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Abstract Planar communication networks facilitate simultaneous communication in 
VLSI chips. Planar rearrangeable network and planar superconcentrator are two prin­
ciple planar communication networks of important theoretical values. We construct 
planar rearrangeable networks and planar superconcentrators with concerns not only 
of the size (the number of single-pole single throw switches in the network), but also 
of the degree of fault tolerance in the presence of random switch failures. In this pa­
per, we study a random switch failure model and present optimal size constructions 
of fault tolerant planar rearrangeable networks and planar superconcentrators. In fact, 
we construct schemes in which fault tolerant planar rearrangeable n-networks (networks 
failing to be planar rearrangeable n-networks with probability approaching O as n -+ oo) 
contain O(n3

) switches, and fault tolerant planar n-superconcentrators contain O(n2) 

switches. It turns out that both constructions are optimal in the.sense that the sizes of 
the resulting networks are within a constant factor of their minimum values. 





1. Introduction 

A. Planar Communication Networks 

The rapid advances of VLSI technology have made massive parallel computer systems 

practical. Consequently, the research on planar communication networks on VLSI chips 

becomes attractive. Consider in a VLSI chip, there are n resource ( eg. processors and 

memory devices) called "transmitters" and n other res~mrce called "receivers", planar 

communication networks ( consisting of ·electrical links and switching elements) provide 

simultaneous communication between various combinations of transmitters and receivers. 

(Condition "simultaneous" is crucial for parallel computation.) Our interest in this pa­

per is in fault tolerant planar networks that accomplish the simultaneous communication 

by means of disjoint paths of links and switches from transmitters to receivers. Among 

various schemes of such networks, planar rearrangeable networks and planar supercon­

centrators are the two of important theoretical values. To formulate the property more 

precisely, we describe a network in terms of a graph. Transmitters are represented by n 

distinguished vertices called inputs, and receivers by n other distinguished vertices called 

outputs. Electrical links are represented by vertices other than inputs and outputs, and' 

switches (single-pole single throw, connecting two links) .by edges between the two cor­

responding vertices. Such a network is said to be a "rearrangeable n-network" if, given 

any one-to-one correspondence between the inputs and the outputs, there exists a set of 

n vertex-disjoint paths joining each input to its corresponding output; it is said to be a 

"n-superconcentrator' if, for every r $ n, every set of r inputs, and every set of r outputs, 

there exists a set of r vertex-disjoint paths from the given inputs to the given outputs. 

A "plcmar rearrangeable n-network" is a rearrangeable n-network that ca,n be embedded 

into a plane. Similar property holds for a "planar n-superconcentrator'. It is obvious 

that a rearrangeable network is able to transfer data simultaneously from transmitters 

to receivers in accordance with any permutation. A superconcentrator, for example, can 

provide an ideal support for the Task Queue scheme [Co] in parallel computing. Imagine 

that transmitters are n processors and receivers are n memory devices. The task queue 

of some problem is distributed on k mel!lories and k processors is 'working in parallel to 

solve the problem, the superconcentrator will ensure each processor the access to a task. 

As tasks are independent, it does not matter which accesses which. 

As the number of elements integrated in a VLSI chip increases, the probability that 

some switches in the the planar communication network fail becomes greater too. Fault 

tolerance of communication networks is therefore important in order to maintain the reli-
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ability of the computer system. The measure of fault tolerance we are interested in in this 

paper is the probability of the network fulfilling the communication task in the presence 

of random switch failures. In fact, we explore a random switch failure model and con­

struct planar rearrangeable networks and planar superconcentrators with high degree of 

fault tolerance. Because of the nature of switch failures, the model studied in this paper 

is different from the random link failure model or the random faulty processor model in 

[GG], [LL], [KKLMRRTT] and [Ra]. In fact, their mode~ can be treated as special cases 

of the model in this paper, in the sense that they only consider one of the two type of 

failures studied in this paper. This model difference, however, does not prevent us from 

integrating certain techniques of their researches, especially that of [KKLMRRTT] and 

[Ra], into our proof of some results, in particular of Lamma 1 in Section 2. 

B. The Random Switch Failure Model 

The conventional measure of complexity applied to planar communication networks is 

"size", the number of single-pole single-throw switches (edges) in it, as it affects the number 

of processors and memory cells integrated onto a VLSI chip. An extensive literature 

exists concerning the design of planar communication networks, minimizing their sizes as 

functions of the number of inputs and outputs (see [CS], [AKLLW85], [AKLLW91] and 

[KL]). To planar rearrangeable networks, the most advanced results are the O(n3) upper 

bound due to Cutler and Shiloach [CS] and the O(n3
) lower bound by Klawe and Leighton 

[KL]; to planar superconcentrators, an O(n2) upper bound (an n x n grid) is obvious and 

Lipton and Tarjan [LT] proved the O(n2) lower bound. 

