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Abstract 

Markov Random Fields (MRFs) are used in computer yision as an effective method 
for reconstructing a function starting from a set of noisy, or sparse data, or in the 
integration of early vision processes to label physical discontinuities. The ·MRF for­
malism is attractive because it enables the assumptions used to be explicitly stated 
in the energy function. The drawbacks of such models have been the computational 
complexity of the implementation, and the difficulty in estimating the parameters of 
the model. 

In this thesis, the deterministic approximation to the MRF models derived by Girosi 
and Geiger [10] is investigated, and following that approach, a MIMD based algorithm 
is developed and implemented on a network of T800 transputers under the Trollius 
operating system. A serial version of the algorithm has also been implemented on a 
SUN 4 under Unix. 

The network of transputers is configured as a 2-dimensional mesh of processors 
(currently 16 configured as a 4 x 4 mesh), and the input partitioning method is used 

. to distribute the original image across the network. 
The implementation of the algorithm is described, and the suitability of the trans­

puter for image processing tasks is discussed. 
The algorithm was applied to a number of images for edge detection, and produced 

good results in a small number of iterations. 
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Chapter 1 

Introduction 

In order to give a viewer information about a three dimensional scene, many algorithms 

have been developed on several early vision processes, such as edge detection, stereoposis, 

motion, texture, and color. This information refers to properties of the scene such as 

shape, distance, color, shade, or motion, and it is usually noisy and sparse. Therefore 

more processing is necessary to extract the relevant information, and fill in the sparse 

data. This process is usually referred to as visual reconstruction. 

Blake and Zisserman [2] , define visual reconstruction as the process of reducing visual 

data to stable descriptions, where visual data comes in various forms: 

• Raw intensity data direct from photoreceptors, in the form of an array of numbers. 

• "Optic fl.ow" - measures of velocities of points of an image. 

• A depth map, consisting of points embedded, usually sparsely, m the viewer's 

coordinate-frame. At each point, depth ( distance from the viewer) is known. Depth 

maps may be produced by stereoposis, or they may be obtained by appropriate pro­

cessing of optical flow. 

• Sets of discrete points making up curves in a 2D image, or in 3D. 

1 
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In each case, data must be reduced in quantity, with minimal loss of meaningful con­

tent, with the compressed form being stable. 

Many researchers (26], (11 ], (18], (12], (34] have investigated the use of Markov Random 

Fields (MRFs) in computer vision in the last few years. MRF models can be generally 

used in the construction of a function starting from a set of noisy or sparse data. They 

can also be applied to integrate early vision processes to label physical discontinuities(23]. 

The essence of the MRF model is that the probability of a certain value of the field 

(for a set of data) at a given site depends only on neighboring sites, and that probability 

distribution is given as a Gibbs distribution. An "energy function" that contains some a 

priori information about the system and its probability distributions can be used to spec­

ify the model. In the standard approach, an estimate of the field and its discontinuities 

is given by the configuration that maximizes the probability distribution, or equivalently 

that minimizes the energy function. Since the discontinuity field is a discrete valued field, 

this becomes a combinatorial optimization problem that can be solved by methods of the 

Monte Carlo type (25] (simulated annealing [18], for example). 

Girosi and Geiger (11, 10] introduce deterministic approximations to MRF models. 

They use the mean field theory to find deterministic equations for Markov Random Fields 

analytically. The solution of these non-linear equations approximates the solution of the 

statistical problem. This approach will be presented and discussed in detail in Chapter 2. 

Early vision is the most computationally intensive part of a vision system. The 

prospect of near real-time image processing has only recently been raised by the intro­

duction of fast, parallel computers. A transputer-based multicomputer [17] is a general­

purpose parallel and distributed computing environment that offers potentially enormous 

computational power at a reasonable cost. 



CHAPTER 1. INTRODUCTION 3 

A transputer (22] is a VLSI building block for concurrent processing systems, com­

prising of a processor, the on-chip memory and four serial communication links. Two 

transputers can be connected by connecting a link of one transputer to a link of the 

other. The flexibility of the reconfiguration of the transputer network makes it possible 

to support various kinds of parallel and distributed applications. The algorithm was 

implemented on a 2-dimensional mesh of transputers. 

The underlying operating system was Trollius 2.0 (3, 4). Trollius is a topology­

independent operating system. The algorithm was implemented using the C program­

ming language which is supported by the operating system. 

There are several approaches to implementing the algorithm on a parallel machine, 

but the one that is most suitable to the system's architecture is the input partitioning 

method. Using the input partitioning method, the image was divided into a number of 

subimages equal to the number of the nodes in the mesh. The subimages were distributed 

by a master node to the rest of the network nodes. Each processor then performs the 

computation on its subimage, and exchanges the borders with its immediate neighbors 

after every iteration. When the computation is completed, each processor returns its 

final subimage to the master transputer where the complete final image is assembled and 

written to an external file. 

The purpose of this thesis is to evaluate the performance of the technique proposed 

by Girosi and Geiger, and investigate the suitability of the transputers for low level vision 

applications. The algorithm used for the experiments is an implementation of the one 

described by Girosi and Geiger . 

. The rest of the thesis is organized as follows: 

Chapter 2 introduces the theory behind MRFs, the weak membrane energy function, 
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and the deterministic approach to minimizing it. Chapter 3 presents some of the other 

approaches to image reconstruction, namely the graduated non convexity algorithm by 

Blake and Zisserman, and the stochastic relaxation algorithm by Geman and Geman. 

Chapter 4 presents different approaches to programming parallel vision algorithms: 

The Apply programming model, the dataflow language approach, the parallel vector 

model, and the systolic approach. Chapter 5 describes the software development en­

vironment as well as the details of the parallel implementation. Chapter 6 contains 

results obtained by applying the algorithm to sample images, and some evaluation of 

the communication time, the processing speed, and other issues that arise when using a 

transputer-based multicomputer. 



Chapter 2 

Theory and Mathematical 
Background 

Consider the problem of approximating a surface given a set of sparse and noisy data g 

on a regular 2D lattice. We think of the surface as a field f defined in the regular lattice, 

such that the value of the field at each site in the lattice is given by the surface height 

at this site [See Fig. 2.1]. 

We are interested in the conditional probability off given the data g, P(f I g). Bayes' 

theorem allows us to write 

P(f I g) 0( P(g I f)P(f) 

where P(g I f) is related to the probability distribution of the noise, and P(f) is the prior 

probability distribution of the field f. The noise is usually assumed to be Gaussian[12], 

so that P(g If) is known. The shape of P(f) depends on our a priori information about 

the system and it is what differentiates one model from another. 

The Markov property asserts that the probability of a certain value of the field at 

a given site depends only on neighboring sites. If we assume the Markov property, then 

5 
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Figure 2.1: The surface field, the horizontal and vertical line processes 
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CHAPTER 2. THEORY AND MATHEMATICAL BACKGROUND 7 

according to the "MRF Gibbs equivalence" 1 [11], [12], the prior probability of a state of 

the field f has the Gibbs form: 

P(f) ex e-f3U(J) 

where U(f) = Li Hi(!) is an energy function that can be computed as the sum of the 

local contributions from each lattice site i and /3 is a parameter that is called the inverse 

of the natural temperature of the field2
• As a result, the conditional probability can be 

written as 

1 P(f I g) ex -e-/3Hg(J) 
z 

where Hg(!) is usually called the energy function of the model, and Z is a normalizing 

constant called the partition function of the model [28], that is 

Z = I: e-{JU(J) 

I 
(2.1) 

To include the discontinuities of the field f in this framework, another field called the 

line process I is introduced. This idea was initially proposed by Geman and Geman [12], 

where the line process provides an explicit representation for the absence or presence of 

discontinuities that break the smoothness assumption. The interaction between the fields 

f and I can be chosen so that the most likely configurations are piecewise continuous. 

The details of the method are discussed in the remaining sections of this chapter. 

1 Discussed by Geman and Geman. It states that if field / is a MRF, then the probability law of/ is 
a Gibbs distribution. [see section 3.2] 

2 /3 is a measure of the certainty in the statistical model. When /3 = oo there is no uncertainty in the 
model. 
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2.1 Deterministic Approximation of MRF 

Once the probability distribution has been written down, an estimate of the field is 

obtained with the field values that maximize it, or equivalently that minimize the energy 

function H9 (f). A number of problems arise when this approach is taken. The first one 

concerns the energy function: it is often not convex. Because of that reason and the 

discrete nature of the line process fields [2], simulated annealing or similar Monte Carlo 

techniques must be used to solve the problem. The computational effort to obtain a good 

estimate of the fields is then very large. 

Another problem comes from the fact that the energy function depends on some 

parameters that control the relative weights of various terms. The problem of parameter 

estimation has been attacked in many ways, but it is far from being completely solved. 

It is still not clear how they are related to the quality of the solution and to quantities 

of physical interest. 

