
A Two-Level Formal Verification 
Methodology using HOL and COSMOS 

by 

Carl-Johan Seger 
and 

Jeffrey J. Joyce 

Technical Report 91-10 
June, 1991 

Department of Computer Science 
University of British Columbia 

Vancouver, B.C. 
CANADA V6T 122 





A Two-Level Formal Verification Methodology 
using HOL and COSMOS.* 

Carl-Johan Seger and Jeffrey J. Joyce 
Department of Computer Science 

University of British Columbia 
Vancouver, B.C., CANADA V6T 1 W5 

e-mail: seger@cs.ubc.ca 
joyce@cs.ubc.ca 

June 18, 1991 

Abstract 

Theorem-proving and symbolic simulation are both described as methods for the formal verifica
tion of hardware. They are both used to achieve a common goal-correctly designed hardware-and 
both are intended to be an alternative to conventional methods based on non-exhaustive simulation. 
However, they have different strengths and weaknesses. The main significance of this paper-and 
its most original contribution-is the suggestion that symbolic simulation and theorem-proving 
can be combined in a complementary manner. We also outline our plans for the development of 
a mathematical interface between the two approaches-in particular, a semantic link between the 
formulation of higher-order logic used in the Cambridge HOL system and the specification lan
guage used in the COSMOS system. We believe that this combination offers great potential as a 
practical formal verification methodology which combines the ability to accurately model circuit 
level behavior with the ability to reason about digital hardware at higher levels of abstraction. 

1 Introduction 

Designing complex digital system in VLSI technology usually involves working at several levels of 
abstraction, ranging from very high level behavioral specifications down to physical layout at the 
lowest. One of the main difficulties in this process is to verify the consistency of the different levels 
of abstraction. Simulation is often used as the main tool for "checking" the consistency. Despite 
major simulation efforts, serious design errors often remain undetected. Consequently, there has been 
a growing interest in using formal methods to verify the correctness of designs. There are several 
approaches to formal hardware verification: theorem-proving, state machine analysis, and symbolic 
simulation to mention a few. These methods all have their strengths and weaknesses. In this paper 
we will illustrate how theorem-proving can be used in conjunction with symbolic simulation to gain a 
verification methodology that draws on the strengths of each approach. 

•This research was supported by operating grants from the Natural Sciences and Engineering Research Council of 
Canada. 

1 





Most research on formal verification has relied on the use of computer-assisted theorem provers [3, 8, 
9, 12, 16] to establish equivalence between different circuit representations. Here the circuit is described 
hierarchically, where a component is defined at one level in the hierarchy as an interconnection of 
components defined at lower levels. The system specification consists of behavioral descriptions of the 
components at all levels in the hierarchy. Verification involves proving that each component fulfills 
its part of the specification, assuming that its constituent components fulfill their specifications. This 
proof is mostly carried out interactively using some kind of computer-assisted theorem prover, like the 
Boyer-Moore Theorem Prover [3] or the Cambridge HOL System [16]. 

One of the main strengths of the theorem-proving approach is its ability to describe and relate 
circuit behaviors at many different levels of abstraction. By being able to reason about the circuit 
at increasingly higher levels of abstraction, we can eventually minimize the semantic gap between the 
formal high-level specification and the informal, intuitive, specification of the circuit that resides in 
the mind of the designer. 

Unfortunately, theorem-proving based verification requires a large amount of effort on the part of 
the user in developing specifications of each component and in guiding the theorem prover through all 
of the lemmas. Also, in order to make the proofs tractable, most attempts at this style of verification 
have been forced to use highly simplified circuit models. 

A first-generation symbolic simulator resembles a traditional logic simulator [5]. The simulator 
computes how a circuit would behave in response to a sequence of input patterns. These patterns, 
however, can contain Boolean variables in addition to the constants O and 1. Consequently, the results 
of the simulation are not single values but rather Boolean functions describing the behavior of the 
circuit for the set of all possible data represented ~y the Boolean variables. 

