
Fast Load Balancing on a PRAM

by

Joseph Gil

Technical Report 91-14
June 1991

Department of Computer Science
University of British Columbia

Vancouver, B.C.
CANADA V6T 1Z2

Fast Load Balancing on a PRAM

Joseph Gil •t

The University of British Columbia
Email: yogi~cs. ubc. ca

January 1991

Abstract
We consider the following problem: n processors of a PRAM are given n indepen-

dent tasks. Each task can be executed in constant time by a single processor. The
distribution of tasks among the processors is unknown; each processor has information
only about its set of tasks. The batch execution problem is to reschedule the tasks so
that quickest execution of all the tasks will be achieved. Ignoring the overhead required
for determining the redistribution pattern and the redistribution time itself, the tasks'
execution can be done in O (1) time. Thus the batch execution problem captures a
basic cooperation obstacles of the PRAM model.

This paper solves the batch execution problem by using a novel object dispersal
idea for crafting a load balancing algorithm (as well as several extensions): the load
balancing algorithm moves tasks between the processors and outputs in an almost
even distribution, i.e., when the algorithm completes its run, each processor has O (1)
tasks. The total run time is O (log log n) with overwhelming probability. The algorithm
and the techniques presented are expected to serve as useful building blocks in the
design of other efficient parallel algorithms. Particularly, the load balancing algorithm
can be employed as a general tool for achieving optimal speedup, and for eliminating
scheduling difficulties from parallel algorithms.

•Part of this research was done while the author was at the Hebrew University of Jerusalem.
fResearch supported in part by the Leibniz Center for Research in Computer Science, Jerusalem, Israel.

1 Introduction

In recent years considerable research has been devoted to CRCW-PRAM algorithms which
run in less than log n/ log log n time. Those algorithms are particularly interesting as they
highlight and characterize problems which can be solved without counting (such problems
are sometimes called "highly parallelizable" see [2]). One useful tool for evading the counting
barrier is the usage of randomness to approximate quantities, as was done by Willard [19]:
using a single concurrent-write memory cell, the number of participants in a game, n, can
be estimated to within a constant factor after O (log log n) rounds. A question that arises
here is whether there are other "counting" problems which can benefit from randomization.
This paper shows how to utilize randomization to give an approximate solution for the batch

execution problem which was previously solved using the prefix sum algorithm:
THE BATCH EXECUTION PROBLEM

Before: m independent tasks are distributed in an unknown way among n
processors of a PRAM, and each task can be executed in constant time
by a single processor. Each processor has information only about its set of
tasks.

After: All tasks are executed.
The batch execution problem occurs naturally in the design of parallel algorithms: Cole

and Vishkin [6, 8, 7] pointed out the rescheduling difficulty in the general accelerating
cascades algorithmic technique. Chlebus, Diks, Hagerup and Radzik (4, 5] encountered the
same problem in the design of their sub logarithmic simulations between the CRCW-PRAM
models. The lower bounds set by Gil, Meyer auf der Heide and Wigderson [14] show that
efficient batch execution is the principal bottleneck in reducing the time of creating a linear
size hash table for n keys from O (log log n) to O (log* n). Generally speaking, the batch
execution problem occurs in converting algorithms which operate on an abstract model of
computation (such as the parallel comparisons model) into PRAM algorithms.

By examining the problem we find that it has two major components: work redistribution
and task execution. If the number of tasks is much larger than the number of processors,
then the execution time dominates the redistribution time. If m = n log n then the execution
time is at least log n, and the standard parallel prefix sum algorithm [11] can do the work
redistribution in O (log n) time. The problem becomes more challenging as m approaches
n, if optimal speedup must be preserved. If m = nlog n/ log log n then the sophisticated
0 (log n/ log log n) time optimal prefix sum algorithm of Cole and Vishkin [9] should be used
for work redistribution.

Clea'rly, the most interesting case is m = n: in this case the actual task execution time
can be constant, and the communication and cooperation difficulties manifest themselves in
the run time of the algorithm. Let us therefore concentrate on the following object balancing
problem

THE OBJECT BALANCING PROBLEM

1

Before: m objects are distributed in an unknown way among n processors of a
PRAM. Each processor has information only about its set of objects.

