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Figure 1: A starshaped object in R 2 with shaded area as its kernel. 

1 Introduction 

We begin with the definition and an example of starshaped sets. 

Definition 1.1 Let S ~ Rd. For points x ES, y ES, we say x sees y via S 
(y is visible from x via S) if the the line segment XV lies in S. Let A and B 
be subsets of S. We say A sees B provided, for all x EA and y EB, XV C S. 

Definition 1.2 A set S ~ Rd is starshaped if there exist a point x E S such 
that x sees every point of S via S. We say that S is starshaped with respect 
to x. 

Definition 1.3 The ( convex) kernel of a set S ~ Rd is the set of all points 
x E S such that every point of S is visible from x via S. Denoted ker S. 

Figure 1 gives an example of a starshaped set in R2 along with its kernel. 
The motivation of our study of starshaped sets is that we want to be able 

to handle non-convex surfaces in solving computational vision problems. We 
perceive starshapedness as a good intermediate step from convexity to non­
convexity. 

2 



Early studies of starshaped sets by mathematicians had been concentrated 
on the kernels of starshaped sets and conditions for a set to be starshaped. 
Also studied are unions of starshaped sets. Concepts that are more general 
than starshapedness are related with the study of visibilities, which has been 
a research topic not only in mathematics but also in computational geometry. 

The goal of this paper is to promote studying and applying the concept of 
starshapedness in solving computational vision problems. It is known that 
the theory of convex bodies can be applied to solve computational vision 
problems [17, 20]. We regard starshapedness as an extended notion of con­
vexity rather than a special version of visibility. Basically, we are interested 
in making the notion of orientation based representations [19] applicable to 
objects that are not convex. Thus, we are particularly interested in functions 
and tools intrinsically related to starshaped sets. 

Section 2 surveys the results on necessary and sufficient conditions for a 
set to be starshaped. Section 3 surveys results about the ~haracteristics, in 
particular, dimension and size, of the kernel of a starshaped set. Section 4 
studies the distance functions of starshaped sets. Section 5 defines a. notion 
star hull and compares starshapedness with other notions that are intended 
to extend the concept of convexity. Section 6 proposes the use of distance 
function in solving the problem of attitude determination in computational 
v1s1on. 

Throughout this paper, we present our surveys and results from mathe­
matical point of view rather than that of computational geometry, although 
some results from computational geometry will be mentioned. 

2 Conditions for Being Starshaped 

By definitions, a set is starshaped if and only if its kernel is not empty. From 
computational point of view, checking whether a set is starshaped or not is 
not hard. 

Theorem 2.1 (Preparata and. Shamos [23], Theorem 7.13, page 298) The 
kernel of an N-vertex polygon can be computed in optimal O(N) time. 

Results surveyed in this section state necessary and sufficient conditions 
which we can check on every point of S or subset of S in order to deter-
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mine whether S is starshaped or not. We start with the pioneer work of 
Krasnoselskii. 

Theorem 2.2 (Krasnoselskii 1946, see [18] page 53 ) Let S be a compact 
subset of Ed that contains at least d + l points. Suppose that for each d + l 

· points of S there is a point from which all d + l are visible. Then S is 
starshaped. 

D 

The theorem says that if S is a nonempty compact set in Rd, then S is 
starshaped if and only if every d + l points of S see a common point of S 
via S. This common point may depend on the choice of the d + l points. 
A stronger result may be obtained by replacing, in the statement of the 
theorem, points of S with boundary points of S (mentioned without proof 
in [71). The compactness requirement is very important. In fact the problem 
involving the existence of Krasnoselskii-type for sets that are neither closed 
nor bounded was open as of 1985 [11]. 

The combinatorial flavor of the theorem is very appealing, although the 
theorem itself does not constitute an effective procedure for determining if a 
set is starshaped. Mathematicians were inspired to ask the following ques­
tion: Can the nature of ker S be determined from the behavior of appro­
priately selected subsets of S? A result by Nick Stavrakas [25] answers this 
question in terms of points of local nonconvexity which was first explored by 
F. A. Valentine [28]. 