A verifier based on symbolic simulation applies logic simulation to compute the circuit's response 
to a series of stimuli chosen to detect all possible design errors. When a circuit has been "verified" 
by simulation, this means that any further simulation would not uncover any errors. Since a symbolic 
simulator is based on a traditional logic simulator, it is can use the same, quite accurate, electrical 
and timing models to compute the circuit behavior. For example, a detailed switch-level model, 
capturing charge sharing and subtle strengths phenomena, and a timing model, capturing bounded 
delay assumptions, are well within reach. Also-and of great significance-the switch-level circuit 
used in the simulator can be extracted automatically from the physical layout of the circuit. Hence, 
the correctness results will link the physical layout with some higher level of specification. 

Recently, Bryant and Seger [6] developed a second-generation symbolic simulator. Here the simu
lator establishes the validity of formulas expressed in a very limited, but precisely defined, temporal 
logic. By limiting the complexity of the logic, great efficiency is obtained. Furthermore, the verifica
tion process is highly automated. Unfortunately, the automation obtained by the symbolic simulator 
comes with a price. First of all, for some behaviors, the computational requirements for carrying out 
a correctness proof can make the approach infeasible for larger circuits. Secondly, the semantic gap 
between the intuitive, informal, specification the designer has in mind and the specification used in 
the symbolic simulator is often quite large. 

When tabulating the strengths and weaknesses of theorem-proving and symbolic simulation used 
for formal hardware verification, it is striking to see how well the two approaches complement each 
other. Thus, it is very appealing to attempt to integrate them into a two-level combined approach 
to formal hardware verification. However, in order to achieve this integration, two problems need to 
be resolved: 1) a mathematically precise interface must be developed so that the rigor of the formal 
proof is not jeopardize, and 2) a practical interface between the two processes must to be developed. 
In this paper we focus on the first issue and only briefly mention ongoing work towards solving the 

2 



second problem. 
We believe that the combination of general-purpose theorem-proving and symbolic simulation 

offers great potential as a practical formal verification methodology: it combines the ability to reason 
about detailed circuit level behaviour accurately and efficiently with the ability to reason about digital 
hardware at higher levels of abstraction. To the best of our knowledge, this is the first instance of 
when theorem-proving and symbolic simulation have been used in a combined approach to formal 
hardware verification. 

2 A Two-Level Approach 

Symbolic simulation, as achieved by the COSMOS simulator, can be viewed as a highly specialized form 
of theorem-proving. COSMOS checks the validity of assertions in a specificatiorL language (which we 
call CL ) with respect to a model structure q,. This model structure is a set of infinite state sequences 
determined by an extracted circuit netlist C and a built-in switch-level and delay model of circuit 
behaviour. When viewed as a theorem-proving system, the COSMOS system can be used to prove 
theorems of the form, q, Ff , where f is a formula in CL. 

A rigorous link with general-purpose theorem-proving in particular, the Cambridge HOL system, is 
achieved by semantically embedding the specification languag CL in higher-order logic. The semantic 
embedding of CL in higher-order logic allows CL specifications to be expanded into a term of higher
order logic and used to derive higher-level correctness results. That is, the HOL system can be used to 
prove theorems of the form, I- (w F f ) ==> t , where f is a formula in CL ( embedded in higher-order 
logic) and t is a term in higher-order logic. 

Thus, the two proof results, q, F f and I- (w F f ) ==> t constitute a statement of correctness 
in our combined approach. They are obtained by symbolic simulation and general-purpose theorem
proving respectively. 

In Section 3, we elaborate on how symbolic simulation can be viewed as a highly specialized form 
of theorem-proving. Section 4 explains how CL can be embedded in higher-order logic to establish 
a rigorous link between the two approaches. Finally, in Section 5, we describe how CL is used to 
bootstrap a higher level specification language, called HCL. 