After: The same objects are redistributed among the same processors. and there
is a constant C such that each processor has at most Cm/n objects.

The above does not define exactly how objects are represented. Assume that the repre
sentation is such that processors can manipulate sets of objects in one time step, (a more
precise statement of this assumption is given later). If the objects are tasks then the problem
is referred to as the load balancing problem.

Our strategy for tackling the batch execution problem for the case m = n is to first
solve the load balancing problem and then let the processors continue executing their newly
allocated tasks. We also show how the algorithm can be generalized to other values of m.
The number of steps is O (log log min(n, m)) with probability at least 1 - n-e for some fixed
f > 0 (this property renders the algorithm useful for embedding as a procedure in other
algorithms).

The model of computation used is the ROBUST sub-model of the CRCW-PRAM intro
duced by Hagerup and Radzik [16], which can be thought of the weakest possible model of
the CRCW. In this model if two or more processors try to write concurrently into the same
cell, then the value actually written cannot be predicted. Thus, although concurrent writing
is permitted, it cannot be used directly in the computation. Note that in the CREW model
which forbids concurrent write, sub-logarithmic algorithms cannot be achieved [10].

The algorithm itself and a renaming procedure used in it are expected to serve as useful
building blocks in the design of other efficient parallel algorithms. In particular the load
balancing algorithm can be employed as a general tool for achieving optimal speedup: Gil
and Matias in [13) show how the load balancing algorithm given in this paper can be used
to achieve optimal speedup of parallel algorithms. The scheme presented there is rather
general and can be used to achieve optimal speedup in other algorithms in which the
processorsxtime product is large, but the t9tal number of actual operations satisfies the
optimal speedup requirement. The number of processors can be reduced using the well-known
Brent's theorem. Each processor simulates the assignments of several others in the original
algorithm. Periodically, task reallocation is used to achieve a better balance between the
number of simulated processors. This scheme is most useful in algorithms which have the
property that if a processor becomes idle it is never activated again (a famous example of such
algorithms is the list ranking algorithm due to Cole and Vishkin [8]). The load balancing
algorithm may be used for balanced allocation of other resources (such as memory cells). A
generic example is the allocation of processors to edges in sparse graphs algorithms, where
the input is given by vertices.

The rest of this paper is outlined as follows: in Section 2 the main technique for object
dispersal is described. Section 3 gives some necessary definitions. The results obtained are
presented in Section 4, while Section 5 gives the details of our main load balancing algorithm.

2

2 The Dispersal Technique

The new dispersal idea which forms the basis for our load balancing algorithm for the case
m = n can be informally described as follows: suppose that there is a number u, such
that no processor has more than u2 tasks, then the following pseudo algorithm Disperse(u)
redistributes the tasks so that no processor will have more than 2u tasks.

Algorithm Disperse(u)
A processor is said to be loaded if it has u tasks or more. (There are at most
n/u loaded processors.) An auxiliary array of size n/u is allocated and then
an injective mapping from the set of loaded processors to the array positions
is constructed. Each loaded processor moves its task set to the auxiliary array
position it is mapped to. The processors array is now partitioned into n/u teams
where ·each team is associated with one auxiliary array position. The u members
of the team take equal shares from the set of (at most u2

) tasks residing in this
position.

Note that this sharing process adds at most u tasks to a processor, and since no processor
had more than u tasks (otherwise it was loaded and its task set was to the auxiliary array),
we can conclude that in the end of Disperse there will be no processor with more than 2u
tasks.

In the initial unknown distribution, Disperse is applied by setting u = yn. Next, Disperse
is applied iteratively. The upper bound on the maximal number of tasks after one application
Disperse serves as an input parameter to the subsequent application. It can be shown that
after O (log log n) applications of Disperse all processors will have O (1) tasks. Moreover, this
double logarithmic behavior is preserved under very general perturbations in the definition
of the Disperse algorithm.

