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Abstract: The shape-from-shading problem has received much attention in the Computer 
Vision literature in recent yea.rs. The ha.sic problem is to recover the shape z( x, y) of a 
surface from a given map of its shading, i.e. its variation of brightness over a given domain. 
Mathematically, one has to solve approximately the image irradiance equation 

R(p,q)(x,y) = E(x,y) 

relating a given image irradiance E(x,y) to the radiance of the.surface at each point (x,y), 
with R(p, q) a given reflectance map which is a usual1y nonlinear function of p = Zx and 
q = Zy• 

A possible presence of noise and lack of adequate boundary conditions adds to the difficulty 
of this problem. A number of different approaches towards its solution have been proposed 
in the Vision literature, including various regularization models. However, a reliable, efficient 
solution method for practical instances has remained elusive so far. 

In this paper we analyze the various solution models proposed with the aim of applying 
an efficient multigrid solver. A combination of an FMG-continuation technique with an 
appropriate discretization of one such solution model proposed by B. Horn yields an efficient 
solver. Our results are demonstrated by examples. 

1 Introduction 

The shape-from-shading problem has received much attention in the Computer Vision liter
ature in recent years. A recent book (10] contains a reprinted collection of some of the more 
important papers on this topic. The basic problem is to recover the shape z(x, y) of a surface 
from a given map of its shading, i.e. its variation of brightness over a given domain. Math
ematically, under certain assumptions one has to solve approximately the image irradiance 
equation 

R(p,q)(x,y) = E(x,y) (1) 

.relating a given image irradiance E(x,y) to the radiance of the surface at ea.ch point (x,y), 
with R(p, q) a given reflectance map which is a function of the surface gradient (orientation), 
p = Zx and q = Zy. 

Among problems in Computer Vision which dea.l with surface reconstruction, this is one of 
the hardest to solve: In addition to the fact that the solution information is given implicitly, 
through the often strongly nonlinear hyperbolic equation {1) 1 one has to cope with possible 

1This research was supported in part under NSERC Canada Grant OGP0004306. 



2 A Multigrid Method for Shape from Shading 

inaccuracies in the model R(p, q), with a1 possible presence of noise in the data E(x, y ), 
with possible discontinuities in the solution and with a possible lack of adequate boundary 
conditions. 

And yet, the problem is of considerable practical interest, because (i) it arises in connection 
to collision avoidance of robots with their surroundings and for the purposes of automated 
inspection tasks, and (ii) it has been demonstrated to be a component of the human vision 
system and as such merits better understanding [15),(14). 

A number of different approaches towards the approximate solution of (1) have been 
proposed in the Vision literature, including various regularization models. However, a reliable, 
efficient solution method for practical instances has so far remained elusive. 

In this paper we briefly describe the problem (Section 2) and analyse various proposed 
solution models with the aim of applying an efficient multigrid solver (Section 3). Our analysis 
leads us to concentrate on one such solution model proposed by B. Horn [9) and on its 
appropriate discretization. We describe in Section 4 a special version of an FMG algorithm 
[2] where the regularization parameter is updated within the FMG continuation process. This 
leads to a very efficient algorithm. 

Our results are demonstrated by selected examples, to which the final section of this 
paper is devoted. We consider the use of one or more images, and the imposition of boundary 
conditions on the object or on the background. The obtained computed results are promising. 
We conclude by pointing out some directions for further investigation. 

2 T he P roblem 

We shall not discuss here the assumptions giving rise to the image irradiance equation (1), 
but rather assume that it holds (see [8),[10),(12)). The reflectance map R(p, q) may sometimes 
be linear, as in a Minaert surface (which is commonly used to model the moon's surface) 

R( ) ( 1 + PoP + qoq) 
p,q = P ~ I 

y 1 + P5 + q5 
(2) 

(here p, the surface albedo, and (Po, q0 ), the direction towards the light source, are known). 
But R is more often nonlinear, as in a Lambertian Surface 

R( ) ( 1 + PoP + QoQ) 
P, q = p -----;:=======::::::::::----::====== 

yl + P5 + qiJ1 + P2 + q2 
(3) 

In such a case the hyperbolic equation (1) is highly nonlinear. In more general situations 
where R is not known analytically but there is a calibration object available, the reflectance 
map may be obtained experimentally [18),(19). 