Definition 2.1 (Valentine [28], page 39) Let S s; Rd. A point x in S is 
called a point of local convexity of S if there is a neighborhood N:e of x such 
that N:e n S is convex. Otherwise x is called a point of local nonconvexity 
(lnc point) of S. 

Definition 2.2 Let S s; Rd. For points x E S, y E cl S (the closure of S), 
we say y is clearly visible from x via S if there is some neighborhood Nv of 
y such that x sees each point of N 11 n S via S. 

Theorem 2.3 ( Stavrakas 1972 [25]) Let S be a compact connected subset 
of Rd. Then x E ker S if and only if all lnc points of S are clearly v-isible 
from x. 
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Figure 2: A set with two Inc points which is not starshaped. 

This theorem makes it easier to check whether a set is starshaped or not. 
A set S is starshaped if and only if there is a point in S from which all lnc 
points of S are clearly visible. The next theorem by Breen says that in R2, 

we only need to check every three lnc points of S to see whether a set is 
starshaped or not. 

Theorem 2.4 (Breen 1982 [8]) Let S be a nonempty compact connected set 
in R 2

• Then S is starshaped if and only if every 3 lnc points of S are clearly 
visible from a common point .of S. The number 3 is the best possible. 

D 

This theorem makes it even easier to check if a set is starshaped. For 
example, the set depicted in Figure 1 has only one Inc point. Thus we 
immediately conclude that it is starshaped. The set depicted in Figure 2 has 
two Inc points, (1, -1) and (-1, -1 ), the regions of points from which they are 
clearly visible do not intersect. Thus the set is not starshaped. 
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Theorem 2.4 can be generalized to open bounded sets in R2 (Theo­
rem 2.5). If lnc points are replaced by boundary points, the theorem can 
also be generalized to bounded sets in R2 (Theorem 2.6). But the problem 
of whether it has ad-dimensional analogue was unknown. 

Theorem 2.5 (Breen 1982 [9]) Let S =/:- 0 be a bounded set in R 2
, and 

assume that every 3 or fewer lnc points of Sare clearly visible from a common 
point of S. Then for some point pin S, the set A= {x : x E S,px i S} 
is nowhere dense in S. Moreover, A ~ bd S (i.e., if S is open, then S is 
starshaped). 

D 

Theorem 2.6 (Breen 1985 [10]) Let S be a nonempty bounded set in R 2 • 

Then S is starshaped if and only if every 3 or fewer boundary points of S 
are clearly visible via S from a common point of S. The number 3 is best 
possible. 

D 

Another set of conditions was given by Goodey [13] in terms of separating 
set and extreme points. 

Definition 2.3 A set is called a separating set if its complement is not 
connected. 

Definition 2.4 Let S C Rd. The ( d-2)-extreme points of Sare those points 
x of S such that if D C Sis a (d-1)-dimensional simplex then x fl: rel int D 
(relative interior). The set of all extreme points is denoted by E(S). 

Theorem 2.7 If SC Rd is a nonseparating compact set and 

n11eE(s){ x : xy c S} =/:- 0 , 

then S is starshaped. 
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3 Kernels of Starshaped Sets 

Most of the results concerning the dimension of the kernel of a starshaped 
set are aimed in answering the following question: What is the necessary and 
sufficient conditions for dim ker S ~ k, given S ~ Rd and 1 $ k $ d? 

We will list a few results that answer these questions in terms of points 
of S, boundary points of S, and Inc points of S, respectively. 

Theorem 3.1 (Stavrakas 1972 [25] ) Let S be a compact connected subset 
of Rd. Then dim ker S ~ k, 0 $ k $ d, if and only if there exists a flat F, 
dim F = k and a point x E rel int FnS (relative interior) such that given Inc 
pointy there exists open sets Ny and N% such that N! n Sn F sees Ny n S. 

