
Revision in ACMS

by

Alex Kean

Technical Report 91-1
April, 1991

e-mail: kean@cs.ubc.ca

Department of Computer Science
U Diversity of British Columbia

Vancouver, B.C.
CANADA V6T 1W5

Revision in ACMS

Alex Kean

Department of Computer Science, University of British Columbia,
Vancouver, British Columbia V6T 1W5, Canada

Technical Report 91-1

April 1991
Email: kean@cs.ubc.ca

The motivation for creating truth maintenance systems is two fold. First, it is used
for the abduction process of generating explanation; and second, to perform the
necessary bookkeeping of revision of the knowledge base. The process of revision
is defined as addition and deletion of knowledge from the knowledge base. A logical
scheme for tracking conclusions in an assumption based clause management system
(ACMS) for the purpose of abduction and revision is proposed. As a consequence,
an incremental deletion scheme is derived. A protocol for assumption revision is
demonstrated by a backtrack search example. The proposed ACMS is the first truth
maintenance system that employs incremental deletion as part of its capability.

1 Introduction

1

Truth maintenance was a concept developed in Artificial Intelligence specifically
to deal with problems of maintaining and querying knowledge that may vary over
time. A truth maintenance system is usually a domain independent sub-system
performing the task of knowledge management for a more domain dependent
Reasoner. To date, there have been a number of influential developments namely,
the fact garbage collection of Stallman and Sussman [12], Doyle's justification­
based truth ma.intenance [2], de Kleer's assumption-based truth maintenance [l]

1 INTRODUCTION 2

and clause management [10, 13, 5] 1•

The functionality of truth maintenance is two fold. Firstly it serves as an
abductive inference engine for finding explanations for queries with respect to its
knowledge base I: at some instant in time. To be precise, an explanation E for a
query G with respect to the knowledge base I: is defined as

Definition 1.1

J. I: FE--+ G

2. I: U E is·consistent.

For instance, if its present knowledge base I: contains { a --+ b, b --+ c }, then some
of the explanations for the query c are a and b. We shall call this functionality
abductive inference in truth maintenance. Most of the truth maintenance systems
'mentioned above handle abductive inference. A complete development of this
feature, sometimes known as abductive reasoning, is reported in Kean and Tsiknis
Assumption-based Clause Management Systems (ACMS) [5].

The second functionality we will appropriately call revision in truth
maintenance. Revision is classified as two operational concepts, namely addition
which means adding new knowledge into I:, and deletion which means deleting
existing knowledge from I:. Revision is a concept which came about to capture
the dynamic and non-monotonic nature of reasoning, that is to handle changes in
knowledge over time. Hidden within revision is the ability to manage potentially
conflicting assumptions used during the course of abductive inference. An as­
sumption, is a statement asserted that may be retracted later, that is an assumption
is a defeasible statement.

For instance, if the knowledge base is I: = { a --+ q, b --+ r} and the
current set of assumptions is A = {p --+ a, ,p --+ b, ,b }, then one explanation
using only assumptions for the query q with respect to I: is

1 A good review on these systems except clause management can be found in Ramsay's book
[8, pp 212-231]

1 INTRODUCTION 3

Deductively, using the assumptions -ib and -ip -+ b yields the consequence p.
Furthermore, using the other assumption p -+ a yields the consequence a and
with the fact a -+ q, we can conclude the query q. Thus, if I were to retract one
of the assumption, let say -ip -+ b, then the above chain of reasoning no longer
holds. The same problem arises when a new assumption is added, where in this
case new conclusions can be drawn that were not concluded before. Note that in
terms of finding explanations, both the deletion of an assumption and addition of
fact or assumption, may result in either generating more explanation or finding
less explanations than before. This is due to the consistency requirement on
explanations in definition 1.1.

Hereafter, I shall refer to the tasks of truth maintenance in performing
abductive inference and revision as clause management. Earlier work on abductive
inference and addition in clause management are reported in [10, 13, 5].