Questions of solution existence and uniqueness for (1) arise here nontrivially [10),[4],[5]. 
For a special case of (3) corresponding to a distant overhead illumination of a Lambertian 
surface, ( 1) can be written as the eikonal equation 

(4) 
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For this it has been shown (4) that there is no shape z corresponding to shadings E which 
have too dark a spot on too bright a. background. At the other end, it is possible in some 
circumstances that the same image will have more than one corresponding shape [5],[8). 

Practically, the availability of boundary or interface information is an important issue. In 
some cases z is known on a closed curve ( not only on the inflow part) forming the boundary 
of the image (e.g. in the case of an object merging smoothly into a fixed background). In 
many cases one knows the gradient (p, q) on such a boundary. In addition, the gradient may 
be determined directly at a. singular point where R(p, q) has a global maximum (see [8]). 

If the scene contains more than one smooth object ( e.g. an object sharply distinct from 
a background, or more than one such objects) then there are a number of smooth images 
separated by interfaces across which z, p and q a.re generally discontinuous. (The location of 
such interfaces is found by an edge detecting preprocessor and is assumed known here.) Some 
additional boundary information is provided in the case of an occluding boundary, where the 
surface orientation is known because it is perpendicular to the object's silhouette and lies in 
a plane parallel to that of the image. This information may however be tricky to incorporate 
because at lea.st one of p and q is infinite on such a boundary ( or interface). 

3 Solution Techniques 

The earliest attempt at solving (1) numerically used a method of characteristic strips, in 
which sets of coupled ODEs for x, y, z,p and q are solved to cover the (x, y)- domain (see (8) 
and Horn's paper in [10]). However, this method was not very robust in the presence of noise. 
A variety of regularization methods have subsequently been proposed in which a smoothness 
penalty term is added to an error functional to be minimized 

F(p, q) = J fo (E - R(p, q))2dn (5) 

where the domain of integration, 0, corresponds to a smooth part ( or the union of such parts) 
of the image under consideration. 

Many algorithms proposed in the literature proceed in two stages1 the first obtaining 
the surface orientation p(x,y) and q(x,y ) and the second recovering the surface z(x,y) from 
the given orientation. For the second stage a line integration method or an approximate 
minimization of the functional 

(6) 

(for given p, q) are used. A standard multigrid algorithm may be used to efficiently minimize 
(6). 

If one adds to ( 5) the penalty term 

j lo>. (p; + P; + q! + q;) dO (7) 

with>. a positive parameter and considers minimizing the resulting functional, then the prob
lem appears to be simpler. The necessary conditions (Euler equations, cf [6]) form a simple 
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elliptic system of equations. Like (6), this can also be solved by a standard multigrid method. 
However, it has been realized [10] that the first stage of the solution process must ensure that 
the orientation map produced should correspond to a physical surface. In other words, it is of 
little use to provide arrays of (p,q) values which minimize (5) plus (7)'if the obtained p and 
q cannot be integrated to yield an underlying surface z(x,y). Horn & Brooks [11] proposed 
adding a penalty term for non-integrability of the surface slopes, i.e. they considered the 
minimization of 

(8) 

Notice that this does not strictly enforce integrability at each point: attempts to do this 
directly by means of a Lagrange multiplier or by replacing (p, q) by gradz in (5) have not 
produced convergent schemes. 

The equations representing necessary conditions for an extremum of (8) were solved in [11] 
using a simple Jacobi relaxation and needing many iterations. Our first cut at this problem 
has in fact involved the application of a multigrid method to this formulation to speed up 
the process. However, upon analyzing the resulting system of equations, it can be shown 
to be non-elliptic. This appears to explain the slow convergence reported in [11] ( although 
of course the convergence of a relaxation scheme alone is not expected to be very fast for 
an elliptic operator either), and also indicates that the multigrid method might not perform 
very efficiently (but see [16]). We therefore considered the addition of a further term (7) to 
the functional given in (8), which introduces ellipticity into the model. In order to maintain 
faithfulness to the underlying physical problem we seek to keep the parameter ,\ as small 
as possible. However, it should be noted that this additional term which gives ellipticity to 
the problem is of the same order as the non-elliptic integrability penalty term. Hence, it is 
not possible to reduce ,\ too much before non-ellipticity effects again become a pronounced 
difficulty. 