In their paper [11), Geiger and Girosi propose to approximate the solution of the 

problem formulated in the MRFs frame with its "average solution". The Mean Field 

Theory is used to find deterministic equations for Markov Random Fields analytically. 

Th_e solution of these non-linear equations approximates the solution of the statistical 

problem. 

A justification to use the mean field (MF) as a measure of the field f resides in the 

fact that it represents the minimum variance Bayes' estimator [34). More precisely, the 

variance of the field f is given by 

Var1 = EU- f) 2P(f,l) 
J,l 

where f is the center of the variance, P(f, l) represents a particular state of the system, 
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and the °EJ,l represents the sum over all possible configurations off and l. Minimizing 

Var 1 with respect to all possible values of /, gives us 

a - ~ 
lijVar1 = 0 =} f = L.Jf P(f,l). 

J,l 

This implies that the minimum variance estimator is given by the MF value. 

2.1.1 The Effective potential and the Deterministic Equations 

Let g be a given set of data, defined on a 2-D lattice, f a field associated with the 

field to be constructed, and la field whose value is 1 where a discontinuity occurs and 0 

elsewhere. We consider an energy function of the general form 

where the first term is usually E,(f, - g,)2
, coming from the Gaussian distribution of the 

noise and the other terms contain the a priori information about the system. Due to 

the discrete nature of the line process field, the minimum of the energy function can not 

be found by computing derivatives with respect to the variables, unless we can eliminate 

the line process field from the probability distribution. Girosi and Geiger achie~e this by 

using the partition function Z. They write the function Z as 

Z = L e-PH,,(J,l) = L e-PE,,,(J,g) L e-/3E1i(J,l) (2.2) 
J,1 ' J I 

where °EJ,1 means the sum over all possible configurations of the fields f and l. The 

effective potential is defined as 

(2.3) 
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the data term plus the effective potential (2.5) represent the free energy of the system 

[10). The mean field solutions are obtained by minimizing the free energy. In (11], the 

following equations were obtained as a solution to (2.5): 

7 .. = g· · - a(f-- · - f-- ·-1)(1 - v· ·) + a(f-- ·+1 - !-- ·)(1 - v· ·+1) J ,,, ,,., ,,., ,,., ,,., 1,3 ,,, ,,., 

- a(f-- · - f-·-1 ·)(1 - h· ·) + a(f-·+1 · - f-- ·)(1 - h ·+1 ·) 1,J I 1J 11) I ,J l,J I 1) (2.10) 

where 

- 1 h .. - -----,,-,-----,..,....---.,---,--=,--
,,.1 - 1 + e/3("'1-a(/,,; -li-uF) 

- 1 
V · . - --~-----,--...------:--:,.,-,,.1 - 1 + e/J(-y-a(f. ,;-l.,;- il2) 

(2.11) 

Equation (2.10) gives the field at site ( i, j) as the sum of data at the same site, plus an 

average of the field at its neighboring sites. This average takes into account the difference 

between the neighbours. The larger the difference, the smaller is the contribution to the 

average. This is captured by the term (1 - Ii,;), where li,j is either the horizontal or the 

vertical line process. At the zero temperature limit (/3 -+ oo ), the line process becomes 4 

1 or 0, and then only terms smaller than a threshold must be taken into account for the 

average. 

2.3 Improving the weak membrane model 

One property of physical images that has not been exploited in the previous model is the 

smoothness of the discontinuity field. Isolated discontinuities are very unlikely to occur, 

and the presence of a discontinuity at a site increases the probability of a discontinuity at 

a neighboring site. This smoothness constraint was incorporated in the model by adding 

a new term to the energy function (11], (10]. Thus the total energy becomes 

4It is equal to 1, only when(/;,; - h-1,;) ~ ~-
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where E 1 is given by (2.6), and the new term is defined as 

E11 = -q L(hi,jhi,j-1 + Vi,jVi-1,;) 
i,j 

13 

and E is a new parameter related to the degree of smoothness of the discontinuity field, 

and will be discussed in more detail in the next section. 

2.3.1 Averaging Out The Line Process 

As in the previous case, we are interested in the contribution of the line process to the 

partition function. This task is more difficult than the previous one, but the mean field 

approximation is used in a similar fashion to obtain an approximate result for the effective 

potential. Girosi and Geiger obtain the following equation for the effective potential: 

EeJJ(j) = L { a((h; - fi-1,;) 2 + (/i,j - h;-1)2) 
i,j 

1 / [(1 -/3(G~ ·-f-yhi,j-1+hi.j+1 ))(1 -/3(G~ ·-f-yhi,j-1+",,;+1 ))]} - - n + e ,,, 2 + e ,,, :.i 

(3 

where G~; = 1 - a(/;,; - h-1,;)2 and Gf,; is analogous. 

(2.12) 

"The effect of this new effective potential can be understood if we think 

of the system as an ensemble of interacting particles and if we study the 

interaction force between particles ( that is the negative of the derivative of 

the effective potential); In this case the gradient of the field should be thought 

of as the relative distance between the particles. We notice that when the 

gradient is low, the force is linear and attractive, as the force of the ideal 

spring. When the gradient increases, the force quickly decreases, and, unlike 

the usual spring, becomes repulsive, pushing the particles apart. This effect 

takes place only in a limited interval of values of the gradient; when it becomes 

too large, the spring breaks up and the force goes to zero." [11] 
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As a result, the overall effect will be of a smoothing where the gradient is smaller 

than a threshold, and an enhancing, where the gradient is "sufficiently large". Where 

the gradient is too large, no smoothing or enhancing will take place. The enhancing effect 

is d~ to the new term E11 in the energy function, and its intensity is controlled by the 

parameter t. 

As in the previous case, a set of non linear equations that relates the mean values of 

the discontinuity field with the mean values of the surface field is obtained : 

- ( (- - )2 hij-1 + hij+l) 
hi,i = <7f3 a h,; - h;-1 - , + f'Y , 2 ' 

and 

- ( (j,- j,- )2 'Vi-1,j + Vi+l,j) 
Vi,j = <7(3 0 i,j - i-1,j - 1 + f'Y 

2 
(2.13) 

where <7f3(x) = 1+~.S"' (the sigmoid function). 

An analogous equation is obtained for the surface field f: 

(2.14) 

We notice that the set of equations above now form a set of non linear equations and 

that they are not as simple as in the previous model. 

The last set of equations has been used for the implementation of the algorithm. The 

implementation details are discussed in Chapter 5. 



Chapter 3 

Related Work 

The weak membrane energy function has been studied by Blake and Zisserman [2] in the 

context of edge detection and surface interpolation. Their approach does not use Markov 

Random Field formulation, but they minimize the energy function. From a statistical 

mechanics point of view the mean field solution does not minimize the energy function, 

but this becomes true in the case of a zero temperature [10]. The GNC algorithm is 

presented below. 

3.1 The Graduated Non Convexity Algorithm 

The main problem with the weak membrane energy function is that it is not convex, 

and a classical optimization technique can not be used to find the minimum because one 

could be trapped in a local minimum. 

· The GNC algorithm provides a convex approximation £(I) to the energy E. A family 

of functions E(P), p E [O, 1] is defined such that E<1) = E, and £(P) varies continuously, 

in a particular prescribed manner, asp decreases from 1 to 0 

For O ~ p ~ I the E(P) itre non-convex. Of the whole family, only £(I) is convex. The 

£(P) are obtained by replacing the local interaction energy term by a new energy term 

15 
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that is independent of the line process variable. The GNC algorithm for the weak string1 

model is given in Fig. 3.1. 

The combination of boolean and real functions complicates the minimization of E. 

For this reason, the S and P energy terms in the weak string energy function are combined 

and a new total energy is defined: 

N N-1 

F = L(ui - di)2 + L g(ui - Ui+i) (3.1) 
1 1 

where 

(t) = { >.2t2 if !ti < fol>. 
9 a, otherwise. (3.2) 

The energy Fis now minimized only over Uj. The optimal values for l; can be recovered 

from the optimal u; as follows 

0 if lui - Ui+il < fo/>. 
1, otherwise. 

(3.3) 

In the weak string algorithm, the parameter p varies from 1 to O as the solution pro­

ceeds. The solution space is correspondingly transformed from convex to non-convex. In 

practice, p takes on a number of discrete values from 1 to 0. For each value of p, a gradi­

ent descent algorithm is used to determine the local minima. GNC actually incorporates 

the successive over-relaxation (SOR) algorithm, which has a faster convergence rate than 

the gradient descent. 

1The weak string energy function is the one-dimensional case of the weak membrane. A reconstruction 
U={ui,i=l,··•,N}, L={l;,i=l, .. · ,N-1} 
is obtained from data d = {di, i = 1, • • · , N} by minimizing the energy E: 
minE, where E=D+S+P 
and D = E~ (u; - di)2

, S = ,\2 E~-1(ui - Ui+1)2(1 - l;), P = o E~- 1 l;. 
The constant ,\ controls the scale of reconstruction. Constant o is a penalty levied for the inclusion of 
a discontinuity and controls resistance to noise. 
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Choose A and a 
SOR parameter: w = 2/(1 + 1/A) 
Function sequence: p E (1, 0.5, 0.25, ... , 1/ A) 
Iterate n=1,2, .... 
For i = 2, .. . ,N- l; 

where 

{ 

2A2t if ltl < q 
g(p)' = - 2

1,,(ltl - r)sign(t), if q ~ ltl < r 
o, if ltl ~ r 

and 

17 

Initially p = 1. Can switch to successive p after convergence at current 
p. 
Appropriate modification is necessary at boundaries. 