Comment We say that a load balancing algorithm is exact if it operates with m = n tasks
and if it results in exactly one task for each of the processors. If u = 2, then an application
of Disperse does not improve the distribution, and hence an exact load balancing cannot be
achieved using Disperse. Exact load balancing is possible in O(log n/ log log n) time using a
prefix sum algorithm. The following lemma explains why only "approximate" load balancing
is possible in time which is o(log n/ log log n), by showing that an exact load balancing is at
least as hard as counting.
LEMMA 1. If there is an exact load balancing algorithm running in time T(n) using a poly
nomial number of auxiliary processors, then there is another algorithm using a polynomial
number of processors that will compute the number of 1 'sin a binary array of size n.

Proof We construct Algk, an algorithm which in T(n) + 0 (1) time checks if the input array
has exactly k l's. Let k, n/2 < k ~ n be fixed. Algk begins by creating a processor Pi for
each position i, 1 ~ i ~ n in the input array. The processor Pi is assigned a single object

3

if the input array had 1 in position i. Next, for all i, n/2 < i ::5 n, if Pi was assigned an
object it moves it to Pi-n/2• Algorithm Alg(k) is then employed for an exact load balancing
among Pi, ... , Pk. Clearly Alg(k) will fail if the number of 1 's in the input array was not k

and such failure can be detected in constant time.
For k, 1 < k < n/2, Algk, is implemented by :flipping the bits of the input array and

calling Algn-k· Algorithm Alg'(n) executes Algi, ... , Algn in parallel and then determines in
constant time which one of them succeeded. D

The lower bounds of Beame and Has tad (1] thus preclude the existence of a very fast exact
load balancing algorithm. It should be clear that the "approximate" balancing achieved by
our algorithms is sufficient for almost all applications.

2.1 Realization of Disperse

A concrete implementation of Disperse must devise a fast way for creating the injective
mapping between the loaded processors and the auxiliary array cells. In case there are
almost n/u loaded processor, this mapping is closely related to counting and as such cannot
be very fast. Thus it is necessary to increase the auxiliary array by (at least) a constant
factor. The mapping itself is created by using a random selection process which is the core of
indeterminacy in the load balancing algorithm. We will show that this mapping can be done
in O(log log n) time using a renaming algorithm. The renaming algorithm is of independent
interest and it is expected to be applicable as a general parallel algorithms tool.

Consecutive applications of the Disperse algorithm require split and union operations on
sets of tasks. Even if the original sets can be manipulated in constant time, then eventually
processors will have to operate on a collection of set fragments. It can be shown that there are
at most 2°(Ioglogn) such fragments in each collection, and by building a balanced binary tree
on those task sets, manipulation of collections (intermediate task sets) requires O(log log n)
steps.

Thus we get that each invocation of the Disperse algorithm can take O(log log n) time,
which results in an O((loglogn)2) load balancing algorithm. The goal of O(loglogn) time
is reached based upon the observation that the renaming algorithm is very suitable for
pipelining: most of the processors find a proper mapping after very few steps of the renaming
algorithm. Therefore, after several steps of the renaming procedure of one instance of
Disperse, the input condition of the following instance of Disperse is "almost" true, and this
instance may start its execution. ~he task set manipulation overhead is circumvented by
building a dispersal framework in which a processor assists others at most once throughout
the algorithm.

4

3 Preliminaries

3.1 Task Distribution

Formally, a task distribution D is a set of m tasks and their allocation to then processors.
A processor Pi knows only Di, the set of tasks allocated to it by D. We say that a task
distribution D is flat if max19$n IDil = 0 (m/n). The task distributions D and D' are
equivalent if they have the same task sets.

The input to a processor Pi consists of some identification for Di, the ith input set, as
well as mi, its size. The load balancing algorithm never accesses the tasks themselves during
its execution, and all necessary data structures are built on-line. Reference to tasks is done
through task bundles of the form (i,ji,h), which stands for tasks j 1 through h in the ith
input set. Throughout the algorithm we let both ii and i2 assume non-integer values, thus
allowing reference to task fragments. The algorithm output is a set of at most two bundles for
each processor. To ensure_ that no task is allocated to more than one processor in the output
stage, we associate a task with a processor if that processor "owns" its lower fragment. This
clearly does not increase the final load of a processor by more than one task.