3 Symbolic Simulation Viewed as Theorem-Proving 

The main thesis of this section is that the verification system described in (6], based on the COSMOS symbolic 
simulator, can be viewed as a proof system. In fact, the system can be viewed as proving that the 
behaviors de;rived from an extracted netlist imply certain properties described in a formal specification 
language. We use the simple example of an inverter, Fig. l(a), to provide the reader with an informal 
account of our approach. If we assume a binary circuit model and a unit delay simulator, the inverter 
circuit is accurately described by the state machine shown in Fig. l(b ). The states of the machine are 
labelled with the current values of the two nodes in the circuit, and a transition in the state machine 
corresponds to a basic unit of time. 

The state machine in Fig. l(b) implies certain properties. For example, it is easy to see that we 
can conclude from the state machine tltat the value on the output is always the complement of the 
value that was present on the input one time unit ago. Informally, this could be written as: 

for every state sequence [( in = a) => X( out = a)] 

3 



0 

in-----{>--- out 

~out 

0,0~ 1,1 

~7 
1,0 

u 
(a) (b) 

Figure 1: Inverter and corresponding state machine. 

where the X is a "next time" operator and a denotes the Boolean complement of a. The main result 
of [6] is that the COSMOS symbolic simulator can be used to prove this kind of statement. In other 
words, the COSMOS system can be used to prove that the behaviors derived from an extracted netlist 
using a sophisticated switch-level and timing model implies certain formulas described in a logic with 
precisely defined semantics. 

3.1 Circuit State Machine and Trajectories 

The circuit model used in [6] is a ternary model, i.e., nodes in the circuit can take on the values O, 1, 
and X. The circuit state machine corresponding to some circuit C is a non-deterministic finite state 
machine M = (S, d, 0), where Sis a finite set of states, d, the transition relation, is a relation on S, 
and 0 is a function 0: S-+ {O, 1, X}n relating every state in S to an assignment of Os, ls, and Xs to 
the nodes of the circuit : Intuitively, if the circuit currently is in the state si and ( si, si+l) E d, then 
the circuit can be in the state si+I one basic time unit later. 

The circuit state machine is determined by three factors: 1) the extracted netlist, 2) the switch
level model, and 3) the delay model. Ideally, the netlist is obtained by netlist extraction from a 
mask-level representation of the circuit. The switch-level model, in our COSMOS based approach, is 
the MOSSIM II [4] switch-level model. cos_MOS provides a variety of delay models including un~t-delay, 
nominal-delay, bounded-delay, and arbitrary-delay models. 

Given a circuit state machine, a state trajectory, x, is an infinite sequence of states s1 , s2 , ••• , 

such that i E S and ( si, si+1) E d for i ~ 1. The circuit trajectory, 1/J(x), corresponding to a state 
trajectory x is an infinite sequence of ternary state vectors a1, a2, .. . , such that ai E {O, 1, X}n and 
ai = 0(i) for i ~ 1. Informally, a circuit trajectory can be viewed as an infinite sequence of "snap
shots" of the operating circuit taken every unit of time. Finally, let qi denote the set of all possible 
circuit trajectories for a given circuit. Intuitively, qi can be viewed as the set of all possible circuit 
behaviors according to the switch-level and delay model used. 

4 



3.2 Logic CL 

The logic CL is defined in terms of another logic called CL' . We begin by describing CL' and then 
consider CL. 

The logic CL' is defined over a set of nodes, .N = {n1, ... , nn}, and over a set of symbolic Boolean 
variables, V. The formulas consists of constants (TRUE), atomic propositions (ni = 1 and ni = 0), 
conjunction (f 1 /\ f 2), case restriction (e -t f ), and next time operations (Xf ). In case restriction, 
( e -+ f ), e is a Boolean expression over V and f is a CL' formula. The basic idea is to use a Boolean 
function to limit the cases for which the CL' formula f is of interest. For more details, see [6]. 

