
Fast Hashing on a PRAM
- Designing by Expectation

by

Joseph Gil
and

Y ossi Matias

Technical Report 91-13
June, 1991

Department of Computer Science
University of British Columbia

Vancouver, B.C.
CANADA V6T 122

Fast Hashing on a PRAM
- Designing by Expectation

Joseph Gil*
University of British Columbia t

Yossi Matias
!Tel-Aviv University and University of Maryland

Januray 1991

Abstract
A hash table is a data structure for representing a set of n items that uses linear

space and supports membership queries in 0(1) time. We show how to construct a hash
table for any given set in O (log log n) expected time using n processors on a weak ver
sion of a CRCW PRAM. We also show that optimal speed-up can be obtained, Le., the
expected running time is n/ p, when the number of processors pis ~ n/ log log n log* n.

A general paradigm for the design of randomized algorithms is introduced. This
method is used in our algorithm and may be useful in the design of other fast random-

ized algorithms. '

1 Introduction.

1.1 Hash Functions and Static Hash Tables.

Let S be a set of n keys drawn from a finite universe U. Let h be a function U ~ [0, ... , s -1]
(such functions are called hash functions). We call h a perfect hash function for S if there are
no two keys in S that are mapped by h to the same value. We call ha good lookup function

for S if: (i} h is perfect for S; (ii} h uses linear storage (i.e., s = 0(n)); (iii} h can be
represented in O(n) space; and (iv) h supports quick lookups, i.e., for every x EU, h(x) can
be evaluated in 0(1) time by a single processor. A good lookup function induces an 0(n)
storage data structure for representing S, with 0(1) time for lookup query. Such a data
structure is called linear static hash table.

•Research supported in part by the Leibniz Center for Research in Computer Science, Jerusalem, Israel.
tpart of this research was done when the author was at the Hebrew University
!Research supported in part by NSF grant NSF-CCR-8906949

1

In this paper the problem of constructing in parallel a good lookup function for a given
input set is considered. We provide fast and efficient parallel algorithms for this problem.

The algorithms make use of novel techniques that avoid counting and sorting and thereby
circumvent the barrier caused by t'he S1(log n/log log n) lower bound for these problems [4].
In particular we demonstrate that hashing is easier than sorting from the parallel perspective,
in the sense that it can be done much faster (similarly to the sequential case). The design of
algorithms whose fast running time precludes usage of basic tools like counting is especially
challenging; this research presents two tools that may be useful in this context: a) A general
paradigm for designing fast parallel randomized algorithms. b) A scheme for the use of the
load balancing algorithm presented in [16] to achieve optimal speed-up. By this scheme, the
load balancing algorithm is used only O(log* n) times.

1.2 Previous Work.

In their seminal paper [14], Fredman, Komlos and Szemeredi introduced a sequential scheme
that generates a linear static hash table in 0(n) expected time for any input set. Their
scheme builds a 2-level hash function: a level-1 function splits S into subsets whose sizes are
di~tributed in a favorable way. Then, a perfect level-2 hash function is built for each subset.
Dietzfelbinger, Karlin, Mehlhorn, Meyer auf der Heide, Rohnert and Tarjan [10] extended
the 2-level scheme for a dynamically changing input set.

Dietzfelbinger and Meyer auf der Heide [11] introduced a dynamic data structure (dic
tionary) that can be implemented in parallel. It preserves optimal speed-up, but the time
bounds are of the form 0(ni).

Matias and Vishkin [26] presented a parallel static hashing scheme that takes O(log n)
expected time and preserves optimal speed-up, i.e., it uses 0(n/ logn) processors. This
result is the fastest PRAM-algorithm previously known for hashing. It is based on the 2-
level scheme of [14] and makes extensive use of counting and sorti~g procedures. They also
suggested and demonstrated the applicability of hashing as an important building block for
many parallel algorithms.

The only known lower bounds for parallel hashing were given by Gil, Meyer auf der
Heide and Wigderson [20]. In their (rather general) model of computation S1(log• n) is the
bare minimum. However, when processors cannot move between keys, S1(log log n) time is
required to obtain 0(1) lookup time. Our algorithms fit this model.

1.3 Results.

1.3.1 Parallel Hashing.

Our main result is that a linear static hash table can be constructed in doubly logarithmic
time.

2

THEOREM 1. A good lookup function can be built in O(loglogn) expected time and O(n)
space, using n processors on a CRCW PRAM.

This is the best possible result that does not use processors reallocations, as shown in [20].
Optimal speed-up can be achieved with a small penalty in execution time. It is a significant
improvement over the O(log n) time algorithm of [26].

THEOREM 2. A good lookup function can be built in O (log log n log* n) expected time
and O(n) space, usingn/ log logn log* n processors on a CRCW PRAM (optimal speed-up).

The model of computation is the collision+ -CR CW PRAM [9] (which is slightly stronger
than the standard common-CRCW but weaker than the arbitrary-CRCW), in which if more
than one processor attempts to write different values simultaneously into the same cell then
a special collision symbol is written in that cell.