Our concern in this paper is not only the size of the networks, but also their faul~ 

tolerance when edges ( electrical switches) are subject to probabilistic failures. In fact, 

we consider two type of failures. The first is that the two vertices of an edge contract 

to one (the two vertices become identical), called dosing failure. The second is that the 

two vertices of an -edge are permanently "separated"(the edge ceases to exist) , called 

open failure. The interpretation of these fail~res is evident. Closing failures correspond 

to electrical switches (edges) being permanently "on" (failing to be "off"); open failures 

correspond to electrical switches being permanently "off" (failing to be."on"). Our goal 

of this paper is to design planar rearrangeable networks and planar superconcentrators 

that use small number of edg€s (switches) while have high degree of fault tolerance. 

We shall assume each edge randomly and independently subject to closing failure and 

open failure with probability O < t 1 < 1/2 and O < t 2 < 1/2 respectively. For the simplicity 

of notations, we assume that t 1 = t 2 = t. Given O < t < 1 /2, consider a planar network 

2 



N subject to the above failure model. Let the event space n be the set of all graphs 

obtained from N. The probability measure on each graph is assigned in accordance with 

the number of failed edges. Given 0 < li < 1, we say N is a planar ( f., 8)-rearrangeable 

n-network if the probability measure on all planar rearrangeable n-networks inn is greater 

than 1-8; N is a planar ( f., 8)-n-superconcentrator if the probability measure on all planar 

n-superconcentrators in n is greater than 1 - 8. It is clear that by choosing arbitrarily 

small 8, a planar ( f., 8)-rearrangeable n-network or a ( f., 8).-n-superconcentrator can fulfill 

its communication task with arbitrarily high probability. 

Results of Moore and Shannon [MS] are useful to build planar ( f., 8)-rearrangeable 

n-networks and planar ( f., 8)-n-superconcentrators with small number of edges. They pre­

sented a solution to the construction of general fault tolerant networks. They showed that" 

given network \JI and 0 < f. < 1/2 and 0 < 8 < l, there exists a network of size cT(logT)2, 

doing the same task as \JI does with probability at least 1 - 8, where T is the size of \JI 

and c is a constant independent of \JI. Consequences of Moore and Shannon's result are 

that planar ( f., 8)-rearrangeable n-networks are of size 0( n3
( logn )2) and planar ( f., 8)-n­

superconcentrators are of size 0(n2 (logn)2). However, noticeable gaps exist between these 

upper bounds and the known lower bounds. 

Proposition 1 Given 0 < f. < 1/2 and 0 < 8 < 1, any (€,8)-rearrangeable n-network 

must have S1(n3
) edges, and any ( f., 8)-n-superconcrntrator must have S1(n2 ) edges. 

Proof It is observed that if a planar graph N is not a planar rearrangeable network, then 

nqne of its random instances are planar rearrangeable networks either. 'fhis, combined 

with the· S1( n3
) lower bound of Klawe and Leighton [KT], implies that any planar ( f., 8)­

rearrangeable n-network must have S1(n3
) edges. Similar observation on planar supercon­

centrators and the S1(n2
) lower bound of Lipton and Tarjan (an immediate consequence of 

Theorem 5 in [LT]) indicate that any planar (€, 8)-n-superconcentrator must have S1(n2
) 

edges. 6. · 

We present in this paper the first optimal size planar ( f., 8)-rearrangeable n-networks 

and planar ( f., 8)-n-superconcentrators, namely planar ( f., 8)-rearrangeable n-networks with 

0( n 3
) edges and planar ( f., b')-n-superconcentrators with 0( n2

) edges. The construction 

of the optimal 0( n3
) size planar ( f., 8)-rearrangeable n-networks is presented in Section 

2, and that of optimal 0( n 2
) size planar ( f., b')-n-superconcentrators in Section 3. The 

result on planar rearrangeable networks also applies to the optimal construction of fault 

tolerant planar permutation networks (see [KL] for the definition of permutation network, 

and [CS], [AKLLW85] and [AKLLW91] for its applications). 
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2. Planar Rearrangeable Networks 

In this section, we shall construct and analyze an O(n3
) size planar (f, 6')-rearrangeable n­

network. We first review the result due to Cutler and Shiloach (CS] on planar rearrangeable 

networks of reliable edges. 