Figure 3.1: The GNC algorithm for the weak string 
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3.2 Geman and Geman: Stochastic Relaxation 

Geman and Geman (12] have used statistical mechanics to establish a link between me­

chanical systems and probability theory which they used in the field of image restoration. 

They have shown that signal estimation using Gibbs probability distribution is the right 

approach if you have certain a priori probabilistic beliefs about the world in which the 

signal originated. Specifically, the beliefs are: that the signal being estimated is sampled 

from a "Markov Random Field" and that Gaussian noise was added in the process of 

generating the data. 

The stochastic relaxation approach of Geman and Geman (12] can be informally 

described as follows. 

1. A local change is made in the image based upon the current values of pixels and 

boundary elements in the immediate neighbourhood. This change is random, and 

is generated by sampling from a local conditional probability distribution. 

2. The local conditional distributions are dependent on a global control parameter 

T called "temperature". At low temperatures, the local conditional distributions 

concentrate on states that increase the objective function. At high temperatures, 

the distribution is essentially uniform. The limiting cases, T = 0 and T = oo, 

correspond respectively to greedy algorithms (such as the gradient descent) and 

undirected (i.e. purely random) algorithms. 

3. Local energy minima are avoided by beginning at high temperatures where many 

of the stochastic changes will actually decrease the objective function. As the 

relaxation proceeds, temperature is gradually lowered, and the process behaves 
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increasingly like iterative improvement2
• 

In the Geman and Geman algorithm [12], the original image is referred to as a pair 

X = (F,L) where Fis the matrix of observable pixel intensities and L denotes a matrix 

of unobservable edge elements. Fis referred to as the intensity process, and Las the line 

process. Both the line and intensity processes are said to be Markovian in nature. 

In their answer to the question: "What does it mean for a process to be Markovian 

in nature?" Geman and Geman explain: 

Let Zm = { ( i, j) : 1 ~ i, j :5 m} denote the m x m integer lattice; then 

F = {Fi,;}, (i,j) E Zm, denotes the gray levels of the original digitized image. 

F is regarded as a sample realization of a random field, usually isotropic 

and homogeneous. Specifically, Fis modelled as a Markov Random Field, or 

equivalently, the probability law of F is assumed to be a Gibbs distribution. 

That is, given a neighbourhood system r = {ri,;, (i,j) E Zm}, where ri,; ~ 

Zm denotes neighbors of (i,j), an MRF over (Zm, F) is a stochastic process 

indexed by Zm for which, for every (i,j) and every f, 

P(Fi,; = Ii,; I Fk,1 = fk,1, (k, I) # (i, j)) = P(Fi,; = Ii,; I Fk,1 = fk,1, (k, Z) E ri,;) 

(3.4) 

In other words, a Markov Random Field is a probabilistic process in which all in­

teraction is local. That is, the probability that a cell is in any given state is entirely 

determined by probabilities for states of neighboring cells. The stochastic relaxation 

(Heatbath) algorithm for the weak string case is shown in Fig. 3.2. 

2This gradual reduction of temperature simulates "annealing'', a procedure by which certain chemical 
systems can be driven to their low energy, highly regular states. 



CHAPTER 3. RELATED WORK 

Each iteration consists of N visits made to randomly picked sites i, to update 
Ui and li. Successive new values of Ui, and li are generated by a Gibbs sampler 
[12). Updating li is done by setting li = l where l is picked randomly from 
the distribution: 

P1i(l) = P(li = l j ui,J = 1,·· ·,N;lj,J = 1,·· ·,N-1,j :/: i),l E {0,1}. 

For the weak string, this distribution turns out to be[l) 

n (l) ( o:l + (1 - l)(ui - u;+1)
2 
,\

2
) 

r1; ex: exp - T 

Similarly ui is updated to a value u chosen randomly from the distribution 

Pui(u) = P(ui = u I Uj,J = 1,··•,N;lj,J = 1,··•,N-1,j :/: i). 

For the weak string this is 

where 

and 
<1~ = 1/((2 - li-1 - li),\2 + 1) 

The temperature Tis lowered according to a truncated logarithmic schedule 

Figure 3.2: The heatbath algorithm for the weak string energy function 

20 
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The work done by Geman and Geman has forged an unintuitive, and elegant link 

between mechanical systems and probability theory. Blake and Zisserman commented 

on the novelty of their work: 

"It comes as something of a shock, when happily using splines as a very 

natural, mechanical model for smooth, physical surfaces, to find that this 

is inescapably equivalent to making certain probabilistic assumptions! The 

most disturbing thing is that one is forced to accept that the surface model 

is a probabilistic one, and therefore includes an element of randomness." [2] 

3.3 GNC Vs. Stochastic Methods 

Stochastic methods were developed before deterministic ones, and they have offered cru­

cial insights, and achieved good results. However, the Computational cost of stochastic 

methods is high. They have shown [1) to be two orders of magnitude slower than the 

GNC algorithm (for the weak membrane case). 

Blake and Zisserman [2] list the following advantages of the mechanical viewpoint 

over the stochastic one. 

• The MRF model is inherently discrete, whereas the mechanical one is continuous. 

A continuous model allows rigorous mathematical analysis using the calculus of 

variations and other tools. 

• MRF parameters must be specified in the form of conditional probabilities. These 

parameters are unlikely to be known in advance. An understanding of the pa­

rameters, however, is possible since the MRF formulation depends on the energy 

function used to specify the model. In the mean field theory approach [11], the pa-
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rameters control such measures as the trust in the data, the threshold for creating 

a line, the amount of propagation of the line, and the uncertainty of the model. 

• The mechanical viewpoint (GNC) also requires some parameters to be specified, 

but these are the more natural ones of spatial scale, desired sensitivity to contrast, 

and magnitude of Gaussian noise. 

• The continuous model allows viewpoint invariance, essential for veridical recon­

struction of 3D surfaces from range data, to be incorporated into the energy function 

due to the explicit presence of differential geometric quantities in the continuous 

formulation. 

• MRFs are not able to specify all probability distributions or equivalently, all pos­

sible energy functions. 

The mean field theory approach can be regarded as a link between stochastic algo­

rithms, and the GNC algorithm. It is based on the MRF formulation, like the stochastic 

algorithms, and yet, it is deterministic, like the GNC algorithm. Girosi and Geiger [11] 

show that the GNC algorithm can be regarded as a special case of their mean field ap­

proximation. In fact, the mean field formulation gives the GNC when (3 = oo (i.e. in the 

zero temperature limit). 



Chapter 4 

Implementing Parallel Vision 
Algorithms 

One of the important goals of computer vision is to allow machines to undertake tasks 

that could previously be performed only by humans or that were too difficult or dangerous 

for humans to perform at all. These tasks include inspection of manufactured parts, robot 

guidance, and autonomous vehicle navigation. In many of these applications, the vision 

system must provide rapid responses to the real-time processes that interact with the 

environment. Even the fastest sequential processors are not fast enough to process the 

volume of data present in such environments. Thus parallel architectures are needed to 

make these real-time applications feasible. 

"Parallel architectures have been part of computer vision research for almost 

as long as computer vision research has existed. The Illiac series of machines, 

which were among the first parallel architectures, were intended in part for 

image processing applications." [29] 

Since then, many parallel architectures have been developed including cellular array 

processors, pipeline machines, and pyramid machines. Some of these machines are single 

23 
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instruction, multiple data (SIMD) architectures, some are multiple instruction, multiple 

data (MIMD) architectures, and others are hybrid. Some are inexpensive, board level 

products, and others are multi-million-dollar computers. 

A network of transputers [22) comprises an inexpensive MIMD computer that has 

become increasingly popular in the last few years. A detailed description of the network 

used for the implementation is given in Section 5.1.1. 

Parallel architectures have been difficult to program because it is not yet understood 

how to "cover" parallelism (hide it from the programmer) and get good performance. 

Therefore the programmer has to write her programs using a special language that ex­

ploits features of the computer, and that can not run on other computers, or she uses a 

general-purpose language which runs on many computers, but does not make use of the 

special features of the parallel computer. 

The programmer is then faced with a dilemma: she must either ignore the special 

features of her computer, to increase the generality, portability and understandability of 

her program, or take advantage of those features to increase the efficiency and speed-up 

at the cost of generality and portability. 