D 

Theorem 3.2 (Breen 1981 [6]) For each k and d, l $ k $ d, let f(d, d) = 
d + l and f(d,k) = 2d if 1 $ k $ d- l. Let S be a compact set in some 
linear topological space L. Then for a k with 1 $ k $ d, dim ker S ~ k if 
and only if for some£> 0 and some d-dimensional flat Fin L, every f(d, k) 
points of S see via Sa common k-dimensional £-neighborhood in F. If k = l 
or k = d, the result is best possible. 

D 

Theorem 3.3 (Breen 1982 [7]) For each k and d, let f(d,d) = d + l and 
f(d, k) = 2d if 1 $ k $ d- l. Let S be a nonempty compact set in Rd. Then 
for a k with 1 $ k $ d, dim ker S ~ kif and only if every f(d, k) boundary 
points of S are clearly visible from a common k-dimensional subset of S. If 
k = l or k = d, the result is best possible. 

D 

If S is in R2
, then the boundary of S may be replaced by the Inc points 

of S. 

Theorem 3.4 (Breen 1982 [7]) Let S be a compact, connected, nonconvex 
set in R 2

• Then for k = l or k = 2, dim ker S 2:: k if and only if every 
g(k) = max {3,6 - 2k} Inc points of Sare clearly visible from a common 
k-dimensional subset of S. The result is best possible. 
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Quantitative information concerning the size of the kernel is not easy to 
formulate. Some results give the necessary and sufficient conditions for the 
kernel of a starshaped set to contain an c-interval, c > 0. 

Theorem 3.5 (Breen 1980 [4]) Let S be a nonempty compact set in R 2 

having n Inc points. The kernel of S contains an interval of radius c > 0 
if and only if every f ( n) = max { 4, 2n} ( or fewer ) points of S see via S 
a common interval of radius c. The number J(n) is best possible for every 
n 2::: 1. 

□ 

Another question that had been asked concerns the characteristics of the 
convex sets which are admissible as the kernel of some nonconvex starshaped 
sets: if D is a convex subset of Rd, is there a starshaped set S -::j:. D in Rd 
whose kernel is D? It had been well answered by the following theorem. 

Theorem 3.6 (Breen 1981 [5]) Let D be a nonempty compact convex set 
in Rd, d 2::: 2. Then there is a compact set S -::j:. Din Rd with ker S = D. 

□ 

4 Distance Functions of Starshaped Sets 

Support function plays an important role in the theory of convex bodies. 
Since support function is defined for any non-empty set, we can talk about 
the support function of a starshaped set. Since a set starshaped with respect 
to origin O has the same support function as its convex hull, support function 
loses its eligibility for being an intrinsic function related to starshaped sets. 

Although distance function was defined only for convex sets by Minkowski 
(see Bonnesen-Fenchel [3]), its definition can actually be used on starshaped 
sets. Replacing "convex" by "starshaped", we have the following generalized 
definition. 
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Definition 4.1 Let S be a compact starshaped set in Rd with the origin 
0 in the interior of its kernel. For any x E Rd\{O}, let ex be the (unique) 

---+ 

intersection point of the ray Ox with the boundary of S. The distance 
function F( x), x E Rd, of S is defined as 

1. g(S; 0) = 0, and 

2. g(S; x) = llxll/llexll, x E Rd\ {0}. 

Some basic properties of distance functions of convex bodies still hold for 
starshaped compact sets. 

1. The points that satisfy the inequality g(S; x) ~ 1 are precisely the 
points of S. 

2. If two compact sets starshaped with respect to O have the same distance 
function, the two must be the same. 

3. If the distance function of Sis g(S; x), that of >-.Sis ½g(S; x). 

4. For compact sets S1 and S2 starshaped with respect to 0, g(S1; x) ~ 
g(S2; x), Vx E Rd if and only S1 ~ S2 • 

Properties 1 and 2 mean that a starshaped set is uniquely determined by 
its distance function. 

It is known that the distance function of a convex set is convex. In fact, it 
is proved that a starshaped set is convex if and only if its distance function is 
convex. Before we state the theorem, we first give a more general definition 
of distance function used by Valentine [29], Lay [18], and Beer [2], which does 
not require compactness. 