To have a clause management system that performs the above functions.
some adequacy issues must be addressed. First, a naive but simple and correct
approach would be to deduce explanation on-the-fly everytime we need to explain
a query. We shall call this the interpreted approach. One example of such an
approach is David Poole's THEORIST [7]. Thus, revising our assumptions over
time involves simply deleting and adding assumptions in the set of assumption (A).
One disadvantage of such approach is that there may be many conclusions drawn
for one query which remain valid for the next query. It would be ideal if we could
"remember" conclusions drawn earlier and reuse them whenever possible making
query processing more efficient. Thus, one requirement of clause management is
that it must be able to save and reuse conclusions. We shall call this approach
the compiled approach. All truth maintenance systems mentioned earlier use
the compiled approach. A logical characterii.ation of compilation in terms of
implicates/implicants can be found in [10, 13, 3].

The second adequacy is the issue of revision. Since we are saving con­
clusions (compiling). every addition of knowledge or assumptions to the existing
knowledge base requires re-compiling, hopefully only those relevant and affected
conclusions. This is called the update-problem in clause management by Reiter
and de Kleer [10] and one solution to this is an incremental addition algorithm
reported in [4].

In duality, deleting an assumption requires the removal of those saved
conclusions which depend on this assumption. A naive approach is simply by

2 ANACMS 4

removing all the saved conclusions and performing the re-compilation without the
deleted assumption. This is not desirable since many conclusions may remain valid
independent of the deleted assumption. Thus, an incremental deletion scheme
is needed. All existing truth maintenance systems do not consider incremental
deletion (or even deletion) as part of its functionality.

For instance, in Doyle's JTMS, a proposition P is either IN or OUT
indicating whether Pis consistent to be believed or not. Thus, believing Pis OUT
is not the same as asserting Pis false. Similarly, deleting P (or Pis not there) is
neither false nor being OUT. Doyle does not consider the later property of deleted
assumption in his JTMS [2]. In de Kleer's ATMS, a separate knowledge base is
used to keep inconsistent assumptions (or nogoods). Thus, revising an assumption
A is to assert A -+ false (or A is a nogood). Unfortunately, if we change our
mind about A being no good to good later, there is no way to revise except to delete
A from the nogood knowledge base. Also, if the revised assumption occurs in
many other nogoods, it is not clear how the deletion process can be achieved. de
Kleer does not consider deletion as a function in his ATMS [l].

This paper will present a logical scheme of incremental deletion based
on the framework of the Assumption based Clause Management System (ACMS)
in [5]. The proposed ACMS is the first truth maintenance system that includes
incremental deletion as part of its functionality.

In section 2, an ACMS is defined for the purpose of performing the tasks
of clause management satisfying the adequacies stated. In section 3, a protocol
for using the ACMS in performing intelligent backtracking is proposed and an
example demonstrating the protocol is presented. In section 4, an argument is
presented for the question "is deletion necessary ?" thus justifying the inclusion
of incremental deletion as part of the functionality of clause management. Finally,
conclusions and future works can be found in section 5

2 AnACMS

In this section we define an Assumption Based Clause Management System
(ACMS) that is capable of performing assumption based abductive reasoning
and revision. We restrict the set of facts :F and the set of assumptions A of the

2 ANACMS 5

assumption based theory T = (:F, A) to be propositional and finite. Without lost
of generality we shall also assume that :F and A are sets of sentences in CNF.

2.1 Abductive Reasoning

The abductive inference performed by the ACMS including assumptions is defined
as follows:

Definition 2.1 Let facts :F and assumptions A be sets of sentences; and let the
explanation E and query G be sentences, all in CNF.

1. Es; A,

2. :F F E --+ G and

3. :F U E is consistent.

The explanation E is a minimal explanation for G with respect to :F if no E' C E
is an explanation for G with respect to :F.