The following sections present some of the work that has been done in the area of 

programming parallel vision algorithms. These approaches are mainly aimed at low 

level vision since this is usually the most computationally expensive part of a vision 

system. Some of the approaches focus on providing better control and synchronization 

for a given type of architecture rather than generality and abstraction. An example of 

such an approach is the data flow model. Other approaches try to abstract away from 

the machine architecture allowing the programmer to concentrate more on the problem 

and the algorithm. They provide better portability, generality, and ease of programming. 
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Figure 4.1: Input partitioning method on Warp 

The Apply model is one example of such approaches. Some of the models were developed 

for fine-grained machines, with fixed or variable interconnection topologies. Others are 

better suited for coarse-grained parallel machines. 

4.1 The Apply programming model 

The Apply language was designed by Hamey, Webb, and Wu [13] for implementing 

parallel low level algorithms on the Warp machine 1 , which has been developed for image 

and signal processing. 

Low level vision algorithms are mapped onto Warp by the input partitioning method; 

On a Warp array of ten cells, the image is divided into ten regions [13], by columns as 

shown in Fig. 4.1. This gives each cell a tall narrow region to process. The advantage of 

such partitioning is that each cell sees a connected set of columns of the image which is 

1The Warp machine is a linear array of ten cells called Warp cells, which are identical, and which 
include local data, and microcode memory, input and output ports, and a 5 MFLOPS multiplier, for a 
total of 10 MFLOPS per cell. 
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useful in many vision algorithms (e.g., median filter), and the memory requirements at 

a cell are minimized, since each cell must store only 1/lOth of a row. 

The Apply programming model is a special purpose programming approach which 

simplifies the programming task by making explicit the parallelism of low level vision 

algorithms. The Apply programming language embodies this approach. When using the 

Apply language, the programmer writes the procedure which defines the operation to be 

applied at a particular pixel location. The procedure conforms to the following: 

• It accepts a window or a pixel from each input image. 

• It performs arbitrary computation, usually without side effects. 

• It returns a pixel value for each output image. 

The Apply compiler converts the procedure into an implementation which can be run 

efficiently on Warp, or on a uni-processor machine in C under Unix. 

An example of an Apply program is given in Fig. 4.2. In this example, a procedure 

for image reduction is presented. The sample parameter used in the procedure specifies 

that the Apply operation is to be applied not at every pixel, but regularly across the 

image, skipping pixels as specified in the integer list after sample. The window around 

each pixels refers to the underlying input image. For example, the program in figure 4.2 

performs image reduction using overlapping 4 x 4 windows, to reduce an n x n image to 

an n/2 x n/2 image. 

4.2 The Dataflow Language Approach 

Shapiro, Haralick, and Goulish [30) proposed a Reconfigurable Computational Network 

(RCN) machine as an inexpensive, and flexible architecture that can execute a variety of 



CHAPTER 4. IMPLEMENTING PARALLEL VISION ALGORITHMS 27 

procedure reduce(inimg: in array (0 .. 3, 0 .. 3) of byte sample (2, 2), 
outimg: out byte) 

is 
sum 
i,j 

begin 

integer; 
integer; 

sum:= 0; 
for i in 0 .. 3 loop 

for j in 0 .. 3 loop 
sum:= sum+ in(i,j); 

end loop; 
end loop; 
outimg := sum /16; 

end reduce; 

Figure 4.2: An Apply program for image reduction 

algorithms from low to high level vision. The RCN is a multi-instruction, multi-data­

stream network of processors and memories with the ability to reconfigure connections 

from processor to processor, and from processor to memory. 

The operation of the RCN involves the flow of sequences of values through a network 

of architectural primitives. More formally, a configuration consists of a set of processors 

Panda specification C of the interconnections between processors [29]. Each processor 

p E P is a pair p = (I,,, O,,) where I,, is a named set of input lines and O,, is a named 

set of output lines. Each connection c E C is a quadruple c = (o,pi,i,p2) specifying 

that output line o of processor Pi connects to input line i of processor p2 • There is also 

a state associated with each data line where a state is a pair of values s = (r, q) where 

r is an indication of readiness, and q is an indication of acceptance. Legal values of r 

are: preactive (the processor has not produced any values yet), active and ready (valid 

data, ready to be us~ by other processors), active and not ready (the new data is not 
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yet ready to be consumed), and postactive (the processor has terminated production). 

Legal values of q are consumed, and unconsumed. 

A process can execute when all of its inputs are in the state ( active and ready, un­

consumed), and all of its outputs from its previous execution have been consumed by 

every process to which they are inputs. A sequence is an ordered stream of values that 

are either input to the RCN, or are produced by one of the processors of the RCN. 

The INSIGHT language was developed by Shapiro et.al. [29] as a dataflow language 

to run on the RCN. 

INSIGHT programs specify relationships among sequences that will translate to re­

lationships among architectural primitives of the RCN. A program is a sequence of con­

figurations of the RCN designed to achieve some goal. The arguments of a program are 

supplied by, and its results must be received by, entities outside the RCN such as frame 

buffers, other external memories and CRTs. 

INSIGHT programs are modular; th~y may invoke INSIGHT functions to perform 

subtasks. An INSIGHT function translates into a subgraph of the configured hardware 

that is useful in one or more parts of the total algorithm. It is, however, closer to the 

usual concept of a macro than a function in a procedural language, since a new copy of 

the subgraph must be included wherever the results of the function are needed. This 

allows all such copies of the function to operate in parallel. 

Example: Convolution 

Convolution is one of the most frequently used neighborhood operations. The output of 

a digital convolution operator at pixel ( i, j) of an image can be written as [29] 

n 

O;; = E a1cN1c(i,j), 
k=O 
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where the ak's are coefficients, N0(i,j) = hi (the value of the input pixel), and Nk(i,j), i = 
1, ... , n are then neighbors of pixel (i, j). The Nk(i,j)'s constitute the kernel of the con­

volution (29). 

The convolution function can be implemented in a pipelined manner by considering 

the image as a linear sequence of pixels and thinking of the neighbors of a given pixel 

as other pixels in the sequence whose position are offset from its position by a constant 

amount. For example, in a 512 x 512 image, the pixel above a given pixel is offset from 

it by 512 positions in the linear sequence of pixels. An INSIGHT operator delayed by 

(dby) allows the offset idea to be efficiently used to program a pipelined convolution. 

Fig. 4.3 illustrates the INSIGHT code for the convolution operation (29). The coeffi­

cients and delays for the particular convolution are assumed to be stored in the integer 

memories coefficients and delays. The processing is carried out by a sequence array of 

processing subnets, each of which multiplies the value of the appropriately delayed pixel 

by the corresponding coefficient and adds the result into the overall sum. Fig. 4.4 shows 

the architectural configuration that would be generated from this INSIGHT program. 

4.3 The Parallel Vector Model 

The parallel vector model (24) is used by Little, Belloch, and Cass to describe a variety of 

vision algorithms to run on fine-grained parallel machines such as the Connection machine 

[14). The algorithms are implemented using a set of primitive parallel operations. These 

primitives include general permutations, grid permutations, and the scan operation. 

In a parallel vector model, all the primitive operations are defined to work on a vector 

of atomic values. This model is well-suited to problems where the data are numerous 

and the computations on the data elements are similar. Early vision problems have such 
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function convolve(image_in: integer sequence, 

delays: integer memory,) 

:integer sequence; 

where 

declare 

size,stages: translator integer; 

result[O:size], image[O:size]: integer seqarray; 

relations 

result[O] = coefficient[O] * image_in; 

image[O] = image_in; 

foreach stage= 1 to size 

image[stage] = image[stage-1] dby delays[stage]; 

result[stage] = result[stage-1] 

+ coefficient[stage]*image[stage]; 

endfor; 

convolve= result[size]; 

endwhere 

Figure 4.3: INSIGHT code for a convolution operation 

image[O) ..------. image[l] .------. image( size-1] [ . ] 
.. . . . delay size delay[O) r delay(l) 

coeff[l] coeff[ size-1) ------i* coeff(size) 
* 

* -
coeff(O) 

result[! J . . . . . . I + I result[ siz"' 1] 

Figure 4.4: Architectural configuration for the convolution operation 
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properties. Early vision algorithms can then be expressed in terms of routines using 

primitives of the parallel vector model and modules composed of these routines. 

Little et.al. [24] also show that using the routines and modules in the model, middle 

and high level vision algorithms can also be formulated in a natural manner for imple­

mentation on a fine-grain.ed architecture. The primitives defined are: 

• Elementwise Arithmetic and Logical Primitives: Each primitive operates on equal 

length vectors providing a result vector of the same length. Such primitives include 

+, -, x, OR, and NOT. 

• Permutation primitives: The permutation primitive takes two arguments: a data 

vector, and an index vector. It then permutes each element in the data vector to 

the location specified by the index vector. 

• Grid Permutation Primitives: A grid permutation maps a vector onto a grid and 

permutes elements to the closest neighbour in some direction on the grid. 

• Scan Primitives: The scan operation takes a binary associative operator EB, and a 

vector [ a0 , a1, ... , an-l] of n elements, and returns the vector [ a0 , ( a0 EB a1), ... , ( a0 EB 

a1 EB ... EB an-i)]. Such operators include +, max, min, AND, or OR. 

