
Markov Random Fields

in Visual Reconstruction:

a Transputer-Based

Multicomputer Implementation

Ola Siksik

Technical Report 90-40
September 1990

Department of Computer Science
The University of British Columbia
Vancouver, BC, Canada V6T 1 W5

Abstract

Markov Random Fields (MRFs) are used in computer yision as an effective method
for reconstructing a function starting from a set of noisy, or sparse data, or in the
integration of early vision processes to label physical discontinuities. The ·MRF for­
malism is attractive because it enables the assumptions used to be explicitly stated
in the energy function. The drawbacks of such models have been the computational
complexity of the implementation, and the difficulty in estimating the parameters of
the model.

In this thesis, the deterministic approximation to the MRF models derived by Girosi
and Geiger [10] is investigated, and following that approach, a MIMD based algorithm
is developed and implemented on a network of T800 transputers under the Trollius
operating system. A serial version of the algorithm has also been implemented on a
SUN 4 under Unix.

The network of transputers is configured as a 2-dimensional mesh of processors
(currently 16 configured as a 4 x 4 mesh), and the input partitioning method is used

. to distribute the original image across the network.
The implementation of the algorithm is described, and the suitability of the trans­

puter for image processing tasks is discussed.
The algorithm was applied to a number of images for edge detection, and produced

good results in a small number of iterations.

Contents

Contents

List of Figures

Acknowledgement

1 Introduction

2 Theory and Mathematical Background
2.1 Deterministic Approximation of MRF

2.1.1 The Effective potential and the Deterministic Equations
2.1.2 The line process for two dimensions

2.2 A MRF model for smoothing and detecting discontinuities
2.2.1 The Weak Membrane Energy Function model
2.2.2 A deterministic solution for f . .

2.3 Improving the weak membrane model . .
2.3.1 Averaging Out The Line Process

3 Related Work
3.1 The Graduated Non Convexity Algorithm
3.2 Geman and Geman: Stochastic Relaxation
3.3 GNC Vs. Stochastic Methods

4 Implementing Parallel Vision Algorithms
4.1 The Apply programming model ..
4.2 The Datafl.ow Language Approach .
4.3 The Parallel Vector Model
4.4 The Systolic Approach
4.5 Summary

11

..
11

IV

V

1

5
7
8

10
10
10
11
12
12

15
15
18
21

23
25
26
29
32
34

5 Software Implementation 37
5.1 Software development environment 37

5.1.1 Hardware Architecture . . . 37
5.1.2 The Trollius Operating System 38

5.2 The Parallel Implementation 40
5.2.1 Mapping of images to processors . 40
5.2.2 The Algorithm 42

6 Results 46
6.1 Parameter Estimation 46

6.1.1 The parameter a 46
6.1.2 The parameter , 47
6.1.3 The parameter f 48
6.1.4 The parameter (3 48

6.2 Implementation results . 48
6.3 Parallel Performance .. 49

6.3.1 Monitoring Results 53

7 Conclusions 59
7.1 The Mean Field Theory approach 59
7.2 The Transputers and Low Level Vision 60

7.2.1 Drawbacks of the System . 62
7.3 Directions for Future Work . 63
7.4 Summary 65

111

List of Figures

2.1 The surface field, the horizontal and vertical line processes

3.1 The GNC algorithm for the weak string
3.2 The heatbath algorithm for the weak string energy function

6

17
20

4.1 Input partitioning method on Warp 25
4.2 An Apply program for image reduction . . 27
4.3 INSIGHT code for a convolution operation 30
4.4 Architectural configuration for the convolution operation 30

5.1 The Hardware architecture 39
5.2 Input partitioning of an M x M image on an N x N mesh of transputers 41
5.3 The Program Structure 45

6.1 The Performance of the algorithm on a synthetic image 50
6.2 The Original 512 x 512 Image 51
6.3 The edges; o: = 0.15, ,8 = 1000, 1 = 35, f = 0 52
6.4 The original 256 x 256 image 53
6.5 The edge files 54
6.6 Graphical Display of the System's Performance 58

iv

Acknowledgement

I would like to thank Dr. Jim Little for his guidance, patience, and support throughout
my work. Special thanks are also due to Jie Jiang for his helpful hints and wonderful
monitor, Norm Goldstein for being there when Trollius was not, and Hilde Larsen for the
graphical display and all the emotional support.

V

I
1·

Chapter 1

Introduction

In order to give a viewer information about a three dimensional scene, many algorithms

have been developed on several early vision processes, such as edge detection, stereoposis,

motion, texture, and color. This information refers to properties of the scene such as

shape, distance, color, shade, or motion, and it is usually noisy and sparse. Therefore

more processing is necessary to extract the relevant information, and fill in the sparse

data. This process is usually referred to as visual reconstruction.