Definition 4.2 (Valentine [29], page 32) Let S be a set in a linear space .C, 
starshaped with respect to the origin O. The generalized distance function 
of S is the function g: ,C--+ (0, oo] defined by 

g( S; x) = inf {).. : ).. > 0 and x E >-.S} . (1) 

It should be noted that the origin O should be in the interior of S, oth­
erwise the domain of g(S; x) may not be the whole space. Figure 3 gives 
an example of distance function whose domain does not contain the sector 
spanned by the two sides of the polygon emitting from the origin. 
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Figure 3: A starshaped set whose distance function is not· defined on the 
whole space. 

Theorem 4.1 (Valentine [29), page 32) Suppose S C C is starshaped with 
respect to O and each line through O intersects S in a relatively closed set. 
Then S is convex if and only if the distance function g of S is subadditive 
and positively homogeneous; that is 

l. g(S; v + w) ~ g(S; v) + g(S; w) 

2. g(S; ,,\v) = ,,\g(S;v) 

for all v, w E C , 

for all ,,\ 2:: 0, v E C . 

D 

Figure 4 shows the distance function g of the starshaped set in Figure 1, 
where the analytical expression in each sector bounded by the dashed lines 
is the value of g taking on the variables in the corresponding region. We see 
that g(( - 2, -3)) = 1.5, g((l, - 2)) = 1, g((- 2, - 3)) + g((l, - 2)) . 2.5 < 
g((-2, - 3) + (1, - 2)) = g((-1, -5)) = 4. Thus g is not convex. 

Gerald Beer (2) established a selection theorem for starshaped sets by con­
sidering the distance function of starshaped sets. He called distance function 
gauge, and he believed that distance function was intrinsically related to 
starshaped set. 

It is stated in his paper that if g is the gauge of a nontrivial closed set 
starshaped with respect to the origin, then g is a nonnegative extended val­
ued positively homogeneous lower-semicontinuous function, and there exists 
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Figure 4: The distance function of the starshaped object in Figure 1. 

x 0 =/:- 0 satisfying g(x0 ) =/:- oo. Conversely, any function f with these proper­
ties is the gauge of such a set, namely, S = {x: f(x) :5 l}. If OE int ker S, 
then the gauge is continuous. Moreover, it is Lipschitz. 

Beer studied the gauge of parallel bodies of starshaped sets. We only cite 
one of his theorems here. 

Theorem 4.2 (Beer 1955 [2]) Let {Sk} be a sequence of compact starshaped 
sets each contained in {x E Rd : llxll :5 M}. Then {Sk} has a subsequence 
convergent in the Hausdorff metric to a compact starshaped set. 

D 

In _ the study of classes of starshaped sets in E 3 , Melzak asserted that a 
class of starshaped sets is identifiable with the class of all real valued positive 
functions on the sphere S 2 which satisfy a Lipschitz condition. Define 1-(, as 
follows: S E 'H if and only if S is a bounded closed set in E 3 and O E int 
ker S. Let fs be the distance function of S. Then we have the following 
theorems, where Theorem 4.3 was mentioned similarly in Beer (2). 
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Figure 5: Two polygons with the same distance function. 

Theorem 4.3 (Melzak 1959 [22]) If S E 'H then fs(u1) > 0 and 
lfs(u1) - /s(u2)l < ,s lu1u2 I, 0 < 'Ys < oo, where u1, u2 E S2 and lu1u2 1 

is the length of the line segment between u1 and u2 . Conversely, any such 
function f defines a set in 'H. · 

D 

Theorem 4.4 (Melzak 1959 [22]) Given any convex set K E 'H, any 
.A > 0 such that I( C >..B2, and any c > 0, there exists S E 'H such that 
a) ker S = K, b) I( C int S, c) >.B2 c Sc (..X + e)B2

• 

D 

5 Star Hulls and Generalized Convexity 

We have seen that a starshaped set is uniquely determined by its distance 
function and is convex if and only if its distance function is convex. We 
naturally would ask the question: Can distance function be defined for arbi­
trary set? If yes 1 what properties does it have? If we look at Definition 4.2, 
we notice that it is not necessary to require convexity or starshapedness for 
(1) to be meaningful. Thus we say that Definition 4.2 can be applied on 
arbitrary sets. The distance function, however, is no longer unique when 
non-starshaped sets are involved. Figure 5 shows two different sets that have 
the same distance function if we apply Definition 4.2 directly on them. 