• Global Primitives: The global primitives reduce the value in a vector using a binary 

associative operator. Applying+ as a global primitive produces the sum of all the 

elements of the vector. 

• Segmented Primitives: The segmented primitives are useful when working on many 

sets of data. A vector can be broken into contiguous segments in which the begin­

ning of each segment is marked with a flag. 
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In this model, routines are functions composed of the various primitives described 

above. These routines include pointer jumping, ordering, region summation, outer prod­

uct, and histograms. As an example, a brief description of the region summation routine 

is given below. 

For region summation [24], each pixel in a grid is required to sum a (2m+ 1) x (2m + 1) 

square region around it. This procedure can be implemented using a constant number 

of grid scans and permutations. First, for each element, the sum of of the 2m pixels 
\ 

around it along a row is calculated using the following steps: perform a grid scan using 

+ in x, then permute elements at +m, or -m offset in x in the scan result to the central 

element, and take their difference. Repeat this in the y-direction on the result of the 

first step. This procedure based on scan operations takes a constant amount of time, 

independent of m. Region summation and other routines can be used in the formulation 

of many vision algorithms. In [24], the authors show that region summation can be used 

to efficiently implement Boxcar convolution. 

4.4 The Systolic Approach 

A systolic system [19] consists of a set of interconnected processing elements (or cells), 

each capable of performing some simple operation. Because simple and regular structures 

have substantial advantages over complicated ones in design and implementation, cells in 

a systolic system are typically interconnected to form an array or a tree. Information in 

a systolic system flows in a pipelined fashion, and communication with the outside world 

occurs only at the "boundary cells". For example, in a systolic linear array, inputs fl.ow 

into the first cell, are subjected to a series of operations, and eventually become outputs 

that fl.ow out of the last cell. 
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This method requires that the algorithm be regular, so that each cell can do nearly 

an identical operation. This is not always the case in image processing, so this method 

has not been as widely used as other image partitioning methods. The advantage of the 

systolic approach is that there is no duplication of data structures between cells; each 

cell maintains only the data structures necessary for its stage of the computation. Also 

the input and output sets are not divided, so that there is no extra cost associated with 

splitting them up or recombining them. 

Some of the image processing tasks suited to this mode of computation are one­

dimensional convolution, fast Fourier transform, and relaxation which is discussed in the 

next subsection. 

Relaxation 

In some image processing algorithms, the input image is subject to multiple passes of the 

same operations [20). This process is called relaxation, in which pass i + 1 uses the results 

of pass i. A natural way to implement relaxation on a systolic array (such as Warp)' is 

to have cell i perform pass i and send results to cell i + 1. 

Relaxation could also be implemented on Warp using input partitioning. But this 

requires more communication and control between cells. For example, as each cell com­

pletes a pass of the relaxation method over its portion of the image, it must communicate 

the results of its computation to its neighbors - both its predecessor, and its successor. 

This requires bidirectional communication on the Warp array, and special handling of 

boundary conditions. Therefore, it is better to implement relaxation by pipelining, with 

each cell performing one stage of the relaxation. 
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4.5 Summary 

In this chapter, we have presented four different approaches to programming parallel 

vision algorithms on a variety of parallel architectures. Although all the models presented 

were designed for the purpose of running parallel low level vision algorithms, each model 

seemed to focus on a specific goal for a particular architecture, or class of machines. Thus 

no one model can be regarded the best, the easiest, or the fastest in a general sense. 

Rather, the best model for any low level vision task depends on the given problem, and 

the programming environment. 

The Apply programming model and the Apply language have been developed for the 

Warp machine. The Apply model tries to minimize memory requirements at a cell by 

dividing images into contiguous regions, and communication requirements by mapping 

adjacent regions to neighboring processors. Therefore the Apply model is suitable for 

coarse-grained parallel machines. 

The Apply language provides a level of abstraction in which programs are easier to 

write, and are more comprehensible. Apply also allows the programmer to get good 

efficiency in low-level vision programming, by incorporating expert knowledge on how to 

implement such operations. Apply has also been used on a number of different parallel 

machines, including a distributed memory machine. 

Webb [33] developed another programming model based on the Apply programming 

model, called the split and merge model. A new language (Adapt) was also developed 

which is machine-independent. Unlike Apply, Adapt enables the programmer to imple­

ment global algorithms such as connected component, and histogramming. 

INSIGHT is a datafl.ow language that can be used to program parallel vision algo­

rithms. It allows relational expression of algorithms, provides operators that work with 



CHAPTER 4. IMPLEMENTING PARALLEL VISION ALGORITHMS 35 

sequences of data, and translates into graph structures representing configurations of an 

RCN machine. The RCN is a coarse-grained machine with a reconfigurable topology. 

The INSIGHT language has been designed to run on the RCN exploiting all the special 

features of the machine to provide a greater degree of control and synchronization, but 

also limiting the generality and portability of its applications. 

INSIGHT programs have been written for both low-level, and mid-level vision algo­

rithms, as well as some high-level vision tasks where the data can be naturally arranged 

in sequences. The INSIGHT language, together with the RCN have been designed for 

the purpose of building cost-effective machines for industrial vision applications. 

In the parallel vector model, algorithms can be described in terms of primitives which 

are defined for a fine-grained parallel machine {the Connection Machine [14)). These 

primitives provide a simple and uniform way of describing algorithms. This makes the 

task of programming the parallel machine an easy and efficient one. This generality also 

does not allow the algorithms to exploit specific properties of a particular architecture, 

the interconnection topology, or the machine structure. 

In contrast to the Apply programming model, the issues of memory requirements and 

communication constraints are not as critical in the parallel vector model. This is due 

to· the fact that the number of cells is much greater for a fine-grained machine than a 

coarse-grained one, and each cell is responsible for the processing of one pixel of the image 

instead of a larger region of it. Many of the algorithms implemented using the parallel 

vector model had very short run-times on the Connection Machine. The Connection 

Machine, however, is one of the most expensive parallel computers and for that reason, 

can not be used in many industrial applications. 

The systolic approach has been used in low-level vision applications, as well as many 
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other matrix computations, graph algorithms, language recognition, dynamic program­

ming, and relational database operations. 

The systolic approach relies on simple and regular structures. It can be used in a 

fine-grained or coarse-grained environment, although special-purpose fine-grained systolic 

architectures (19] provide the best performance for most applications. Using the systolic 

approach, no input partitioning is required, and each input data can be multiply used. 

Thus high throughputs can be achieved with modest 1/0 bandwidths. 

The processing power of systolic systems comes from the parallel processing of differ­

ent data elements, as well as pipelining the stages involved in the computation of each 

result. Data and control flows are also simple and regular in systolic systems. The only 

problem that might arise is the problem of synchronization of large systems since they are 

controlled by a global clock. Wave-front systems [21] have been proposed as a solution 

to this synchronization problem. 

The implementation approach used here is similar to the Apply programming model. 

The Apply model is well suited for the transputer-based multicomputer architecture for 

the reasons discussed above. The C programming language is used, since an Apply 

compiler is not available. The implementation details are presented in the following 

Chapter. 



Chapter 5 

Software Implementation 

5.1 Software development environment 

Based on the mean field theory approach [10, 11), a sequential algorithm was implemented 

and run on a Sun-4 workstation. This chapter, however, presents the details of the parallel 

implementation and the parallel development environment. 

5.1.1 Hardware Architecture 

The complete architecture of the transputer-based multicomputer system used for the 

implementation is shown in Fig. 5.1. The system consists of a host machine (a Sun-4), 

and 17 lnmos T-800 transputers, each of which has a 32-bit 10 MIPS processor, 1 or 2 

MBytes of DRAM and four 20 Mbit/sec bi-directional serial links [22). 

One of the transputers is connected to the host via a VME bus interface and acts as 

a master node (does most of the input/output), the other 16 transputers are intercon­

nected through programmable cross-bar switches to form a two-dimensional mesh. The 

interconnection topology of the transputer network can be dynamically reconfigured by 

having the controlling software running on the Sun send switch setting commands to the 

crossbar switches [17]. 

37 



CHAPTER 5. SOFTWARE IMPLEMENTATION 38 

This two-dimensional mesh configuration has been chosen because it provides the 

most efficient communication pattern for this class of algorithms. This is because the 

image is divided into 16 subimages ( approximately square1 and of equal sizes). In this 

type of algorithm, each pixel has to communicate its value with its nearest neighbors. 

Hence, for each subimage, the processor has to communicate the borders of the subimage 

( top and bottom rows, left and right sides) with the four processors to which it is directly 

connected. 

5.L2 The Trollius Operating System 

The Trollius operating system [3], [4] developed out of dissatisfaction with the standard 

software environment for transputer-based multicomputers. It was developed at Cornell 

University and Ohio State University to run on distributed memory multiprocessors. 