Intuitively, an explanation E for a query G with respect to :F is a subset
of assumptions, in conjunction with :F, is consistent and sanctions the query G.
For instance, if the set of assumptions is A = { a, b, c, d} and the set of facts is
:F = { a -+ b, b-+ c, c --+ d}, then the explanation a is an assumption we would
use to explain the query c.

2.2 Compilation

Ignoring the set of assumptions for a moment, the method used to compile the set
of facts :F such that we could re-use the conclusions repeatedly, is to transform
them into a set of equivalent sentences of minimal implicates.

Definition 2.2 Let :F be a set of sentences and P a sentence in CNF.

2 ANACMS 6

1. Pis an implicate of :F if :F F P.

2. P is a minimal implicate of :F if there is no implicate P' of :F such that
P'cP.

Thus, the set of all minimal implicates of :F, denoted by M I(:F) is a
subset of Th(:F) and additionally possesses the logical property that :F = MI (:F)
[13]. Using the same example as before, let :F = { a -+ b, b -+ c, c -+ d},
the set of minimal implicates of :Fis M I(:F) = { a -+ b, b -+ c, c -+ d, a -+

c, a -+ d, b -+ d, a -+ a, b -+ b, c -+ c, d -+ d}. The reader immediately notice
the compilation into minimal implicates is almost like computing all the possible
consequences from :F, except that only the minimal consequences are kept.

Consequently, an explanation can be computed relatively easily from the
set M I(:F) [13]. For instance, in a crude sense, finding an explanation for the
query c means simply selecting the minimal implicates that have c in them and
their antecendents will be the explanations. In the above example, { a, b, c} are all
minimal explanations for c with respect to :F.

2.3 a-theory

Let us return to the orginal theory T with assumptions. Ideally, for each assump­
tion, we would like to pre-compute the set of conclusions it can derive together
with :F. Unfortunately, we cannot simply union the set of assumptions A with :F
and compute the set of minimal implicates because A might contain contradicting
assumptions. Thus, one approach is for each query G, to check whether any as­
sumption is applicable to deduce G. This is unattractive since it does not excercise
the principle of ''remembering" conclusions and it does not utilize the compilation
of :F.

How do we pre-compute and "keep track" of conclusions deduced using
assumptions which are potentially contradictory ? We shall call this the tracking
problem in the compiled approach. All existing truth maintenance systems re­
solve this problem by keeping pointers, in the computer programming sense, to
track the conclusions, as well as elaborate data-structures to handle the existance
of contradicting assumptions. For instance in Doyle's justification based truth
maintenance system, an explicit data-structure of IN and OUT labels denoting

2 ANACMS 7

the status of proposition is used, and methods to resolve the status being IN or
OUT are algorithmic [2].

We shall now present a logical scheme for the tracking problem. It is
well known in mathematical logic that conservative extension by explicit definition
preserves the logical consequences of the old theory in an extended new theory
[11, pp 57]. We apply this idea as follows: for each assumption a E A, we
introduce an explicit definition by defining a = >., where .,\ is a new variable not
occuring elsewhere in the theory. Subsequently, we can extend the theory :F by
adding all the explicit definitions introduced. More precisely,

Definition 2.3 (u-transformation) Let T = (:F, A) be an a-theory. We de.fine a
transformation u as follows.

1. For every sentence a in A, u(a) = .,\ where >. is a new propositional
variable not used anywhere in the theory.

2. u(A) = {u(a) I a EA}

3. u(:F) = :FU {u(a) = a I a EA} and

4. u(T) = (u(:F), u(A)).

In the computer programming sense, the u-transformation is indexing
every sentence a in the assumption set A with a new variable >.. Thus, any
new consequence derived from u(:F) dependent on the assumptions will contain
corresponding variables >.. Note that the sentence a might be non-atomic, in
which case the interaction between the equivalent label .,\ and the set of facts :F
is not intuitive. If u-transformation is performed on both :F and A, then T and
u(T) are equivalent as expressed in the following theorem.

