Terms, Atomic & Closed Formulas 

• A term is first order if no second order parameter occurs in it; otherwise it is 

second order. 

• A formula r:s is atomic if r is first order, ands is a second order parameter or 

constant. 

• A term or formula in which no variable has a free occurrence is said to be 

closed. 

3 

Clause 2.1.3 of this definition introduces the syntax for set abstraction. It generalizes the 

conventional syntax { v I F} in which t may only be a single variable v. For example, when t is the 

term <x,y> representing the ordered pair of x and y as defined in 4.1 below, { <x,y> I F} is the set 

of ordered pairs <x,y> for which F is satisfied. The more general form of the abstraction term is 
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essential for many of its applications, including those for algebra and category theory. 

2.1.5 Closed Formulas 
It is important to understand what are free and bound occurrences of variables in a term { t I F}. 

For example, let '[x,B,y / u,v,w]' be a substitution operator that replaces free occurrences of 'u', 'v' 

and 'w', respectively, by 'x', 'B' and 'y'. Then 

[x,B,y / u,v,w](<u,v>:{ <u,v> I u:v A <v,w>:B}) 

is the formula 

<x,B>:{<u,v> I u:v A <v,y>:B} 

since the occurrence of 'w' in 

<u,v>:{ <u,v> I u:v A <v,w>:B} 

is free, while only the first occurrence of 'u' and 'v' is free. The variables 'x' and 'y' are the only 

variables with free occurrences in <x,B>: { <u,v> I u:v A <v,y>:B). 

A closed formula must take one of the following three forms: 

a) (GJ..H), where G and H are closed formulas. 

b) VvF, where Fis a formula in which at most the variable v has a free occurrence. 

c) r:s, where both rands are closed terms. 

The only subforms of the latter are the following three: 

i) sis { t I F}, where the variables with a free occurrence in F have a free 

occurrence in t. 

ii) r:s is atomic; that is, r is first order and s is a second order parameter or constant. 

iii) r is second order or s is a first order parameter or constant. 

3. LOGICAL SYNTAX 

A sequent takes the form 

r ➔ e, 

where rand 8 are finite, possibly empty, sequences of closed formulas. The formulas r form the 

antecedent of the sequent, and the formulas of e the succedent. A sequent can be interpreted as 

asserting that one of the formulas of its antecedent is false, or one of the formulas of its succedent is 

true. 
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3.1. Definition of Lm:ical Syntax 

In the following, G and H are any closed formulas unless otherwise stated. 

3.1.1. Axio~ 

A ➔ A 

where A is a closed atomic formula 

3.1.2. Logical Rules 

Propositional 

r,G ➔ 8 ~.H ➔ A 

r, ~ ➔ (G.J..H), 8, A 

Quantification 

r ➔ [p/u]G, 8 

r ➔ v'uG, 0 

r, (G.J..H) ➔ 8 

r, [r/u]G ➔ 8 

r, v'uG ➔ 8 

r ➔ H,e 

r, (G.J..H) ➔ 0 

In the first rule, pis a parameter that does not occur in G, or in any formula of r ore. 

In the second rule, r is any closed term. 

Abstraction 

r, [r/Jl]G ➔ 8 

r ➔ f.[/Jl]t:{t I G}, 8 r, Ir /Jl]t: { t I G} ➔ 8 

JI is a sequence of the distinct variables with free occurrences in the term t. 
G is a formula in which only the variables 11. have free occurrences. 

I is a sequence of closed terms, one for each variable in Jl. 

[r /Jl] is a substitution operator that replaces each occurrence of the variables ll, 

respectively, with the corresponding terms[. 

3.1.3. Structural Rules 

5 

The structural rules consist of contraction, interchange, and thinning rules. The effect of the 

contraction and interchange rules is to treat the antecedent and succedent of a sequent as finite sets of 

formulas. 
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Contraction 

Interchange 

r ➔ A,G,H,0 

r ➔ A,H,G,0 

Thinning 

3.1.4. Cut Rule 

r ➔ 0,G,e' 

r, 11, 11' ➔ 0, 0', A 

End of Definition 3.1 

11, G, 11' ➔A 

3.2. Notations and Observations 

r,G,G ➔ 0 

r,G ➔ 0 

r, G, H,11 ➔ 0 

r, H, G, 11 ➔ 0 

r,G ➔ 0 

The propositional, quantification and abstraction rules will be denoted respectively by: 

➔J,, J.➔, ➔V, V➔, ➔{} and { } ➔. 

6 

The thinning and cut rules will be referred to by name. When it is necessary to distinguish between 

the two h rules, they will be denoted by LJ.➔ and RJ,➔ respectively. 

All the usual logical connectives-,"• v, =>and= and the existential quantifier 3 can be defined using 

J, and V. Corresponding rules of deduction can be derived and when necessary will be dtnoted 

respectively by: 

The cut rule takes a slightly different form than the usual; this form permits one to ignore where the 

cut formula G appears in the succedent of the first premiss or in the antecedent of the second 

premiss. Because of the interchange rule, this form of the rule is equivalent to the usual forms of it. 

Also because of interchange it is possible to be careless about the order of the formulas in the 

premiss and conclusion of the rules of deduction. 
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The parameter p used in an application of ➔'v is called the eiGnparameter (briefly e-par) of the 

application, and the term t used in an application of 'v➔ is called the ei~nterrn (briefly e-term) of the 

application. 

Because the axioms are restricted to being sequents of closed formulas and the thinning rules may 

only introduce closed formulas, only sequents of closed formulas are derivable in NaDSet. 

In § 8 it is proved that cut is a redundant rule; that is, if the premisses of an application of the rule are 

derivable, then so is the conclusion. 

3.2.1. Failure of Parameter by Term Replacement 

Gentzen's proof of the consistency of arithmetic made use of a simple property of the axioms of his 

theory: Any parameter occurring in a logical axiom F ➔ F can be replaced in all of its occurrences 

by a term, and the resulting sequent will still be an axiom. As a consequence, the replacement of all 

occurrences of a parameter in a derivation by a term results in a derivation. This is not true in general 

of NaDSet: A second order parameter cannot in general be replaced by a term in a derivation, nor 

can a first order parameter ever be replaced by a second order term. This failure of parameter by 
term replacement is the main source of complications in the proof of consistency of NaDSet given 

below. However, three usual properties of logics can be verified for NaDSet. 

3.2.2. Lemma: 

All occurrences of a first order parameter in a derivation may be replaced by a first order term, 

provided the parameter is not an e-par for an application of ➔'v, and no parameter appearing in the 

term is thee-par of an application of ➔'v. 

3.2.3. Lemma: 

Thee-par of an application of the ➔'v rule in a given derivation can be changed to any other 

parameter of the same order provided the parameter does not occur in the given derivation. 

3.2.4. Lemma: 

Let r ➔ 8 be a sequent in which a first order parameter p occurs and let c be a first order constant 

which is distinct from any appearing in r ➔ 8. Let r' ➔ 8' be obtained from r ➔ 8 by replacing 

each occurrence of p by c. Then r ➔ 8 is derivable if and only if r' ➔ 8' is. 
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3.3. Ibe Consistency of NaDSet Without Abstraction Rules 

Consider the logic NaDSet* that has the same elementary syntax as NaDSet, but has a logical syntax 

differing from NaDSet simply in the absence of the two abstraction rules. NaDSet* differs very little 

from first order logic, and a consistency proof for it is no harder to construct 

Define d to be the set of all first order terms in which no parameter occurs. An interpretation of 

NaDSet* is then defined: 

3.3.1. Definition: Interpretation 

An intenu;etation consists of a set D of subsets of d, called the domain of the interpretation, and a 

function cl> called the assienment of the interpretation, satisfying: 

• For each first order parameter p, cl>[p] e d; 

• For each second order parameter or constant PC, cl>[PC] e D. 

End of Definition 

For a given closed first order term r, cl>[r] is defined to be the term obtained from r by replacing 

every occurrence of a parameter pin r by cl>[p]; note that since r is first order, pis necessarily first 

order, and that constants occurring in rare unaffected. For a given closed first order term r, cl>[r] is 

necessarily a member of d. 

An assignment cl> of an interpretation assigns one and only one of the truth values true or false to 

each closed atomic formula r:PC: It is assigned true if cl>[r] is a member of cl>[PC], otherwise it is 

false. Truth values are assigned to other closed formulas indirectly through sets n[ cl>, D] of signed 

formulas defined by finite induction. A sie;ned formula is a closed formula prefixed with a + or -

sign. A formula Fis assigned true if +F e n[ cl>, D], and is assigned false if -F e n[ cl>, D]. 

3.3.2. Definition: The Set n[w, D] of Signed Formulas 

Given the base D and assignment cl> of an interpretation, O[ cl>, D] is the set 

u{On[cl>, D] In~ 0 }, 

where On[cl>, D], abbreviated to On, are sets of signed formulas defined inductively for integers n, 

n ~ 0, as follows: 

1. If cl>[r] E cl>[PC], then +r:PC E no, otherwise -r:PC E no. 
2. Assuming On is defined for an integer n, On+ 1 is the least set satifying: 
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u On+l =i.On 

+J, -G e On and-He On=> +(GJ..H) e On+l 

-J, +Ge On or +He On=> -(GJ,H) e On+l 

Let G be a formula in which u is the only variable with a free occurrence. 

+V Let p be a first or second order parameter not occurring in the formula G, and let 

+[p/u]G e On[ cl>', D] for every assignment cl>' that differs from cl> only in the 

value of <l>[p]. Then +VuG e On+l• 

-V For any closed terin r, -[r/u]G e On=> -VuF e On+l• 

End of Definition 

By simple induction on nit is possible to prove that for no closed formula Fis both +F and-Fa 

member of 0 0 [«1>, D], for any domain D and assignment cl>. 

9 · 

The degree of a formula can be defined in the usual way as the count of the number of occurrences of 

J, and of V in the formula. By simple induction on degrees it is possible to prove that for every . . 
formula F, one of +F and-Fis a member of O[«l>, D]. 

A sequent r ➔ 8 is satisfied by an interpretation with base D and assignment «l>, if for some formula 

F, 

Fe rand-Fe O[«l>,D], or Fe 8and+Fe O[«l>,D]; 

that is, one of the premisses in r is false, or one of the conclusions in 8 is true. 

By simple induction on the number of applications of logical rules appearing in a derivation it is 

possible to prove that every sequent derivable in NaDSet* is satisfied by every interpretation. Since 

the empty sequent is satisfied by no interpretation, it follows that the empty sequent is not derivable 

in NaDSet* and therefore that the logic is consistent. 

These results for the logic NaDSet* illuminates the special role that the abstraction rules play in 

NaDSet; that role will be further illuminated by the consistency proof offered below for NaDSet. 
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3.4. Derivations with Global Substitutions 

Because of the failure of parameter by term replacement it is necessary to generalize the cut rule of 

derivation to what is called a a-cut, where a is a global substitution defined in 3.4.1. A a-derivation 

is then a derivation in which applications of a-cuts may appear. 

3.4.1. Global Substitutions 

Each application of ➔v' has an e-par and each application ofv'➔ has an e-term. During the reduction 

process to be described for a derivation of the empty sequent, a one-to-one mapping of applications 

of ➔v' onto applications of v'➔ is constructed which leads to a mapping of e-pars onto e-terms. In 

Gentzen's proof of consistency, each e-par is replaced by its corresponding e-term. But in NaDSet 

this is not possible, so a record must be kept of the substitutions that would be made if they could be 

made. The record is kept as a 2:Iobal substirution consisting of zero or more components of the form 

[ri /Pi], where ri is a closed term and Pi is a parameter, satisfying the condition: 

A parameter Pi occurs in a term rj only if i < j. 

The order of the components is therefore significant; it is determined by the order in which the 

parameters Pi are encountered in the reduction process as e-pars for applications of ➔v', with ri 

being thee-term of the corresponding application of 'v➔• 

Let a global substitution a have components [q /p1], [r2 /p2], ... , [rk /pk], Each component 

[ri /Pi] of a has the effect of replacing every occurrence of Pi in a term or formula to which it is 

applied by ri, The result a(F) of applying CJ to a term or formula Fis the result of successively 

applying the components in the reverse order: first [rk /pk], then [rk-1 IPk-1], ... , and then finally 

[q /p1]. 