It is known that a nonconvex set and its con vex hull have the same support 
function, we want to ask the following question: Can we define a notion of 
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(a) (b) (c) 

Figure 6: Two starshaped polygons (a) and (b) whose intersection (c) is not 
starshaped. 

star hull so that a set and its star hull have the same distance function? 
Trying to answer this question, we first have the following observations. 

1. Intersection does not preserve starshapedness. Figure 6(a) and Fig­
ure 6(b) shows two starshaped sets whose intersection, Figure 6(c), is 
not starshaped. 

2. The smallest, in terms of containment, starshaped set that contains a 
given set does not generally exist. To see this, using Figure 6 again, 
let A be the set_ in Figure 6(c), S1 and S2 be the sets in Figure 6(a) 
and Figure 6(b) respectively. Both S1 and S2 are starshaped and both 
contain A, but S1 n S2 = A. Thus there is no smallest starshaped set 
that contains A. 

Considering the nature of distance function, we give the following defini­
tion of star hull. 

Definition 5.1 Let S be a set with origin O in its interior. Define the star 
hull SH(S) of S as 

SH(S) 
6 LJ {Ox}. 

:r:ES 

With star hull such defined, a set and its star hull have the same distance 
function. But this definition is not very satisfactory because of the following 
two reasons. 
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(a) (b) 

Figure 7: Star hull as defined in Definition 5.1 depends on the choice of the 
ongm. 

1. The star hull such defined depends on the choice the origin O (see 
Figure 7). This could lead to non-interesting star hulls like the one in 
Figure 7(a). 

2. The distance function of a star hull may not be continuous. Because 
the star hull is defined as the union of all the segments Ox, x E S, 
a ray emitting from the origin may intersect the boundary of the star 
hull in a segment instead of a single point. 

To overcome the first disadvantage, it may be desirable for the origin to 
be so chosen that it clearly sees the biggest number of lnc points of the set. 
For example, the origin in Figure 7(a) clearly sees only one lnc point, while 
the origin in Figure 7(b) clearly sees two lnc points which are all the lnc 
points the set has. 

To overcome the second disadvantage, one may define a notion of A star 
hull. 

Definition 5.2 Let S be a set with origin O in its interior. Define the A 
star hull SH.\(S) of S as 

SH.\ ( S) e,. LJ LJ { px } , 
pEB(O,.\) :cES 

where B(O, A) is the ball of radius A centered at 0. 
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We perceive starshapedness as one type of generalized convexity. There is 
a wide range of notions of generalized convexity (see [12] Section 9 for a list). 
In the following, we briefly introduce a few notions of generalized convexity 
that are of interest in the context of starshapedness. 

Definition 5.3 (Horn and Valentine [15]) A set S in Rd is called an Ln set 
if each pair of points in S can be joined by a polygonal line in S having at 
most n segments. 

Obviously, a starshaped set is an L 2 set. But an L 2 set is not necessarily 
a starshaped set. One such example is Bd \ { O}. 

Theorem 5.1 (Valentine [27]) Suppose S is a closed connected set in Rd 
which has at most n points of local nonconvexity. The S is an Ln+l set. 

Definition ·5.4 (Valentine [26]) A set S in Rd is said to possess the three­
point convexity property P3 if for each triple of points x, y, z in S at least 
one of the closed segments xy, yz, xz is in S. 

A starshaped set does not necessarily have property P3 • Examples of 
such starshaped sets are sets in Figure 6(a) and Figure 6(b). But a P3 set is 
starshaped as stated in the following theorem. 