Trollius is a dynamic programming environment that is easy to use, and one that uses 

standard FORTRAN and C programming languages. 

It consists of two parts, running on the front-end workstation and transputer nodes 

respectively. Trollius operates over UNIX on the-host, providing a user command inter­

face to boot the multicomputer nodes, load parallel programs to transputers, al)d kill 

processes, among other facilities. 

Trollius is designed in layers of functionality, starting with message passing within 

a node, extending to nearest neighbor communication, then to arbitrary node to node 

communication at the higher level. Along with standard programming languages, Trollius 

provides for the inclusion of standard UNIX libraries, access to standard I/O from all 

processes, and dynamic memory allocation. 

1 A square's geometry provides the greatest area (number of pixels) with the least circumference 
( communication constrain ts), and hence increases the efficiency. 
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Figure 5.1: The Hardware architecture 
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A Trollius process sending a message does not directly specify the process to receive 

the message, or vice versa. Instead, each process specifies an event type in the header of 

the message. If the event type specified by the sending and receiving processors match, 

the message will be passed from the sender to the receiver. The Trollius Interprocess 

Communication follows a semi-blocking send/receive model. In network level message 

passing, the sender also has to specify the destination node of the message. Since the 

recipient of the message does not have to specify the source node, it is capable of receiving 

messages from a variety of senders. 

Trollius is a topology-independent operating system which also provides Stand-Alone 

Trollius. Stand-Alone Trollius allows users to debug their programs on the host without 

tying up valuable computing resources. It can also simulate as many nodes as desired 

through the use of a special router on the host. 

In tliis implementation, the network communication layer has been used for most 

of the communication. It provides a high degree of network transparency, but also an 

increasing degree of communication overhead. 

5.2 The Parallel Implementation 

In this section, the parallel algorithm based on the mean field ·theory approach is pre­

sented. The first problem that has to be considered is the one of mapping the input data 

to the processors of the network. 

5.2.1 Mapping of images to processors 

Input partitioning is natural in low level image processing. Image operations are local 

and regula_r, or produce data structures that are easy to combine. Image sizes tend to be 
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Figure 5.2: Input partitioning of an M x M image on an N x N mesh of transputers 

large (for example 512 x 512) so that much parallelism is available even if the image is 

divided along one dimension (i.e., each processor gets a set of adjacent columns). Every 

processor does the same operation on its portion of the input. The input partitioning of 

an N x N image on an M x M mesh is illustrated in Fig. 5.2. 

The advantages of input partitioning are its ease of programming, and the good speed­

up it usually gives to the algorithm. Using a simplified cost model (20), we can calculate 

the speed-up from input partitioning as follows: 

Suppose that the computation of the output for the complete input image on one pro­

cessor takes time n. Then computation of the input on k processors takes time n / k + kc, 
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where c is the time required to combine two processors' outputs. If it is possible to know 

the time n, then we can choose the optimal number of processors to do the computation 

which is k = R"c- Computation is wasted if the number of processors is greater than 

this, and as the number of processors approaches this point, adding more processors 

becomes less cost-effective. A cost model for the transputer-based implementation is 

constructed in Section 7 .2. 

The overhead in computation time for input partitioning comes from three sources: 

• The cost of dividing the image into subimages, and distributing them across the 

system. 

• The cost of additional bookkeeping on the part of each processor to allow outputs 

to be recombined later in the right order. 

• The cost of recombining outputs at the end of the computation 

These costs are usually negligible if the image is large and the operation is a com­

putationally intensive one. Other potential disadvantages are the replication of data 

structures at each processor, wasting memory, or the fact that there may not always be 

efficient ways of recombining the output. In our implementation, image partitioning is 

done by the one transputer in the network designated the master node, whose role will 

be described in the next section. 

5.2.2 The Algorithm 

Our implementation follows the Apply programming model (Section 4.1) to a certain 

extent. Some restrictions apply when using a distributed memory multiprocessor message 

passing system. In this case, each processor returns a region instead of a pixel value at 
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the end of the computation. The programs were written in C, and compiled to run on 

the transputers under Trollius. 

The implementation consists of two parts which we will refer to as the master part 

and the computing part. The Master part runs on the master transputer (labelled 75 in 

Fig. 5.1), and it is responsible for the following tasks: 

1. Image Input The master node reads in the input image from the host's file system. 

Trollius enables any node in the network to access the file system. But giving that 

responsibility to the master node which is directly connected to the host helps avoid 

communication delays. 

2. Image Distribution The master node does the input partitioning as described 

above, and distributes the subimages across the network. It sends a contiguous 

set of rows (or segments of rows) to the appropriate processor. This step forms 

the bottleneck of the computation and further work can be done to improve the 

performance at this stage. 

3. Image Collection This task is carried out when the participating processors finish 

their computation, and start sending back their output. The master node rec~ives a 

number of messages which contain the processed subimages. The messages contain 

enough information to enable the master to recombine them in the right order to 

produce the final image. Notice that the master node may be idle between the 

second and third steps. 

4. Image Output This step is very similar to the first one. At this stage, the par­

ticipating processors have completed their tasks, and the final image is written to 

a file on the host's system. 
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The computing part is the procedure that satisfies the Apply model requirements. 

The computing program runs on each one of the participating processors, and performs 

the following tasks: 

1. Receive Subimage Each processor waits for the master node to send it its share 

of the input data. The processor receives a number of messages, each containing 

one row of the subimage. These rows are then stored in a 2-dimensional array 

to be processed. As soon as a terminal signal is sent, the processor starts the 

computation on its subimage. 

REPEAT THE FOLLOWING 

2. Communicate Borders After every iteration, and before the first iteration, each 

processor needs to receive the borders of its neighboring processors. Every processor 

sends four messages to its neighbors. Each message is given an event number that 

matches the node id of its destination. These messages contain the updated borders 

of the subimage. (The number is less than four for nodes lying on the borders of the 

mesh). For example, processor 6 in Fig 5.1 sends the top row of the array to node 

2, the bottom row to node 10, the leftmost column to node 5, and the rightmost 

column to node 7. 

3. Iterate on Subimage This is the procedure where the main computation is per­

formed on each pixel of the subimage. The mean field values of the surface field 

and the line process at every pixel in the image are calculated. Equations (2.13), 

and (2.14) are used. A lpokup table is also built at every node for some of the 

values required repeatedly during iteration. 

UNTIL CONVERGENCE 
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Figure 5.3: The Program Structure 
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4. Return Final Subimage Send the final subimage back to the master who by 

now is idle and awaiting to collect the final outputs. The rows of the subimage are 

concatenated to form an array of intensity values. This array is then sent as one 

message back to the master. The sending node also identifies itself to the master 

node, so that the master can place the subimage in the appropriate location. 

The structure of the system is illustrated in Fig. 5.3. 



Chapter 6 

Results 

6.1 Parameter Estimation 

The parameters a, 1 and f must be estimated in order to develop an algorithm that 

smoothes, enhances, and finds the discontinuities in a given set of data. In Section 6.2, the 

results of running the program on a test image with different values of these parameters 

will be shown. 

6 .1.1 The parameter a 

The parameter a controls the balance between the "trust" in the data and the smoothing 

term. The noisier are the data, the less we want to "trust" them, so a is larger. If the data 

are less noisy, a should be smaller. To estimate a, various mathematical methods are 

available. Girosi and Geiger used the Generalized Cross Validation method introduced 

by Wahba [32]; it states that the optimal value of a can be obtained by minimizing the 

functional 

V(a) = !_ t [/n,o(ti - 9i)]2 wl(a) 
n i=O (1 - akk(a))2 

where fn,a(ti) is the smoothed solution, wk(a) = (l - akk(a))/(1 -1/n~j=oajj(a)) and 
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akk(o:) = ,5~h Un,a)(tk), 

In their implementation [10], Girosi and Geiger use a = 4. It was found, however, 

that for a value of o: > 1/4, the method did not converge for most experiments. If we 

look back at the simplified form of the solution: 

f-. · = g .. - a(f-· · - f-· ·-1)(1 - v· ·) + a(f-· ·+1 - f-· ·)(1 - v· ·+1) ,,3 ,,3 ,,3 ,,3 1,3 1,3 1,3 1,3 

- a(f-· · - f-·-1 ·)(1 - h· ·) + a(f-·+1 · - f-· ·)(1 - h·+1 ·) 11J I 1J 11J I 1J 11J I 13 (6.1) 

where 

(6.2) 

It seems that giving a a larger value than 1 / 4 gives more weight to the gradient differences 

than needed for the averaging process. The effect of this will be too much smoothing at 

the discontinuities, or equivalently propagation of noise. This is one aspect of the algo­

rithm that can be further studied and analyzed. Further analysis of the above equations 

may lead to more accurate values of o: required for convergence. 

6.1.2 The parameter 1 

From equation (2.11), we can see that ~ is the threshold for creating a line ·in the 

weak membrane energy. From the expression of the effective potential, we can see that 

if the gradient D..fi./ is above the threshold, there is no smoothing, and if the gradient is 

below the threshold, then smoothing is applied. The value of the threshold defines the 

resolution of the system. Once a has been estimated, a value of , can be chosen to give 

the desired resolution. 