In a (2n2 + n) x (2n + 1) grid, n inputs and n outputs are placed on the middle vertical 

line at intervals of length n beginning at the top line,. with inputs being placed first. 

Cutler and Shiloach [CS] showed that such a grid is an planar rearrangeable n-network. 

It obviously has size O(n3
). 

Unfortunately this approach is not resilient to edge failures, since the inputs and out­

puts are of bounded degrees. With a probability of constant value (say, f4
), the four edges 

adjacent to an input may suffer open failures simultaneously and the input is isolated from 

the rest of the network. However, a modification of the grid will give a highly fault tolerant 

planar rearrangeable network with optimal size. 

We first construct an 18n2 x (12n + 1) grid. Along the middle vertical line, we shrink 

the first 3n vertices of every 9n vertices to one vertex. Let the first n of the 2n "shrunk" 

vertices be inputs and the rest be outputs. A vertex is adjacent to an input (resp. output) 

if it was a neighbor of one of the 3n vertices from which the input (resp. output) is 

obtained. We call this network N. 

To discover the fault tolerance of network N, we shall need the following lemmas. 

Lemma 1 (Pippenger) In a 6r x t grid of which edges are subject to the above failure 

model, the probability that there are less than r + 1 vertex-disjoint paths from the left hand 

boundary to the right hand boundary is at most d1 t(76 • 56f)" provided 76 • 56f < 1, where 

d1 = 1/(1 - (76 . 56f)1l6 ). 

Proof. Consider any minimal set of edges S which separates the left side boundary from 

the right side. Condition "minimal" means that any proper subset of S does not separate 

the left side boundary from the right side. Suppose ISi = l. For each edge e in S, call the 

subnetwork comprising itself and the six edges adjacent to it C(e). We say C(e) is dead if 

one of its edges suffers an open failure or a closing failure, otherwise C( e) is alive. Thus 

the probability of C(e) being dead is at most 14f. It is observed that if the distance of 

~wo edges e1 and e2 in Sis 3, C(ei) and C(e2 ) are disjoint. Thus there are l/3 C(e)'s in 

{.C(e)le ES} which are disjoint to each other. Let C(S) be the subset of {C(e)le ES}, 

which contains 1/3 such C(e)'s. If there are less than r + 1 vertex-disjoint paths from 

the left hand side bOl~ndary to the right hand side boundary, by Menger's Theorem (see-
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Chapter 5 of [CL]), there is a set of edges S which separates the left side boundary from 

the right side, such that there are fewer than r + 1 C ( e) 's in C ( S) alive. It is clear that 

events "C(ei) being alive" (for all C(ei) E C(S)) are independent, since C(ei)'s are disjoint. 

Thus the probability that there are fewer than r + 1 C(e)'s in C(S) being alive is at most 

Lw<r+I .( 1~3 ) (14t:)1/ 3-w :::; 2113 (14t:)113
-r. For any given l, the number of such Sis at 

most t • 7', since there are t places to start S and at most 7 ways to continue at ~ch step ... 

On the other hand, l ~ 6r, since any edge set separating'the left boundary from the right 

boundary contains at least 6r edges. Therefore, the probability that there are less than 

r + 1 vertex-disjoint paths from the left hand boundary to the right hand boundary is at 

most E 1~ 6r t1'2113 (14t:) 113
-r, Thus Lemma 1 follows. !:::. 

Similarly, 

Lemma 2 In a s x t grid, shrink the s vertices at the . left hand side boundary to one 

vertex and named this vertex '~ew ". The probability that there is no path from "new" to 

the opposite side boundary is at most d2 t(13 
• 14t:)s/3 provided 73 

· 14f < 1, where d2 = 
1/(1 - (73 . 14t:)113

). 

To show the fault tolerance of N, imagine horizontally partitioning N into 4n layers. 

Each of the 2n odd layers contains vertices of the first 3n rows of every 9n rows; each of 

the 2n even layers contains vertices of the rest 6n rows of every 9n rows. It is clear that 

the inputs and outputs are in the 2n odd layers, with each in one layer. It is observed 

that each odd layer is a 3n x (12n + 1) grid, except the 3n vertices in the middle vertical 

line shrink to an input or an output. By Union Law and Lemma 2, the probability that 

there exists an odd layer in which there is no path from left side boundary to right side 

boundary (thus through the input or the output in this layer) is at most 24d2n 2(73 
• 14ft. 