The bundle notion implies that the exact representation of the set, and the way its
identification is passed to a processor, is unimportant as long as the input sets are ordered
and there is an access method to tasks numbered j 1 , ••• ,j2 • We can conveniently think of
each of the input sets as being represented by an array of tasks descriptions, where a set's
identification is the memory address of the first array cell. This simple representation gives
an O (1) access time method to the jth task of a task set.1

3.2 Solid Algorithms

DEFINITION 1. A probability is called n-negligible if it is smaller than n-E for some t > 0.

We will also be talking about dominant probabilities (the complement of negligible proba
bilities) and about negligible and dominant events.

DEFINITION 2. A probabilistic algorithm for a given problem is called solid if the sum of
failure probabilities of all its steps is an n-negligible probability where n is a parameter
describing the problem size.

The union of a poly-logarithmic number of negligible events is also a negligible event. If
the success of each step in the algorithm is dominant and the total number of steps is a
poly-logarithmic then the whole algorithm is solid. A useful property of solid algorithms is
that each step of a solid algorithm may safely assume that all previous steps succeeded.

3.3 Teams vs. Anonymous Sets

Two extremities of the knowledge state of members of processors sets are characterized by

1 Not all the arrays of tasks are consecutive in memory or else the problem is trivial.

5

DEFINITION 3. A set of processors ~ is anonymous if every processor knows whether or not
it belongs to~, but no other information (such as cardinality, ordinal place etc.) is available
to the set members.

DEFINITION 4. A team is a set of processors with consecutive indices, such that the starting
and the ending index is known to all the set members.

The regular structure of the team makes it possible to use it as a sub-PRAM. Assume that
processors are divided into teams and that each team has a private memory of linear size in
the cardinality of the team. This assumption does not add more than O (n) memory to the
whole machine. Mapping an anonymous set into a team of size N is done by solving

THE RENAMING PROBLEM

Before: An anonymous set q> of processors, l~I $ N.

After: Each processor P, E q> knows a value (the new name) x, E {1, ... , M}.
For P,,Pj E ~,Xii- Xj ifi :f. j.

Processors not in ~ do not participate in the computation.

4 Results

4.1 Renaming

The basic step of the renaming algorithm uses the following lemma, which will be used in
the load balancing algorithm too.
LEMMA 2. For any N < M there is a way to execute a random name selection process, so
that the number of processors that failed to find a new name is < 2N2 / M with M -dominant
probability.

Proof Examine the following ranges of N for an appropriate fixed € > 0:
The high range N > M 0-s+E The lemma follows from Chebeyshev's inequality and prop

erties of random throws ((12] Lemma 2.9).

The low range N < M 0•5-t In this case the expected number of colliding processors is
M-2

f < 1. The minimal number of colliding processors which exceeds this is 2. The
lemma in this range follows therefore from a simple application of Markov's inequality.

The intermediate range M 0-s+f $ N $ M 0
-
5+t In this range, the throw must be carried

out in two rounds. In the first round all N processors select a random name from a
range of size M /2. In the second round only processors colliding in the first round
participate, and they use the remaining M /2 names for random selection.

The expected number of ~olliding processors in the first round is at most 4Mf. From
Markov's inequality we infer that the actual number of colliding processors is $ M 0-5-f

6

with M-dominant probability. Thus we can safely assume that we are in the low
range of M in the second round, and that the final number of colliding processors is
:5 2 < 2N / M2 with N-dominant probability.

□

THEOREM 1. For · a renaming problem with M = 0 (N), there exists a solid algorithm
Rename, which runs in O (log log N) time on Ro BUST CRCW-PRAM.

Proof The algorithm behind this theorem uses an auxiliary array A of size M = 16N to
assign names for the processors. In iteration t (t = l, 2, ...) all processors that did not yet
reserve a private name try to do so by selecting a random place in a segment of size 16N/2t
of A, and then attempting to write their (old) name into it. The new name is assigned to a
processor if it was the only writer to the cell.