Remark. The hashing result demonstrates the power of randomness in parallel compu
tation on CRCW machines with memory restricted to linear size. Boppana [6) considered
the problem of Element Distinctness: given n integers decide whether or not they are all
distinct. He showed that solving Element Distinctness on an n-processor priority-CRCW
machine with bounded memory requires D(log n/ log log n) time. "Bounded memory" means
that the memory size is an arbitrary function of n but not of the input values range. It is
easy to see that if the memory size is bounded by O(n2) then the Element Distinctness can
be solved in 0(1) expected time by using hash functions (seeFact 1 in Section 4). This, how
ever, does not hold for linear size memory. Our parallel hashing algorithm implies that when
incorporating randomness, Element Distinctness can be solved in expected O(log log n) time
using n processors on a collision+ -CRCW PRAM (which is weaker than the priority-CRCW
model) with linear memory size.

1.3.2 New Design Paradigm.

As a design tool for the hashing algorithms, we present a general paradigm for randomized
algorithms which enables one to safely assume that actual behavior in the algorithm run is
approximately as expected. It is shown that a randomized algorithm works "as expected", if
a prerequisite for an iteration to succeed with a constant probability is that at least a fixed
fraction of the previous iterations succeeded. Our result is stronger than the fundamental
lemma of Karp, Upfal and Wigderson [24] (which provides a tool for analyzing probabilistic
algorithms) in the sense that we allow the performance of each step to be dependent on the
performance of the previous steps.

For example, if the size of a problem is known to be halved with constant probability,
under the assumption that it has consistently decreased geometrically up to this point, then
indeed, a geometric decrease can be assumed for all iterations.

The scheme, called designing by expectation, is of independent interest and we expect it
to be helpful in the design and analysis of randomized algorithms. It can be useful especially

3

in fast parallel algorithms, where time constraints may make it impossible to check in run
time the actual behavior of certain measures, and one might need to assume that they are
approximately as expected. For example, an algorithm that may be less involved by using
this scheme is the pattern matching algorithm of Vishkin [29].

1.3.3 Techniques.

Avoiding exact evaluation. The algorithms are based on the 2-level scheme of [14].
Recall that a level-1 function splits the input set into subsets of different sizes. We avoid the
exact evaluation of subsets' sizes; such evaluation seems to be inherently slow. Instead, we
only make use of the knowledge about the probability distribution of these sizes.

Efficient use of load balancing. The load balancing algorithm of [16] is used to achieve
optimal speed-up. A straight forward usage would result in a slowdown of O(log log log n).

We demonstrate a more careful usage that results in a slowdown of only O(log* n).

1.4 Applications.

Matias and Vishkin [26] proposed using a parallel hashing scheme for space reduction in
algorithms in which a large space is required for communication between processors. Such
algorithms become space efficient and preserve the same number of operations. The penalties
are in becoming randomized and in having some increase in time. Using our hashing scheme,
the time increase may be substantially smaller.

There are algorithms for which, by using the scheme of [26], the resulting time increase
is O(logn). By using the new scheme, the time increase is only O (loglogn log* n). This is
the case in the construction of suffix trees for strings [2, 15] and· in the naming assignment
procedure for substrings over large alphabets [15].

For other algorithms, the time increase in [26] was O(log log n) or O ((log log n)2
), while

the present scheme leaves the expected time unchanged. Such is the case in integer sorting
over a polynomial range [23] and over a super-polynomial range [5, 26].

There are applications that could not benefit from O(log n) time hashing. Such applica
tions are the poly(log log n) time simulations between different models of CRCW PRAM (8,
9]. By using the new hashing scheme, these simulations can be modified to be space efficient
and still take poly(log log n) time.

2 Outline of the Algorithms.

Our algorithms construct a 2-level hashing table as in [14]. In the first level, a primary hash
function is used to partition S into O(n) buckets (subsets) of varying sizes. In the second
level, a secondary injective hash function is found for each bucket.

4

Accordingly, our basic hashing algorithm, Reduce, has two main parts. In the first, the
keys are grouped into 0(n) buckets. The second part of Reduce consists of repeated attempts
to appropriately map active buckets into allocated memory blocks.

It is shown in [20) that the above process can be done in O(log log n) time, while the total
space remains O(n). However, it is assumed there that allocation of memory is free. Such
allocation depends on the sizes of the buckets. The implementation difficulty is that buckets
that remain active after each iteration are determined according to random selections in run
time, so a priori memory allocation cannot be performed. On the other hand, an integer
sorting algorithm cannot be used (as in [26)) for space allocation since it is too slow for our
purpose.

Another assumption in [20) is an 0(1) time procedure for counting the number of buckets.
The result of this procedure is the basis for the decision on an increase of the block size. The
underlining obstacle in a more realistic model implementation is that global coordination is
quite limited even in concurrent read/write models. The concurrent read allows broadcast
in 0(1) time and the concurrent write adds the power of an 0(1) time global decision making.
However, the bandwidth of those system-wide "communication channels" is quite :restricted,
and little information can be transmitted in our sub-logarithmic time requirement (see [3]).

We avoid the global cooperation of counting buckets for space allocation by using ran
domness. As in Thermodynamics, the behavior of a large system of random variables is quite
predictable, and this prediction is the source of the global knowledge. A general framework,
which we call designing by expectation, is provided for planning by the expected behavior.