1 Afh - I,· . I,· 1 . Af," - I · . f · . ~ i,j - l,J - ,_ ,,, ~ i,j - 1,J - ,,,-1 
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6.1.3 The parameter E 

The parameter f allows the energy to be more general by controlling the amount of 

propagation of the line. So, once a line is created, the price to pay for another line next 

to it will be lowered by the amount of 1t. In other words, from the definition of E 2 

(Section 2.3), we can see that the difference in the energy corresponding to the creation 

or not of a line at pixel ( i - l, j) is given by ,t. This is what characterizes the threshold 

and the suprathreshold, or the hysteresis phenomena [10]. The threshold is given by 

✓1<10-c> and the suprathreshold by ~ , f varying from 0 to 1. When f = 0, lines are 

created everywhere, since when a line is created, there is no cost for creating another 

line. The value off should be chosen to guarantee that ✓1< 10-c) is below the desired edge 

threshold. 

6.1.4 The parameter {3 

The parameter /3 controls the uncertainty of the model. The smaller /3 is, the more 

inaccurate the model is. This suggests that for solving the mean field equations, a rough 

solution can be obtained for a small value of /3 (high uncertainty) and therefore, we can 

increase /3 (small uncertainty) to obtain more accurate solutions [10]. 

6.2 Implementation results 

The performance of the algorithm on a synthetic noisy image is shown in Fig. 6.1. The 

original image consists of a square of intensity 150 on a background of intensity 100. The 

image is corrupted by adding random noise in the range (-30, 30). The top left figure is 

the original synthetic image. The top right one is the noisy image, the bottom left is the 

reconstructed image, and the bottom right image is the edge file. The parameters used 
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were a= 0.12, f3 = 100, ,-y = 150, and t = 0.8. It took 15 iterations for the algorithm to 

converge. 

The algorithm was tested on several images. In many cases, 30 iterations were enough 

to achieve convergence. This, however, depended on the choice of the parameter values. 

Changing one or more of the parameter values could lead to divergence, or inappropriate 

thresholding. In fact it was found that there was a small range of the value of a for each 

image for which convergence was guaranteed. 

Figure 6.2 shows a 512 x 512 image, which contained someone's hands holding a a 

manual drill. Figure 6.3 contains the edges obtained by running the program on the 

original image. We can see that the algorithm· worked well at detecting the edges of 

the wheel where other algorithms could fail. It took less than 15 iterations and about 

8 minutes on a Sun-4 to produce the edges. Notice that an t value of 0 gives the weak 

membrane energy function. 

The behavior of the algorithm was examined for a variety of different parameter 

choices. The program was run on 256 x 256 image. The original image is shown in 

Fig. 6.4. The edge files obtained from different parameter values are shown in Fig. 6.5. 

6.3 Parallel Performance 

Parallel systems are not only hard to program, but they also do not provide adequate 

support for users to understand the run-time behavior of their programs and detect per­

formance bottlenecks in their applications. A new performance monitoring tool "Tmon" 

(5) developed at UBC has been used to monitor the performance of the programs. It is a 

real-time performance monitor designed to run on the transputer system. A graphical in­

terface to Tmon has also been developed by Hilde Larsen at the department of Computer 
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Top Left: Synthetic image 47 x 47 
Top Right: Noise added randomly 
Bottom Left: The reconstructed image 
Bottom Right: The detected edges 

Figure 6.1: The Performance of the algorithm on a synthetic image 
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Figure 6.2: The Original 512 x 512 Image 



CHAPTER 6. RESULTS 52 

Figure 6.3: The edges; a= 0.15, /3 = 1000, 1 = 35, t = 0 
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Figure 6.4: The original 256 x 256 image 

Science (UBC), which made understanding the performance results much easier. 

6.3.1 Monitoring Results 

Tmon [5] uses a new performance analysis method called weighted critical path analy­

sis (WCPA). WCPA incorporates parallelism into critical path analysis2, and provides 

several performance metrics such as program execution time, speed-up3
, and efficiency4 • 

When the monitor was used initially, with the program performing only one iteration 

on an image of size 64 x 64, the speed-up on 16 nodes was approximately 3, but the 

efficiency was less than 20%. The ratio of computation to communication in the program 

2 A critical path is defined as the path through the program that consumed the greatest amount of 
execution time. 

3Speed-up is defined as the ratio S = T(l)/T(N), where T(l) is the time it takes to run the algorithm 
on one node, and T( N) is the time it takes to run the algorithm on N nodes. 

4Efficiency is defined here as the ratio of computation to communication. 
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(top left) o: = 0.1, /3 = 1000, 'Y = 40, E =, 0.0 
(top right) a= 0.2,/3 = 1000, 'Y = 40, c = 0.0, 
(bottom left) o: = 0.1, /3 = 1000, 'Y = 80, E = 0.1, 
(bottom right) o: = 0.1, /3 = 1000, 'Y = 40, E = 0.8 

... 
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Figure 6.5: The edge files 
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was 20 : 80, which meant that 80% of the execution time was spent in the communication 

routines. Examination of the critical path revealed that most of the delay was caused by 

the communication activities of distributing and returning subimages. The critical path 

was divided into five segments, and the weight of each phase on the critical path was 

calculated. The weights are shown in the table below [5] . 

Phase of Computation Weight on Critical Path 
Read Image 29% 

Distribute Image 5% 
Process Image 8% 
Return Image 47% 
Writ!:! Image 11% 

The input and output of the image weigh 40% on the critical path. This is due to the 

inherent serial nature of reading and writing the image to the host file system. Because 

only one transputer is connected to the host, other nodes can not obtain data directly 

from the host system. The processing of the subimages over the mesh weighs only 8% on 

the critical path. This is because a high degree of parallelism is achieved when all nodes 

are busy processing the subimages . 

. The one area where the performance of the program could be improved was at the 

distribution and return of subimages. The subimages were initially returned to the master 

node as a sequence of messages, each message containing one row of the subimage. It 

was later found out that in Trollius network level message passing, the header attached 

to each message was more than 50 bytes in size. Therefore the overhead of sending 

a message that is less than 100 bytes is very high (up to 40%). This problem was 

then solved by combining all the rows and sending the whole subimage back to the 

master as one message. This change in the program resulted in a 55% improvement over 
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the initial implementation in program execution time [5). The ratio of computation to 

communication has been improved to 63 : 36, which indicates that 63% of the time is 

spent in effective computation tasks. Speed-up and efficiency have improved to become 

6, and 40% respectively. That is, an improvement of a 100% due to the improvement of 

program execution time, which resulted form lowering the overhead in communication 

by combining smaller messages into one large message. 

Graphical Interface 

An X window-based graphical interface has been developed to display performance results 

to the user as easy-to-read charts an,d graphs. A brief description of the graphical display 

is given below. 

The output of the graphical display includes: network topology, global clock, system 

load and event history. The graphical display of the programs running on the 4 x 4 mesh at 

a certain period during execution is shown in Figure 6.6. The network topology window 

displays the interconnection of the transputer network as a graph. The global clock 

window shows the current time relative to the elapsed time of the whole computation. 

The clock can be set, reset, started, stopped or the speed adjusted by clicking on the 

buttons in the window. Clicking on a node in the network topology graph will display 

the CPU utilization of the node selected with regard to the global clock. The event5 

history display the execution graph of the parallel program reconstructed from the event 

traces. The zoom in/zoom out and scrolling ability allows users to browse through the 

event history or focus on a portion of the execution graph conveniently. Communication 

patterns of the parallel program such as multicast can be easily visualized on the event 

5 An event is one of: process creation, process exit, a message sent, a message received, and a call to 
receive a message. 
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history. The user can also examine the details of each event in the execution graph by 

clicking on the node, which will pop up a new window with detailed description of the 

event selected. 

The monitoring results together with the graphical interface make it much easier to 

debug and monitor the execution of the parallel programs. 
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115 176 

Each horizontal line in the bottom window represents the activities of one processor. A 
triangle pointing to the right indicates that a message is being sent out. A solid triangle 
pointing to the left indicates that the node is waiting to receive a message. When the 
message is received, a left-pointing triangle appears in the display. 

Figure 6.6: Graphical Display of the System's Performance 



Chapter 7 

Conclusions 

In the following sections we present some characteristics and criticisms of both the mean 

field theory approach, and the transputer-based multicomputer as an image processing 

environment. In the last section, possibilities for future work to improve the system's 

performance are discussed. Improvements can be applied to both the algorithm and the 

transputer-based implementation. 

7.1 The Mean Field Theory approach 

The work done by Girosi and Geiger proposed a link between the statistical algorithms 

[12] and the alternative deterministic graduated non convexity algorithm [2]. The algo­

rithm is a deterministic one, yet it uses Markov Random Fields in a similar fashion to 

the stochastic algorithms. 