The incorporation of boundary value information is an important issue. While the various 
regularizations discussed above and below yield well-defined problems, it is not evident that 
the solution of such problems in the limit ,\ -+ 0 would automatically approach the correct 
shape. However, in cas~ where the boundary of the object is an occluding boundary one of 
p and q will become infinite and cannot therefore be used directly as boundary information. 
Previously to the effort of [11], Ikeuchi & Horn [13] presented a scheme where surface ori
entation is parameterized using stereographic co-ordinates, (/, g). Such co-ordinates remain 
finite on occluding boundaries so that the values off and g on the object boundary may be 
used as Dirichlet conditions for the problem. Unfortunately, there is a drawback in that the 
integrability condition cannot easily be expressed in stereographic co-ordinates. In order to 
obtain a unique solution, Ikeuchi & Horn considered the addition of a smoothing term and 
hence set out to minimize the functional 

j j {,\ (f; + f; + g; + g;) + (E - R(f,g))2}dn (9) 

Again, these equations were solved using a_ simple Jacobi iteration. Having obtained f and 
g these were then converted to (p, q) co-ordinates and z was computed as per (6). It should 
be noted that minimizing both (6) and (9) lead to nicely elliptic problems. A successful 
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implementation of multigrid methods applied to this scheme has been reported by Terzopoulos 
[17] . However, again it must be stressed that this scheme is essentially solving a different 
problem, since integrability is not imposed. 

A number of schemes have been proposed in the form of a two-stage iteration, where in 
the first stage an approximate solution for p and q is obtained somehow and in the second 
stage this solution is projected onto one satisfying the integrability constraint. Most notable 
among these is the scheme of [7) which uses trigonometric polynomial expansions. Of course, 
some of the schemes described here earlier, e.g. [13], followed by a solution of (6), can also be 
viewed as one such iteration. Convergence proofs for these iterations are generally unavailable, 
though. 

Finally, in [9] Horn presents a scheme which couples together the processes of determining 
an orientation map and of determining the depth map which had hitherto been dealt with 
sequentially. Thus one seeks functions z, p and q which minimize the functional 

j lo {A (p; + p; + q; + q!) + µ [(zx - p)2 + (z 11 - q)2
] + (E - R(p, q))2}d!l (10) 

The first of these terms represents a departure from smoothness penalty term. In cases where 
there is little or no noise in the image it is expected that A may be taken small or even 
reduced to zero. The second term is the integrability penalty term. The corresponding Euler 
equations are 

X~2p + µ(zx - p) + (E - R)Rr, = 0 } 
AV2q + µ(z 11 - q) + (E - R)Rq = 0 
V2z = Px + q11 

(11) 

Note that the non-elliptic integrability penalty term is now of lower order than the ellip
tic smoothness penalty term, in contrast to the earlier scheme consisting of minimizing the 
functional (8) plus (7). 

Horn discretizes these equations on staggered grids - the grid for z being offset from the 
one for p and q by a 1 /2 cell. 

4 A multigrid algorithm 

Because of the advantages of the regularization (10) for the application of a fast-but-fussy 
method like multigrid, we have chosen to concentrate on it. For the discretization, however, 
we adopt an alternative approach to (9) and discretize the integral (10) directly. Thus, we 
divide (an approximation of) the domain n into a set of square cells. Let nii be a square 
whose vertices are at points given by the cross products of Xi- l, Xi = x;_1 + h and Yi- t , 
Yi = Y;-1 + h, with solution unknowns Zii ~ z(x;, Yi) etc. as usual. We approximate 

J k;, {,\ (p; + P; + q; + q!) + µ [(zx - p) 2 + (z 11 - q) 2
] + (E - R(p, q))2}dxdy 

by 

~ [(p · . 1 - p· 1 . 1)2 + (p · . - p· 1 ,)2 + (p· . - p· . )2 + (p· . p· . )2 2h2 ,,,- ,- ,,- ,,3 ,- ., ,-1,, 1-1,,-1 1,3 - ,,3-1 
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+ (qi,j-1 - q;-1,;-i)2 + (q;,; - qi-1,;)2 + (qi-1,j - q;-1,;-1)
2 + (qi,j - q;,;-1)