Memory allocation is done by letting active buckets compete: each trying to get hold
of a memory block it picks at random. Algorithm Reduce never counts active buckets: .the
essence of the algorithm is a careful tradeoff between the number of blocks and their size,
with respect to the predicted decay of the number of active buckets.

The size of the memory blocks is 0(1) in the first iteration, but it grows at each iteration
to account for the larger buckets. In early iterations large buckets compete for blocks but
cannot succeed in mapping into the blocks. They may succeed only in later iterations, when
the memory blocks become appropriately large. The number of "too large" buckets in each
iteration is kept small relatively to the number of all competing buckets. To keep this ratio
small, the size of memory blocks should be large enough. At each iteration the number of
competing buckets is estimated using bounds on the distribution of the buckets' sizes, as
generated by a polynomial primary hash function. The number of memory blocks should be
appropriately greater than this estimate. There is a clear tradeoff between the number of
memory blocks and their sizes.

It is shown that each iteration of Algorithm Reduce reduces the total number of active
keys by at least a constant factor. We apply O(log log n) of those iterations to reduce the

number of keys to O(n/polylog n). Our second algorithm, WrapUp, is activated at this point.
Algorithm WrapUp can be implemented using the poly-logarithmic ratio between space

and the number of keys: a different setting is possible for the parameters of Algorithm Reduce

5

(i.e., for the number and size of memory blocks in each iteration); this setting gives rise to
a much faster rate of the decrease in the number of active keys, and by this to a total of
O(log log n) iterations until all keys become inactive. Another alternative, which we choose
to use, is to reallocate the processors to active keys such that O(log n) processors hash the
same key into different memory blocks. This allocation enables a constant time hashing of
the remaining active keys. The allocation phase takes O(log log n) expected time.

Algorithms Reduce and WrapUp make different demands on the primary hash function.
Hence, the primary hash function they use is different. In order to combine the output of the
two algorithms, a special tag is added to each bucket that Reduce was not able to resolve. All
lookups that end in a tagged bucket restart the search using the hash function constructed
by Algorithm WrapUp.

Both algorithms, Reduce and WrapUp, are not optimal in the sense that the time.:.processor
product is greater than O(n). To improve on that we modify Algorithm Reduce to achieve
an optimal speed-up algorithm for the hashing problem.

The rest of the paper is organized as follows: The design by expectation paradigm is
introduced in Section actual-expected. Some necessary definitions and technicalities are
in Section 4. Algorithms Reduce and WrapUp are presented in Sections 5 and 6. The
modifications of Reduce required for achieving optimal speed-up are described in Section 7.
We end with the c<'>ncluding remarks of Section 8.

3 Designing by Expectation.

Consider an iterative randomized algorithm. After each iteration some natural measure of
the problem decreases by a random amount. Karp, Upfal and Wigderson [24] considered
the case where a bound on the expectation of the decrease is known, and gave an upper
bound on the expected number of iterations that the algorithm requires. Their bound is the
best possible in the sense that there are cases for which the upper bound is tight. However,
their technique gives global execution estimates and does not provide knowledge about the
intermediate performance of the algorithm. Such knowledge may be crucial for the fine
design of the next iterations.

We show that in each iteration one can actually assume that in all the previous iterations
the algorithm was not too far from its expected behavior. The paradigm suggested is:

Design an iteration to be "successful" with a constant probabil
ity under the assumption that at least a constant fraction of the
previous iterations were "successful".

LEMMA 1. (probabilistic induction) Let Alg be an iterative randomized algorithm, with
probability~ 1 /2 of succeeding at iteration (i + 1), provided that among the first i iterations
at least i/4 were successful. Then, with probability 0(1), for every i > 0 the number of
successful iterations is at least i / 4.

6

The proof is given in Appendix A.
The notation f!(1) for probability is used to emphasize that it is positive and constant.

(It can be shown that in this case the indefinite success probability is> 1/3.) The lemma is
not given in its most general or tight form but rather in a way that we feel is convenient to
use in an algorithmic design.
The following corollary gives information about the global performance:
COROLLARY 1. If Algorithm Alg requires t successful iterations to (successfully) terminate,
then its time complexity is O(t) with probability 0(1). If it is also possible to detect ter
mination then Algorithm Alg can be modifi.ed to (successfully) terminate in O(t) expected
time.

Typically, an iteration will be considered successful if some m~asure on the problem de
creases by a certain amount: Let mi be the measure after iteration i and g a monotone
nondecreasing function such that g(x) = o(x) (e.g., g(·) is ½(·),log(·),loglog(·) etc.). Iter
ation i is said to succeed if mi+l S g(mi)- (In our algorithms E(mi+i) as a function of mi

is known, under an assumption about mi, and the probability is deduced from it.) Assume
that rrii+l ~ mi, m0 = m and that the algorithm terminates when mi~ 2. Let g(ll(x) = g(x),
g(il(x) = g (g(i-t)(x)) fori > 1, andg*(x) = min{i: g(il(x) ~ 2}. For example, ifg(x) = x/2

then g*(x) = logx.
After the ith successful iteration, the measure is at most g(il(m), and the algorithm

terminates after g*(m) iterations.
Under such definitions, the probabilistic induction lemma and corollary can be stated as:
If

then
Prob (Vi> 0 mi~ gli/4J(m)) = f!(l)

and the algorithm terminates within at most 4g*(m) iterations with probability f!(l).