Let V be a. set of symbolic Boolean variables. An interpretation, <P, is a. function </>: V -. B assigning 
a binary value to each symbolic Boolean variable. Let I be the set of all possible interpretations, i.e., 
I = { </>: V -. 8}. 

The truth semantics of a CL' formula f is defined relative to an interpretation</> E cl? and a circuit 
trajectory 1/J = a1 ,a2,a3, ... E W. For a precise defm.ition of the trutl1 semantics, see [6]. Informally, 
the CL' formula.TRUE holds for every</> and 1/J. The formula ni = 0 (n; = 1) holds if and only if a}= 0 
(a} = 1). The conjunction of two CL' formulas holds if and only if both formulas hold. The CL' 
formula e --+ f holds if either the Boolean formula denoted by th Boolean expression e evaluates to 
O for interpretation ¢ , or if the CL' formula f holds. Finally, Xf holds for</> and circuit trajectory 
a1 , a2 , a3 ••• E 'W' if and only if f holds for ¢ and circuit trajectory a2 , a3 •••• 

The verification methodology used by the COSMOS system entails proving assertions about the 
model structure. These assertions, written in the core logic CL , are of the form 

A =} C, 

where the antecedent A and the consequent C are CL' formulas over .N and V. This assertion is true, 
written ~ I= (A ==> C ), if and only if for every interpretation, i.e., every assignment of Os and ls to 
the symbolic Boolean variab1es, and for every possible circuit trajectory, the CL' formula C holds or 
the CL' formula A. does not hold. 

3.3 A Decision Algorithm 

A decision algorithm based on ternary symbolic simulation was given in [6] for determining the validity 
of formulae in CL . That is, the algorithm determines whether or not for every interpretation every 
circuit trajectory satisfying the antecedent A must also satisfy the consequent C. It does this by 
generating a symbolic simulation sequence corresponding to the antecedent, an.d testing whether the 
resulting symbolic state sequence satisnes the consequent. For details, see [6]. 

4 Semantically Embedding CL in Higher-Order Logic 

As argued in [14], a major advantage of higher-order logic as a formalism for verifying hardware is 
the ability to semantically embed more specialized formalisms into this logic. This often results in 
more concise specifications and easier proofs. Furthermore, as this _paper demonstrates , the ability 
to semantically embed anotl1er formalism in higher-order logic, in particular CL , provides a means 
of establishing a rigorous liuk between general-purpose theorem-provers, such as HOL , and other 
verification tools, such as COSMOS • • 

A variety of formalisms have been semantically embedded in the HOL logic. This includes pro
gramming logics [10), temporal logics [11), process algebras [7] and subsets of conventional hardware 
description languages (2]. 

5 



Although full details including machine-readable syntax are beyond the scope of this paper, a 
sketch of how CL can be embedded in higher-order logic is given below. As explained earlier, the 
truth semantics of a CL' formulae is relative to an interpretation <p and a circuit trajectory 'ljJ. Thus, 
operators of CL' are defined as functions of <p and 1/J. An interpretation ¢ is represented as a function 
that maps Boolean expressions ( of CL' ) to Boolean values. Circuit trajectorjes are also represented 
by functions-in this case, functions that map position in a sequence to state vectors. 

I-def f1 A f2 = A 'P ,p. (f1 (/J 'Ip) A (f2 (/J ,p) 

I-def e -+ f = A ¢ ,p. ((/J(e)) ~ (f ¢ 'Ip) 

I-def Xf = A 'P ,p. f ¢ (tail('lp)) 

We also need to embed the CL operator ~ in higher-order logic and provide a notion of validity 
for CL formulae. Suitable definitions are characterized by the following theorem. 