Theorem 5.2 (Valentine [26]) Let S be a closed connected set in Rd which 
has property P3 • Then either Sis convex or Sis starshaped with respect to 
each of its points of local nonconvexity. 

Another notion of generalized convexity is called restricted-oriented con­
vexity. 

Definition 5.5 (Rawlins and Wood [24]) Let O be a set of orientations. A 
collection of lines is said to be O-oriented if the set of orientations of the 
lines is a subset of 0. Thus we speak of O-lines. Let P be a subset of R2

• 

We say that P is O-convex if the intersection of P and any O-lines is either 
empty or connected. 

Definition 5.6 (Rawlins and Wood [24]) The intersection of all O-convex 
sets containing P is called the O-hull of P. 
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In computational geometry, starshapedness is regarded as a property of 
visibility in a set from a fixed point. One extension of this viewpoint is the 
notion of visibility from an edge. 

Definition 5.7 (Avis and Toussaint [1]) Let P be a simple .planar polygon. 

l. Pis said to be completely visible from an edge e if for every x E P and 
every y E e, xy is in P. 

2. P is said to be strongly visible from an edge e if there exists a y E e 
such that for every x E P, xy is in P. 

3. P is said to be weakly visible from an edge e if for each x E P, there 
exists a y E e such that, xy is in P. · 

6 Applications in Computational Vision 

Generic tasks that robot vision systems perform are [30]: 1) recognition 2) 
localization and 3) inspection. Localization involves attitude determination. 
This section proposes the use of distance functions in attitude determination. 
Throughout this section, we are only concerned with compact sets in R 3• 

The critical tool we will be using is dual mixed volume. The first part of this 
section will quote theorems about dual mixed volumes which are due mainly 
to Lutwak [21]. The rest of this section will define our problem of attitude 
determination, and find a theoretical solution for the problem. 

Definition 6.1 (Lutwak [21] page 531.) The radial function of a convex 
body I< is defined as 

p(J<; e) ~sup{>.> Oj >.e E J<} , fore E Sd-t . 

Recall Definition 4.2, we know 

1 
p(I<; e) = g(I<; o , 

(2) 

where g(I<; e) is the distance function of I<. It is not hard to see that 
Definition 6.1 can be directly applied on any compact starshaped set whose 
kernel contains the origin. 
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Definition 6.2 (Lutwak [21) page 532.) The dual mixed volume of K1 , ... , Kd 
is defined as 

The dual mixed volume has the following elementary properties (Lut-
wak [21) page 532). 

l. Vis continuous; 

2. V(I<1,••·,l(d) > O; 

3. V(>.1K1, ... '>.dKd) = >-1 ... >.dV(I<1, ... 'Kd), Aj > O; 

4. If Ai ~ Bi for all i then V(A1 , ... , Ad) $ V(B1 , ... , Bd) with equality 
if and only if Ai = B; for all i ; 

5. V(K, ... ,K) = V(K). 

The notation ½(K1 , K 2 ) is introduced : 

- A -
V;(I<1, K2) = V(Ki, ... , K1,!<2, ... , K2) . .. 

d-i i 

Theorem 6.1 (Lutwak [21) Theorem 1, page 533.) 

m-1 

vm(I<1, ... 'Kd) ::; II V(Ki, ... 'Kd-m, Kd-i, ... ' Kd-i) ' 1 < m ::; d' 
i=O 

with equality if and only if Kd-m+1, Kd-m+2, ... , Kd are all dilations of each 
other (with the origin as the center of dilation). 

When m = d Theorem 6.1 becomes: 

Corollary 6.2 (Lutwak [21] Corollary 1.1, page 534.) 

with equality if and only if K 1 , K2, ... , Kd are all dilations of each other (with 
the origin as the center of dilation). 
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A special case of this is: 

Corollary 6.3 (Lutwak [21] Corollary 2.1, page 535.) 

¼(K1, K2) $ y(d-i)/d(K1)Vi/d(K2) , 0 < i < d, 

with equality if and only if K1 is a dilation of K2 ( with the origin as the 
center of dilation). 