Because of lemma 3.2.2, it may be assumed of a component [ri /pi] of a global substitution that at 

least one of ri and Pi is second order. 

3.4.2. CJ-Cuts 

Given a global substitution CJ, the CJ-cut rule takes the form 

r ➔ 8, Gl, 8' A, G2, A' ➔A 

r, A, A' ➔ 8, 8 1
, A 

where Gland G2 are closed formulas for which CJ(Gl) is CJ(G2). 
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GI and G2 are called respectively the succedent and antecedent cut formulas of the application. 

A q-deriyation is a derivation in which any number of applications of the cr-cut rule may appear, 

provided they are all applications for the same global substitution cr. Since an application of the cut 

rule is an application of the cr-cut rule when cr is the empty substitution, it follow that a derivation is 

a cr-derivation for the empty substitution cr. 

Henceforth, unless otherwise noted, by a derivation is meant a cr-derivation for a given cr, and by a 

cut is meant a cr-cut. 

3.4.3. Cla~ification of Cuts 

Let G 1 and G2 be respectively the succedent and antecedent formulas of an application of a cut in a 

derivation. Since cr(Gl) is a(G2) for the given a of the derivation, both Gland G2 together must 

be of one of the three forms (a), (b ), or ( c) described in 2.1.5. In the first two cases the cut is said 

to be respectively a~ or a .:i.,g,U. In the third case the edge is called a il.£µt if both G 1 and G2 

have the form (ci), an atomic cut if at least one of them has the form (cii) and the other does not have 

the form (ciii), and a thinned cut if either has the form (ciii). The latter name is used because a 

formula of the form (ciii) can only be introduced into a derivation by an application of thinning. 

4. TERMINOLOGY & DEGREES 

Although the consistency proof is an adaptation of Gentzen's second proof of consistency of 

elementary number theory [Gentzen], the terminolgy used differs at times from that used in the 

translation of that paper offered in chapter 8 of [Szabo69]; the differences are largely all noted in 

§ 4.1. The terminology introduced in § 4.1 is necessary for the definition of the degree of an 

occurrence of a formula in a derivation given in § 4.2. 

4.1 Termino102y 

4.1.1. Endsequent and Branch of a Derivation 

A a-derivation, henceforth called simply a derivation, takes the form of a tree with leaves that are 

axioms, and with a single sequent at the root of the tree called the end sequent of the derivation. 

Each sequent in the tree, other than an axiom at a leaf, is the conclusion of an application of a rule of 

deduction with the premiss or premisses of the application immediately above the conclusion in the 

tree. (In [Szabo69], an axiom is called a basic sequence, a rule of deduction an inference figure 
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schemata, and an application of a rule of deduction an inference figure.) When there is no risk of 

confusion, an application of a rule of deduction in a derivation will be referred to simply as a rule of 

deduction. 

A branch of a given derivation is a sequence Sq1, ... , S4n of sequents S<u, i 2!: 1, where S<u+ 1 is a 

premiss of a rule of deduction with conclusion S(li. Thus the order of sequents in a branch is 

upwards in the tree. One sequent Sqj is said to be~ (respectively below) another sequent S(lj, 

if there is a branch of the tree with Sqi and Sqj as members in which the first precedes (succedes) 

the second in the branch. 

4.1.2. Principal and Corresponding Formulas 

In an application of a rule of deduction, specific formulas must replace the metasystem variables 

printed in bold in the description of the rule, and specific sequences of formulas must replace the 

sequences denoted by uppercase Greek letters. The specific formulas replacing the metasystem 

variables are called the principal formulas of the application. An application of any logical rule, or 

of any structural rule other than interchange, has a single principal formula in its conclusion, while 

an application of interchange has two principal formulas in its conclusion. The premiss of an 

application of contraction has two principal formulas. Each premiss of an application of a logical 

rule has a single principal formula. Each application of a thinning rule has no principal formula in 

its premiss, while each application of cut has no principal formula in its conclusion. (In [Szabo69] 

only an application of a logical rule has a principal formula, and it is the principal formula of the 

conclusion) 

Each principal formula in the conclusion of an application of a rule other than contraction has a 

single correspondin~ principal formula in each premiss of the rule. The principal formula in the 

conclusion of an application of contraction has two corresponding principal formulas in its premiss. 

Each formula that is not a principal formula of the conclusion of an application has a single 

correspondin~ identical formula in one premiss of the rule. The Gentzen rules can be derived from 

the rules used here by zero or more applications of contraction and interchange. 

Note that these results are a consequence of the slightly different formulation of the rules of 

deduction of NaDSet from those of [Gentzen38]; the formulation used here is similar to that of 

[Kleene52]. 
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4.1.3. Predecessor, Logical Predec~or, and (Top) Identical Predec~or 

Consider an occurrence of a formula in a derivation. A predecessor of the occurrence is the 

occurrence itself, or a formula in a premiss of an application of a rule of deduction corresponding to 

a predecessor in the conclusion. The principal formula of a premiss of an application of a logical 

rule is a loii,cal predecessor of the principal formula of its conclusion. 

A predecessor H of an occurrence F is called an identical predecessor, if H, and every predecessor 

G of F of which His a predecessor, is an occurrence of the same formula as F. A 1Qp, identical 

predecessor is an identical predecessor that is the antecedent or succedent of an axiom, or the 

principal formula in the conclusion of an application of thinning or of a logical rule. 

4.1.4. Succesor and Last Succ~or 

An occurrence G is a successor of an occurrence F, if F is a predecessor of G. It is the 1lill 
successor of F if it is a cut formula in an application of cut. 

4.1.5. Blocked Applications of 'v--+ 

The principal formula of the premiss of an application of the --+'v rule takes the form [p/u]F, where 

p is the e-par of the application. The requirement that the e-par of an application cannot occur in any 

formula in the conclusion is referred to briefly as the e-par restriction. The principal formula of the 

premiss of an application of the 'v--+ rule takes the form [r/u]F, where r is thee-term of the 

application. 

There is no e-term restriction similar to thee-par restriction. However, complications arise from 

interactions between applications of 'v--+ and --+'v. Consider the following example derivation in 

which the horizontal bars between premiss and conclusion have been omitted: 

c:P-.+c:P 
'vx c:x-.+c:P 
'vx c:x ➔ 'vx c:x 
'vx c:x, ('vx c:xJ.'vx c:x) ➔ 
'vx c:x, c: { u I ('vx u:xJ. 'vx u:x) } ➔ 
'vx c:x, 'vx c:x ➔ 
'vx c:x ➔ 

axiom 
'v➔ 
➔'v 
J.-.+ 
{}--+ 
'v➔ 
contraction 

The first rule applied is 'v--+; its e-term Pis thee-par of the application of --+'v that follows it. Thus 

the 'v ➔ rule removes an occurrence of the parameter P in the antecedent of the premiss of the -.+V 

rule, permitting that application to satisfy thee-par restriction. The removal of the application of V➔ 

would prevent the application of --+V from being made; the application of V--+ is said to be blocked 

by the application of --+'v. The second application of 'v--+ is however not blocked by any application 
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of ➔'ti. 

The full definition of blockin~ follows: Consider a branch of a derivation ending in the premiss 

r ➔ [p /u]F, 8 

of an application of ➔'ti, and consider an application of 'ti➔ occuring in the branch. The application 

of 'ti➔ is said to be blocked by the application of ➔V if the e-par p occurs in the e-term of the 

application of 'ti➔. An application of'V➔ is said to be blocked in a derivation if it is blocked by some 

application of ➔'ti in the derivation. 

4.2. Definition of Deuee & Heh:bt 

The definition of the degree of a formula given in § 3.3 as the count of the number of occurrences of 

..L. and of 'ti in the formula is no longer useful in N aDSet because of the interaction between the { } and 

'ti➔ rules. For example, the last application of 'ti➔ in the derivation appearing in 4.1.5 removes a 

term that has been introduced by a { } rule. The definition defined ultimately in 4.2.1 is that of the 

degree of an occurrence of a formula in a derivation. 

4.2.1. Definition: Degree Paths and Degrees of Occurrences of Formulas 

A degree»ath dp in a derivation Derv is a sequence F1, ... , Fm, m ~ 1, of distinct occurrences of 

formulas in Derv for which Fi and Fi+ 1 satisfy one of the following conditions, for i < m: 

1. Fi+l is a logical predecessor of Fi; 

2. Fi+l is a distinct immediate predecessor of Fi; 

3. Fi and Fi+l are the cut formulas of an application of cut; or 

4. One of Fi and Fi+ 1 is the antecedent and the other is the succedent formula of an axiom. 

The degree deg(dp, Derv) of a degree path dp with elements F 1, ... , Fm is defined recursively as 

follows: 

1. If dp has a single element Fi, then deg(dp, Derv) is O; 

2. Let dp have elements Fi, ... , Fi, and dp' elements F1, ... , Fi, Fi+l· Then 

deg(dp', Derv) = deg(dp, Derv) + 1 if Fi, Fi+l satisfy clause (1) in the definition of degree 

path; otherwise 

deg(dp', Derv) = deg(dp, Derv). 

The deiuee deg(F, Derv) of an occurrence Fin a derivation Derv is the maximum of the degrees of 
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degree paths with F as first element. 

End of Definition 4.2.1 

15 

Consider, for example, the derivation appearing in 4.1.5. There is one degree path of degree 1 

beginning with the occurrence of 'vx c:x in the endsequent of the derivation and ending in the 

antecedent formula c:P of the axiom; although this path can be extended to the succedent formula of 

the axiom, no increase in degree results. A second degree path of degree 4 has the occurrence of c:P 

in the succedent of the axiom as last element The degree of the occurrence of 'vx c:x is therefore 4. 

Note, however, that the degrees of the two occurrences of this same formula in the penultimate 

sequent are respectively 1 and 4. 

It might be supposed that the definition of degree could be simplified by omitting clauses 3 and 4 

from the definition of degree path. But the need for these clauses will become evident when the 

effect of an axiom-transformation defined in 5.1.5 is examined. 

The following lemma states two observations that follow immediately from definition 4.2.1: 

4.2.2. Lemma: 

1. Let F be the principal formula in the conclusion of an application of a logical rule and let G 

be a principal formula in a premiss. Then the deg(F, Derv) < deg(G, Derv). 

2. Let F and G be the cut formulas in an application of cut in a derivation Derv. Let Dervl be the 

derivation of the premiss in which F occurs, and let Derv2 be the derivation of the premiss in 

which G occurs. Then 

deg(F, Derv) = deg(G, Derv) = max{ deg(F, Dervl), deg(G, Derv2)} 

The property (1) of degrees is the same as the property of degrees exploited in Gentzen's 

consistency proof for arithmetic. That deg(F, Derv) = deg(G, Derv) for cut formulas was also used. 

However, note that a significant difference with the traditional definition of degrees is this: The 

degree of an occurrence of a formula in a derivation can be affected by changes in the derivation. 

By (2) of lemma 4.2.2, the cut formulas of an application of cut have identical degrees in any 

derivation in which the application appears. The degree of an smplication of cut is the the degree of 

its cut formulas. 

The following definition is adapted from Gentzen: 
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4.2.3. Definition: Height of a Sequent in a Derivation 

The heiKht of a sequent in a derivation is the maximum of the degrees of cuts with conclusion 

appearing below the sequent 

In [Szabo69] the height of a sequent is called its level, but the definition of level also involves the 

degree of CJ rules of deduction that are absent in NaDSet. 

Thus if h2 is the height of the conclusion of an application of cut, and d is the degree of the 

application, then the height h 1 of the premisses of the application satisfies: 

hl = max{d, h2} 

5. TRANSFORMATIONS OF DERIVATIONS 

16 

The proof of consistency proceeds by showing that any derivation Derv of the empty sequent can be 

reduced to a simpler one Derv*, in a sense defined in § 6.1. Five transformations of derivations are 

described in 5.1 that will be shown in § 6.2 to produce simpler derivations. As noted in 4.2, the 

degree of an occurrence of a formula in a derivation can be affected by changes in the derivation; the 

effect of the transformations on degrees is described along with the transformations in the 

subsections of 5.1. Given any derivation of the empty sequent, it is proved in 5.2 that at least one 

of the transformations can be applied. 