1-thm 'iJ! F A ~ B = 'v(/J E (), 'v'lp E 'ill. (A 'P 1/J) ~ (C 'P 1/J) 

To avoid a proliferation of symbols in this informal account, we have used the same symbol for 
conjunction in both CL' and higher-order logic, namely, A. Likewise, the symbol ~ is used in both 
CL and higher-order logic. However, these are truly different operators (with a different logical status). 
The actual definitions entered into the HOL system introduce new symbols, i.e., other than the built-in 
HOL constants A and ~-

5 A Higher-Level Intermediate Language 

Earlier, in Section 2, we described how CL can be used as an intermediate specification language which 
provides the basis for a rigorous link between COSMOS and HOL • In fact, this is a simplified (but not 
inaccurate) view of our approach. It turns out that CL is too low level to serve as an intermediate 
specification language between COSMOS and HOL • We actually use a higher level specification language 
called HCL. 

HCL is a more concise language for writing specifications of circuit behaviour. For instance, certain 
functions performed by arithmetic hardware would be very tedious to write directly in CL-hut they 
can be expressed very succinctly in HCL using recursion. 

The COSMOS system compiles HCL specifications into CL specifications. In the simplified view 
of our approach presented earlier in Section 2, we described how a rigorous link between HOL and 
COSMOS could be achieved by semantically embedding CL in higher-order logic. But the use of HCL , 
rather than CL , as an intermediate specification language results in a weak link (i.e., not rigorous) 
between HOL and COSMOS in our current implementation. We intend to make this link rigorous in the 
near future by: 

1. Defining the formal syntax of HCL. 

6 



2. Semantically embedding HCL in higher-order logic. 

3. Formally specifying an algorithm for compiling HCL into CL . 

4. Formally verifying that this compiling algorithm is correct. 

The problem of verifying of an algorithm for compiling HCL into CL is illustrated by the diagram 
in Fig. 2. 

HCL higher-order logic 

•---------------• 
semantics of HCL 

HCL compiler logical implication 

semantics of CL 
•--------------- · 

CL higher-order logic 

Figure 2: Verification of HCL compiler. 

As suggested by the commutative diagram in Fig. 2, the compila.tiou of any JJCL ::;peci:fi.cation 
should result in a CL specification whose denotation ( a term of higlter-order logic) logically implies 
the denotation {also a term of higher-order logic) of the original HCL specifi.ca.tion. That is, 

'vf E HCL SemCL (CompHCL (f )) ===} SemHCL (f ) 

where SemCL and SemHCL are semantics functions for CL and HCL respectively and CompHCL is com
piling function for HCL , i.e., a speciJication of the compiling algorithm. Formal proof of the above 
theorem is well within the scope of the IJOL system; for a.n example of compiler -verification using the 
HOL system, see [13, 15]. 

Verifying an algorithm for compiling HCL into CL would establish a rigorous link between HOL and 
COSMOS - to the extent that we trust that the compiling algorithm can be correctly implemented (as 
pa.rt of the COSMOS system). The use of HCL , instead of just CL , as the intermediate specification 
language, means that a statement of correctness in our approach consists of two rnsults, '1"! p f and 
I- (W I= f ) ===} t where f .is formula of HCL (rather than a formula of CL) and tis a term of higher
order logic. As before, these results would be obtained by symbolic simulation and general-purpose 
theorem-proving respectively. 

6 An Example 

To illustrate our two-level approach to formal hardware verification, consider the circuit shown in 
Fig. 3. This is a 16-bit instance of a (pseudo) domino-logic design for a circuit that tests whether: 

7 



a b a b a b a b 

Out 

b NZ 

c\> 

Vdd 

c\> ---l 
Vdd Out 

Vdd Co """1 
cl> 

E; E1 """1 
C; NZ 

bo b1 -I E2-I !-C2 
D; 

£3 -I I-C3 
cl> 

NZ """1 

cl> """1 

Figure 3: 16-bit circuit for computing A > B > 0. 