4 Preliminaries.

4.1 Hash Functions.

We assume that U = {O, 1, ... , q - 1} (recall that U is finite) where q is some prime. Let h
be a hash function

h U f---1- [O, ... , s - 1],
then h splits the input set S into buckets Bf := {x ES I h(x) = i} of sizes b? = I Bf I,
0 S i < s. We say that h is c-perfect for S if b? ~ c for all O ~ i < s; h is called perfect for
S if it is I-perfect for it.

We will use the class of d-degree polynomial hash functions

Hf:= { h I h(x) := (t.a,x' mod q) mods, a, EU}.

7

An easy consequence of the basic lemma of [14] is
FACT 1. If the input set S is fixed and h is picked at random from the class H; then

1s12

Prob (h is not perfect for S) $ -.
. 8

We will be using the above for the level-2 functions in our scheme. For the level-1 function
we need two classes with somewhat better distribution of buckets' sizes than those of H 1

:

FACT 2. ([10]) Let the input set S be fixed, and h be picked at random from Hf, where
d ~ 1, s ~ n. Then

(

s-1) 1
Prob ~bf$ c·n ~ 2,

s=O
for some constant c > 0.

Recently Dietzfelbinger and Meyer auf der Heide [12] showed how polynomial hash func
tions can be combined to create a new class of hash functions that achieves a distribution
of buckets' sizes that is very close to that of truly random functions. The following fact
summarizes the aspects of their results which are necessary for our parallel hashing:
FACT 3. ([12]) There is a class R of hash functions and a subclass R(S) ~ R of functions
to the range [O, ... , n - 1] that satisfy the following properties:
(a) h E R can be evaluated in constant time.
(b) n processors can pick a random h ER in 0(1) time.
(c) If h is picked at random from R then Prob (h (/. R(S)) = o(l).
(d) For h E R(S), his logn-perfect with probability 1 - o(l).

4.2 Load Balancing.

A problem which turns out to be closely related to parallel hashing is load balancing: Q
independent tasks are initially distributed in an unknown manner among P processors. The
input to each processor consists of a count of its tasks and a pointer to an array of tasks
descriptions. The load balancing problem is to redistribute the tasks such that each processor
has O(Q/P) tasks. Recently, Gil [17, 16] presented a fast algorithm for load balancing that
runs in O(log log min(P, Q)) time with high probability.

4.3 Miscellaneous.

Definition of log* n: Let log<1> x = logx and log(i) x = log(log(i-l) x) for i > 1, then
log* x = min{i: log(i) x $ 2}.

Optimal speed-up: A parallel algorithm is said to have optimal speed-up if the product time
x processors (also denoted as number of operations) is, up to a constant factor, the same as
the time complexity of the best known sequential algorithm for the same problem. We shall
say that an algorithm is optimal if it has optimal speed-up.
Model of computation: As model of computation we use the concurrent-read concurrent
write parallel random access machine (CRCW PRAM) family. The members of this family

8

differ by the outcome of the event where more than one processor attempt to write simul
taneously into the same shared memory location: in the common-CRCW ([25]) all these
processors must attempt to write the same value (and this value is written); in the collision
CRCW ([13]) a special collision symbol is written in the cell; in the collision+ -CRCW ([9])
if different values are attempted to be written then a special collision symbol is written in
the cell; in the arbitrary-CRCW ([28]) one of the processors succeeds, and it is not known in
advance which one; in the priority-CRCW ([21]) the lowest-numbered processor succeeds.

If all the input elements are distinct, then the collision-CRCW model can be used for all of
our algorithms. This model is weaker than the collision+-, the arbitrary- and priority-CRCW
machines, and is incomparable with the common-CRCW ([22]).

If the input elements are not distinct (as is typically the case in applications for parallel
algorithms) then we use the collision+ -CRCW model. In fact, the hashing scheme would
also work on collision-CRCW but requires an additional pre-processing procedure.

5 Reducing the Number of Active Keys

5.1 Algorithm Reduce.

The input to Algorithm Reduce is a set S of n keys, given in an array. A level-1 function f
is selected at random from the class HJ~. f partitions the set S into 4n buckets: bucket i
is the subset of elements that are mapped by f into i. For each bucket, a special memory
region (called block) is assigned. Then, a level-2 function is found for each bucket. Their
descriptions are written in an array Bucket.

Each level-2 function should map the elements of its bucket into the assigned block in a
one-to-one manner. A bucket is active if an appropriate level-2 function has not yet been
found, and is inactive otherwise. A key is active if its bucket is active.

Initially all keys and buckets ~re active. The ultimate goal of Algorithm Reduce is to
reduce the number of active keys (and hence the number of active buckets) to O(n/polylogn).
The algorithm consists of O(log log n) iterations. In each iteration, the number of active
buckets is expected to <l:ecrease by a constant factor. To achieve such expected decrease, an
assumption is being made about the performance of previous iterations. The probabilistic
induction lemma (Lemma 1) supplies the basis on which the algorithm is designed and
analyzed.