Blake and Zisserman [2] , define visual reconstruction as the process of reducing visual

data to stable descriptions, where visual data comes in various forms:

• Raw intensity data direct from photoreceptors, in the form of an array of numbers.

• "Optic fl.ow" - measures of velocities of points of an image.

• A depth map, consisting of points embedded, usually sparsely, m the viewer's

coordinate-frame. At each point, depth (distance from the viewer) is known. Depth

maps may be produced by stereoposis, or they may be obtained by appropriate pro­

cessing of optical flow.

• Sets of discrete points making up curves in a 2D image, or in 3D.

1

CHAPTER 1. INTRODUCTION 2

In each case, data must be reduced in quantity, with minimal loss of meaningful con­

tent, with the compressed form being stable.

Many researchers (26], (11], (18], (12], (34] have investigated the use of Markov Random

Fields (MRFs) in computer vision in the last few years. MRF models can be generally

used in the construction of a function starting from a set of noisy or sparse data. They

can also be applied to integrate early vision processes to label physical discontinuities(23].

The essence of the MRF model is that the probability of a certain value of the field

(for a set of data) at a given site depends only on neighboring sites, and that probability

distribution is given as a Gibbs distribution. An "energy function" that contains some a

priori information about the system and its probability distributions can be used to spec­

ify the model. In the standard approach, an estimate of the field and its discontinuities

is given by the configuration that maximizes the probability distribution, or equivalently

that minimizes the energy function. Since the discontinuity field is a discrete valued field,

this becomes a combinatorial optimization problem that can be solved by methods of the

Monte Carlo type (25] (simulated annealing [18], for example).

Girosi and Geiger (11, 10] introduce deterministic approximations to MRF models.

They use the mean field theory to find deterministic equations for Markov Random Fields

analytically. The solution of these non-linear equations approximates the solution of the

statistical problem. This approach will be presented and discussed in detail in Chapter 2.

Early vision is the most computationally intensive part of a vision system. The

prospect of near real-time image processing has only recently been raised by the intro­

duction of fast, parallel computers. A transputer-based multicomputer [17] is a general­

purpose parallel and distributed computing environment that offers potentially enormous

computational power at a reasonable cost.

CHAPTER 1. INTRODUCTION 3

A transputer (22] is a VLSI building block for concurrent processing systems, com­

prising of a processor, the on-chip memory and four serial communication links. Two

transputers can be connected by connecting a link of one transputer to a link of the

other. The flexibility of the reconfiguration of the transputer network makes it possible

to support various kinds of parallel and distributed applications. The algorithm was

implemented on a 2-dimensional mesh of transputers.

The underlying operating system was Trollius 2.0 (3, 4). Trollius is a topology­

independent operating system. The algorithm was implemented using the C program­

ming language which is supported by the operating system.

There are several approaches to implementing the algorithm on a parallel machine,

but the one that is most suitable to the system's architecture is the input partitioning

method. Using the input partitioning method, the image was divided into a number of

subimages equal to the number of the nodes in the mesh. The subimages were distributed

by a master node to the rest of the network nodes. Each processor then performs the

computation on its subimage, and exchanges the borders with its immediate neighbors

after every iteration. When the computation is completed, each processor returns its

final subimage to the master transputer where the complete final image is assembled and

written to an external file.

The purpose of this thesis is to evaluate the performance of the technique proposed

by Girosi and Geiger, and investigate the suitability of the transputers for low level vision

applications. The algorithm used for the experiments is an implementation of the one

described by Girosi and Geiger .

. The rest of the thesis is organized as follows:

Chapter 2 introduces the theory behind MRFs, the weak membrane energy function,

CHAPTER 1. INTRODUCTION 4

and the deterministic approach to minimizing it. Chapter 3 presents some of the other

approaches to image reconstruction, namely the graduated non convexity algorithm by

Blake and Zisserman, and the stochastic relaxation algorithm by Geman and Geman.

Chapter 4 presents different approaches to programming parallel vision algorithms:

The Apply programming model, the dataflow language approach, the parallel vector

model, and the systolic approach. Chapter 5 describes the software development en­

vironment as well as the details of the parallel implementation. Chapter 6 contains

results obtained by applying the algorithm to sample images, and some evaluation of

the communication time, the processing speed, and other issues that arise when using a

transputer-based multicomputer.

Chapter 2

Theory and Mathematical
Background

Consider the problem of approximating a surface given a set of sparse and noisy data g

on a regular 2D lattice. We think of the surface as a field f defined in the regular lattice,

such that the value of the field at each site in the lattice is given by the surface height

at this site [See Fig. 2.1].