8 



1) input A is greater than input B and, 2) input B is greater than zero, when these inputs are 
interpreted as the unsigned binary representation of two numbers. The goal of formal verification is 
to relate a top-level specification of this circuit's intended function to a, bottom-level specification of 
its implementation (based on an underlying model of hardware). The top-level specification should be 
sufficiently abstract to minimize the semantic gap between it and the informal, intuitive, specification 
of the circuit that resides in. the mind of the designer. On the other hand, the bottom-level specification 
should be an accurate model of the circuit. This in.eludes not only an accurate electrical model but 
also temporal properties of the circuit. 

In the mind of the human specifier, the intended function of the circuit shown in Fig. 3 is intuitively 
understood in terms of an arithmetic relation, i.e., "the output should be 1 iff A is greater than B and 
B is greater than 011

• To minimize the semantic gap, the top-level formal specification should also be 
stated in terms of an arithmetic relation. At the bottom-level of specification, the actual operation 
of the circuit shown in Fig. 3 cannot be accurately described by a simple model of circuit behavio11r. 
A number of detailed features such as clocking, charge storage, charge sharing, and sized transistors, 
need to be included in a.n accurate model of this circuit. Hence, the verifLcation problem, in this 
particular case, is to relate a top-level specification expressed in terms of an arithmetic relation to a 
bottom-level specification based on a detailed model of switch level circuit behaviour. 

Neither symbolic simulation or theorem-proving is able to satisfactorily deal with this verification 
problem. Symbolk simulation would clearly be unable to support a top-level specification stated in 
terms of arithmetic relations. Theorem-proving is generally inappropriate for reasoning about detailed 
circuit behaviour. Below, we will outline how this proof could be carried out using our combined 
verification approach. 

A behavioural specification expressed in HCL is given below for the circuit in Fig. 3. These defini
tions are written in a syntax based on the C programming language. This is because HCL is currently 
just an extension of C-but this will soon be replaced by a rigorous definition of the HCL language 
when HCL is semantically embedded in higher-order logic. 

9 



Bool greater (int n, Bool •a_vec, Bool •b_vec) 
{ 

} 

if( n == 0) return( Zero() ); else 
return( Or( And(a_vec [n-1], Bot(b_vec [n-1])), 

And(Equal (a_vec [n-1], b_vec [n-1])), 
greater(n-1,a_vec, b_vec)) ); 

Bool notzero (int n, Bool •x_vec) 
{ 

if( n == 0) return( Zero() ); else 
return( Or(x_vec [n-1], notzero (n-1, x)) ); 

} 

Bool CMP_BitLevel (int n, Bool •a_vec, Bool •b_vec) 
{ 

return( And(greater(n, a_vec, b_vec), notzero(n, b_vec)) ); 
} 

HCL Timing (int n, Bool •a_vec, Bool •b_vec, Bool out_val) 
{ 

return( Imply( Conj( During(O, 100, Is(phi, Zero())), 
During(100, 200, Is(phi, One())), 
During(96, 200, Is(a, a_vec)), 
During(96, 200, Is(b, b_vec))), 

During(180, 200, Is(out, out_val)))); 
} 

The above definition of CMP _Bi tLevel specifies the bit level "compare operation" implemented by 
the circuit in Fig. 3. The definition of this operation is parameterized by the size of the circuit-in 
the case of the 16-bit version of this circuit shown in Fig. 3, n would be assigned the value 16. 

Timing describes the timing conditions under which we wish to verify that the circuit in Fig. 3. 
To paraphrase this definition: on the assumption that, 

• the clock signal phi is Zero O (i.e., low) for 100 time units and then is One () (i.e., high) for 
another 100 time units, 

• the vectors of circuit nodes a and b are assigned the vectors of symbolic Boolean variables a_ vec 
and b_ vec at time 95 and held stable until time 200, 

then the circuit node denoted by out must be equal to the value out_ val from at least time 180 until 
time 200. 

The functional specification expressed by CMP _BitLevel and the timing conditions expressed by 
Timing are combined in the top level HCL specification shown below. 