Theorem 2.1 For any a-theory T = (:F, A), T and u(T) are equivalent in the
sense that for any sentence G, E is an explanation of G from T if/ u(E) is an
explanation ofG from u(T).

Proof : Trivially follows from definition 2.3 and propositional reasoning. D

2 ANACMS 8

Using the u-transfonnation, we can now safely compile the set u(F) into
its corresponding set of minimal implicates. For example, let A = {p, ,p} and
F = {p ~ q}. Using u-transfonnation we introduce two new variables At and A2
as new names for the assumptions. Thus u(F) = FU {p = At, ,p = A2} and its
corresponding set of minimal implicates is

MI(u(F)) = { ,(At A A2),
A2 ~ ·P,
p~ At,
p~q,
•A2 ~ q,

At V A2,
•P ~ A2,
At~ P,

If the query is q, there is a minimal explanation, namely At, denoting
the fact that assuming At = p in F explains the conclusion q. If we accept the
negation of assumptions as our explanation, that is.E ~ AU A in definition 2.1,
then ,A2 is also a minimal explanation for q denoting the fact ,(,p).

2.4 Addition

In the process of addition, there are two types of knowledge namely new facts and
new assumptions. In the case of adding a new facts C, we can simply compute the
new set MI(M I(u(F)) U { C}). In the case of adding a n~w assumption,,

I. u(A) = u(A) U {A} for a new variable A not used anywhere;

2. compute the set MI(MI(u(F)) U {,=A}).

In both cases, an incremental algorithm to update the set of minimal implicates can
be used [4]. Note that the addition of facts or assumptions into the theory T might
produce inconsistency. The proper procedure for adding facts or assumptions is
an issue in the usage of the ACMS. A protocol for this usage is proposed in section
3.

,

2 ANACMS 9

2.5 Deletion

In terms of deletion, only assumptions are removable. The distinction between
facts and assumptions is not clear. One would argue that there is no facts but
assumptions since knowledge changes over time. Consequently, everything is
removable. Conversely, a reasonable definition for facts is the knowlegde that
remains unchange during the course of the problem solving. In this paper, we
shall adopt the later position for simplicity in the presentation.

When an assumption a is chosen for deletion, all consequences in this
case all the minimal implicates, derived involving a must be removed. How
would we indentify these consequences ? Recall that each assumption has a
unique variable >. attached to it as an equivalence. Thus, any consequence P that
can be derived using a, but is not derivable without it, must have >. occuring in
P. This is expressed by the following theorem, which is a form of conservative
extension by explicit definition [11, pp 57].

Theorem 2.2 Let T = (:F, A) be an a-theory , a be a sentence and>. be a new
propositional variable not occurring in (:F, A).

:F ~ P and :F U { a = >.} p P only if ± >. occurs in P.

Proof: Assume that ±>. does not occur in P. Let :F p!= P, then there exists
a model M F :F, M ~ P. Since >. is a distinct variable not occurring in
(:F, .A), the extended model M U { >.} p :F where >. assumes the truth value of
a and MU { >.} ~ P because±>. does not occur in P. But the extended model
M U { >.} F :F U { a = >.} and by the fact that :FU { a = >.} F P. The same must
be true for the extended model, M U {A} p P, contradicting the assumption.

□
As a consequence, deleting an assumption a = >. in T = (:F, A) is

achieved by deleting all the conclusions P that have ±>. occurring in them. In the
case of a(T), the deletion consists of simply the set operation

1. a(.A) = a(.A) - {..\} and

2. a(:F) = a(:F) - {a=>.}.

3 APROTOCOL

Interestingly enough, since the set of all conclusions of the a-theory is
represented by MI (u(:F)) that is, the set of all minimal conclusions, deleting an
assumption a = ,\ in T = (:F, A) is defined in the following way.