5.1. The Transfocmations 

Of the five derivations described in this section three correspond directly to transformations 

described in [Gentzen38], [Szabo69], while one arising from applications of the {} rules is simpler 

than the Gentzen transformations and a fifth is a new kind made necessary by the character of cr-cuts. 

Each of the transformations acts on a given application or applications of cut in a given derivation 

Derv and produces another derivation Derv*. It is assumed that a global substitution cr is given for 

Derv of which the following is an application of cr-cut: 

r ➔ Gl,8 .11, G2 ➔ A 

r,.11 ➔ 8,A 

that is, cr(Gl) is cr(G2). 

5.1.1. A Thinning-Transformation 



Consistency & Completeness ofNaDSet (1-6) August 29, 1991 17 

Assume that each top identical predecessor of G 1 is the conclusion of an application of thinning. 

Then all these applications of thinning are dropped from the derivation of r ➔ G 1, e to produce a 

derivation of r ➔ 8. A derivation of r, ti. ➔ 8, A can then be obtained by zero or more thinnings and 

interchanges. 

The derivations Derv and Deiv* are illustrated here: 

r ➔ Gl,8 

r, ti. ➔ 8, A r,fi. ➔ 8,A 

Here the occurrences of ' .. .'represent portions of the derivation not explicitly displayed, while 

the double dotted lines represent zero or more applications of rules; the first of the double lines in 

Derv* represent zero or more applications of thinnings and interchanges. 

The degrees of occurrences of formulas in r and 8 are unaffected by the transformation. The 

degrees of occurrences in ti. and A are reduced to zero since they have been introduced by thinnings. 

The height of a sequent in Derv* may be less than the corresponding sequent in Derv since a cut has 

been removed. 

A similar transformation is possible if each top identical predecessor of G2 is the conclusion of an 

application of thinning. 

5.1.2. A J,. Transformation 

Consider an application with cut formulas (GlJ,Hl) and (G2J,H2). Assume that a 

thinning-transformation cannot be applied. Therefore each of the cut formulas has at least one top 

identical predecessor that is the principal formula in the conclusion of an application of the ➔.J, and 

J,➔ rules respectively. Assume that the latter is an application of the Lh rule. Then the derivation 

Derv takes the following form: 
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Height 
r', G1 ➔ 8' r",H1 ➔ 8" A' ➔ G2,A' 

r', r"➔ (GlJ..Hl), 8 1
, 8 11 A', (G2J..H2) ➔ A' 

r ➔ (GlJ..Hl), 8 A, (G2J..H2) ➔ A hl 

r,A ➔ 8,A hl 

:E' ➔ Il' :E" ➔ Il" hl 

:E ➔ Il h<hl 

➔ 0 

The sequent :E ➔ n, which plays a critical role in the definition of Derv*, is the first sequent below 

the premisses of the first displayed cut with a height h smaller than the height hl of the premisses. 

There must exist such a sequent since the endsequent of the derivation has height h. Necessarily the 

sequent is the conclusion of a cut with premisses of height hl. It is displayed as the conclusion of a 

cut with premisses :E' ➔ Il' and :E" ➔ Il". Necessarily hl ;::: d, where dis the degree of the cut. The 

sequent :E ➔ n may be identical with either r, A ➔ 8, A or with ➔, or with both, or be distinct from 

both. The illustration is best understood as an illustration of the latter case. 

Denote by Dervl the derivation of the first premiss of the displayed cut, and by Derv2, the derivation 

of the second premiss. Let Dervl' and Derv2' be the following derivations: 

Dervl' Derv2' 

r', Gl ➔ 8' A' ➔ G2,A' 

r', r", Gl ➔ (GlJ..Hl), 8 1
, 8 11 A1

, (G2J..H2) ➔ G2, A' 

r, Gl ➔ (GlJ..Hl), 8 A, (G2J..H2) ➔ G2, A 

Dervl' has been obtained from Dervl by dropping the application of ➔J.., and replacing it with one 

or more thinnings and possibly interchanges represented by the first of the double lines; one of the 

thinnings has (G lJ..Hl) as the principal formula of its conclusion. Derv2' has been obtained from 

Derv2 by dropping the application of LJ..➔ and replacing it with an application of thinning with 

(G2J..H2) as the principal formula of its conclusion. Then the transformed derivation Derv* takes the 

following form: 
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Dervl' Derv2 
r, Gl ➔ (GlJ.Hl}, 8 fl, (G2J.H2) ➔ A 

Dervl Derv2' 
r ➔ (GlJ.Hl), 8 fl, (G2J.H2) ➔ G2, A 

Height 
hl 

r, Gl, fl ➔ 8, A 

l:', Gl ➔ Il' l:" ➔ Il" 

l:, Gl ➔ Il 

r, fl ➔ 8, G2, A ... 

'1:-' ➔ Il', G2 l:" ➔ Il" 

l: ➔ G2,Il 

1:,1: ➔ n.n 

➔ 

hl 

hl 

h* 

h 

0 

In this illustration, the endsequents of the derivations Derv 1, Derv2, Dervl' and Derv2' have been 

explicitly displayed. 

Note that the third cut with cut formulas G 1 and G2 has been deferred until the sequent l: ➔ n 
identified in the original derivation above. 

Let dL and dR be the degrees of the top left and top right cuts respectively in Derv*, and d be the 

degree of the cut in Derv. Then from lemma 4.2.2 follows 

dL = max{ deg( (GIJ.Hl), Dervl'), deg( (G2J.H2), Derv2)) 

dR = max{ deg( (GlJ.Hl), Dervl), deg( (G2J..H2), Derv2')) 

d = max{ deg( (GlJ.Hl), Dervl), deg( (G2J.H2), Derv2)) 

Further, 

deg( (GlJ.Hl), Dervl') S deg( (GlJ.Hl), Dervl) 

deg( (G2J.H2), Derv2') S deg( (G2J.H2), Derv2) 

so that 

(2) dL, dR S max{dL, dR} = d 

Let bl' and bl" be the heights respectively of the premisses of the top left and right cuts in Derv*, 

and let h2' and h2" be the heights of their conclusions. 

Let d* be the degree and h* the height of the third cut of Derv*, then 

(3) d* < d 

(4) hl > h* ~ h 

since h* = max{d*, h} < max{d, bl}= hl. 
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5.1.3. A 'v'-Transformation 

Consider an application of cut with cut formulas 'v'vG 1 and 'v'vG2. Let no thinning transformation 

be applicable. Then the succedent cut formula has a top identical predecessor which is the principal 

formula in the conclusion of an application of ➔'v' withe-par p satisfying thee-par restriction; 

therefore in particular, p does not occur in GI. Similarly let the antecedent cut formula have a top 

identical formula which is the principal formula in the conclusion of an application of 'v' ➔ that is not 

blocked, and that has e-tenn r. The derivation.Derv may therefore be assumed to take the form: 

r' ➔ [p /v]Gl, 9' ll', [r /v]G2 ➔ A' 

r'➔ 'v'vGl, 9' !!.', 'v'vG2 ➔ A' 

r ➔ 'v'vGl, 9 ll, 'v'vG2 ➔ A 

r, /l ➔ 9, A 

➔ 

As observed in 3.2, it may be assumed that p is distinct from any other e-par of the derivation, from 

any parameter occurring in the derivation of the right premiss of cut, as well as from any parameter 

occurring in the components of CJ. In particular, it may be assumed that neither p nor any other e-par 

of the derivation of the left premiss of cut occurs in r or in G2. 

For those with access to [Szabo69], Derv corresponds to the derivation illustrated on page 271. The 

transformed derivation Derv* illustrated below corresponds to the one illustrated on page 273. 

The sequent l: ➔ n that is diplayed has been chosen in the same manner as the similarly named 

sequent in the description of the J--transformation of the previous subsection. As with that 

transformation, the 'v'-transformation replaces the single cut displayed in the original derivation by 

three cuts. 

Denote by Derv 1 the derivation of the first premiss of the displayed cut, minus that premiss, ' and by 

Derv2, the deivation of the second premiss, minus that premiss. Let Derv 1' be the derivation 

obtained from Dervl by dropping the application of ➔'v' and replacing it with an application of 

succedent thinning with 'v'vGl its principal formula. Let Derv2' be obtained from Derv2 in a similar 

manner by dropping the application of 'v' ➔ and replacing it with an application of thinning. Thus the 

following sequents may be added as endsequents of Derv l' and Derv2' respectively: 
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r➔ [p /v]Gl, 'vvGl, 8 and ll, [r /v]G2, 'vvG2 ➔ A 

The new derivation Derv* is the following: 

Dervl' l)m,2 Dexvl Derv2' 
r ➔ [p /v]Gl,'vvGl, 8 ll, 'vvG2 ➔ A r ➔ 'vvGl,8 ll, [r /v]G2,'vvG2 ➔ A 

r, ll ➔ [p /v]Gl, 8, A r, ll, [r /v]G2 ➔ 8, A ••• 

l: ➔ [p /v]Gl, Il l:, [r /v]G2 ➔ n 

l:,l: ➔ Il,Il 

➔ 

The global substitution cr' for the new derivation is defined to be cr[r/p]. Since p does not occur in 

Gl, r, or in G2, cr([r/p]([p/v]Gl) is cr([r/v]Gl) is [cr(r)/v]cr(Gl). But since cr('vvGl) is 

cr('vvG2), cr(Gl) is cr(G2). Therefore, [cr(r)/v]cr(Gl) is [cr(r)/v]cr(G2) is cr([r/v]G2) is 

cr([r/p]([r/v]G2), and the new derivation is a cr'-derivation. 

The definitions of degrees and heights given in 5.1.2 can be adapted here, and the equalties and 

inequalties (1, 2, 3, 4) derived in the same mannter. 

5.1.4. A {}-Transformation 

21 

Consider an application of cut with cut formulas rl: { t1 I G 1} and r2: { t2 I G2}. Since by 2.1.3 

no parameter may occur in t1 or t2, it may be assumed that these terms are identical so that the cut 

formulas may be assumed to be rl:{t I Gl} and r2:{t I G2} It may further be assumed that a(Gl) 

is cr(G2), and that cr(rl) is cr(r2). Assume that the thinning-transformation cannot be applied. It 

may be assumed therefore that each of the cut formulas has a top identical predecessor that is the 

principal formula in the conclusion of an application of a { } rule. 

Consider such an application for the cut formula rl: { t I G 1}. Necessarily rl must be of the form 

[!1 /.u]t, and the principal formula in the premiss of the application has the form [rl /l!]Gl, where l! 

is a sequence of all the variables with free occurrences in t, and r1 is a sequence of terms of the same 

length. Similarly it follows that r2 must be of the form [U /.u]t, and that [U /.u]G2 is the principal 

formula in the premiss of an application of { } ➔ with r2: { t I G2} as principal formula of its 

conclusion; as before a is a sequence of terms of the same length as y. 
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The following illustrates the original derivation Derv with only one application of ➔{} and of { }➔ 

displayed: 

r' ➔ [Il /.u.]Gl, 8' A', [I.2. /.u.]G2 ➔ A' 

r'➔ [Il/.u.]:{t I Gl}, 8' A', [I.2. /.u.]: {t I G2} ➔ A' 

r ➔ [Il/.u.]:{t I Gl}, 8 A, [I.2./.u.]:{t I G2} ➔ A 

r,A ➔ 8,A 

➔ 

22 

The transformed derivation is obtained from the given derivation by dropping every application of 

thinning and of the { } rules for which a top identical predecessor of one of the cut formulas is the 

principal formula of its conclusion. In this case thinnings do not replace the removed logical rules. 

The derivation Derv* resulting from the transformation is illustrated next: 

r'➔ [tl/.u.]Gl, 8' A', [I.2. /.u]G2 ➔ A' 

r ➔ [Il/.u]Gl, 8 A, [I.2. /.u]G2 ➔ A 

r, A ➔ 8, A 

➔ 

Since any parameter occurring in [tl /.u.]G 1 (respectively [n /.u.]G2) must occur in 

[tl /.u.]t: { t I G 1} ( respectively [n /.u.]t: { t I G2} ), the eigen parameter restrictions of the original 

derivation are respected in the transformed derivation. 