Timing (n, a_vec, b_vec, CMP_BitLevel (n, a_vec, b_vec)) 

The COSMOS system is able to derive the following theorem which states that the above HCL specification 
(with n instantiated as 16) is a logical consequence of the finite state machine derived from the ex
tracted netlist of the circuit shown in Fig. 3. 

10 



"ill !=Timing (16, a_vec, b_vec, CMP_BitLevel (16, a_vec, b_vec)) 

We now wish to derive a more abstract correctness result which expresses correctness at the arith
metic level. Currently, we must hand-translate HCL specifications into higher-order logic. Eventually, 
when HCL is semantically embedded in higher-order logic, this translation will be a series of expan
sion steps governed by the inference rules of higher-order logic. This series of expansion steps will be 
mechanically checked (and largely automated) by the HOL system. 

To formally establish a relationship between a bit level correctness result and a h.igher level correct
ness result expressed in terms of natural number arithmetic, we need to formally define a relationship 
between bit vectors and natural numbers. This is expressed by the definition of Bi tsToNum which is 
a data abstraction function t]1at maps bjt vectors to natural numbers. 

I-def BitsToNum (n,x_vec) = 
if (n = 0) then 0 else 

(((x_vec [n-1]) => (2(n-i)) I 0) + BitsToNum (n-1,x_vec))) 

We also define the function CMP _NumLevel which is an arithmetic level specification of the function 
performed by the circuit in Fig. 3. 

1-deJ CMP_NumLevel (a_num,b_num) = 
if (b_num > 0) then (a_num > b_num) else false 

The HOL system can be used to prove: 

1-thm 'vn a_vec b_vec. 
CMP_BitLevel(n,a_vec,b_vec) _ 
CMP_NumLevel(BitsTolum (n,a_vec),BitsToHum (n,b_vec)) 

Having established this equivalence, we can then derive a generalized correctness result which 
relates the bit level specification of the wmpare circuit to an arithmetic level specification for any 
value of n: 

hhm 'vn • 
'1i F Timing (n, a_vec, b_vec, CMP_BitLevel (n,a_vec,b_vec)))) 
~ 

'1i F Timing (n, a_vec, b_vec, 
CMP_lumLevel (BitsTolum (n,a_vec),BitsToHum (n,b_vec))) 

Finally, we instantiate this generalized result for n = 16 to obtain, 

hhm '1i F Timing (16, a_vec, b_vec, CMP_BitLevel (16,a_vec,b_vec)))) 
~ 

'1i F Timing (16, a_vec, b_vec, 
CMP_NumLevel (BitsToNum (16,a_vec),BitsToNum (16,b_vec))) 

11 



which, together with the symbolic simulation result, 

qi' I= Timing (16, a_vec, b_vec, CMP_BitLevel (16, a_vec, b_vec)) 

constitutes a statement of correctness for the circuit in Fig. 3. 

7 Conclusions 

Different methods of formal verification involve tradeoffs between automation, flexibility, expressibility, 
and accuracy. We conclude that a promising balance of these tradeoffs can be achieved by using 
theorem-proving at higher levels and symbolic simulation at lower levels. By embedding the "high
level" specification logic used by COSMOS into HOL , we are able to efficiently verify systems from a 
very detailed electrical and timing domain up to a very abstract behavioral domain. 

We think that this two-level approach will be particularly useful in the case of circuits where 
there is tight coupling between functional and temporal properties of the circuit level and high level 
abstractions, e.g., when a gate level or RTL abstraction is not available as an intermediate level. This 
is especially true in the case of high performance designs. Also, by integrating these two methods, we 
open up the possibility of verifying mixed software/hardware systems[l, 15]. 

We are currently in the process of formalizing the HCL logic and implementing an HCL compiler 
in the COSMOS system. This involves not only modifying the existing, informal, HCL compiler in 
COSMOS , but also to define the p~ecise semantics of the language and proving the correctness of the 
compilation method. 