Definition 2.4 (,\-Deletion) Let T = (F, A) be an a-theory , u(a) = ,\ for
a EA,,\ E u(A) and let MI(u(F)) be the set of all minimal implicates ofu(:F).
The revised theory u(T)' = (MI (u(F))', u(A)') is defined as

1. u(A)' = u(A) - {,\}

2. MI(u(F))' = MI(u(F)) - {PIPE MJ(u(F)) and ±,\occurs in P}.

The correctness of the above ,\-deletion is rather ttlvial since u(F) is
equivalent to MI (u(F)) in the sense that u(F) p P if and only if there is a
P' E MI(u(:F)) that subsumes P [13]. Additionally, the ,\-deletion process
involves only a linear search through the set MI (u(F)). With careful indexing
on the set MI(u(F)) a faster method is feasible.

3 A Protocol

In this section, a protocol is proposed for performing assumption revision while
using the ACMS in performing intelligent backtracking search. The protocol pro­
posed here is of the same nature as Frank Ramsey's test for evaluating conditionals
suggested in 1929, summed up by Stalnaker [14, pp 95] as follows:

[Ramsey's Test] This is how to evaluate a conditional: first, add the
antecedent (hypothetically) to your stock of beliefs; second, make
whatever adjustments are required to maintain consistency (without
modifying the hypothetical belief in the antecedent),· finally, consider
whether or not the consequent is then true.

The key idea lies in the statement " ... make whatever adjustments are
required to maintain consistency ... ". In our framework of assumption based
reasoning, the Ramsey's Test takes the form of asserting an assumption in the

3 APROTOCOL 11

theory T = (:F, A) such that the set of assumptions A asserted so far is consistent
with :F. Thus, the actual sequence of asserting an assumption is charaterized as
follows:

[Asserting Assumption] This is how to assert an assumption a into
your current set of consistent assumptions A: first, check if any of
the minimal explanations E for a is inconsistent with your current set
of assumptions A,· if it is not inconsistent add a into A,· otherwise
delete the assumption E in favour of another alternate assumption
other than E. Repeat the process until it is consistent to add a.

A protocol comprised of add(A), delete(A) and explain(A) is sufficient
to simulate the above sequence of operations. To illustrate the above reasoning
using this protocol, we shall mimic the reasoning of intelligent backtracking search
in a constraint satisfaction problem 2•

Assuming the Reasoner is solving a constraint satisfaction problem using
the domain independent ACMS. The actual algorithm for the Reasoner is based on
the operation of asserting assumptions but the interpretation of the explanations is
domain dependent to the Reasoner. The following example assumes the Reasoner
is capable of interpreting the explanations as results.

Example 3.1 Assume that we have three variables X, Y and Z, each variable can
have a value ofr (red) or w (white) and the constraints are X # Y and Y # Z .

· Figure 1 shows the complete search space for the problem of finding
consistent values for the variables X, Y and Z satisfying the constraints X # Y
and Y # Z. The edges of the search tree is labeled with the assignment of value
for the variables and the constraints. In a naive top-down, left-to-right search
strategy, the left-most branch (X = r, Y = r, Z = r) is tried and upon failing
at X # Y (denoted by a cross x), it backtracks to the most recent point, that is
Z =wand fails again at X # Y.

Note that an intelligent search strategy should immediately detect the
cause of failure comes from the incompatible values bewteen X and Y. Thus,

2Tbe demonstration of the protocol is not suggested as an efficient method to solve constraint
satisfaction problems. An in depth study of constraint satisfaction problems can be found in [6]

3 APROTOCOL

..,... ... , •r., . ..,,
X=,:.----~- • .. ,. __ X=w

t<~ :;~
~/Y;w ~/ \-w 7.-7',-- 7,.(\-w
• • • • • • • • u, x,, x,vj nvj x,, x,vj x,vj x,vj
• • • • • • • •
X X v4 v4 v•1 v,zj X X

• • • •
✓ X X ✓

Figure 1: Complete search tree.

12

backtracking should occur at the point of X or Y, avoiding unnecessary trial of
Z=w.

Using the protocol suggested, the following sequence of reasoning steps
mimics the intelligent backtracking strategy mentioned above. Initially as facts,

• the uniqueness and existence for each value are expressed .