Denote by N(t) the number of active processors in the beginning of iteration t. The
analysis is carried by setting a carefully chosen bound upper for N(t) and showing that
it holds with high probability. More specifically, let N(t) = 2-2

t-
1
-t+2N, then the event

N(t) :5 N(t) for all t 2 1 is N-dominant.
Initially N(l) = 2-20

-1+2N = 2°N = N. Assume now that N(t) :5 N(t), by Lemma 2
we have

2- 21-2tHN2
N(t + 1) < 2---- = 2-2t-(t+1)+2 N = N(t + 1)

- 162-tN '

which completes the induction step. Note that the number of iterations is O (loglogn), so
even the last application of the basic renaming step uses S1 (N') memory for some f > 0.
Hence, all iterations succeed with N -dominant probability. O

4.2 Load Balancing

As we have noted, if m is much larger than n, then the time needed to execute the tasks
dominates the reallocation time, thus the most interesting case is m = 0 (n). Our main
algorithm deals with this case:
THEOREM 2. There exists a solid algorithm which takes as input a distribution of n tasks
among n processors, and after O (log log n) time will output an equivalent flat distribution.
The algorithm runs on ROBUST CRCW-PRAM.

Proof The detailed algorithm description is given in the following section. O
The following lemma shows that even if execution time is disregarded, m = 0 (n) captures

the difficulty of reallocation.

LEMMA 3. Suppose that there exists a load balancing algorithm Alg for m = n. Then Alg
can be adapted for other values of m with the following overhead:

7

n = o(m): 0 (1) pre-processing time.

m = o(n): 0 (log log m) solid time pre-processing time.

Proof
n = o(m): Each processor divides the tasks it was initially allocated in to blocks of m / n

tasks, possibly leaving the last block incomplete. Blocks are then treated as "super
tasks". There are no more than n incomplete blocks, so the number of super tasks
can be bounded by 2n. Algorithm Alg is then applied to reach a flat distribution of
2n super tasks over 2n virtual processors (each real processor plays the parts of two
virtual ones). This output induces a flat distribution of ordinary tasks too.

m = o(n): There are no more than m processors initially holding tasks, allowing us to use
the solid renaming algorithm to compact in O (log log m) time those processors into a
segment of size O(m). At this point Alg can be applied with parameter n = m.

□
As a consequence we get

THEOREM 3. For any m, there exists a solid algorithm which takes as input a distribution
ofm tasks amongn processors, and after, 0 (log log min(n, m)) time will output an equivalent
flat distribution. The algorithm runs ROBUST CRCW-PRAM.
Henceforth, m = n is implicitly assumed unless otherwise stated.

5 The Main Load Balancing Algorithm

The full algorithm achieves a decrease in time to O (log log n) by using simultaneous pipelined

execution of a tailored version of the renaming algorithms. In this section we describe and
analyze this pipelined execution.

5 .1 Load Levels

We define a sequence of increasing load boundaries L1 , ••• , Lr by
L1c+1 = Ll°5 /2k Lo = 32 ,

or in an explicit form
L _ 21.s 11 +2k+4
k- . (2)

A processor P, is in load level k in iteration t if its current number of tasks mi t satisfies
'

Lk ~ mi,t < Lk+I• If mi,t < L1 = 0 (1) then Pi is considered to be unloaded, and the
algorithm does not manipulate its tasks in any way. ~he highest load level is defined by r =
min{kL1c+1 > n}, and clearly r = O(loglogn).

The (anonymous) set of all processors in load level k is denoted by 4>1c, Instance k of
Disperse, denoted by Disperse1c, is devised for dealing with the load of the processors of
4>k, The ideas behind the original Disperse algorithm are used in each renaming iteration

8

of Disperse1c to distribute the tasks of each single processor at a certain load level to many
processors at lower levels.

5.2 Pipelining Structure

In the first iteration of the algorithm only Disperser is active, the other instances of Disperse

are activated gradually; Disperse1c begins working 3 iterations after Dispersek+l. The last
instance to be activated is Disperse1 . This activation delay lets the number of processors
in high load level decreases significantly before the lower load levels are activated. This
way, the "fallout" into a certain level from higher levels will be relatively small, allowing the
renaming procedure of the low level to operate almost as if the "fallout" did not exist.