Similarly, each even layer is a 6n x (12n + 1) grid. By Union Law and Lemm~ 1, the 

probability that there exists an even layer in which there are less than n + 1 vertex-disjoint 

paths from the left side boundary to the right side boundary is at most 24d1n 2 (76 • 56ft. 

Imagine vertically partitioning N into three sections. The left section consists of ver­

tices in the left hand side of the inputs and outputs. The middle section consists of 2n 

inputs and outputs. The rest comprises the right section. It is clear that the left section 

and the right section are 6n x 18n2 grids. By Union Law and Lemma 1, the probability 

that there are less than n + 1 vertex-disjoint paths running from the top boundary to the 

bottom boundary in the left section or there are less than n + 1 paths running from the 

top boundary to the bottom boundary in the right section is at most 36d1n 2 (76 . 56ft. 
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We call these vertex-disjoint paths in each (horizontal) layer and ( vertical) section 

tracks. Let the subnetwork induced by these tracks be frame(N). We observe that in 

any two consecutive layers, at most two horizontal tracks have a vertex in common ( with 

one track in each layer). Similarly, of the left section and the right section, at most two 

vertical tracks have a vertex in common. Therefore, with probability at least 

(notice d1 > d2 when 76 • 56f < 1,) the random instance of N contains a frame(N) which 

has at lea:st 2n2 + 2n horizontal vertex-disjoint tracks, with inputs and outputs on 2n 

horizontal tracks and at least n horizontal tracks between two consecutive input or output 

vertices, and at least 2n vertical vertex-disjoint tracks with at least n tracks on each side 

of the inputs and outputs. Thus by virtuely the same argument as that in [CS], this 

frame(N) is shown to be a planar rearrangeable n-network, i.e. the random instance of 

N is a planar rearrangeable n-network. 

In order to see the fault tolerance of N, we observe that 1 -. 84d1n 2 (76 • 56ft is 

approaching 1 as n -+ oo, when f < 1/76 
• 56. Thus it will be greater than any 1 - o. In 

order to extend the result to any O < f < 1/2, we shall need the following lemma due to 

Moore and Shannon [MS]. 

We say a two-terminal network is a network with two distinguished _vertices called input 

and output. Given a two-terminal network <I> in which edges are independently subject 

to random closing and open failures. We say <I> suffers a closing failure if the input and 

output of <I> contract into one vertex; <I> suffers an open failure if the input and the output 

are not in the same connected component. 

Lemma 3 (Theorem 6 in [MS]) Given O < f < 1/2 and O < f' < f. There e•xists a 

two-terminal planar network <I> of which the probabilities of closing failure and open failure 

are both less than f
1

, and <I> contains ce(logf')2 edges, where f is the probability of closing 

failure and open failure of each edge in <I>, and Ce is a constant depending on f. 

Now we are ready to present the optimal size planar (f,b)-rearrangeable n-network. 

Theorem 1 For any O < f < 1/2 and O < b < 1, there is an explicit construction of a 

planar ( f, b)-rearrangeable n-network of size O(n3). 

Proof. Given any· 0 < f < 1/2 and O < b < l. Consider in network N, we substitute 

each edge by a two-terminal planar network <I> of Lemma 3, in which we choose f' such 
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that 76 • 56t:' < 1 and 84d1n2 (76 • 56f't < 6, for all n ~ 1. It is clear that the resulting 

network is planar and of size 0( n3 ). Moreover, it is an ( f, 6)-rearrangeable n-network since 

1 - 84d1n2 (76 • 56f')n > 1 - 6. ~ 

3. Planar Superconcentrators 

Without loss of generality, we assume in this section that n1l2 is an integer. The con­

struction of planar ( €, 8)-n-superconcentrators is described in terms of stage. The n inputs 

consist of the first stage. The second stage comprises 2n - 1 disjoint sets of vertices called 

group(j), 1 $ j $ 2n - 1. group(2i - 1) consists of 6n1
/

2 + 5 vertices, 1 $ i $ n, and 

group(2i) of 6n1l2 - 1 vertices, 1 $ i $ n - 1. Each input i in the first stage, 1 $ i $ n, 

is adjoining to 6n1l2 + 5 edges which lead to the 6n1l2 + 5 vertices of group(2i - 1). We 

use 2n(6n1l2 + 2) - 6n1l2 edges to join the 2n(6n1l2 + 2) - 6n1l2 + 1 vertices in the second 