Let d be the degree of the cut in Derv and d* of the cut in Derv*. Since the { } rules are both single 

premiss rules, it follows from the definition of degree in 4.2.1 that 

d* = d- 1 

Let h be the height of the conclusion of the application of cut in both Derv and Derv*, and h 1 and 

hl * be the heights of the premisses in Derv and Derv* respectively. Then 

hl = max{d, h} ~ max{d*, h} = hl * 
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5.1.5. An Axiom-Transformation 

Let both the antecedent and succedent formulas of an axiom A ➔ A be the cut formulas of two cuts 

one with succedent formula Gland the other with antecedent formula G2. Thus 

cr(Gl) is cr(A) is cr(G2) 

Assume that the cut in which Gl is the succedent formula appears above the cut in which G2 is the 

antecedent formula. The derivation Derv may therefore be assumed to take the following form: 

r' ➔ Gl,8' 

r' ➔ A,8' 

r ➔ A,8 A,G2 ➔ A 

r,A ➔ 8,A 

➔ 

The new derivation Derv* is obtained by dropping the first application of cut as well as the axiom, 

and replacing the second cut with one in which G 1 and G2 are the cut formulas: 

r' ➔ Gl,0' 

A,G2 ➔ A 

r,A ➔ 8,A 

➔ 

Consider Derv and the following degree path in it: 

G2, A, ... , A, A, Gl 

where A, ... , A is the sequence of identical predecessors of the succedent formula of the axiom 

beginning with the cut formula of the second cut, and where the A following this sequence and 

preceding G 1 is the antecedent formula of the axiom. This degree path can be followed by any 

degree path beginning with G 1, minus of course G 1. It follows therefore that 

deg(Gl, Derv) ~ deg(G2, Derv) 

Note that this conclusion depends upon clauses (3) and (4) in the definition 4.2.1 of degree path. 

The conclusion is essential to the proof given in 6.2.5 that an axiom-transformation reduces the 

ordinal of a derivation. Should the cut in which G2 is the antecedent formula appear above the cut in 

which G 1 is the succedent formula, this inequality is reversed. 
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Let dl be the degree of the first cut in Derv and d2 the degree of the second. Then from lemma 4.2.2 

and the above inequality follows, 

dl = deg(Gl, Derv) 

d2 = max{ deg(Gl, Derv), deg(G2, Derv) = deg(G2, Derv) 

Therefore the degree of the cut in Derv* is d2. 

The height h2 of the conclusion of the second cut in Derv is also the height of the conclusion of the 

only cut in Derv*. 

5.2. A Transformation Can Always Be Applied 

Throughout this section it is assumed that a derivation Derv, that is a O"-derivation of the empty 

sequent, has been given for some global substitution O". It is further assumed that no 

thinning-transformation can be applied, which means that no thinning cut can appear in the 

derivation, as described in 3.4.3. Therefore every cut is atomic or a..!-, V, or { }-cut. If there exist a 

t-cut, then a J--transformation can be applied, and if there exists a { }-cut, a { }-transformation can be 

applied. It is therefore only necessary to show that if no thinning,..!-, or { }-transformation can be 

applied, then an atomic or a V-transformation can be applied. 

Recall now the definition in 4.1.5 of blocked applications of V➔. It is not enough to have a V-cut in 

order to have a V-transformation that can be applied; an application ofV➔ with the antecedent cut 

formula as principal conclusion, must not be blocked. Call such a cut unblocked. 

5.2.1. Lemma: 

Let there be no J, or { }-cut in the derivation. Then there is either an unblocked V-cut or an atomic cut 

Proof: 

Since it is assumed that no thinning-transformation can be applied, each cut is either atomic or a 

V-cut. Therefore the pairs of cut formulas, listed in order of succedent cut formula followed by 

antecedent cut formula are of three kinds: 

< VvGl, VvG2 >,<A, G >,and< G, A> 

Assume that no atomic-transformation nor V-transformation can be applied; in particlular, therefore, 

every V-cut in the derivation is blocked. Under these assumptions, each pair of cut formulas is 

necessarily linked to another distinct pair of the same or of a different kind in the following sense: 

1) The cut formula VvG2 of a pair< VvGl, VvG2 > is blocked by an application of ➔V. Let H 

be the last successor of the principal formula in the conclusion of this application. H is one of 
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the cut formulas of a cut and is therefore either the first or second element of a cut pair. It is to 

this cut pair of which His an element that< 'v'vGl, 'v'vG2 > is said to be linked. 

2) The atomic cut formula A of a pair< A, G >or< G, A> is the last successor of either the 

antecedent or succedent formula of an axiom A ➔ A. Let H be the last successor of the other 

formula of the axiom. H cannot be A, for then an axiom-transformation could be applied. H is 

one of the cut formulas of a cut and is therefore either the first or second element of a cut pair. It 

is to this cut pair of which H is an element that < A, G > or < G, A > is said to be linked. 

Let CtPr1, ... , CtPrn be a sequence of cut pairs of the derivation for which CtPri is linked to 

CtPri+l• for 1 :Si< n. Necessarily there can be no repetitions in this sequence. Further, for every n, 

CtPrn must have a successor in the sequence; that is a cut pair to which it is linked. But this is 

impossible for a finite derivation, so it must be possible to either apply an atomic-transformation or 

find a 'v'-cut for which the antecedent cut formula is not blocked. 

End of Proof of Lemma 5.2.1 

6. CONSISTENCY PROOF 

A proof of the following theorem will be provided in the subsections of this section: 

6.0.1. Theorem: For no global substitution CJ, is there a CJ-derivation of the empty sequent. 

The proof proceeds by contradiction. In§ 6.1 an ordinal less than eo is assigned to derivations. In 

§ 6.2 it is shown that each of the transformations defined in § 5.3 reduces the ordinal of a derivation 

when it is applied. In § 5.3 it was shown that at least one of the derivations can always be applied to 

a derivation of the empty sequent. Thus there cannot be a derivation of the empty sequent in NaDSet 

since the empty sequent is not an axiom. 

The consistency proved in theorem 6.0.1 is a form of ro--consistency from which the simple 

consistency of NaDSet follows. The connection with ro--consistency, as defined in [Gode131], is 

explained in § 6.3. 

6.1. Ordinals of Derivations 

The method employed here for assigning an ordinal number to a CJ-derivation is an adaptation of the 

method Gentzen used to assign an ordinal number to a derivation of the empty sequent as described 

in [Gentzen38] and [Szabo69]. An adaptation is necessary since NaDSet has no explicit induction 
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rule of deduction CJ, and no basic mathematical sequents. 

6.1.1. Properties of Ordinals 

By an ordinal is meant any ordinal number less than f-0. Collected in this subsection are all the 

properties of ordinals required for the consistency proof. 

For an ordinal µ and an integer k, k ~ 0, rok(µ) is defined recursively: roo(µ) = µ; ro1 (µ) = coµ; and 

COk+ 1 (µ) = ro1 ( rok(µ) ). 

Each ordinal µ, µ > 0, has a unique representation in the following normal form: 

µ = ro1 (61) + ro1 (Si) + ... + ro1 (Om), 

where µ > 61 ~ 62 ~ ... ~ 6m, m ~ 1. 

Let µ and v be two ordinal numbers with normal forms as follows: 

µ = ro1 (61) + ro1 (Si) + ... + co1 (Om) 

v = ro1('n) + ro1(r2) + ... + ro1(rn) 

The natural sum of the two ordinals µ and v is 

µ # v = ro1 (l 1) + ro1 (l2) + ... + ro1 (Atn+n), 

where l1, l2, ... , Atn+n is the sequence obtained by merging the sequences 61, 62, ... , 0m and 'YI, 

'Y2, ••• , 'Yn with duplicates maintained, and then reordering the resulting sequence so that 

AI~ A-2 ~ •·· ~ Am+n• 

Properties of# and ro1 that will be used in the proof of consistency are for ordinals y, µ, v ~ 1: 

1. # is commutative and associative 

2. µ<µ#v 

3. µ <v ⇒ µ#y< µ#y 

4. µ < ro1(µ) 

5. µ<v ⇒ ro1(µ)<co1(v) 

6. µ, v < y ⇒ co1(µ) # ro1(v) < co1(r) 

6.1.2. Definition: The Ordinal of a Derivation 

26 

The ordinal number assigned to a derivation is the ordinal number assigned to its endsequent by the 

following process: 

1. The ordinal 1 is assigned to each axiom used in the derivation. 
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2. The ordinal number of the conclusion of an application of a structural rule is the ordinal of 

its premiss. 

27 

3. The ordinal number of the conclusion of an application of a single premiss logical rule is µ # 1, 

where µ is the ordinal of the premiss. 

4. The ordinal number of the conclusion of an application of the two premiss logical rule -+!. is 
µ # v, where µ and v are the ordinals of the premisses. 

5. The ordinal number of the conclusion of an application of cut is COhl-h2( µ # v ), where µ 

and v are the ordinals of the premisses, and h 1 and h2 are respectively the height of the 

premisses and of the conclusion of the application. 

End of Definition 

This definition differs in two unimportant respects from the comparable definition of Gentzen. First, 

it assigns ordinals only to sequents, not as well to a "line of inference" in the words of [Szabo69] 

page 279. Second, clauses (3) and (4) of this definition differ slightly from Gentzen in the use of# 

instead of+ in (3), and the use ofµ# v instead of max { µ, v} + 1 in ( 4 ). These changes have no 

important effect upon the proof of Gentzen, but do assist in the proof of lemma 6.1.4 below. 

6.1.3. Monotone Functions 

A function cj) of a single ordinal argument is said to be monotone ifµ< v => 4>(µ) < cj,(v). A function 

of more than one ordinal is said to be monotone if the function is monotone in each of its arguments. 

For each single premiss rule of deduction there is a monotone function 4> such that 4>(µ) is the ordinal 

assigned to its conclusion ifµ is assigned to its premiss. Similarly for each two premiss rule, 

namely either ➔-1. or cut, then there is a monotone function cj) such that cj,( µl, µ2) is the ordinal 

assigned to the conclusion if µl and µ2 are assigned to its premisses. In the case of cut, the function 

is dependent upon the difference h 1 -- h2 in the height h 1 of the premisses of the application and the 

height h2 of the conclusion. 

Let Seq be a sequent in a derivation Derv, and let Seq1, ... , Se<Jk be sequents standing above Seq in 

Derv that satisfy the following condition: Every branch of Derv that begins with Seq has exactly one 

of the sequents Seq1, ... , SC<Ik as an element. Then there is a monotone function cj) of k arguments 

such that if µ1, ... , ~ are the ordinals assigned to Seq1, ... , Se<Jk, then 4>( µ1, ... , µk) is the ordinal 

assigned to Seq. That there is such a function follows from the fact that the composition of 

monotone functions is necessarily monotone in each of its arguments. 
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The next lemma deals with a change that can take place in a derivation Derv when it is transformed 

into a derivation Derv*. Consider a cut of degreed in Derv that is transformed into a cut d* in Derv* 

for which d > d*. Call the cut in Derv simply cut A. Let h2 be the height of the premisses of cut A 

and h3 that of the conclusion where h2 > h3. If h2 = d, then reducing d to d* will reduce h2 to 

max { d*, h3}. This reduction in the height of the premisses of cut A can increase the ordinals 

assigned to its premisses. For let there be a second cut, cut B, standing above cut A with h2 the 

height of its conclusion and hl the height of its premisses. If hl is the degree of cut B, then 

decreasing h2 can increase the ordinal assigned to the conclusion of cut B and therefore increase the 

ordinal of a premiss of cut A. Nevertheless the next lemma demonstrates that the ordinal of the 

conclusion of cut A is decreased by the decrease in h2. 

A cut for which the height of its premisses is the degree of the cut is said to have a height determined 

by its delmX(. Note that no ordinal of a premiss of a cut with height determined by its degree can be 

affected by a decrease in the height of the conclusion of the cut. 

6.1.4. Lemma: 

Let Derv be any derivation. Let Seq be a sequent of height h3 in Derv that is the conclusion of an 

application of cut with premisses of height h2 for which h2 > h3. Let Seq1, ... , SeCbc be sequents 

standing above Seq in Derv that satisfy the following conditions: 

1. Every branch of Derv that begins with Seq has exactly one of the sequents 

Seq1, ... , Se'lk as an element. 

2. Each SC<Ji has height h2. 

3. If there is a branch that has an element that is the conclusion of an application of cut with height 

determined by its degree, then the Secu that is an element of the branch is the first sequent above 

Seq in the branch that is the conclusion of such a cut . 