In each iteration i, a new memory region is used. It is partitioned into Ui blocks of size (Ji
each (The exact values of ui and /3i will be set later.) The iteration consists of two steps:

Step! (reserve) Each active bucket selects at random one of the Ui blocks. If several buckets
select the same block then they all fail. Only buckets that managed to reserve a private
block carry on to Step2.

Step2 (map) Each bucket randomly selects a function from Hi, and uses this function for

9

hashing itself into its reserved block. If the function is injective, then its description is
written in the appropriate cell of array Bucket and the bucket becomes inactive.

The crux of the algorithm is in giving a proper setting for Ui and /3i• It should be noted
that there is a tradeoff between Ui and /3i since the space used in iteration i is O(ui/3i)•

5.2 Analysis.

Let mi be the number of active buckets by the beginning of iteration i (mo= m = 4n).
LEMMA 2. For a proper setting of ui and /3i, Algorithm Reduce satisfies

Prob (Vi~ 0 mi :5 m2-i/4
) = n(l).

Proof The proof is by Lemma 1. Iteration i is successful if mi+I :5 mi/2. Thus, the
number of active buckets after j successful iterations is :5 m2-J. W.l.o.g., we assume that
if mi+I :5 mi/2 then mi+I = mi/2 (i.e., if 'too many' buckets become inactive, then some of
them are still considered as active). Thu~,

mi~ m2-i. (1)
The inductive hypothesis is

mi :5 m2-i/4 (2)
and the inductive step is to show that

Prob (mi+l :5 ~i) ~ ½· (3)
We assume that the level-! function f satisfies

.,_1

E b}0 :5 2a · m (4)
j=O

for some constant a> 0. By Fact 2, eq. (4) holds with probability~ 1/2. We set
Uj = m 24-i/4 /3i = 24+a/5+i/5 (5)

In each iteration we track buckets of size at most
Sj = /7iJs = 2½(1+a/s+i/s). (6)

1. Let m; be the number of buckets that are larger than Sj. By eq. (4), m; . sI 0 <
Z:j:~ b}0 :5 2am. Therefore, by eq. (6),

m~ < 2°m = m 2a-}j(t+a/5+i/5) _ m 2-s-i
1 - 10 - • S· .

I

(7)

Let Po(i) be the probability that a bucket will not be of proper size :5 Sj. By ineq. (1)
and (7),

(") - m; < m2- s- i - 2-s 1
Po i - - 2 . - < -. mi m - , 16

2. Let P1 (i) be the probability that a bucket does not successfully reserve a space block
in Stepl. By ineq. (2) and eq. (5)

m · m2-i/ 4 1
n. (i) < -' < . = 2-4 = -
r, - Uj - m24- •/<I 16.

10

3. Let p2(i) be the probability of a bucket of size smaller than Si to be successfully mapped
into a block of size /3i in Step2. By Fact 1 and eq. (6)

(') sl l
P2 i s f3i = s·

A bucket of size smaller than si that successfully reserves a space block of size /3i, and that
is successfully mapped into it, becomes inactive. Therefore, the probability for an arbitrary
active bucket at iteration i to remain active at iteration i + 1 is bounded by

Po(i) + P1(i) + P2(i) 5 ½ + /6 + 116 = i· .
The expected number of active buckets in iteration i + 1 is therefore

m·
E (mi+i) < T .

By Markov inequality

Prob (m ·+1 < mi) > ~ ' - 2 - 2

□
Let ni be the number of active keys by the beginning of iteration i (no= n). We have

COROLLARY 2. Algorithm Reduce satisfies
Prob (Vi> 0 ni s cn2-0 i) = 0(1)

for some constants c, a > O.

Proof If follows from eq. (4) (by using Jensen's inequality) that ni is maximal when all
buckets are of the same size Xi, In this case, by eq. (4),

m · · x~0 < 2° • m I t -

and
(2om)o.1

o O 1 0 9
ni = mi · Xi S m, · mi S (2 m) · m/ .

Therefore, by Lemma 2, the corollary follows. □
By Corollary 2 we have a geometric decrease in the number of keys with probability 0(1).

Therefore, after O(log log n) expected number of iterations the number of active keys becomes
n/polylogn as required.

Memory usage. The space used in Algorithm Reduce is _I:i uif3i = m28+0
/

5 ~i 2i/5-i/4 =
O(n).

6 Final Step.

After the execution of Algorithm Reduce, the available resources (memory cells and proces
sors) stand in poly-logarithmic ratio to the number of active keys. This resources redundancy
permits several O(loglogn) time implementations of Algorithm WrapUp which takes care of
the hashing of the remaining keys. For example, it is possible to use the comparatively

11

large available memory; the Ui and /3i parameters of Algorithm Reduce can be so set that
the fraction of active keys is raised to a constant power in each iteration, which leads to a
doubly-logarithmic rate of decrease in the number of keys.