2
] 

+ i ((h-1(z;,;-1 - z;-1,;-1) - (Pi,j-1 + Pi-1,;-1)/2)2 + (h-1(z;,; - Zi~1.;) 
2 -1 . 2 

(p;,; + Pi-1,;)/2) + (h (z;-1,; - Zi-1,;-i) - (qi-1,; + q;-1,;-1)/2) 

+ (h-1(z;,; - z;,;-1) - (q;,; + q;,;-1)/2)2] 

+ ¼[(Ei-1,j-l - R(Pi-1,j-1, q;-1,;-1))
2 + (Ei,j-1 - R(Pi,j-1, q;,;-1))

2 

+ (E;-1,; - R(Pi-1,;, q;-1,;))2 + (E;,; - R(p;,;, q;,;))2
] =: F;; (12) 

Then, consider the minimization of 
F := LF;; 

i,j 
(13) 

and equate the derivative of F with respect to each unknown to zero, as a necessary condition 
for a minimum. (The obtained averages for p and q may be lumped in an obvious way.) 

This naturally leads to a 2nd order discretization of (11) on non-staggered grids. It can be 
shown that the resulting discrete system has a good h-ellipticity measure (see Brandt & Dinar 
(3]) when >. = 0, whereas the staggered grid scheme does not. Dirichlet boundary conditions 
are handled by fixing the corresponding grid unknowns. Neumann boundary conditions, when 
there are any, are handled naturally, as part of the above process. This does not slow down 
the multigrid iteration, as compared to the case with Dirichlet conditions. 

Furthermore, we employ an FMG continuation algorithm in>. as demonstrated in Figure 
1. On the coarsest level we start with a value of>. which is large enough to ensure a good 
smoothing rate. A hierarchy of embedded grids with square cells is used with the usual 
coarse/fine width ratio of 2. When proceeding to a new finest grid the value of>. is reduced 
by a factor of 4, so that X := >./h} remains constant, where h1 is the currently finest grid 
width. For each finest grid in turn we apply one nonlinear (FAS [2]) W{2,2) cycle, using a 
collective Gauss-Seidel (CGS) relaxation with one Gauss-Newton iteration for the nonlinear 
term (E - R(p,q))2 (treated pointwise) and the usual bilinear interpolation and its adjoint 
full-weighting restriction. An initial guess at the solution on a new finest level is obtained 
using bi-cubic interpolation. Having reached the finest level, 4 W(2,2) cycles are performed 
in order to finish the method's application. 

Note that we do not change the value of>. within a cycle. Thus, at least for >. ~ 1 the 
usual multigrid theory and experience imply that a fast solver is obtained. In this case we 
have at the given stage of the continuation process a standard (FAS) nonlinear multigrid 
method applied to the diagonally dominant elliptic system (11 ). Rapid convergence in this 
case has been confirmed in our experiments. However, to avoid extra smoothing of the solution 
features one has to consider small values of >. when h1 is small. The FMG->. continuation 
process turns out then to be essential for obtaining good approximate solutions for (12)-(13) 
with so few relaxations on the finest grid for a very small >., as reported in the next section. 

The idea behind refining>. such that X remains constant corresponds to the usual procedure 
when approximating noisy data. Thus, in the first two equations in (11) the sizes of the 
smoothing terms retain a fixed ratio to the sizes of the data fit residuals. 

With the CGS Gauss-Newton relaxation the choice ofµ for a given small>. must be neither 
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too large (because, as discussed before, no scheme is known to work well then) nor too small 
(because the point wise relaxation operator for (p, q) obviously becomes singular in the lirrnt 
.>i, µ -+ 0). Unlike A we keepµ independent of h1. 