.'F= { X = rV X = w,
Y=rVY=w,
Z=rV Z=w,

,(X = r AX= w),
,(Y=r/\Y=w),
,(Z = r AZ= w) }.

First, we shall make the postulate for each variable; X = r, Y = r and Z:. r in
our assumption set, that is 3

o-(A) = {(X = r) = ,\1,

(Y = r) = ,\2,

(Z = r) = ,\3 }.

3Note that the assumption set u(A) contains only new variables,\;. For clarity and ease of
reference, the equivalence is written.

3 APROTOCOL 13

We shall assume that the set :F and A are transformed into u(:F) and u(A) by
the u-transformation. Also, the set u(:F) is compiled into the set of minimal
implicates MI (u(:F)).

Considering the first constraint X # Y, we ask for the minimal expla­
nation for it, that is explain(X ::j:. Y), and we also assume the explanation is
constraint over the set A U A, and they are

..\2 I\ -i..\1 and ..\1 A -i..\2.

The first explanation says that if both statements Y = r I\ X ::j:. r are true then
they sanction the constraint X ::j:. Y. Unfortunately X ::j:. r contradicts with
our earlier postulate X = r. Similarly, the second explanation expresses the
alternate contradiction X = r I\ Y ::j:. r. Arbitrarily, we shall try to resolve the first
contradiction X ::j:. r.

An alternative for the assumption X = r is X = w. Before we re­
place the old assumption by a new one, we have to ensure that the alternative
is also consistent. This is achieved by asking for its minimal explanation that
is, explain(X = w), and the minimal explanation is -,..\1 or simply X # r,
which is perfectly acceptable. Thus, we can safely delete the assumption X = r
(delete(X = r)) and replace it with X = w (add(X = w)). Consequently, the
current set of assumption becomes

u(A) = {(X - w) = ..\1,
(Y = r) = ..\2,
(Z = r) = ..\3 } .

Subsequently, we shall re-examine the constraint X ::j:. Y with the new set of
assumptions. By explain(X ::j:. Y) we obtained as minimal explanations

..\1 A ..\2 and -i>i1 A -i>i2,

which express the fact that the constraint X # Y is satisfied. Note that the
explanation -i..\1 A -,,\2 says that X ::j:. w I\ Y ::j:. rand by propositional reasoning,
the specification of uniqueness and existence for variables imply X = r I\ Y = w.
In turn, we can add(X ::j:. Y) into our assumption set and it becomes

u(A)·= {(X = w) = ..\1,

3 APROTOCOL 14

.it are

(Y = r) = .X2,
(Z = r) = .X3,
(X # Y) = .X4, }.

Considering the second constraint Y # Z, the minimal explanations for

,.X2 A .X3,
,.X3 A .X2,
,.X1 A ,.X3 A ,.X4 and
.X1 A .X3 A ,.X4.

The first two explanations basically express that differing values must be assign
to variables Y and Z for the constraint Y # Z to be satisfied. Again, there are
two possible ways to resolv~ the conflict: either replace the value for Y, or for
Z. Arbitrarily, lets resolve it by choosing an alternate value for Y that is, Y = w.
Again, before replacing it we need to verify the consistency of this new asumption
by explain(Y = w) and the minimal explanations are

Unfortunately the second explanation says that the conjunction of the assumptions
X =wand ,{X-:/; Y) sanctions the choice Y = w. This is in direct conflict with
our established constraint X # Y and thus, the choice Y = w is not acceptable.

This leaves us with only the variable Z, the alternative value is Z = w
and explain(Z = w) yields the minimal explanation ,.X3 or simply Z # r. This
is consistent since we are replacing Z = r by Z = w. Hence, the new set of
assumptions becomes

u(A) = {(X = w) = .X1,
(Y = r) = .X2,
(Z = w) = .X3,
(X # Y) = .X4, }.