Let µ1, ... , µk be the ordinals assigned to Seq1, ... , S~ and cj>( µ1, ... , µk) be the ordinal 

assigned to Seq. Let the height h2 be reduced to h2-1, and let µ1 *, ... , µk* be the ordinals assigned 

to Seq1, ... , S~ resulting from this change. Then 

cl>( µ1*, ... , µk*) < cl>( µ1, ... , µk) 

Proof: 

Let the premisses of the cut of which Seq is the conclusion be Seq 1 and Seq 2. Then there are 

monotone functions cj>l and cj,2 and a partition of the set { µ1, ... , µk } of ordinals into disjoint 

subsets { µ1, ... , µm } and { v1, ... , vn } for which 

cj>( µ1, ... , µk) = COa( cj>l( µ1, ... , µm) # cj,2( VI, ... , Vn)) 
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where a = h2- h3. 

Consider now the form of the functions cj>l and ci,2. All sequents between either of Seq 1 and Seq2 

and any Secu are of height h2. Therefore for some ordinals al and 82, 

4>1( µ1, ... , ~) = µ1 # ... # µm # 81 

cj>2( VI, ... , Vn) =VI# ... # Vn # a2 

29 

Consider the relationship between µi* and µi. ff Seqi is the conclusion of an application of cut with 

height determined by its degree, then µi* = 001( µi ); otherwise µi* = µi. It may therefore be assumed 

that the former is the case for each Secu since 4> can be assumed to incorporate the other cases. 

Therefore 

ci,l( µ1*, ... , µm*) = µ1* # ... # µm* #al= 001( µ1) # ... # 001( µm) # al 

ci,2( VI*, ... , vn*) = v1* # ... # vn* # 82 = 001( VI)# ... # 001( Vn) # 82 

The new ordinal ci,( µ1 *, ... , µk*) assigned to Seq after the reduction in height is therefore 

OOa-1( 001( µ1) # ... # 001( µm) #al# 001( VI)# ... # 001( Vo)# 82) 

s; OOa-1( 001( µ1) # ... # 001( µm) # 001( al)# 001( VI)# ... # 001( Vo)# 001( al)) 

<roa-1(001(µ1# ... # µm#v1# ... #vo #81#82)) 

= roa( µ1 # ... # µm # V} # ... #Vo # al # 82) 

= cj>( µ1, ...• µk) 

The first non strict inequality allows for the possibility that al and 82 are absent from the natural sum 

defining the functions ci,1 and ci,2. If they are not absent, the inequality becomes strict because of 

property (4) and other properties of 6.1.1. The first strict inequality follows in particular from 

repeated applications of (6) when 'Y is µ # v. 

End of Proof of Lemma 6.1.4 

If the decrease in the height h2 is greater than 1, the same conclusion may be drawn from repeated 

applications of the lemma. 
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6.2. Transformations Reduce Ordinals 

The following lemma will be proved in this section: 

6.2. Lemma: 
Let Derv be a derivation of the empty sequent and Deiv* a derivation that is obtained from it by 

applying one of the transformations described in 5.1. Then the ordinal of Deiv* is less than the 
' 

ordinal of Deiv. 

Proof: 
The lemma will be proved for each transformation in turn. The numbers (1) - (6) refer to the 

properties of ordinals listed in 6.1.2. 

6.2.1. Thinning-Transformation 

30· 

Consider the cut to be removed from the derivation Deiv. Let the premisses of the cut have ordinalsµ 

and v, whereµ is assumed to be the ordinal of the premiss not removed. The ordinal of the 

conclusion of the cut is COhl-h2( µ # v ), where hl is the height of the premisses and h2 the height of 

the conclusion. 

If h 1 = h2, then the removal of this cut cannot affect the ordinal µ of the remaining premiss in Derv*. 

In this case the ordinal of the sequent in Deiv* that replaces the conclusion of the cut in Derv is µ. 

If hl > h2, then the removal of the cut can affect the ordinalµ. But by lemma 6.1.4 the effect can 

only be to decreaseµ to sayµ*. 

The ordinal of the endsequent of Deiv is cl>( COhI-h2( µ # v) ) for some monotone function cj). But by 

properties (2) and (5) of 6.1.1 it follows that 

cl>(µ*) <cl>(µ) < cl>( COhI-h2( µ # v) ) 

6.2.2. J,. Transformation 

A proof for this case can be adapted from the following case of a \/-transformation. 

6.2.3. \/-Transformation 

This is the case treated in detail by Gentzen. One complication not dealt with by Gentzen arises here 

from the possibility of the degree of an occurrence of a formula changing under a transformation. 

However, the examination of the consequences of this complication will be deferred until after 

lemma 6.2 has been established in this case under the assumption of unchanging degrees. 
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The notation introduced in 5.1.3 is the following: 

hl is the height of the premisses of the cut in Derv, and d its degree 

his the height of the first sequent below the premisses of the cut for which hl > h 

h* is the height of the premisses of the last cut in Derv* and d* is its degree 

dL and dR are the degrees of the top left and top right cuts respectively in Derv* 

The following conclusions were drawn in 5.1.3: 

(1) d.L, dR s; max{d.L, dR} = d 

(2) d* < d 

(3) hl > h* ~ h 

31 

Under the assumption of unchanging degrees, dL = dR = d. Let a and ~ be the ordinals of the 

premiss of the ➔'<I and '<I➔ rules respectively, and let~ be the ordinal assigned to l: 11➔ rr". Then the 

following tree of ordinals indicates the ordinals assigned to other sequents in Derv. 

a. 

a#l 

<j,l(a # 1) 

<j,l(a # 1) # c!>2(~ # 1) 

c!>3(y) 

ffihl-h( c!>3(y) # ~) 

cl>4( ffihl-h( cl>3(y) # ~ ) ) 

where ci>l, ci>2, ci>3 and cj>4. are monotone functions. 

Height• 

hl 

hl 

hl 

h 

0 

Under the assumption of unchanging degrees, the height of the premisses and conclusions of the top 

left and top right cuts in Derv* are the same as those of the cut in Derv. Therefore this tree of 

ordinals is transformed in Derv* into the following: 
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Dervl' 
cj>l( a) 

Derv2 
c!>2<P # t) 

Dervl 
cj>l(a'# 1) 

yL = cj>l(a) # cj>2(P # 1) yR = cj>l(a # 1) # cj>2(P) 

cj>3(yL) 5 cj>3(yR) 5 

yL' = rohl-h*( cj>3(yL) # 5 ) yR' = rohl-h*( cj>3(yR) # 5) 

roh*-h( yL' # yR') 

cj>4( roh*-h( 'YL' # yR') ) 

It is required to prove therefore that 

~(roh*-h( yL' # "(R') ) < ~( roht-h( cj>3(y) # 5) ) 

Since ~ is monotonic, and since 

roht-h( cj>3(y) # 5) = roh*-h( rohl-h*( cj>3(y) # 5) ) 

by property (5) it is sufficient to prove 

yL' # "(R' < rohl-h*( cj>3(y) # 5 ) 

where 

yL' = rohl-h*( c!>3(yL) # 5) 

"(R' = rohl-h*( cj>3("(R) # 5) 

yL = cj>l(a) # cj>2( p # 1 ) 

"(R = cj>l(a # 1) # cj>2(~) 

Note that 

yL, "(R < 'Y 

so that 

cj>3(yL), cj>3("(R) < cj>3(y) 

and therefore 

cj>3(yL) # 5, cj>3("(R) # 5 < cj>3(y) # 5 

Since bl - h* ~ 1, there follows from property (6) that 

rohl-h*( cj>3(y) # 5) # roht-h*( cj>3("(R) # 5) < roht-h*( cj>3(y) # 5) 

as required. 

Derv2' 

c!>2<P> 
Height 
bl 

hl 

hl 

h* 

h 

0 

Now consider the effect on this inequality that may result from the changing of degrees from Derv to 

Derv*, with these changes reflected in changing heights. It is possible that now dL < d or dR < d, 

but not both since d = max{dL, dR}. A decrease in the degree of the top left cut from d to dL, can 

by lemma 6.1.4 however only decrease the ordinal assigned to its conclusion, with such a decrease 

reflected in a decrease of the ordinal of the endsequent 
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6.2.4. {}-Transformation 

In 5.1.4 it was concluded that 

d* =d- 1 

hl* ~hl, 

where dis the degree of the cut in Derv and d* of the cut in Derv*, and hl and bl* the heights of the 

premisses of the cuts in Derv and Derv* respectively. The height of the conclusions of the cuts is h 

in both derivations. 

Let µ and v be the ordinals of the premisses of the cut in Derv and y the ordinal of its conclusion. 

Letµ* and v* be the ordinals of the premisses of the cut in Derv* when hl * is fixed at hl, and let r 
·be the ordinal of its conclusion under the same assumption. Then necessarily 

µ*<µandv*<v 

since applications of ➔ { } and { } ➔ have been omitted. Therefore 

r<r 

Now consider these ordinals when hl * < hl. Let r' be the ordinal of the conclusion of the cut 

when hl * is reduced from hl. By lemma 6.1.4, r' < r", so that r' < y. But the ordinal of the 

endsequent of Derv is q>(y) for some monotone function q>. Therefore cl>(r') < q>(y). 

6.2.5. Axiom-Transformation 

In 5.1.5 it was concluded that dl ~ d2, where dl = deg(Gl, Derv) and d2 = deg(G2, Derv), and 

that therefore the degree of the only cut in Derv* is d2. It was also concluded that the height h2 of 

the conclusion of the second cut in Derv is the height of the conclusion of the only cut in Derv*. Let 

hl be the height of the conclusion of the premisses of the first cut in Derv. Define 

al= max{dl, hl }- bl 

a2 = max{d2, h2} - h2 

Let µ be the ordinal of the first premiss of the first cut in Derv, and v the ordinal of the second 

premiss of the second cut. of this cut The following ordinal tree indicates the ordinals assigned to 

other sequents in Derv and Derv*. 
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µ 1 

cj>( roa1 ( µ # 1)) V 

O)a2( cj>( Ci)al( µ # 1)) # V) • • • 

'If( roa2( cj>( roa1 ( µ # 1)) # v )) 

µ 

V 

roa2( cj>( µ ) # V ) 

'If( roa2( cj>( µ) # v)) 

Here cj> and 'I' are monotone functions. 

It is necessary to prove that 

'I'( roa2( cj>( µ) # v)) < 'I'( roa2( cj>( roa1( µ # 1)) # v)) 

Since 'I' is monotone, it is sufficient to prove 

Ola2( cj>( µ) # V) < Ola2( cj>( CJ>al( µ # 1)) # V) 

By (5) it is sufficient to prove therefore that 

cj>( µ ) # v < cj>( roa1 ( µ # 1)) # v 

But this follows from (2), the monotonicity of cj>, and (4). 

End of Proof of Lemma 6.2 

34 

Given a derivation of the empty sequent, by lemma 5.2 one of the transformations defined in 5.1 can 

always be applied. By lemma 6.2, any one of the transformations will transform the derivation into 

another derivation of the empty sequent, but one with a smaller ordinal number. Since the empty 

sequent is not an axiom of NaDSet, there cannot exist a derivation of the empty sequent. 

End of Proof of Theorem 6.0.1 
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6.3. Omega Consistency 

The proof of theorem 6.0.1 demonstrates that there cannot exist a cr-derivation for any global 

substitution cr. In particular therefore, there cannot exist formulas Gland G2 and a global 

substitution cr for which cr(Gl) is cr(G2) and both ➔ Gland G2 ➔ have cr-derivations. That this is 

a form of 0rconsistency as defined in [Godel31] is evident from the following consequent: For no 

parameter p and term rare both ➔ [p /v] F and [r /v] F ➔ derivable in NaDSet. 
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7. SEMANTICS 

The traditional semantics for classical logics is described in [Tarski36]. It is reductionist in the 

following sense: An interpretation assigns one and only one truth value to each closed atomic 

formula; a closed formula that is not atomic receives a truth value dependant upon the truth values 

assigned to simpler closed formulas. A natural deduction presentation of a logic is reductionist in the 

same sense, as is evident from the logical syntax for NaDSet; the presentation is called "natural" 

because the rules of deduction correspond faithfully to the semantics of the three fundamental logical 

concepts, namely, truth functions, quantifiers and abstraction terms. 