The above discretization has been described for a smooth image. Often one eµcounters 
a number of objects (and a background which may be considered as another object) which 
are separated from one another by discontinuities across their boundaries (or interfaces). The 
(x,y)-domain may then be considered as a union of subdoma.ins with a smooth surface on 
each subdoma.in. We assume no a priori knowledge on the jumps across such interfaces in 
p, q or z. (Often in the literature such assumptions are arbitrarily relaxed: we do not do this 
here.) Consequently, the differe_nce quotients in (12) are simply not taken across interfaces 
(i.e. corresponding contributions are not added to the sum in (13),(12)). At the boundary 
of the object, conditions equivalent to the natural boundary conditions for the variational 
problem are thus imposed. These are 

op oq oz - = - = 0 and - = (p, q) • n on on on (14) 

where n is the unit outward normal to the boundary. 
Note that when natural (or Neumann) boundary conditions are imposed on z it is only 

determined up to a constant. This constant is fixed arbitrarily for each relevant subdomain. 

A3 = >i2/4 

Figure 1: Modified FMG algorithm 

In case of little or no noise in the image, one may wish to reduce X in order to recover 
the surface more sharply. From the point of view of multigrid convergence this complicates 
matters. The Gauss-Newton iteration used in the relaxation may adversely affect the conver
gence speed. (Incidentally, it is also used in (9].) We note that the Lambertian model is a 
highly nonlinear function which varies relatively little when p or q are large. In addition, as 

mentioned above the pointwise relaxation operator becomes singular as .>i, µ - 0. 
The latter difficulty is somewhat alleviated if there is more than one image of the same 

object available, where the viewer and object are not moved and the only change from one 
image to the next is in the light source direction. Hence, there are no correspondence diffi
culties between these images. We therefore consider a simple modification of (10) which is to 
mm11n1ze 

L J k {.>i (p! + p; + q; + q!) + µ [(z~ - p)2 + (zy - q)2
] + L(E, - R,(p, q))2}dn (15) 

. l=l 
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with L . 1, 2 or 3. The same discretization and the same multigrid algorithm as described 
earlier are employed. 

More images add information, of course, so we expect better shape recovery. If at each 
point of the domain there are at least two images with nonzero brightness, and if there is 
no noise, then the minimum of (15) with >. = 0 is 0 and the gradient (p, q) can be found 
pointwise. (In case of 3 images we can even write an explicit expression for the Lambertian
model gradient.) However, we do not use such specific information here, since we are really 
interested in the more general case and consider such specialized situations as synthesized 
noise free multiple images merely in order to sort out the various possible difficulties which 
may arise. 

5 Selected test results 

The algorithm described in Section 4 has been tested on a synthetically generated image of 
a Lambertian spherical cap merging smoothly into a constant background, as well as on a 
synthetic vase and on "real" images of pottery vases [19), one of which is presented here. For 
the "real" images it has been assumed that the object has reflectance properties that are 
closely modelled by a Lambertian surface. This allows for the use of the analytic, nonlinear 
form (3) for R. Hence, for these images we have potential not only for noise in the image itself 
(i.e. in E(x, y)) but also for errors in modelling the reflectance map R(p, q). Incorporating the 
background presents an additional difficulty, because that material may well have a different 
reflectance map. 

Below we report the results of applying the multigrid algorithm just described, using 7 or 
8 grids in all cases, with the fin~t grid having 128 x 128 or 256 x 256 cells, respectively. In 
all cases we have chosen>. on the coarsest grid so that the >.-term is at least the order of the 
µ-term in (11) and ended up with >. ~ µ on the finest grid. Our choices forµ in (10) varied 
in the range 0.01-0.5. The values of .X = >./h} andµ used in each case are given in the figure 
captions. 

5.1 One synthetic image, rectangular image boundary 
Our first set of experiments is performed on a smooth, synthetic image. The data is 

generated as follows: For -0.5 :5 x, y $ 0.5 we use 

z(x, y) = z(rcos¢>, rsin</>) = f(r) 

where f ( r) describes a circular arc "taped" to the r-axis by a quadratic, forming a C 1 function. 
Depending on three parameters O < /3 < a $ 1 and p $ 0.5, f is given by 

{ 

J p2 - r 2 - pJl - a 2 r < /3 p 
f(r) = ar2/(/3p) - /Jr+ pc (3p $ r < 'YP 

0 · r 2:: ,P 

/33 
a = -:-:4(~1 --=13=2 )::-:-( ~J;::::1 =_:::;/3;2 ---v'-;:1=-==;a2~)' 

b = 2a + /3 
✓1 - [32 
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(3b2 
c=-, 

4a 

132 
1 = (3 + 2a Jl - ,82 

Figure 2 shows the surface z as well as the synthetic image constructed by 

E(x, y) := R(zz, z71 )(x,y) 

for the parameter values o = 0.85, (3 = 0.7, p = 0.33 using a Lambertian model (3). These 
yield a maximum value z(O, 0) = 0.156. 