Subsequently, to re-examine the constraint Y # Z, the set of minimal explanations
for explain(Y # Z) are:

3 APROTOCOL

-,A2 A -,A3,
A2A A3,
-,At A A3 A -,A4 and
At A -,A3 A -,A4.

15

and the first two explanations express the consistency of accepting Y # Z. Thus
by adding it into the set of assumptions we obtain:

a(A) = {(X = w) = At,
(Y = r) = A2,
(Z = w) = A3,
(X # Y) = A4,
(Y # Z) = As }.

To verify the result, we compute explain((X # Y) A (Y # Z)) to find
the set of minimal explanations:

At A A2 A A3,
-,At A -,A2 A -,).3,

A1 A A2 A As,
,\,i A As,
A2 A A3 A A4,
-,A2 A -,A3 A A4 and
-,>.1 A -,A2 A As.

The first minimal explanation A 1 A A2 A >.3 or simply

(X = w) A (Y = r) A (Z = w)

is a set of consistent assumptions for sanctioning the constraints (X # Y) A (Y #
Z). Similarly, the explanation -,>.1 A -,A2 A -,>,3 or simply

(X = r) A (Y = w) A (Z = r)
is an alternate solution.

4 IS DELETION NECESSARY ? 16

4 Is Deletion Necessary ?

The previous sections have been presented under the assumption that deletion
of knowledge is necessarily a feature of reasoning. Is deletion necessary ? As
demonstrated in the previous section, if revision of assumptions is the strategy of
reasoning as when evaluating conditionals, like intelligent backtracking search,
then deletion is necessary as the complementary process to addition.

Also, recall that one of the reasons for compilation is to achieve fast
retrieval. take for instance, the knowledge if it is rainning, the ground is wet and
if the ground is wet, I wear my rubber overshoes. As a practical rule, we would
compile it by adding ifit is rainning, I wear my rubber overshoes, thus bypassing
the intermediate step of reasoning. We shall call this compilation by addition
because a new rule is added.

Conversely, consider Reiter's infamous default rule: p/q, read as ifit is
consistent to conclude p, then conclude q [9]. More intuitively, if it is consistent
that I have neckties (p), I will wear a necktie to the restaurant (q). Since I am
poor and I don't have neckties, I cannot conclude that I wear a necktie to the
restaurant. On a later occasion, I can afford and own neckties, I can now conclude
that I will wear a necktie to the restaurant. Now owning neckties, the question
becomes whenever I go to a restaurant, do I repeatly trying to verify whether it is
consistent I have neckties before I wear one ? Since the change of status is lasting
(does not have to be forever), wouldn't it be better to compile our new knowledge
by deleting the default rule ? Thus, this notion of compilation by deletion will
allow me to wear a necktie to the restaurant without suffering from headache by
constantly worrying about consistency.

Conversely, deletion does not necessarily mean loss of information. The
removal of an assumption usually means either the assumption is irrelevant or is
inconsistent with my perceived current state of the domain of discourse. If it were
irrelevant we could always keep this irrelevant assumption in a separate knowledge
base, lets call it "dustbin", for the sake of keeping information around. If it were
inconsistent, some would argue that removal of it loses information as when
human reasons with inconsistency. I argue that reasoners do not reason with
inconsistency, rather about inconsistency. Thus the detection of inconsistency
within subject matter is a piece of knowledge at a different knowledge level from
the subject matter in the domain of discourse. In the Reasoner-A CMS paradigm,

5 CONCLUSIONS 17

when the Reasoner detects inconsistency with the aid of the ACMS, a separate
knowledge base is established to keep this piece of information. For instance,
the Reasoner discovers that the assumptions A1 and A 2 are inconsistent when
used together in the knowledge base :E. Thus in a separate knowledge base :E1

responsible for maintaining inconsistent knowledge about :E, an encoding in the
form

I A~ /\1 :E' -+ -,' A;

where the quotes indicate names can be used. Additionally this separate knowledge
base can also be maintained by the ACMS. Thus I argue that each knowledge base
should be kept sterile such that reasoning within the knowledge base is hygienic.