For each Disperse1c we have a local iteration counter, so while Disperse1c is in its l~cal

iteration t, Dispersek+i is in its local iteration t + 3 and the global iteration. counter is 3(r -
k) + t. It will be shown that for every load level k, the set <Pk will be empty after O (log log n)
local iterations of Disperse1c, Consequently, the number of global iterations needed to achieve
a fiat distribution is O (log log n).

5.3 Virtual Processors

We view each processor as two virtual processors which correspond very much to the two
different roles a processor may play in the Disperse algorithm. In any one step, each physical
processor plays its two virtual parts in sequence.

1. Part of the processor's job is to dispose of its original task load. This part is played
by the first virtual processor. If a processor initially has at least 11 tasks, then the
first virtual processor becomes active and it will remain so until it reserves ari assisting
team. The reserved team deactivates this virtual processor by removing all of its load.

2. Each processor is also a member of an assisting team. If a team is reserved to assist
another processor, then all of its members gain a new bundle of tasks unrelated to
their original load. The second virtual processor participates in the team and disposes
of the acquired bundle of tasks. It is active from the time of the acquisition (provided
that the acquired bundle has no less than L1 tasks) until it finds an assisting team
for itself. Only one instance of this virtual processor exists in any physical processor,
because no assisting team can be reserved more than once throughout the algorithm.

The virtual processor concept simplifies the design and the understanding of the algorithm.
The number of tasks of any virtual processor is constant throughout its "lifetime". The
"death" of a virtual processor at a certain load level leads to the "birth" of a batch of
new virtual processors at lower load levels. Henceforth, we refer to virtual processors as
processors; no confusion will arise.

9

5.4 The Major Steps of the Algorithm

Allocate An auxiliary array Ak of size 2n/ vT; is used by Dispersek for accumulating
information about the anonymous set <)k· It is easy to verify that rapid growth of
the sequence {Lk} guarantees that the total size of all the auxiliary arrays is linear.
The original size of c)k is by a simple counting argument no larger than n/ Lk, so
that by Theorem 1 an array of size O (n/ Lkl) could have sufficed for renaming the
set. The increase in array size to 2n / ,JI:"; accounts for the fact that the set <I, k

dynamically changes; there is a constant flow of processors into c)k as a result of
processor "disintegration" at higher load levels.

The array Ak is used in a manner similar to the usage of the auxiliary array in the
renaming algorithm of Theorem 1: Ak is partitioned into segments, in iteration t
(t = 1,2, ...) a segment of size n/(2t-1,.;r;) is-used by Dispersek.

Find An active processor Pi belongs to a fixed Dispersek. Using the global iteration counter,
Pi determines the iteration number of Dispersek, and from that, the segment of Ak to
be used. Pi chooses a random position in this segment, and tries to reserve it by writing
its name into this position. If this reservation fails then Pi will be active in the next
iteration.

Put Each Pi that managed to reserve a place in Ak moves its task bundle to that place.
By the definition of load levels there is no position in A1: that contains more than Lk
tasks.

Get The processors array is partitioned tor+ 1 segments of "assistants" that match the r+ 1
different load levels; segment k (0 ~ k ~ r) has n/21c-i processors which are all
dedicated to sharing the load of processors in load level k.

Segment k is divided into blocks; the number of blocks equals the number of the
positions of A1c. The processors in a block form an assisting team associated with a
fixed position in A1c, In the Get step the team examines this array position, and if the
task bundle in it is non-empty, the bundle is distributed among all the team members,
each one taking an equal share.

Before proceeding to the time analysis, we need to ascertain two properties of the algorithm:
• The partitioning of the auxiliary array to segments ensures that no assisting team will

assist more than once during the algorithm. Thus each virtual processor has exactly
one task bundle to manage.

• The number of processors in an assisting team for load level k is

n/2k-l - ,,/r;
2n/.JJ;;-~ ·

A processor in such a team may become active with a number of tasks bounded by the
maximal number of tasks of this load level divided by the size of the assisting team:

2k 2k Ll.5 / 2k
Lk+l X ,Jr; = Jr; = Lk .

Thus an assisting processor will always enter a load level lower than the load level of
the processor to which the assistance was given.