References 

[1] W. Bevier, W. Hunt, J Moore, and W. Young, "An Approach to Systems Verification", Journal 
of Automated Reasoning, Vol. 5, No. 4, November 1989. 

[2] R. Boulton, M. Gordon, J. Herbert and J. Van Tassel, "The HOL Verification of ELLA Designs", 
in: P. Subrahmanyam, ed., Proceedings of a Workshop on Formal Methods in VLSI Design, 9-11 
January 1991, Miami, Florida. 

[3] R. S. Boyer and J.S. Moore, A Computational Logic Handbook, Academic Press, 1988. 

[4] R.E. Bryant, "A Switch-Level Model and Simulator for MOS Digital Systems," IEEE Trans. on 
Computers Vol. C-33, No. 2, February, 1984, pp. 160-177. 

[5] R.E. Bryant, "Symbolic Verification of MOS Circuits", 1985 Chapel Hill Conference on VLSI, 
May, 1985, pp. 419-438. 

[6] R.E. Bryant, and C-J. Seger, "Formal Verification of Digital Circuits Using Symbolic Ternary 
System Models", DIMAC Workshop on Computer-Aided Verification, Rutgers, New Jersey, June 
18-20, 1990 (to appear in Springer Verlag's Lecture Notes in Computer Science). 

[7] Albert John Camilleri, "Mechanizing CSP Trace Theory in Higher Order Logic", IEEE Transac
tions on Software Engineering, Vol. SE-16, No. 9, September 1990, pp. 993-1104. 

[8] Paolo Camurati and Paolo Prinetto, "Formal Verification of Hardware Correctness", IEEE Com
puter, Vol. 21, No. 7, July 1988, pp. 8-19. 

12 



[9] M. J. C. Gordon, "Why Higher-Order Logic is a Good Formalism for Specii-ying and Verifying 
Hardware", in: G. Milne and P. Subrahma.nyam, eds., Formal Aspects of VLSI Design, Proceed
ings of the 1985 Edinburgh Conference on VLSI, North-Holland, 1986, pp. 153-177. 

[10] Micha.el J. C. Gordon, "Mechanizing Programming Logics in Higher Order Logic", in: G. 
Birtwistle and P. Subrahmanyam, eds., Current Trends in Hardware Verification and Automated 
Theorem Proving, Springer-Verlag, 1989, pp. 387-439. Also Report No. 145, Computer Labora
tory, Cambridge University, September 1988. 

[11] Roger W. S. Hale, Programming in Temporal Logic, Ph.D. Thesis, Report No. 173, Computer 
Laboratory, Cambridge University, July 1989. 

[12] Warren A. Hunt, FM8501, A Verified Microprocessor, Ph.D. Thesis, Report No. 47, Institute for 
Computing Science, University of Texas, Austin, December 1985. 

[13] Jeffrey J. Joyce, "A Verified Compiler for a Verified Microprocessor", Report No. 167, Computer 
Laboratory, Cambridge University, March 1989. 

[14] Jeffrey J. Joyce, "More Reasons Why Higher-Order Logic is a Good Formalism for Specifying and 
Verifying Hardware", jn: P. Subrahrna.nyam, ed., Proceedings of a Workshop on Fonnal Methods 
in VLSI Design, 9-11 January 1991, Miami, Florida. 

[15] Jeffrey J. Joyce, "Totally Verified Systems: Linking Verified Software to Ve1ified Ha.rd ware", in: 
Specification, Verification and Synthesis: Mathematical Aspects, Proceedings of a Worksl1op, 5-7 
July 1989, M. Leeser and G. Brown, eds., Ithaca., N .Y., Springer-Verlag, 1989. 

[16] Michael J. C. Gordon et al., The HOL System Description, Cambridge Research Centre, SRI 
International, Suite 23, Miller's Yard, Cambridge CB2 lRQ, England. 

13 