stage on a path (a thread of edges) with vertices of group(j) appearing before that of 

group(j + 1 ), 1 $ j < 2n - 2. For any two adjacent vertices in the second stage, if they are 

in the same group(j), they have edges leading to a common vertex in the third stage. Thus 

the third stage contains 2n(6n1l2 + 2) - (6n1l2 -1) - (2n -1) = 2n(6n1l2 + 1) - 6n1l2 + 2 

vertices, with each vertex being adjacent to two vertices in the previous stage. Similarly, 

vertices in the third stage are joined by a path of 2n(6n1l2 + 1) - 6n1l2 + 1 edges running 

from the top to the bottom. In similar ways, we construct the fourth stage, and so on. The 

number of vertices in each stage decreases by 2n -1 as one more stage is constructed. Stop 

the construction after (6n1l2 + 1)-st stage (the (6n1l2 + 1)-st stage contains 6n vertices). 

Now, taking these 6n vertices as the left hand boundary, construct a 6n x 6n grid. With 

the bottom boundary of the grid, associate a 6n1l2 + 1 stage subnetwork described above, 

but replace the n inputs by n outputs. We call this network M. The network is clearly 

planar and has O(n2) edges. 

In order to show the fault tolerance of this network, we shall need a result ~n planar 

superconcentrators with reliable edges. And we shall prove a general result on disjoint 

paths of planar graphs (Proposition 2) . . 

Consider in an n x n grid, n inputs are adjoining to the n vertices on the left hand 

boundary of the grid in any one-to-one correspondence and n outputs are adjoining to the 

n vertices on the bottom boundary in any one-to-one correspondence. It is obviously a 

planar n-superconcentrator and has O(n2) edges. 

Proposition 2 Given a planar graph G, let v0 , v1 , · • ·, Vn be a set of vertice~ occurring 

anti-clockwise around the boundary of the exterior face of G. There are n paths vi _. 
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v0 in G (for i = l, · · ·, n), such that they are vertex-disjoint except at v0 if! for every 

interval { Vi, Vi+i, · · ·, vi+r-I} (1 $ i $ n and l $ r $ n - i + 1}, there are r paths from 

{ vi, Vi+i, · · ·, Vi+r-I} to v0, vertex-disjoint except for their ends. 

Proof. Necessity of the condition is obvious. Before we prove the sufficiency, we need some 

definitions. Given a set of paths {Li,···, Lp} in G, vertex-disjoint except at their ends, 

we define a full anti-symmetric order relation lies abov_e among it. We say Li lies above 

Li+I, for i = 1, • • • ,p-1, if Upperl>oundary, LI,·•·, Lp form an anti-clockwise order, where 

U pperl>oundary is the segment between VI and v0 of the boundary of the exterior face that 

contains no Vi, i = 2, · · ·, n. Given two simple paths A and Bin G, let cap(A, B) be a new 

path by starting from A's initial vertex and, between each two consecutive intersecting 

vertices of A and B, choosing the segment that lies above. Similarly we define cup( A, B) 

except we choose the segment that lies below. To prove sufficiency, we do induction on n. 

The case when n = l is trivially true. We assume the proposition is true when n = k. We 

consider the case n = k+ l. We have k+ 1 paths Ri, i = 1, · · ·, k+ l, from { vI, v2, • • •, Vk+1} 

to v0 , vertex-disjoint except at their ends. Wi~hout loss of generality, we assume that Ri 
lies above Ri+I• By induction hypothesis, we have k paths Pi: Vi ---+ v0 for i = 1, • • •, k, 
vertex-disjoint except at v0 , and k paths Qi: Vi ---+ v0 for i = 2, • · • , k + l, vertex-disjoint 

exceJ>t at v0 • Without loss of generality, we assume all Pi's, Qi's and Ri's are simple. Let 

height(i) be the smallest j such that Ri and Q3 have a common vertex other than v0 • It 
is clear that 2 $ height(l) $ height(2) $ · · · $ height(k + l) $ k + l. Thus 3i, such 

that height(j) $ j, for all j 2:: i. Let i0 be the smallest such i. Let T3 = cup(Q3, R;), for 

j = io, · · ·, k + l and, T3 = P3 for j = 1, · · ·, io - 1, if Rio-I and Pio-I are vertex-disjoint 

except at vo; T3 = cap(P3, Q3+1), for j = 1, · · ·, io - 2, and Tio-I = cap(Pio-I, Rio-1), if 

Rio-I and Pio-I have a common vert~x other than Vo. It is observed that in either case, 

T3 is a simple path from v3 to v0 , for j = 1, • · ·, k + 1, and TI,•••, Tk+ 1 are vertex-disjoint 
except at v0 • This completes the induction. ~ 

An application of Proposition 2 on network M immediately suggests Corollary 1. 