5.5 Time Analysis of the Algorithm

Let N(t, k) be the size of ~kin the beginning of iteration t of algorithm Dispersek (or in other
words, iteration number t + 2(r - k) of the whole algorithm). A carefully chosen function
N(t, k) is sho~n by induction to be an upper bound of N(t, k); our bound will be

21.s.2•-t-2 n
N(t, k) = Lf-2-0.5 X Lk (3)

or in logarithmic form
logN(t, k) . 1.5 · 2t - t- 2 - (2t-2 -1.5) logLk + logn (4)

The induction base is given by:
LEMMA 4. For a load level k, N(l, k) ~ N(l, k).

Proof Using (3) with t = 1 we get
21.s-21 -1- 2 n 23-3 n n

N(l, k) = L2i~2_0 _5 L = Lo.s- o.s L = L
k k k k k

and, as was noticed before, the number of processors in load level k can never exceed n/ Lk . .
□

For the inductive step note that in the end of an iteration t, members of ~k can be classified
into two types:

1. Processors that were in load level k before the iteration and did not leave it because
they encountered a collision in their random selection.

2. Processors that joined load level k during the iteration as a result of assistance to
processors in load level k + 1 and higher.

Consequently N (t + 1, k) can be written as the sum of Ne(t, k) (the number of processors of
type 1) and N1(t, k) (the number of processors of type 2), and the induction step includes
the two following parts:
LEMMA 5. If N(t, k) ~ N(t, k) then the event Nc(t, k) ~ N(t + 1, k)/2 is dominant.

Proof The proof uses Lemma 2 to estimate the number of processors that did not find an
assisting team.

In the iteration, at most N(t, k) processors perform a random mapping into an array
segment of size n/(2t-1 ,v'r;). Using Lemma 2 we can write

Nc(t, k) ~ 2N2(t; k) X
2
t-l,Jr;

n

11

Using the definition (3) of N(t, k) we have

□
LEMMA 6. If N(t + 3i, k + i) ~ N(t + 2i, k + i) holds for every i 2:: 1 then N1(t, k) ~ N(t +
1, k)/2.

Proof The proof is carried out by careful estimations on the "fallout" from higher load
levels.

Let N1(t, k, i) denote the contribution of 4>k+i (i 2:: 1) to 4>k in iteration t of 4>k, and
let iJ(t,k,i) = logN1(t,k,i)-logN(t+ 1,k) .. The proof shows that the contributions from
higher load levels are bounded by a decreasing geometrical series, or more precisely that
iJ(t, k, i) < -(i + 1.) from which the lemma immediately follows.

Note that while load level k is in its iteration number t, load level 'k + i is in iteration
t + 3i, thus N1(t, k, i) can be bounded by the product of N(t + 3i, k + i) (the number of
processors currently in load level k + i) by •/I:;;:;d2k+i (the size of the assisting team of load
level k + i). Writing_ this bound in terms of iJ(t, k, i) we get

iJ(t, k, i) ~ log N(t + 3i, k + i) + log (/£";;d2k+i) - logN(t + 1, k)

~ logN(t + 3i, k + i) - logN(t + l,k) + 0.5 logLk+i - i

Using the definition (4) of N(t + 3i, k + i) and N(t + 1, k):

iJ(t, k, i)

< 1.5 • 2t+ai - t - 3i - 2 - (2t+3i-2 - 1.5) log Lk+i + log n

- 1.5 · 2t+1 + t + 1 + 2 + (2t-I - 1.5) log Lk

- logn + 0.5logLk+i - i

- 1.5 · 2t+3i - 1.5 · 2t+1 + 1 - 4i - (2t+3i-2
- 2) log Lk+i + (2t-I - 1.5) log Lk

< 1.5 • 2t+3i - (i + 1) - (2t+3i-2 - 2) log Lk+i + (2t-l - 1.5) log Lk
i

Using the fact that 2t+3i-2 - 2 2:: 4(2t-I - 1.5) for t, i 2:: 1 we have

iJ(t, k, i) < 1.5 · 2t+3
i - (i + 1) - (2t+3

i-
2

- 2) x log(Lk+i - ¼ logLk)

< 1.5 • 2t+3
i - (i + 1) -(2t+3i/4) x (logLk+i - ~logLk)

4

A simple check shows that log Lk+i - ¼ log Lk 2:'. 6 and this completes the proof. D

12

THEOREM 4. The event N(t, k) < N(t, k) for all t - 0 (loglogn) and O < r < r 1S

dominant.