We give a cleaner implementation of Algorithm WrapUp by using the extra computing
power:
LEMMA 3. Suppose there is a team oflog n numbered processors allocated to each key, and
further suppose that 2 log3 n space is allocated to each bucket. Then hashing can be done in
constant expected time.

Proof Use a function from the class R to create n buckets of a size smaller than log n each.
Each bucket uses log n memory blocks of size 2 log2 n each. For each bucket, log n hashing
attempts are done simultaneously to its blocks. Those attempts are carried by the log n
processors ass_igned to each key. If none of the attempts succeeds then the bucket fails,
otherwise one of the succeeding attempts is picked as the secondary hash function for the
bucket (by using the 0(1) integer maximum algorithm [13]).

The failure probability of a single attempt is ~ 1/2, and the probability that a certain
bucket will fail in all its attempts is 0(1/n). The expected number of failing buckets is 0(1),
therefore with 0(1) probability no bucket fails, and hence the expected run time is also 0(1).

□
To complete the description of Algorithm WrapUp it must be shown that the allocation

of teams of processors to keys and memory blocks to buckets can be done in O(log log n)
time.

Allocation can be done by using the O (log log n) load balancing algorithm. If each active
key is considered as log n tasks then by distributing these tasks among the processors, each
active key will be allocated with log n processors. Memory allocation can be done by using
similar ideas. An even simpler allocation can be achieved by mapping the active keys into
an array of size O(n/ logn) in a one to one manner. Such mapping algorithm is, in fact, a
building block in the load balancing algorithm, and it can be done in expected O(log log n)
time. Memory allocation can be done in a similar manner.

7 Achieving Optimal Speed-up.

In order to reach optimal speed-up, the keys array and the buckets array are divided into P
sectors, each having an allocated processor. Each iteration in Algorithm Reduce is executed
in 0(1) sector traversals of each processor.

During the algorithm the number of keys and the number of buckets drop, and accordingly
many of the sectors shrink. However, dependency between sectors implies that an iteration's
time is proportional to the size of the largest sector. To overcome this obstacle load balancing
is used.

12

Assume that we have a load balancing algorithm that, using P processors, takes 0(x)
expected time, where x ;::: log log n. While incorporating load balancing into Algorithm
Reduce, the exact values of the number of keys and the number of buckets are not known
in each iteration. Instead we assume the bounds obtained in Lemma 2 and Corollary 2. As
noted before this assumption is safe since it occurs with 0(1) probability. In the sequel we
deal with sectors of keys only. Load balancing of the buckets arrays can easily be inferred.

If load balancing is applied every 0(1) iterations, then optimal speed-up can be ob
tained for P :=; n/xlogx. To achieve optimal speed-up for values of P which are as large
as 0(n/x log• x), note that it is "justified" to use an 0(x) time load balancing only after
the "host" algorithm executed for 0(x) time. Specifically, if the sectors are of size y, then
the next load balancing procedure should be employed only after f x/y l iterations since in
each iteration, traversal takes 0(y). We modify the algorithm accordingly, and show that
this approach yields an 0(x log• x) expected time algorithm with optimal speed-up.

Assume that we have P = n/ x log• x processors, each responsible for a key-sector of
size 0(x log'" x). First, load balancing is used after each iteration until all sectors are of
size 0(x). This will take expected O(loglog'" x) iterations, based on Co'rollary 2. After
that the algorithm runs in phases; phase i starts with (0(x) time) load balancing, followed
by ti iterations. Let x, be a bound on the sectors size in phase i (x0 = x). Each traversal
takes 0(xi) time. t, is set to satisfy x,ti = x, so the total execution time of a phase is 0(x).

To bound the number of phases, Corollary 2 is used to obtain
X • - ~ and ·hence t· - t ·20(t;)

•+1 - 2o(ti) •+1 - • .

For some i = O(log• x), ti= x and x, = 1. The above procedure takes 0(x log• x) expected
total time.

We showed that using a load balancing algorithm with 0(x) expected running time,
our optimal hashing scheme takes 0(x log• x) expected time. Using the load balancing
algorithm of [16], where x = log log n, we get an optimal speed-up algorithm that takes
O(log log n log'" n) expected time and 0(n) expected number of operations.

8 Conclusions.

We presented an algorithm that constructs a perfect hash function for n elements in O(log log n)
time, using n processors. Our algorithm circumvents the O(log n/ log log n) lower bound for
counting and sorting by using probabilistic estimations instead of exact counting.

A general paradigm for the design of randomized algorithms was introduced. The
paradigm, called designing by expectation, is used in the design of our algorithm and may be
useful in the design of other fast randomized parallel algorithms.

By using a fast load balancing algorithm we modified the hashing algorithm and obtained ·
optimal speed-up. We demonstrated a careful usage of the load balancing algorithm. This
leads to only a small increase in time for the optimal hashing algorithm.

13

Techniques that are similar to the techniques that are used in this paper can be used
to simulate an arbitrary-CRCW on a collision-CRCW. The simulation algorithm takes
O(loglogn) time and O(n) space (18}. Consequently, all the duplications in the input can
be eliminated. As a result, the hashing algorithm works also on collision-CRCW.