In Table 1 we display results of several runs using 7 grids as described above for various 
parameter values of .X and choices of Dirichle:t or natural boundary conditions for z and its 
gradient. The starting guess on the coarse grid is p = q = z = 0. The final average residual 
observed after 4 cycles for the finest grid is recorded under 'residual', and the average error 
in the obtained surface is recorded under 'error'. 

.x µ BC-z BC-(p,q) residual error 
4.0 0.5 Dirichlet Dirichlet 2.0 X 10-6 7.5 X 10-3 · 

4.0 0.5 Dirichlet Natural 2.0 X 10-6 8.1 X 10-3 

4.0 0.5 Natura.I Dirichlet 3.0 X 10-5 3.9 X 10-2 

4.0 0.5 Natural Natural 2.0 X 10-5 2.9 X 10-2 

0.4 0.5 Dirichlet Dirichlet 3.2 X 10-4 2.3 X 10-3 

0.4 0.5 Dirichlet Natural 2.2 X 10-4 2.4 X 10-3 

0.4 0.5 Natural Dirichlet 5.6 X 10-4 1.2 X 10-2 

0.4 0.5 Natural Natural 3.4 X 10-4 1.9 X 10-2 

0.04 0.5 Dirichlet Dirichlet 2.4 X 10-3 1.7 X 10-3 

0.04 0.5 Dirichlet Natural 1.3 X 10-3 1.6 X 10-3 

0.04 0.5 Natura.I Dirichlet 4.0 X 10-3 4.8 X 10-3 

0.04 0.5 Natural Natural 3.5 X 10-2 6.1 X 10-2 

Table 1: Parameters and errors for the smoothed cap 

From these results it is evident that the efficiency of the proposed algorithm is satisfactorily 
high so long as .X does not become too small. The obtained accuracy in z improves, however, 
as X is decreased. This is hardly surprising, since the image under consideration is smooth 
with no noise present. The obtained results for the case X = 0.04 are shown in Figure 3: In (i) 
the computed p and q are inserted into the reflectance map, and the result plotted, using the . 
same light source direction as the input; in (ii) the reflectance map into which the computed p 
and q a.re inserted is for a different light source direction; and in (iii) a plot of the reconstructed 
surface z is displayed. In these runs Dirichlet boundary conditions (z = p = q = 0) were 
employed on the square boundary of the image. 

We also observe that the results for the case where natural boundary conditions are im
posed on all solution components are worse than in other cases ( even though the multigrid 
performance is not seriously affected). The effect is disastrous in the obtained z-surface for 
.X = 0.04 {i.e. the surface is rather distorted). 
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(i) 

(ii) 

Figure 2: Synthetic Image 128 x 128 : (i) Input image (ii) Exact surface 

(i) 

(ii) (iii) 

Figure 3: Synthetic Image 128 x 128, .X = 0.04, µ = 0.5: (i) Reconstructed brightness (same 
light source as input) (ii) Reconstructed brightness (overhead illumination) (iii) Computed 
surface 
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In Figures 2 and 3 of [l] we show results of our algorithm applied to images of a synthetic 
hemisphere and to a "real" vase. Unlike the object of Figures 2 and 3 of the present paper, 
those images contain edges along which the surface ma.y be discontinuous. It was observed that 
although the algorithm does a reasonably good job of solving the image irradiance equation, 
the boundary of the object was seriously smoothed away and the reconstructed object was 
severely flattened. The smoothlng of the object's boundary is expected, since the approximate 
solutions for z, p and q are sought in H 2(f!), whereas the exact z is discontinuous across an 
occluding boundary and at least one of p and q is infinite there. Moreover1 the reflectance 
map R is not always sensitive to large changes in the gradient (in the absolute sense) to which 
the recovered surface z is more sensitive. (This may give an intuitive feeling for the many 
efforts [10] which proceed at first to find the orientation and only then to find the surface 
itself.) 