Here a traditional semantics will be provided for NaDSet. However, finite induction no longer 

suffices, and not all closed formulas receive a truth value; for example, the paradoxical formula 

{ u I -u:u } : { u I -u:u } of Russell does not. 

7.1. Interpretim: Atomic Closed Formulas 

The provision of a Tarskian semantics for NaDSet requires first an interpretation of the atomic closed 

formulas. These formulas take the form 

r:PC 

where r is a closed first order term and PC is a second order parameter or constant. Interpretations 

of these formulas are conventional: Given a domain of discourse d, an interpretation assigns an 

object in d to r and a subset of d to PC. The formula is true in the interpretation, if the object 

assigned to r is a member of the subset assigned to PC, and is otherwise false. 

All interpretations of NaDSet have the same first order domain d, consisting of all closed terms in 

which no parameter, first or second order, has an occurrence. The domain D for a given 

interpretation, on the other hand, consists of just some, but not necessarily all, subsets of d. Thus 

an interpetation of NaDSet may be a nonstandard model in the sense of [Henkin50]. 

7.1.1. Definition: Interpretation 

An interpretation consists of a set D of subsets of d, called the domain of the interpretation, and a 

function <l>, called the assie;nment of the interpretation, satisfing: 

• For each first order parameter p, «l>[p] E d; 

• For each second order parameter or constant PC, «I>[PC] E D. 

End of Definition 
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For a given closed first order term r, cl>[ r] is defined to be the term obtained from r by replacing 

every occurrence of a parameter pin r by cl>[p]; note that since r is first order, pis necessarily first 

order, and that constants occurring in rare unaffected. For a given closed first order term r, cl>[r] is 

necessarily a member of d. 

An assignment cl> of an interpretation assigns one and only one of the truth values true or false to 

each closed atomic formula r:PC: It is assigned true if cl>[r] is a member of cl>[PC], otherwise it is 

false. For example, let C be a second order constant and p a first order parameter, and consider the 

following closed atomic formulas: C:C, p:C, and { u I -u=u } :C. Let cl>[C] be the set 

{ C, { u 1-u=u} } and let cl>[p] be { u 1-u=u}. Then cl> assigns true to each of the atomic formulas since 

cl>['C'] is C and Ce cl>[C]; cl>[p] is { u 1-u=u } and { u I -u=u } e cl>[C]; and 

cl>[ { u I -u=u } ] is { u I -u=u } and { u I -u=u } e cl>[C]. Note that in the atomic formula C:C, the 

occurence of 'C' to the left of':' is being mentioned, since the occurrence is a name for itself, while 

the occurrence to the right of':' is being used as a name for the set { C, { u 1-u=u}}. 

7.2. A:zsie:oio2 Truth Values to Nonatomic Formufas 

Here the definitions given in 3.3 for NaDSet* are updated to include the {} rules of NaDSet. As 

with conventional Tarski semantics, truth values are assigned to other closed formulas by induction 

on a measure of the complexity of the formulas. For first order logic the measure is related to the 

degree of the formula, as is evident in definition 3.3.2. But abstraction terms make the conventional 

definition of degree unsuitable for NaDSet. Instead truth values are assigned indirectly through sets 

.a[ cl>, D] of signed formulas defined by transfinite induction, rather than finite induction. A signed 

formula is a closed formula prefixed with a+ or- sign. A formula Fis assigned true if +Fe O[cl>, 

D], and is assigned false if-Fe O[cl>, D]; it is assigned no truth value if +FE O[cl>, D] and +FE 

O[cl>, D]. 

7.2.1. Definition: The Set O[cl>, D] of Signed Formulas 

Given the domain D and assignment cl> of an interpretation, n[ cl>, D] is the set 

u{Oµ[cl>, D] Iµ :2: 0 }, 

where Oµ[cl>, D], abbreviated tonµ, are sets of signed formulas defined inductively for ordinal 

numbersµ,µ~ 0, as follows: 

1. If cl>[r] E cl>[PC], then +r:PC E no, otherwise -r:PC E no. 
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2. Assuming nµ is defined for an ordinal number µ, '2µ+ 1 is the least set satifying: 

u '1µ+1 ::2 nµ 

+.J, -Genµ and-Henµ ⇒ +(G.J,H) e '2µ+1 

-.J, +Ge nµ or +H e nµ ⇒ -(G.J,H) e '2µ+1 

Let G be a formula in which u is the only variable with a free occurrence. 

+Ir/ Let p be a first or second order parameter not occurring in the formula G, and let 

+[p/u]G e nµ[cl>', D] for every assignment ct>' that differs from cl> only in the value 

of cI>[p]. Then +'vuG e '2µ+1· 

-Ir/ For any closed term r, -[r/u]G enµ ⇒ -'vuF e '2µ+l· 

Let G be a formula in which only the variables in the sequence .u. of distinct variables has a 

free occurrence, and let r be a sequence of closed terms of the same length as .u,. 

±{} ±[Ll.uJG e '2µ ⇒ ±[I/.u]t: { t I G} E '2µ+1· 

3. For a limit ordinal v, nv is u{nµ Iv>µ~ 0} 

End of Definition 7.2.1 

Since there are only denumerably many signed formulas, necessarily Ov+1[c1>, D] is Ov[<l>, D] when 

Vis E{). 

Without the clauses±{}, the definition could be given in terms of finite induction, as in definition 

3.3.2, and the resulting set Q(cl>, D] would be consistent in the sense that for no closed formula Fis 

both +F and -F members of O[cl>, D]. With these clauses, however, not every set O[<l>, D] need be 

consistent. 

7.2.2. Definition: Consistent Interpretation 

An interpretation with domain D and assignment cl> is said to be consistent if for no closed formula F 

is both +F and-F members ofQ[cl>, D]. 

There are interpretations that are not consistent. For example, let D have di and { c} as its only 

members, where c is a first order constant, and let cl> be any assignment. Then both +'vy c:y and 

-'vy c:y are in O[cI>, D]. For let P be a second order parameter. Necessarily +c:P e n[ <l>, D] and 
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+c:P e n[ ct>'. D] for every assignment cl>' differing from ct> only in the value of <l>[P]; therefore the 

premiss of clause +'v' is satisfied and +'v'y c:y e O[ct>, D]. But +c=c e O[ct>. D]. so that 

--c=e e n[c1>, D] and therefore -c:{x 1-x=x} e n[ct>, D] and hence -'v'y c:y e n[<l>, D]. 

The source of the contradiction here is the incompleteness of D; it does not have sufficiently many 

subsets of d as members. Using the terminology of [Henkin50], the inconsistent interpretation is a 

frame that is not a general model. By adapting the methods described in [Henkin49] and using the 

result of§ 6 that the empty sequent is not derivable in NaDSet, consistent interpretations of NaDSet 

are constructed in§ 8. 

There are inconsistent interpretations for first order logic, namely those in which an atomic formula 

is assigned both true and false, but they, like the inconsistent interpretations of NaDSet are not of 

interest 

7.3. Satjsfiabjlity and Validity 

A sequent r ➔ 8 is satisfied by an interpretation with domain D and assignment ct>, if for some 

formula F, 

Fer and-Fe O[<l>, D], or Fe 8 and +Fe n[ct>, D]; 

that is. one of the premisses in r is false, or one of the conclusions in 8 is true. 

Because there exist inconsistent interpretations, a sequent cannot be said to be valid if it is satisfied 

by every interpretation; rather, it is said to be weakly valid. It is said to be valid only if it is satisfied 

by every consistent interpretation. 

It may be suprising that the following theorem can be proved, given the existence of inconsistent 

interpretations. But the corresponding theorem for first order logic is also provable. 

7.3.l. 
Proof: 

Theorem: A sequent derivable without the use of cut is weakly valid. 

Since each axiom of NaDSet is weakly valid, it is sufficient to prove of each rule of deduction that if 

there is an interpretation in which the conclusion of the rule is not satisfied, then there is one in 

which at least one of its premisses is not satisfied. For each rule D will be assumed to be the 

domain and ct> the assignment of an interpretation which does not satisfy the conclusion of the rule. 
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➔J.. Let the conclusion r, .1 ➔ (GJ..H), 8, A of this rule be not satisfied in the interpretation. 

Then for every F 

Fe r, .1 ⇒ -Fe O[cl>, D] and Fe (GJ..H), 8, A=> +Fe O[cl>, D] 

But 

+(GJ.H) e O[cl>, D] =>-Ge O[cl>, D] or-He O[cl>, D] 

Hence, either for every F 

Fer, G ⇒ -Fe O[cl>, D] and Fe 8 =>+Fe O[cl>, D] 

or for every F 

Fe!!., H ⇒ -Fe O[cl>, D] and Fe A ⇒ +Fe O[cl>, D] 

Therefore one of the premisses r, G ➔ 8 or r ➔ -G, 8 of the rule is not satisfied by the 

interpretation. 

J,➔ A similar argument suffices in this case for each of the rules of deduction. 

➔ \7' Let the conclusion r ➔ \7'uG, 8 of this rule be not satisfied in the interpretation. Then for 

every F 

Fer ⇒ -Fe O[cl>, D] and Fe \7'uG, 8 ⇒ +Fe O[cl>, D] 

But 

+'v'uG e O[cl>, D] ⇒ +[p/u]G e O[cl>', D] 

where cl>' is some assignment that differs from cl> only in the value assigned to cl>[p]. Since 

p does not occur in any formula of r or 8, it follows that for every F 

Fer ⇒ -Fe O[cl>', D] and Fe [p/u]G, 8 =>+Fe O[cl>', D] 

Hence the premiss of the rule is not satisfied by cl>'. 

\7'➔ Let conclusion r, \7'uG ➔ 8 of this rule be not satisfied in the interpetation. Then for 

every F 

Fer, \7'uG =>-Fe O[cl>, D] and Fe 8 ⇒ +Fe O[cl>, D] 

But 

-\7'uG e O[cl>, D] ⇒ -[r/u]G e O[cl>, D] 

Hence for every F 

F e r, [r/u]G ⇒ -F e n[ cl>', D] and F e 8 => +F e n[ cl>', D] 

and the premiss of the rule is not satisfied by cl> 
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➔ { } Let the conclusion r ➔ II /.u]t: { t I G}, 8 of this rule be not satisfied in the interpetation. 

Then for every F 

Fer ⇒ -Fe: n[w, D] and Fe fI/.u]t:{t I G}, 8 ⇒ +Fe: O[<l>, D] 

But 

+!I /.u]t: { t I G} e: n[ <l>, D] ~ +!I /.u]G e: n[ <l>, D] 

Hence for every F 

F e r ⇒ -F e: n[ <1>', D] and F e II /.uJG, 8 ⇒ +F e: n[ <1>', D] 

and the premiss of the rule is not satisfied by <I> 

{ } ➔ This case is similar to the previous. 

End of Proof 

Cut must be excluded from the derivations of theorem 7.3 .1 because inconsistent interpretations 

exist. But the following theorem is easily proved: 

7.3.2. Theorem: Every sequent derivable in NaDSet with cut is valid. 

Proof: 

It is sufficient to prove that cut preserves validity. Let D be the domain and <I> the assignment of a 

consistent interpretation which does not satisfy the conclusion r, L1 ➔ 8, A of this rule. Then for 

every F 

Fer, L1 ⇒ -Fe: .0[<1>, DJ and Fe 8, A ⇒ +Fe: .O[<I>, D] 

But if both of the premisses are valid, then necessarily 

-G e .a[ w, DJ and +G e n[ <I>, D] 

which is not possible for a consistent interpretation. 

End of Proof 

The converse of 7 .3.2, the completeness theorem for NaDSet, is proved in the following section. 

8. COMPLETENESS 

Since by theorem 6.0.1 the empty sequent is not derivable in NaDSet with cut, there are sequents 

that are not derivable. Indeed, for every pair of sequents ➔ G and G ➔, at least one of them is 

necessarily not derivable in NaDSet with cut. 

Given a sequent that is not derivable, a method will be described for constructing a consistent 
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interpretation which does not satisfy it. But not only will the completeness theorem for NaDSet be 

proved, but also the redundancy of the cut rule of deduction. For this reason attention will be 

focused first on NaDSet without cut. Unless otherwise stated, in this section a sequent is said to be 

derivable, or not derivable, if it has, or has not, a derivation within NaDSet in which no application 

of cut is made. 