Further research. The problem considered in this paper is the static hashing problem.
The dynamic hashing (dictionary) problem is to maintain a data structure that supports
the instructions insert, delete a.nd lookup. In other words, the input set S is _changing
dynamically. The fastest optimal dictionary is due to [11) and its time complexity is O(nf)
for any constant f > 0. T he static hashing scheme presented in this paper can be extended
to a dynamic hashing scheme with similar complexities [19).

Postscript. Recently [27) presented a new paradigm for randomized parallel algorithms
that requires expected O(log* n) rounds. This alternative approach has implications to
parallel hashing.

Acknowledgments. We thank Aviad Cohen and Jeanette P. Schmidt for helpful com-
ments on a previous version of the paper. We also wish to thank our advisors, Uzi Vishkin
and A vi Wigderson, for fruitful discussions and for their encouragement.

References

[1] D. Angluin and L. G. Valiant. Fast probabilistic algorithms for hamiltonian paths and match
ings. J. Comp. Syst. Sci., 18:155-193, 1979.

[2] A. Apostolico, C. Iliopoulos, G. M. Landau, B. .. Schieber, and U. Vishkin. Parallel construction
of a suffix tree. Algorithmica, 3:347-365, 1988.

[3] P. Beame. Limits on the power of concurrent-write parallel machines. In Proc. of the 18th
Ann. ACM Symp. on Theory of Computing, pages 169-176, 1986.

[4] P. Beame and J. Hastad. Optimal bounds for decision problems on the CRCW PRAM. In
Proc. of the 19th Ann. ACM Symp. on Theory of Computing, pages 83-93, 1987.

[5] P. C. P. Bhatt, K. Diks, T. Hagerup, V. C. Prasad, T. Radzik, and S. Saxena. Improved
deterministic parallel integer sorting. Technical Report TR 15/1989, Fachbereich Informatik,
Uiliversitat des Saarlandes, D-6600 Saarbriicken, W. Germany, November 1989.

[6] R. B. Boppana. Optimal separations between concurrent-write parallel machines. In Proc. of
the 21st Ann. ACM Symp. on Theory of Computing, pages 320-326, 1989.

[7] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. Annals of Math. Statistics, 23:493-507, 1952.

[8] B. S. Chlebus, K. Diks, T. Hagerup, and T. Radzik. Efficient simulations between concurrent

read concurrent-write PRAM models. In Mathematical Foundations of Computer Science,
1988.

[9] B. S. Chlebus, K. Diks, T. Hagerup, and T. Radzik. New simulations between CRCW PRAMs.
In Fundamentals of Computation Theory, Intl' Con/, August 1989.

14

[10] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert, and R. E.
Tarjan. Dynamic perfect hashing: upper and lower bounds. In Proc. of the 29th IEEE Annual
Symp. on Foundation of Computer Science, pages 524-531, October 1988. Also, Revised
Version: Tech. Report, University of Paderborn, FB 17 Mathematik/Informatik, 1991.

[11] M. Dietzfelbinger and F. Meyer auf der Heide. An optimal parallel dictionary. In Proc. of the
1989 Symposium on Parallel Algorithms and Architectures, pages 360-368, 1989.

(12] M. Dietzfelbinger and F. Meyer auf der Heide. A new universal class of hash functions and
dynamic hahshing in real time. In Proc. of 17th !GALP, Springer LNCS 443, pages 6-19,
1990.

[13] F. E. Fich, P. L. Ragde, and A. Wigderson. Relations between concurrent-write models of
parallel computation. SIAM J. Comput., 1:606-627, 1988.

[14] M. L. Fredman, J. Komloo, and E. Szemeredi. Storing a sparse table with 0(1) worst case
access time. Journal of The Association for Computing Machinery, 31:538-544, July 1984.

[15] Z. Galil and R. Giancarlo. Data structures and algorithms for approximate string matching.
J. of Complexity, 4:33-72, 1988.

[16] J. Gil. Fast load balancing on pram. manuscript, 1990.
[17] J. Gil. Lower Bounds and Algorithms for Hashing and Parallel Processing. PhD thesis, The

Hebrew University of Jerusalem, Givat Ram 91904, Jerusalem, Israel, November 90.
[18] J. Gil and Y. Matias. Fast and efficient simulations among CRCW models. In preparation,

1990.
[19) J. Gil, Y. Matias, and U. Vishkin. A fast parallel dictionary. In preparation, 1990.
[20] J. Gil, F. Meyer auf der Heide, and A. Wigderson. Not all keys can be hashed in constant

time. In Proc. of the 22st Ann. ACM Symp. on Theory of Computing, pages 244-253, 1990.
[21] L. M. Goldschlager. A universal interconnection pattern 'for parallel computers. Journal of

The Association for Computing Machinery, 29:1073-1086, 1982.
(22] V. Grolmusz and P. L. Ragde. Incomparability in parallel computation. In Proc. of the 28th

IEEE Annual Symp. on Foundation of Computer Science, pages 89-98, 1987.
[23] T. Hagerup. Towards optimal parallel bucket sorting. Information and Computation, 75:39-

51, 1987.

[24] R. M. Karp, E. Upfal, and A. Wigderson. The complexity of parallel search. J. Computer
and System Sciences, 36(2):225-253, April 1988.