In short, deletion should not be viewed as a loss, but rather, in conjunction
with addition, as a process of replacement of old assumptions with new ones.
Additionally, not to be taken as refuting the argument above, the ACM S is also
powerful enough to reason about inconsistency within a single knowledge base ·
[5].

5 Conclusions

In summary, the tasks of clause management involving abductive reasoning and
revision can now be completely charaterized and computed in the logical frame­
work of the ACMS. The tracking of conclusions is accomplished by a logical
scheme of indexing and the deletion process is achieved by deleting those indexed
conclusions. A protocol comprised of add(A), delete(A) and explain(A) is pro­
posed and its application is demonstrated by mimicking the reasoning of intelligent
backtrack search. The ACMS proposed here is the first clause management system
that takes into account deletion as one of its functions.

As for future work, the choice of assumptions for deletion is an important
issue. In the absence of domain specific knowledge, the preference over a set of
equally plausible assumptions can be bewildering. With the help of the ACMS,
some method of investigating the preference, such as the canonical ordering
of explanations in the CMS [13], would be fruitful. Finally, different types of
Reasoners use the ACMS differently and the study of their interaction could
suggest a better definition for a protocol for the Reasoner-ACMS paradigm.

5 CONCLUSIONS 18

Acknowledgement: This paper is the result of the discussion with Hugo Chan on the sub­
ject of modelling exception handling in inheritance hierarchy for the purpose of database
design. The author is also grateful to George Tsiknis for his collaboration on the orig­
inal ACMS, Craig Boutilier for the reference to the Ramsey's test, and Peter Apostoli,
Jane Mulligan, Alan ·Mackworth, David Poole, Greg Grudic for their comments and
criticism.

References

[1] Johan de Kleer. An Assumption-based TMS. Artificial Intelligence, 28,
1986.

[2] Jon Doyle. A Truth Maintenance System. Artificial Intelligence, 12:231-272,
1979.

[3] Alex Kean. The Approximation of Implicates and Explanations. Technical
Report 31, Department of Computer Science, University of British Columbia,
1990.

[4] Alex Kean and George Tsiknis. An Incremental Method for Generating
Prime Implicants/Implicates. Journal of Symbolic Computation, 9:185-206,
1990.

[5] Alex Kean and George Tsiknis. Assumption based Reasoning and Clause
Management Systems. Technical Report 9, Department of Computer Science,
University of British Columbia, 1990.

[6] Alan K. Mackworth. Consistency in Networks of Relations. Artificial Intel­
ligence, 8:99-118, 1977.

[7] David Poole, Randy Goebel, and Romas Aleliunas. Theorist: A logical
Reasoning System for Defaults and Diagnosis. CS Research Report 6, De­
partment of Computer Science, University of Waterloo, 1986. Logic Pro­
gramming and Artificial Intelligence Group.

[8] Allan Ramsay. Formal Methods in Artificial Intelligence. Cambridge Uni­
versity Press, 1988.

5 CONCLUSIONS 19

[9] Raymond Reiter. A Logic of Default Reasoning. Artificial Intelligence,
13:81-132, 1980.

[10] Raymond Reiter and Johan de Kleer. Foundations of Assumption-Based
Truth Maintenance Systems: Preliminary Report. In Proceeding of AAAI-
87, pages 183-188, Seatle, Washington, 1987.

[11] Joseph R. Shoenfield. Mathematical Logic. Addison-Wesley, 1967.

[12] R. M. Stallman and G. J. Sussman. Forward Reasoning and Dependency
Directed Backtracking. Artificial Intelligence, 9:135-196, 1977.

[13] George Tsiknis and Alex Kean. Clause Management Systems (CMS). Tech­
nical Report 21, Department of Computer Science, University of British
Columbia, 1988.

[14] Frank Veltman. Logics for Conditionals. University of Amsterdam Press,
1985.