In the next subsection we therefore introduce discontinuities into the model as described 
earlier. The locations of these discontinuities are assumed to be part of the given data (they 
are formed by an edge detector applied to the brightness data). This implies that we now must 
consider objects with natural boundary conditions for which, Table 1 suggests, difficulties may 
arise. We therefore seek to improve the quality of the recovered surface by using two or three 
images instead of one, which allow a much better recovery of accurate orientation. 

5.2 Allowing discontinuities 
In Figure 4 we show 3 input brightness maps which correspond to one synthetic object, lit 

from different light source directions. The "synthetic vase" object (Figure 4 (iv)) was obtained 
as a surface of revolution based on a silhouette curve which is a polynomial of degree 6 with 
maximum z = 0.27. We apply the algorithm described in Section 4 to the discretization of 
(15) with L = 2 (using images (i) and (ii) of Figure 4) and L = 3 (using image (iii) also). 

While the results are better than can be expected with one image, we note that convergence 
problems in the limit A --+ 0 do not completely disappear: a.-; observed before, convergence 
of the relaxation becomes a serious issue. Also, in regions where one of the images is dark 
(e.g. the right side of the vase in Figure 4 (i) - the brightness there is E1 = 0) information is 
only available from the other image(s). It is important to refrain from applying ''stabilizing" 
mechanisms which may yield rapid convergence but at the same time produce a distorted 
surface. One example ~f such a poor stabilization is adding a term v(p2 + q2), v a nonnegative 
parameter, to the functional (15). Also, the La.mbertian reflectance map may become negative 
while the brightness is nonnegative. Allowing this improves convergence for the case with 3 
input images , but again causes distortion where one of the images is dark. We therefore set 

R(p, q) .- max(R(p, q), 0) 

(and v = 0) which yields the slower convergence but better results of Figure 6 below. 
Results for X = 0.4, µ = 0.0l using two images are displayed in Figure 5. As usual, dis

tortions show up more clearly in the reconstructed surface than in the reconstructed bright
ness maps. The "neck" of the vase is largely smoothed away .. In contrast, the residual for 
X = 0.4, µ = 0.0l with 3 images is larger, residual = 0.206, but error = 0.01. The recon-
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(i) (ii) (iii) 

(iv) 

Figure 4: Synthetic Vase 128 x 128 : (i), (ii) & (iii) Input images (iv) Exact surface 
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(i) 

(ii) (iii) 

Figure 5: Synthetic Vase 128 x 128, two input images, :X = 0.4, µ = 0.01: (i) Reconstructed 
brightness (same light source as input) (ii) Reconstructed brightness (overhead illumination) 
(iii)' Computed surface 
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Figure 6: Synthetic Vase 128 x 128, three input images, ~ = 0.4, µ = 0.01: Computed Surface 

structed surface is displayed in Figure 6. It is in excellent agreement with the original. We 
emphasize again, though, that this is a synthetic image with no noise. 

Finally, in Figure 7, we display results o_f our algorithm applied to real data, as described at 
the beginning of this section. The two input images are not very different from the displayed 
output but the computed surface is flattened much like the synthetic image in Figure 5. 

Unlike previous calculations reported here, the integration for Figure 7 is done only on 
the object area, with the background held fixed (and the object fixed at one point at an 
ap,propriate height above the background). 

The reasons for the errors in the solution of Figure 7 are likely due to the following: (i) 
Errors in modelling the reflectance map - it is unlikely that for the real images, the surface of 
the pottery vases is exactly modelled by an ideal Lambertian surface; (ii) Errors in the image 
data, which are not precisely compensated for by any choice of .X (i.e., the mathematical 
problem does not exactly correspond to the underlying physical problem); (iii) The exact 
solution we are trying to compute becomes infinite at the boundary of the object - that is 
surface slopes become infinite at an occluding boundary. Work is currently under way to 
address these issues, as well as attempting to obtain a more robust method if data is given 
for only one image. 

Acknowledgement: The data for the "real" vase images which we have used was kindly 
provided to us by Professor Bob Woodham. We are also indebted to him for many fruitful 
discussions. 
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