The algorithm was fast, and provided good results for reconstruction and edge de­

tection tasks. The only drawback is the difficulty in estimating the parameters of the 

model, considering how much the solution depends on those parameters. The algorithm 

has the following characteristics: 

• The surface field is smoothed when its gradient is not too high. 
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• Contrast will be enhanced at discontinuities . 

• The discontinuity field is likely to be smooth (isolated discontinuities are inhibited). 

• Hysteresis and adaptive multiple thresholding arise naturally from the model. 

• Edge localization is good. However, edges are frequently missed if inappropriate 

parameters are specified. 

/ 
• It is naturally extendable to the case of sparse data. 

• It provides edge magnitudes ( from the line process variables) instead of binary 

values. 

• An understanding of the parameters needed to specify the model is possible. 

7.2 The Transputers and Low Level Vision 

The transputer-based implementation can be considered a general framework under which 

other low-level vision algorithms can be implemented. The only part that may have to 

be changed would be the ITERATE module (refer to Fig. 5.3). It is the procedure that 

contains the actual operation to be performed on each pixel of the image. 

The transputer-based system offers a great amount of flexibility in terms of intercon­

nection topology. This flexibility, together with the network transparency provided by 

Trollius make the task of programming the transputers an easy and efficient one. We 

have also seen from the monitor results (Section 6.3.1) that the parallelism of the network 

provided a speed-up of approximately 6 when 16 processors were used. 

The speed-up factor can be higher for larger images distributed on a greater number 

of transputers. The optimal number of processors can be determined and used to achieve 
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the maximum speed-up. According to the cost model presented in Section 5.2.1, the 

maximum speed up can be obtained by minimizing the equation 

where Tis the time it takes to perform the computation on k processors, n is the time it 

takes for one processor to do the computation, c1 is the time required to combine two pro-
•, 

cessors results ( distribution and collection of data), s is the number of iterations needed 

to do the computation, and c2 is the time it takes for two processors to communicate 

their intermediate results (communication requirements). Intermediate communication 

is done in parallel and is assumed to take a constant amount of time. 

If we assume that it takes one time step to compute one pixel of the image, then 

for an image of size m x m, partitioned on a -J'f x -J'f mesh of processors, n = sm2
• 

Optimal T is then achieved for a value of k = mj;r;;. If we take c1 ex m/-J'f (since 

each processor has to communicate a constant number of columns each of size~ m/vk), 

then the optimal number of processors k = ( ms )113 . 

We can see from the equation above that the optimal number of processors is directly 

proportional to m. If we takes = 50 iterations, then for a 64 x 64 image, the optimal 

number of processors k ~ 14 processors. For a 256 x 256 image, k ~ 24 processors. 

For a 512 x 512 image, k ~ 30 processors. These results show that for larger images, a 

greater number of processors can be used to achieve a smaller run-time and hence greater 

speed-up. 

If we disregard the time it takes to distribute and collect the data on the network, 

then the model can be simplified further, and we can look at the computation involved 

in one iteration only. In this case, the maximum speed-up per iteration can be obtained 
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by minimizing 

T = n/k + c 

where Tis the time it takes to perform one iteration on k processors, n is the time it takes 

for one processor to do the computation, and c is the time it takes for two processors to 

communicate their borders ( c2 in the previous model). Again, if we assume that it takes 

one time step to compute one pixel of the image, and d time steps to commmiicate one 

pixel between two neighboring processors, then for an image of size m x m, partitioned 

on a v'k x v'k mesh of processors, n = m2
, and the time c ~ 4md/ v'k since each 

processor has to communicate a border of size ~ m/v'k. These values, however, are 

very approximate and oversimplified. For example, the time it takes to send a message 

between two nodes does not simply increase linearly with the size of the message (in this 

case the border); rather, there is a constant overhead associated with every message (see 

· Section 6.3.1 ). Thus, concatenating a group of smaller messages to form a large one is 

much more efficient than sending them individually. 

To continue with this approximate model, minimizing T with respect to k now gives 

k = m 2 
/ 4<12. If we take d to be one time step, then for a 64 x 64 image, k ~ l, 000 

processors. For a 256 x 256 image, k ~ 16,000 processors, and for a 512 x 512 image, 

k ~ 64, 000 processors. Therefore, by disregarding the communication with the "outside 

world", we notice that a massively parallel, fine grained machine provides the maximum 

speed-up for such an algorithm. 

7.2.1 Drawbacks of the System 

The transputer system under Trollius had a few drawbacks. One of the drawbacks was 

the congestion of messages over the links. This sometimes did not allow for dynamic 
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memory allocation. This was a problem only when larger images were used, and it was 

mainly caused by Trollius network layer message passing. The problem can be solved by 

direct routing of the messages. This, however, was not favourable since other facilities 

like the monitor, and the graphical display require that network layer communication is 

used. 

Another drawback that appears when using smaller images is that the time to load 

several copies of the program (in this experiment 16) on 16 nodes is large compared to 

the time it takes to operate on a small image. In such a situation, it is more efficient to 

use a sequential version of the algorithm on a uni-processor machine. 

One drawback of link communications in transputers is that communication takes 

place only when both the receiver and the sender are ready. This can result in the idleness 

of a processor waiting to communicate for as long as it takes the other processor to get 

ready for communication. This was observed in the graphical display of the system's 

execution. This aspect of the system's performance can be improved, and is discussed in 

the following section. 

7.3 Directions for Future Work, 

There are possibilities for improvements and further research in both areas: the algo­

rithm, and the implementation. In terms of the algorithm, these are: 

• Analysis of the convergence of the algorithm, and the effect of changing the param­

eter values. 

• Introduction of extra terms to the energy function, for example, one that gives the 

interaction between the horizontal and vertical line process. 
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• More sophisticated neighborhood cliques can be used to provide more information 

about the neighbors. . 

For the transputer-based implementation, these are the possible directions for improve­

ment: 

• Minimizing the processor idle time by finding the optimal communication pattern. 

Currently, the communication at each node is done by first sending all the mes­

sages to the neighbors, then waiting to receive the incoming messages. Alternating 

sends and receives in the appropriate manner could decrease the processor idle time 

significantly. 

• The idea of activity flags was mentioned by Blake and Zisserman [2]. Activity flags 

are used in the later iterations to indicate whether a change in the pixel value has 

taken place in the last iteration, if the value has not changed, then the activity 

flag is switched off. If thei:e is an activity at a certain pixel, the activity flags 

for that pixel and all of its neighbors are switched on. Pixels whose activity flags 

are switched off are not updated until the :flag is on again. Activity flags speed 

up the computation on a serial machine, but they impose extra communication 

constraints in a message-passing distributed-memory machine. This is particularly 

true for kernel level message passing. The overhead associated with each message 

sent is ~ 50 bytes. Thus sending activity flags as 1-bit arrays is still an inefficient 

way of communicating them. 

It would be of interest to measure the trade-off costs, and perhaps try to find a 

fast way of exchanging activity flags on different transputers (kernel level message 

passing may be fast enough). 
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• Building a user interface that would allow the programmer to specify an image, 

and an operation to be performed on that image, and according to the image size 

and the cost of the operation, the optimal number of transputers is chosen, and 

configured into a 2-dimensional mesh topology. 

• Investigating the possibility of each transputer being responsible for reading its 

share of the data and writing results directly to the host's file system. This would 

result in a reduction of the reading/writing time which in our experiment (Sec­

tion 6.3.1) represented 40% of the total execution time. 

7.4 Summary 

Based on the mean field theory approach of Geiger and Girosi [10, 11], an algorithm 

for image reconstruction and edge detection has been implemented. The algorithm was 

tested on a synthetic noisy image (Fig. 6.1 ), and the results show that the algorithm 

works well for both edge detection, and reconstruction of the noisy image. The algorithm 

was also tested on a real still life image (Fig. 6.2), and it can be seen that specular, 

shadow, and contour edges have been detected and enhanced, while the noise has been 

smoothed away (Fig. 6.3). In addition to that, the algorithm was tested on another 

image with different values of the parameters. The results (Fig. 6.5) agree with the 

expected performance of the algorithm after varying the parameter values ( as discussed 

in Section 6.1 ). 

A parallel transputer-based multicomputer version of the algorithm was also con­

structed and implemented on a 16-node network of transputers. A monitoring tool 

developed at UBC (Tmon) allowed us to monitor the parallel performance of the al­

gorithm, and measure the speed-up and efficiency rates. The experimental results show 
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that a speed-up rate of 6 was obtained when 16 processors were used to run the algorithm 

on a small test image (Section 6.3.1). 

The parallel implementation can be regarded as a prototype for many other low level 

vision algorithms. In fact, all the modules responsible for image partitioning, image col­

lection, communication between the master node and other transputers, communication 

of subimage borders among neighboring processors, and image input/ output, all of these 

modules can be left without any change. Only the ITERATE module which contains 

the computations to be performed at every pixel in the image needs to be modified to 

contain the new operations. 
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