8.1. Consistent Sets 

In this subsection only a restricted set of closed formulas will be considered, namely those in which 

no first order parameter occurs; here they will be referred to simply as restricted formulas. Similarly 

by a restricted tenn is meant a closed term in which no first order parameter occurs; note that a 

restricted first order term is a member of d Focusing on restricted formulas and terms assists in the 

construction of consistent interpretations. 

Given a finite set I: of signed restricted formulas, +I: is a sequence of all the formulas F for which 

+Fis in I:, while -I: is a corresponding sequence of all the formulas F for which-Fis in I:. By 

fixing on an order for the sequences +I: and -I:, a sequent +I: ➔ -I: is determined by I:. 

8.1.1. Definition: Consistent Sets of Signed Restricted Formulas 

A finite set of signed restricted formulas I: is consistent if the sequent +I: ➔ -I: is not derivable, and is 

cut-consistent if it is not derivable in NaDSet with cut. An infinite set of signed restricted formulas is 

(cut-) consistent if every finite subset of it is (cut-)consistent. 

The following definition has been adapted from [Henkin49] 

8.1.2. Definition: A (cut-)consistency completion I:* (c.I:*) of I: 

Let I: be a finite consistent set of signed restricted formulas. A (cut-)consistency completion I:* (cl:*) 

of I: is any set 

u{l:i Ii~ O} 

where the sets Li are defined, together with sets ~i, as follows: 

1. Io is I:, and 

.1() is the empty set. 

2. Let I:i and ~i be defined. 

a) If there is no formula of the form -'v'vG in~ - ~i, then .I:\+i is l:i. 

Otherwise, let -'v'vG be the first formula in Li - ~i in a given ordering of the formulas of 
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the form -'vvG. Then 

t\i+ 1 is t\i u { -'vvG } and 

l:'i+l is l:j_ u {-[c/v]G, -[P/v]G}, 

where c is a first order constant and P a second order parameter not occurring in l:j. 

b) Let sF be a signed restricted formula for which sF E l:\+1 and I:\+1 u {sF} is 

(cut-)consistent. Then l:i+1 is I:'i+l u {sF}. 

End of Definition 8.1.2. 

Necessarily I:* and c.1:* are sets of signed restricted formulas since I: is such a set and only signed 

restricted formulas are added to l: in the formation of I:* or c1:*. 

8.1.3. Theorem: 

Let I: be a finite (cut-)consistent set of signed restricted formulas, and .t* a (cut-)consistency 

completion of it Then .t* has the following properties: 

0.1. .t* is ( cut-)consistent 

0.2. For no atomic formula A is +A e I:* and-A e .t* 

1.1. +(GJ.H) e l:* ⇒ -G e l:* and -H e .t* 

1.2. 

2.1. 

2.2. 

3.1. 

3.2. 

Proof: 

0.1. 

-(G-1..H) e I:* ⇒ +G e .t* or +H e l:* 

+'vvG e I:* ⇒ +[r/v]G e .t* for every restricted term r. 

-\t'vG e I:* ⇒ -[c/v]G e .t* and-[P/v]G e I:* for some first order constant c, and some 

second order parameter P. 

+u: / .u]t: { t I G} e 1:* ⇒ +Cr.I .u]G e 1:* · 

-[l: I .u]t: { t I G} e .t* ⇒ -[I/ .u]G e .t* 

It is sufficient to consider the case of consistent sets, since the case of cut-consistent sets is 

similar. 

If l:* is not consistent, then for some i, i :2:: 0, ki+l is not consistent, since.tis consistent. 

Let i be the smallest index for which l:i+1 is not consistent. If .t'i+l is l:j then .t\+1 is 

consistent. Assume, therefore, that I:\+1 is not l:j. Let -'vvG be the first formula in 

l:j_- t\i, so that l:'i+l is l:j u { -[c/v]G, -[P/v]G }, where c is a first order constant and Pa 

second order parameter not occurring in l:j. Necessarily I:'i+l is consistent since 

otherwise +l:j_ ➔ -I:i, [c/v]G, [P/v]G would be derivable, and therefore by lemma 3.2.4 

also +l:j ➔ -l:j, [p/v]G, [P/v]G, where pis a first order parameter not occurring anywhere 
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in the derivation of +l:i ➔ -1:i, [c/v]G, [P/v]G. Two applications of ➔'v and applications of 

contraction and possibly interchange would result in +l:i ➔ -1:j_ being derivabable, 

contradicting the consistency of l:j_. But if :r.\+1 is consistent, so also is l:i.+1 by definition. 

0.2. Since A ➔ A is an axiom, +A e I:* and -A e I:* would contradict 0.1. 

1.1. If-GE ::r.*, then for some i, +l:j_ ➔ -1:j_, G is derivable so that one application of J..➔ yields a 

derivation of +I:i, (GJ..H) ➔ -1:j_. Therefore +(GJ..H) E :r.*. A similar argument applies if 

-HE ::r.*. 

1.2. If +GE :r.* and +He :r.*, then for some i, both +Li, G ➔ -Li_ and +l:j_, H ➔ -Li_ are 

derivable so that one application of ➔J.. yields a derivation of +I:i ➔ -Li_, (GJ..H). 

Therefore -(GJ..H) e I:*. 

2.1. +If [r/v]G e I:* for some restricted term r, then for some i, +I:i, [r/v]G ➔ -I:i is derivable 

so that one application of 'v➔ yields a derivation of +l:j_, 'vvG ➔ -1:j_. 

Therefore +'vvG E I.*. 

2.2. Let -'vvG e I.*, and let i be the smallest index for which -'vvG e l:j_. Then for some j, i ~ j, 

-v'vG is the first formula of that form that is in l:_j- ~j· Hence, 

:r.'j+l is :I.ju { -[c/v]G, -[P/v]G}, for some first order constant c, and some second order 

parameter P. 

3.1. +If [r / .uJG e: .I:*, then for some i, +l:i_, [r / ll]G ➔ -I:i is derivable so that one application 

of {}➔ yields a derivation of +l:j_, (r/ .u]t:{t I G} ➔ -1:j_. Therefore +[r / .u]t:{t I G} e ::r.*. 

3.2. If -[I./ J.l]G E I:*, then for some i, +I:i ➔ -I:i, [r / ll]G is derivable so that one application 

of ➔{} yields a derivation of +I:i ➔ -1:j_, [r/ ll.]t:{t I G }. Therefore -(r/ .u]t:{t I G} e :r.*. 
End of Proof of Theorem 8.1.3 

Corollary: 

Let .I: be a finite cut-consistent set of signed restricted formulas, and c:r,* a cut-consistency completion 

of it. Then for every restricted formula F, at least one of +For-Fis in ci;*. 
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Proof: Let +F i c:i:* and -F i c:i:*. Then for some i, both +l:i, F ➔ -1:i and +l:i ➔ -1:i, F are 

derivable in NaDSet with cut. From cut, interchange and contraction it follows that +:Ei ➔ -:Ei is 

derivable with cut, contradicting the cut-consistency of l:i-

End of Proof of Corollary 

This property ofc:i:* depends upon the fact that cut-consistency completion is defined for NaDSet 

with cut. From the next theorem it will be possible to conclude that it is also a property of 

consistency completions defined for NaDSet without cut 

8.1.4. Theorem: 

Let l: be a finite cut-consistent set and let .t* be a consistency completion of it. Then there is a 

cut-consistency completion c:i:* of l: for which l:* .:2 c.t*. 

Proof: 

Define cr.o to be r.o to be .l:, and c.i1o to be .1Q to be the empty set. :E* is u{.l:i Ii~ 0}, where sets Li 

and di, i > 0, have been chosen to satisfy part (2) of definition 8.1.2. It is sufficient to find sets cl:i 

for which u{c.l:i Ii~ 0} is a cut-consistency completion of :E and for which :Ej .:2 c:Ei_, for i ~ 0. While 

defining such sets, sets cdi, i > 0, will also be defined for which di :2. cdi. 

Consider now .l:i+1, cLi+l, di+l, and cdi+l• 

a) If .l:\+i is l:i, or if .l:\+i is not :Ej and -'v'vG is not in c:Ej - cdi, then define c1:\+i to be c:Ej 

and cdi+l to be cdi. Otherwise, if -'v'vG is in c.l:i - cdi, define c1:'i+l to be 

cl:i u {-[c/v]G, -[P/v]G} and cdi+l to be cdi u {-'v'vG }. 

b) If Li+l is :E'i+l u {sF}and c.1:\+i u {sF} is cut-consistent, then cLi+l is ci:\+1 u {sF}; 

otherwise cl:i+1 is c.1:'i+l· 

It follows from these definitions that .l:i+1 .:2 cLi+l and di+l .:2 cdi+l• 

It is now necessary to prove that u{c:Ej Ii~ 0}is a cut-consistency completion of .t. The sequence of 

sets c.l:i is transformed as follows: 

i) If cLi+l is cl:i, then cLi+l is dropped. 

ii) Consider the remaining sets and consider the first set c.l:i+t for which ci:\+i is c:Ej but for 

which -'v'vG is in c:Ej- cdi for some formula of that form. For some j, j ~ i+l, c1:'j+l is 

c:Ej u {-[c/v]G, -[P/v]G }, where c and P do not occur in c:Ej or in G and cdj+l is 
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cAj u {-'v'vG }~ Redefine cI:'i+l to be cl:i u {-[c/v]G, -[P/v]G}, cAi+l to be 

ci:\i u {-'v'vG }and cAj+l to be ci:\j, If as a consequence cI:j+l is cI:j, then drop cI:j+l· 

iii) Consider the remaining sets and consider the first set cl:i+1 for which cI.\+1 is not cl'.i, 

but for which cl'.i+I is cI.\+i • For some j, j ~ i+ 1, cl'.j+l is cI:'j+l u {sF}, where 

cI:J+l u {sF} is cut-consistent, and sF E cl:i, Redefine cI:\+1 to be cl:i u {sF}, and 

c1:_;+1 to be c1:j, If as a consequence cI:j+l is cI.j, then drop cI:j+l· 

The resulting sequence of sets satisfies the conditions of definition 8.1.2. 

End of Proof of Theorem 8.1.4 

The following corollary follows immediately from the corollary to theorem 8.1.3. 

Corollary: 

Let I. be a finite cut-consistent set of signed restricted formulas, and I.* a consistency completion of 

it. Then for every restricted formula F, at least one of +For-Fis in I:*. 

8.2. Consistent Interpretations 

Let I. be a finite consistent set of signed restricted formulas and I:* a consistency completion of it. 

For each second order parameter or constant PC, p[:E* ,PC] is the subset of d consisting of those 

restricted first order terms r for which +r:PC e I:*. 

8.2.1. Definition: An interpretation determined by t* 

An interpetation with domain D consisting of all the sets p[t* ,PC], and an assignment <l> for which 

<l>[PC] is p[I:*,PC], is said to be determined by I:*. The value of <l>[p] for a first order parameter p 

may be any member of d. 

The notation <l> 1 [ ±F] is used to denote the signed restricted formula obtained from a signed closed 

formula ±F by replacing each occurrence of a first order parameter pin F by <l>[p]. 
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8.2.2. Theorem: 

Let I: be a finite consistent set of signed restricted formulas and I:* a consistency completion of it. 

Let D be the domain and <ll the assignment of an interpretation determined by I:*. Then for all 

restricted formulas F and all ordinals µ, 

+F e Oµ[ Cl>, D] ⇒ Cl> 1 [-F] e I:* 

-Fe Oµ[Cl>, D] ⇒ Cl>l[+F] e I:* 

Proof: 

Throughout the proof, Oµ[Cl>, D] will be abbreviated by Oµ. The proof will be by induction onµ. 

The case µ=0 follows immediately from the definition of .Qo. Assume therefore that the conclusion is 

true for µ, µ ~ 0, and consider the possibilities for F for the case µ+ 1. 

Fis (GJ.H). 

+(GJ.H) e Oµ+l - Oµ ⇒ -G e Oµ and -H e nµ by definition, 

⇒ «I>l[+G] e: I:* and «l>l[+H] e: I:* by induction. 