Combine this with Alexandrov inequality and obtain: 

Corollary 6.4 (Lutwak [21] Corollary 1.2, page 534.) 

V(I(i, ... , Kd) $ V(I<1,.,., Kd) , 

with equality if and only if K1 , /(2 , ••• , I<d are all dilations of each other (with 
the origin as the center of dilation). 

And in particular, we have: 

Corollary 6.5 (Lutwak [21] Corollary 1.3, page 534.) 

¼(K1, K2) :5 ½(I<1, I<2) , 

with equality if and only if K1 is a dilation of I<2 (with the origin as the 
center of dilation). 

Now we turn to solving the problem of attitude determination. 

Definition 6.3 The attitude determination problem is defined as finding 
the rotation R such that R(K) = K', where K and K' are known, K is a 
prototype, I<' is a measured object that is obtained by the unknown rotation 
R. 

There are many ways to represent rotations. The most often used in 
computational vision research are orthonormal matrices and axis and angle 
representations. Horn [16] used tinit quaternions to represent rotations. One 
advantage of using quaternion is "that it is much simpler to enforce the 
constraint that a quaternion have unit magnitude than it is to ensure that a 
matrix is orthonormal". We choose quaternions to represent rotations. For 

18 



0 

a set K, the rotated set under the rotation represented by quaternion q is 
o o• 
q Kq. 

Define function 

to measure how close K 1 is to K 2 assuming that K 2 is a rotated· image of K 2 • 
0 

First, we claim that the domain of x(q) is R4
• Obviously the domain 

contains the unit sphere in R4
, because rotations do not change the star-

o o• 
shapedness of a set and hence the radial function for q K 1 q is well defined, 

0 

and hence is the dual mixed volume. With non-unit quaternions q we do not 
o o• 

know whether q 1{1 q is still starshaped or not. If we look at Definition 4.2 
and Definition 6.1, we notice that it is not necessary to require convexity or 

0 

starshapedness for (1) and (2) to be meaningful. Thus x( q) is well defined 
o o o• o o• 

for any q because p( q I<1 q ; e) is well defined by (2) whether q K 1 q is 
starshaped or not. 

We will lose, however, the uniqueness of distance/radial function if we go 
beyond starshaped sets (see Section 4). But this does not affect the way we 
solve the problem if we start with starshaped sets K1 and I<2 • 

Corollary 6.2 says that 

with equality if and only if /(1 , K 2 are dilations of each other (with the 
origin as the center of dilation). The condition stated in Lutwak's paper 
is that K 1 , K 2 be convex. If we look at the proof of the theorems, we find 
that an extension of Holder's Inequality (see Hardy [14] page 22) was used, 
and thus the requirement should be that p(K1 ; e), p(K2 ; e) be strictly positive 
continuous functions on S2

• It is not hard to see that for starshaped compact 
set J( with the origin in its kernel, p(K; e) is strictly positive. Thus we claim 
that Corollary 6.2 is valid for starshaped sets as well. 

This means that among all starshaped sets /(1 of volume 1, those that 
are dilations of 1(2 yield the maximal value of 
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Hence the problem of attitude determination by distance function becomes 
the following constrained optimization problem: 

maximize 

subject to 
(3) 

Theorem 6.6 There exist solutions to problem (3), the problem of attitude 
determination by distance function. 

0 

Proof Since the constraint function II q 11-1 for the optimization problem 
(3) is continuous, the feasible region of the optimization problem is closed. 
In addition, the feasible region is obviously bounded. Thus a solution to the 
optimization problem ex.is.ts. 

D 

7 Conclusions 

We have surveyed results about necessary and/or sufficient conditions for a 
set to be starshaped and results concerning kernels of starshaped sets. It is 
noted that starshaped sets are uniquely determined by their distance func­
tions. The proposal of using distance function to solve attitude determination 
problem in computational vision has been theoretically justified. A notion 
of star hull has been introduced and several notions of generalized convexity 
defined by previous researchers are reviewed. Further experimentations are 
needed to verify whether the theoretical proposal works in practice. 
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