Corollary 1 If given any r consecutive inputs i, i+l, · • •, i+r-1 in the first stage, for any 

1 $ i $ n and 1 $ r $ n - i + 1, there are r paths from a subset of the r inputs to the right 

side boundary of the grid, disjoint except initial vertices, then there are n vertex-disjoint 

paths from the n inputs to the right side boundary of the grid. 

Corollary 1 shows that in order to ensure the existence of n vertex-disjoint paths from 

n inputs to the right side boundary of the grid, besides the distinctness of n inputs ( no 

two inputs contract to one vertex, due to the simultaneous closing failure of edges linking 

8 



the two inputs), there are at most n + (n - 1) + · • • + 1 = n(n + 1)/2 $ n 2 "conditions" 

need to ·be satisfied. By a "condition", we mean "there are r paths from a subset of r 

consecutive inputs to the right side boundary of the grid, disjoint except initial vertices". 

Lemma 4 Given r consecutive inputs i, i+1, · · ·, i+r-1, the probability that there do 

not exist r paths from a subset of the r inputs to the right side boundary of the grid, 

disjoint except initial vertices, is at most 24dan(96
• 88ft

1
'

2 
provided 96

• 88€ < 1, where 

d3 = 1/(1 - (96 
· 88£)116

). 

Proof We observe two facts. Firstly, any set of edges which separates inputs i, i+ 1, · · ·, i+ 
r-1 from the right side boundary of the grid must contain at least ls= min{6n, 6r+6n1l2

} 

edges. Secondly, each edge in the network is adjacent to at most ten other edges. The 

same argument as that in Lemma 1 produces this probability value, noticing that ls ~ 6r 

and ls 2:: 6n1l2 • D. 

Lemma 4 indicates that the probability of such a "condition" not being satisfied is at 
6 1/2 6 most 24d3n(9 · 88ft , when 9 · 88£ < 1. 

Lemma 5 With probability at most 16d4n 3 (6f)6
n

112
, d4 = 1/1- 6f, there exist input{s) or 

output(s) i 1 and i 2 , 1 $ i 1 =/- i 2 $ n, such that i 1 and i2 contract to one vertex. 

Proof Consider any such pair i1 and i 2 • Any simple path from i 1 to i 2 must contains at least 

6n1l2 edges. And for any l ~ 6n1l2, there are at most (6n1l2 +5)261- 2 < (n1l2 +1)261 < 4n61 

such paths of length l, as the degree of inputs and outputs is 61.1,112 + 5, and that of the 

other vertices is at most 6. Thus the probability that there exist i1 and i 2 , contracting to 

one vertex due to the simultaneous closing failure of edges along a path from i1 to i2 , is 

at most 4n2 E1~ 6n1/2 4n61f1 < 16d4n 3 (6f)6
n

112
• D. 

It is clear now when 96 . 88f < 1, with probability at most 24dan3(96 • 88ft
1

'
2 

+ 

l6d4n3 (6f)6
n

112 < 40dan3 (96 
• 88ft

1
'
2

' there do not exist n vertex-disjoint paths from n 

inputs to the right side boundary of the grid. Similar properties hold for the vertex-disjoint 

paths from n outputs to the top boundary of the grid. 

Recall frame(M) defined in the preceding section. With probability at least 1 -

40dan3 (96
• 88ft

1
'
2 

- 40dan3(9 6
• 88fr

1
'
2 = 1 - 80dan3 (96

• 88fr
1

'
2

' the random instance 

of M contains a frame(M) which has n horizontal vertex-disjoint paths from n inputs to 

the right side boundary of the grid and n vertical vertex-disjoint paths from n outputs to 

the top boundary of the grid. Thus by virtuaUy the same argument as that applied to the 

n X n. grid of reliable edges, this frame(M) is shown to be a planar n-superconcentrator. 
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Theorem 2 For any O < t < 1/2 and O < 8 < 1, there is an explicit construction of a 

planar ( t, 8)-n-superconcentrator of size 0( n2
). 

Proof Same arguments as that in Theorem 1, except in which we replace network N by 

network M, and choose f' such that 96 
• 88€' < 1 and 80d3n3 (96 

• 88f')n
112 < 8, for all n ~ I. 

,6. 
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