«l>l[-(GJ.H)] e I:* ⇒ «l>l[+G] e I:* or «I>l[+H] e I:* by 1.2 of theorem 8.1.3. 

Hence «I>l[-(GJ.H)] e: I:*. 

-(GJ.H) e Oµ+l - Oµ ⇒ +Ge Oµ or +He Oµ by definition. 

⇒ cl> 1 [-G] e: I:* or cl> 1 [-H] e I:* by induction. 

<lll[+(GJ.H)] e I:* ⇒ «I>l[-G] e I:* and «l>l[-H] e I:* by 1.1 of theorem 8.1.3. 

Hence «I>l[+(GJ.H)] e I:*. 

Fis v'uG. 

+v'uG e Oµ+l - Oµ ⇒ +[q/u]G e nµ[«l>', D] for every assignment cl>' that differs from cl> 

only in the assignment to the parameter q not occuring in G; by definition. 

<lll[-v'uG] e I:* ⇒ <I>l[-[c/u]G] e I:* and Cl>l[-[P/u]G] e I:*, for some first order constant c 

and second order parameter P, by 2.2 of theorem 8.1.3. 

Let «l>'[q] be c, if q is first order, and let it be «l>[P], if q is second order. 

Then +[q/u]G e nµ[<ll', D] ⇒ +[c/u]G e Oµ[«l>', D], if q is first order and 

⇒ +[P/u]G e Oµ[ cl>', D], if q is second order. 

By the induction assumption, therefore, either 

«I>'l[-[c/u]G] e: I:* or ci>'l[-[P/u]G] e I:*. But since Cl>' differs from cl> only in the 

assignment to the parameter q not occuring in G, q, 1[-[c/u]G] is Cl>l[-[c/u]G] and 
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ci,'1(-[P/u]G] is clll[-[P/u]G]. Hence '1ll[-'v'uG] e I:*. 

-'v'uG e '2µ+1 - '2µ 

clll[+'v'uG] e I:* 

=> -[r/u]G e Oµ, for some closed term r, by definition 

=> cll l [ +[ r/u] G] e; I:* by induction. 

=> [+cll[r]/u]clll[G] e I:*, by 2.1 of theorem 8.1.3. 

=> clll[+[r/u]G] e I:* 

Hence '1> 1 [ +'v'uG] e I:*. 

F is [I/ .u.]t: { t I G} 

+[I/ .u.]t: { t I G} e Oµ+ 1 - Oµ => +[I/ .u.]G e .aµ, by definition 

=> -[I/ .u.]G E I:* by induction. 

-[I/ .u.]t: { t I G} e I:* =>-[I/ .u.]G e I:* by 3.2 of theorem 8.1.3. 

Hence -[I/ .u.]t: { t I G} e I:*. 

-[I/ .u.]t: { t I G} e Oµ+l - Oµ => -[[ / .u]G e Oµ, by definition 

=> +[I/ lllG e I:* by induction. 

+[I/ .u.]t: { t I G} e I:* =>+[I/ .u.]G e I:* by 3.1 of theorem 8.1.3. 

Hence +[I/ .u.]t: { t I G} e I:*. 

End of Proof of Theorem 8.2.2. 

The following corollary follows immediately from the corollary of theorem 8.1.4. 

Corollary 1: 

The interpetation with domain D and assignment '1> is consistent. In particular, for all closed 

formulas F, 

+Fe O[«l>, D] =>«l>l[+F] e I:* and«l>l[-F] EI:* 

-Fe O[«l>, D] => '1>1[-F] e I* and«l>l[+F] e I:* 

Corollary 2: The Completen~ Theorem 

48 

If r ➔ 8 is not derivable, then there is a consistent interpretation in which r ➔ 8 is not satisfied. 

Proof: 

Let p1, ... , Pn be all the first order parameters with occurrences in r ➔ 8 and let c1, ... , Cn be 

distinct first order constants distinct from any such constants with occurrences in r ➔ 8. Let r', 
respectively 8', be obtained from r, respectively 8, by replacing each occurrence of Pi in their 

formulas by ci, for i = 1, ... , n. Let I: consist of the formulas of r' with+ signs and the formulas of 

8' with - signs. Since by lemma 3.2.4, r' ➔ 8 1 has no derivation, I: is consistent. Let I:* be a 



Consistency & Completeness ofNaDSet (7-) August 29, 1991 49 

consistency completion of it. Let D be the domain and ell the assignment of an interpretation 

determined by l:* satisfying the additional condition that ell[pi] is ci, for i = 1, ... , n. Then for all F 

Fe r ~ elll[ +F] e l:* ~-Fe, O[ ell, D], and 

Fe 8' ~ ct>l[-F] e l:* ~+Fe, .O[ell, D]. 

Therefore r ➔ 8 is not satisfied by the interpretation. 

End of Proof of Corollary 2 

Corollary 3: Redundancy of Cut 

Proof: 

Let r ➔ 8 be the sequent of corollary 2 that is not derivable in NaDSet without cut. Then it cannot 

be derivable in NaDSet with cut, since every sequent derivable with cut is satisfied by every 

consistent interpretation, including the interpretation constructed in the proof of corollary 2. 

End of Proof of Corollary 3 

8.2.3. Standard Interpretations & Godel Incompleteness 

A standard interpretation is one for which D consists of all the subsets of d. It is natural to ask if 

standard interpretations are consistent A positive answer to the question is not difficult to supply. 

Extend the elementary syntax of NaDSet to admit a distinct second order constant for each subset of 

di, but restricting these new constants, as the second order parameters are restricted, to being second 

order terms only so that a term in which one of them occurs is necessarily second order. Let ell be 

any assignment that assigns to each of the new constants C the subset that prompted its introduction. 

Let :Ebe the set of all signed closed atomic formulas ±r:C, for which respectively r e ell[C] and 

r E ell[C]. l: is consistent as is therefore the interpretation by corollary 1 of theorem 8.2.2. 

NaDSet satisfies the assumptions of Godel's Incompleteness Theorem [Godel31] since second order 

arithmetic can be developed within it [Gilmore89], despite the fact that a completeness theorem has 

been proved for it. The remarks made by Henkin in [Henkin50] concerning his completeness 

theorem for the simple theory of types apply here also: The true but unprovable formula constructed 

in Godel's proof of incompleteness is true for all standard interpretations of NaDSet , while it may 

be true or false in an arbitrary consistent interpretation. 
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9. CANTOR'S LEMMA 

In [Gilmore89] Cantor's lemma was taken to be: 

For each enumeration P of sequences of O's and l's, there is a sequence not enumerated by P. 

The correctness of the general form of Cantor's diagonal argument used to prove this lemma was 

denied since the argument involves an abuse of use and mention. The question as to whether 

Cantor's lemma could nevertheless be proved in NaDSet remained open. Using the method of 

semantic trees, a variant of the method of semantic tableaux of [Beth55], a consistent interpretation is 

constructed below which does not satisfy Cantor's lemma. 

Using the definitions of [Gilmore89], 0 is defined to be { u I -u=u}, the successor t' of t to be 

{u I u=t}, the set N of nonnegative integers to be {u I 'v'z(O:z" ('v'x (x:z => x':z)) => u:z), 1 to be O', 

Nl to be { u' I u:N}, and Bit to be { u I u=O v u=l}. The set Sq of sequences of O's and 1 's can then 

be defined: 

Sq for {z I ['v'n:Nl][3u:Bit](<n,u>:z" ['v'v:Bit](<n,v>:z => v=u))}. 

Extensional identity =ei between sequences was defined to be: 

=e2 for { <x,y> I ['v'u:Nl]['v'v:Bit]( <u,v>:x = <u,v>:y)}, 

where = expresses material equivalence, or "if and only if'. A term m that is an enumeration of 

sequences of O's and l's satisfies M[m], which is defined: 

M[m] for ['v'n:Nl][3x:Sq](<n,x>:m" ['v'y:Sq](<n,y>:m => y=e2x)) 

Thus the set Map of all such enumerations is defined: 

Map for {z I M[z]} 

A proof of Cantor's lemma within NaDSet is therefore a derivation of the sequent: 

➔ ['v'z:Map][3x:Sq]['v'n:Nl] -<n,x>:z 

If that sequent is not derivable, then the set I. with the single member 

-['v'z:Map ][3x:Sq]['v'n:Nl] -<n,x>:z 

is consistent and a consistency completion I.* of the set will yield a consistent interpretation which 

does not satisfy the sequent. The method of semantic trees obtained from [Beth55] essentially 

attempts to construct a consistency completion with respect to an enumeration that is determined by 

the signed formulas in the tree. Should the tree fail to close, that is, should the original sequent be -

not derivable, then an open branch of the tree determines a consistency completion. 

Consider the following incomplete semantic tree, where' .. .' indicates that a branch of the tree can be 

extended: 
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-['v'z:Map][3x:Sq]['v'n:Nl] --<n,x>:z) 

-(M[P] ::> [3x:Sq]['v'n:Nl] -<n,x>:P)) [Pnew] 

+M[P] 

-[3x:Sq]['v'n:Nl] --<n,x>:P 

-(C[PJ:Sq" ['v'n:Nl] --<n,C[PJ>:P) 

-C[PJ:Sq -['v'n:Nl] -<n,C[PJ>:P) 

-(c:Nl ::> -<c,C[P]>:P) 

+c:Nl 

-<c,C[P]>:P 

+<c,C[PJ>:P 
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[c new] 

The first signed formula, which is the root vertex of the tree, is the single member of :E. The second 

is one of the two signed formulas that should be added because of part (2) of definition 8.1.2; the 

other should be the same formula with the new second order parameter P replaced by a new first 

order constant c. The latter is not added because <n,t >:c cannot be atomic for any term t, and it 

cannot be a member of n[cl>, D] for any interpretation, consistent or not. The formulas +M[P] and 

-[3x:Sq]['v'n:Nl] -<n,x>:P are added next because of the formula appearing before them and the 

meaning of::>: G::>H is false only if G is true and H is false. The next formula appearing just above 

the horirontal line is an instantiation of the existential quantifier appearing in the formula above it; the 

existentially quantified variable has been instantiated with an unspecified term C[P] which may be 

any closed term by part 2.1 of theorem 8.1.3. The horizontal bar indicates a branching of the tree 

resulting from the meaning of": GAD is false only if one of G or H is false. The left branch need 

not be considered further; the right branch is constructed in the same manner as before. Again only 

one of the formulas required by part (2) of 8.1.2; namely the one introducing a new first order 

constant c; the one introducing a new second order parameter, say Q, is ignored because again 

<Q,C[P]>:P could not be atomic nor a member of Q[cl>, D] for any interpretation. 

Consider now the possibilities for C[P]. A proof of Cantor's lemma using Cantor's general diagonal 

argument defines C[P] to be { <n,b> I ['v'x:Sq](<n,x>:P ::> ['v'v:Bit](<n,v>:x::::, -v=b))}. But when 

C[P] is so defined <c,C[P]>:P is not atomic nor a member of n[ cl>, D] for any interpretation. For 

C[P] is not first order, since P occurs in it, and therefore <c,C[P]> is not first order. 

Is it possible that C[P] could be replaced by some first order term, say t, and have both branches of 

the tree close? If that were the case, then a derivation of the sequent ➔ t:Sq" ['v'z:Mp]['v'n:Nl] 

-<n,t>:z) could be provided. But that is clearly not the case since a derivation of ➔ FB:Map is 
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provided in§ 6.3.1 of [Gilmore89] for a particular term FB. FB enumerates the sequences 1, 0, 0, 

0, ... ; 1, 1, 0, 0, ... ; 1, 1, 1, 0, ... ; .... But FB can be modified to FB' that enumerates t first 

before it enumerates the given sequences. It will then be possible to derive ➔ FB':Map and 

➔ <l,t >:FB', but also ➔ -<l,t >:FB'. 

Therefore the sequent 

➔ ['v'z:Map][3x:Sq]['v'n:Nl] -<n,x>:z 

is not derivable in NaDSet; i.e., Cantor's lemma in its usual interpretation is not provable in NaDSet. 

However, as noted in [Gilmore89], an intuitionistic or constructive interpretation is derivable: The 

Turing computable real numbers cannot be Turing enumerated. The wide acceptance of the 

non-constructive interpretation of Cantor's lemma may be due to the incontrovertible nature of the 

constructive lemma. 
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