Proof By simultaneous induction on t and k, applying Lemma 4 as the induction base and

Lemmas 5 and 6 in the inductive step. D

Acknowledgments I wish to thank my advisor Prof. Avi Wigderson for fruitful discus

sions and encouragement. Valuable comments made by Yossi Matias, Aviad Cohen and

Larry Rudolph are gratefully acknowledged too.

References

[l] P. Beame and J. Hastad. Optimal bounds for decision problems on the CRCW PRAM. In
Proc. of the 19th Ann. ACM Symp. on Theory of Computing, pages 83-93, 1987.

[2] 0. Berkman, D. Breslauer, Z. Galil, B. Scheiber, and U. Vishkin. Highly parallelizable
problems. In Proc. of the 21st Ann. ACM Symp. on Theory of Computing, 1989.

[3] 0. Berkman and U. Vishkin. Recursive *-tree parallel data structure. In focs89, 1989.
(4] B. S. Chlebus, K. Diks, T. Hagerup, and T. Radzik. Efficient simulations between concurrent

read concurrent-write PRAM models. In Mathematical Foundations of Computer Science,
1988.

[5] B. S. Chlebus, K. Diks, T. Hagerup, and T. Radzik. New simulations between CRCW PRAMs.
In Fundamentals of Computation Theory, Intl' Con!, August 1989.

[6] R. Cole. Parallel merge sort. In Proc. of the 27th IEEE Annual Symp. on Foundation of
Computer Science, pages 511-516, 1986.

(7] R. Cole and U. Vishkin. Approximate and exact parallel scheduling with applications to
list, tree and graph problems. In Proc. of the 27th IEEE Annual Symp. on Foundation of
Computer Science, pages 478-491, 1986.

[8] R. Cole and U. Vishkin. Deterministic coin tossing with applications to optimal parallel list
ranking. Information and Control, 70:32-53, 1986.

(9] R. Cole and U. Vishkin. Faster optimal parallel prefix sums and list ranking. Information
and Computation, 81:334-352, 1989.

[10] S. A. Cook, C. Dwork, and R. Reischuk. Upper and lower time bounds for parallel random
access machines without simultaneous writes. SIAM J. Comput., 15:87-97, 1986.

[11] M. J. Fisher and R. E. Ladner. Parallel prefix computation. Journal of The Association for
Computing Machinery, 27:831-838, 1980.

[12] J. Gil. Lower Bounds and Algorithms for Hashing and Parallel Processing. PhD thesis, The
Hebrew University of Jerusalem, Givat Ram 91904, Jerusalem, Israel, November 90.

(13] J. Gil and Y. Matias. Fast hashing on PRAM. In 2nd Annual ACM-SIAM Symposium on
Discrete Algorithms, 91.

[14] J. Gil, F. Meyer auf der Heide, and A. Wigderson. Not all keys can be hashed in constant
time. In Proc. of the 22st Ann. ACM Symp. on Theory of Computing, pages 244-253, 1990.

13

(15] J. Gil and L. Rudolph. Counting and packing in parallel. In Proc. 1986 International
Conference on Parallel Processing, pa.ges 1000-1002, 1986.

[16] T. Hagerup and T. Radzik. Every robust CRCW PRAM can efficiently simulate a Priority
PRAM. In Proc. of the 1990 Symposium on Parallel Algorithms and Architectures, 90.

(17] Y. Matias a.nd U. Vishkin. On parallel hashing and integer sorting. In Proc. of 17th ICALP,
Springer LNCS .US, pages 729- 743, 1990. Also in TR-158/89, Eskenasy Inst. of Comp. Sci.,
Tel-Aviv Univ. Israel, Dec. 1989.

[18) P. L. Ragde. The parallel simplicity of compaction and chaining. In Proc. of 17th ICALP,
Springer LNCS .,US, pages 744- 751, 1990.

' '
[19) D. Willard. Log-logarithmic selection resolution protocols in a multiple access channel. SIAM

J. Comput., 15:468-477, 1986.

14