[25] L. Kucera. Parallel computation and conflicts in memory access. Information Processing
Letters, 14:93-96, 1982.

(26] Y. Matias and U. Vishkin. On parallel hashing and integer sorting. Technical Report
TR-158/89, Eskenasy Inst. of Computer Sciences, Tel-Aviv Univ., December 1989. Also in
UMIACS-TR-90-13, Inst. for Advanced Computer Studies, Univ. of Maryland, Jan. 1990.

[27] Y. Matias and U. Vishkin. Converting high probability into nearly-constant time - with
applications to parallel hashing. Extended Abstract, November, 1990.

[28] Y. Shiloach and U. Vishkin. An O(log n) parallel connectivity algorithm. J. Algorithms,
3:57-67, 1982.

[29] U. Vishkin. Deterministic sampling - a new technique for fast pattern matching. In Proc.
of the 22st A_nn. ACM Symp. on Theory of Computing, 1990. Also to appear in SIAM J.
Computing.

15

A Proof of Probabilistic Induction Lemma.

Lemma 1 is proved by examining an infinite sequence of indicator random variables that
represent the success/failure of the algorithm's iterations.

DEFINITION 1. Let X = (x1 , x2 , •• •) be an infinite sequence of indicator random variables,
and X, = (x1 , ..• , xi) be the ith prefix of X.

• Xu is balanced if }:f=1 Xi~ u/4, and otherwise it is unbalanced.

• Xu is strongly balanced if Xi is balanced for every i ~ u.

• X is always balanced if, for all u > 0, Xu is balanced.

We will use the well known Chernoff bounds:
LEMMA 4. ([7, 1]) Let Y be a binomial. Then

Prob (Y < E~Y)) ~ e-E(Y)/s_ (8)

LEMMA 5. If Prob (xi= 1) ~ 1/2, for i > 1, and Xi are independent then X is always
balanced with probability 0(1).

Proof Let v be fixed. The event that X is always balanced is the intersection of two
events: Xv is strongly balanced and Xu is never unbalanced for u ~ v. Although these
events are dependent, their dependency is in the desired direction. The first event occurs
with probability !1(1) since vis fixed. It remains to show the existence of such (fixed) v for
which the second event occurs with probability 0(1) as well.

The sum Ef=1 Xi is bounded by a binomial with parameters (u, 1/2). Therefore, by
Chernoff ineq. (8),

Prob (Xu is unbalanced) Prob (tx; < u/4)
< e-u/16 .

Consequently, p(v), the probability that there exists u ~ v for which Xu is unbalanced, is
bounded by

oo -v/16

() < '°" -u/16 _ _e_--,-_
p v - ~ e - (1 - e-1/16) .

Clearly there is a fixed v for which 1 - p(v) = 0(1).
also obtained from the strong law of large numbers.)

(The existence of such fixed v can be

□
We are interested in the case that Prob (xi= 1) ~ 1/2 is true only under the con

dition that Xi-t is strongly balanced. \Ve will analyze the more restrictive case that
Prob (xi= llXi is strongly balanced)= ½-

16

Let SB(i) be the set of all assignments to the vector Xi for which Xi is strongly balanced.
Note that

Prob (Xu is strongly balanced)= Prob (Xu E SB(u))

= L Prob(Xu = e)
eeSB(u)

DEFINITION 2 . We say that X is partially independent if
Prob (x1 = 1) = Prob (x1 = 0) = 1/2

and
Ve E SB(i) Prob (xi+t = 1 I Xi= e) = 1/2

(9)

(10)

(11)

LEMMA 6. If Xis partially independent then Xis always balanced with probability f!(l).

Proof Let Y = (y1, y2 , •• •) be an infinite sequence of indicator random variables such that
Yi are independent and Prob (()Yi = 1) = 1/2, for i ~ 1. Intuitively, X behaves as well as
Y, as long as Xis strongly balanced. More formally, the proof will show that

Vu~ 1, Prob (Xu E SB(u)) = Prob (Yu E SB(u))
Using (9) it is enough to show that for every e E SB(u)

Prob (Xu= e) = Prob (Yu= e) (12)
which is proved by induction on u. In the case u = 1 the set SB(u) is {(1)}. By (10)

Prob (x1 = 1) = Prob (y1 = 1) = 1/2.
Assuming by induction that (12) holds for u = i, we show that it holds for u = i + 1. Let

e = (e1, ... , ei+i) E SB(i + 1) and let e' = (e1, ... , ei), Then, by definition, e' E SB(i). Using
(11), the inductive hypothesis, and the fact that Yi+t is an independent random variable we
get that

Prob (Xi+I = e) - Prob (X, = e' n x,+1 = ei+i)

- ~Prob (X, = e')
2

~Prob(~= e')
2

- Prob(~ = e' n Y,+1 = ei+1)

Prob (~+1 = e)

□
Usually X will satisfy a stronger condition, and a weaker statement will therefore suffice:

COROLLARY 3. If Prob (xu = 1) ~ 1/2 when Xu-I is balanced, then Xis always balanced
with probability f!(l).
Lemma 1 now follows.

17