We are interested in the conditional probability off given the data g, P(f I g). Bayes'

theorem allows us to write

P(f I g) 0(P(g I f)P(f)

where P(g I f) is related to the probability distribution of the noise, and P(f) is the prior

probability distribution of the field f. The noise is usually assumed to be Gaussian[12],

so that P(g If) is known. The shape of P(f) depends on our a priori information about

the system and it is what differentiates one model from another.

The Markov property asserts that the probability of a certain value of the field at

a given site depends only on neighboring sites. If we assume the Markov property, then

5

CHAPTER 2. THEORY AND MATHEMATICAL BACKGROUND

{ ..
u

v .. ve.nicaJ lleld
u .,(line procaa)

horisoa&a~ tield ,-_
(lll1e proceu) b ii

' '

/

surface lield

......

Laiiice

Figure 2.1: The surface field, the horizontal and vertical line processes

6

CHAPTER 2. THEORY AND MATHEMATICAL BACKGROUND 7

according to the "MRF Gibbs equivalence" 1 [11], [12], the prior probability of a state of

the field f has the Gibbs form:

P(f) ex e-f3U(J)

where U(f) = Li Hi(!) is an energy function that can be computed as the sum of the

local contributions from each lattice site i and /3 is a parameter that is called the inverse

of the natural temperature of the field2
• As a result, the conditional probability can be

written as

1 P(f I g) ex -e-/3Hg(J)
z

where Hg(!) is usually called the energy function of the model, and Z is a normalizing

constant called the partition function of the model [28], that is

Z = I: e-{JU(J)

I
(2.1)

To include the discontinuities of the field f in this framework, another field called the

line process I is introduced. This idea was initially proposed by Geman and Geman [12],

where the line process provides an explicit representation for the absence or presence of

discontinuities that break the smoothness assumption. The interaction between the fields

f and I can be chosen so that the most likely configurations are piecewise continuous.

The details of the method are discussed in the remaining sections of this chapter.

1 Discussed by Geman and Geman. It states that if field / is a MRF, then the probability law of/ is
a Gibbs distribution. [see section 3.2]

2 /3 is a measure of the certainty in the statistical model. When /3 = oo there is no uncertainty in the
model.

CHAPTER 2. THEORY AND MATHEMATICAL BACKGROUND 8

2.1 Deterministic Approximation of MRF

Once the probability distribution has been written down, an estimate of the field is

obtained with the field values that maximize it, or equivalently that minimize the energy

function H9 (f). A number of problems arise when this approach is taken. The first one

concerns the energy function: it is often not convex. Because of that reason and the

discrete nature of the line process fields [2], simulated annealing or similar Monte Carlo

techniques must be used to solve the problem. The computational effort to obtain a good

estimate of the fields is then very large.

Another problem comes from the fact that the energy function depends on some

parameters that control the relative weights of various terms. The problem of parameter

estimation has been attacked in many ways, but it is far from being completely solved.

It is still not clear how they are related to the quality of the solution and to quantities

of physical interest.

In their paper [11), Geiger and Girosi propose to approximate the solution of the

problem formulated in the MRFs frame with its "average solution". The Mean Field

Theory is used to find deterministic equations for Markov Random Fields analytically.

Th_e solution of these non-linear equations approximates the solution of the statistical

problem.

A justification to use the mean field (MF) as a measure of the field f resides in the

fact that it represents the minimum variance Bayes' estimator [34). More precisely, the

variance of the field f is given by

Var1 = EU- f) 2P(f,l)
J,l

where f is the center of the variance, P(f, l) represents a particular state of the system,

CHAPTER 2. THEORY AND MATHEMATICAL BACKGROUND 9

and the °EJ,l represents the sum over all possible configurations off and l. Minimizing

Var 1 with respect to all possible values of /, gives us

a - ~
lijVar1 = 0 =} f = L.Jf P(f,l).

J,l

This implies that the minimum variance estimator is given by the MF value.

2.1.1 The Effective potential and the Deterministic Equations

Let g be a given set of data, defined on a 2-D lattice, f a field associated with the

field to be constructed, and la field whose value is 1 where a discontinuity occurs and 0

elsewhere. We consider an energy function of the general form

where the first term is usually E,(f, - g,)2
, coming from the Gaussian distribution of the

noise and the other terms contain the a priori information about the system. Due to

the discrete nature of the line process field, the minimum of the energy function can not

be found by computing derivatives with respect to the variables, unless we can eliminate

the line process field from the probability distribution. Girosi and Geiger achie~e this by

using the partition function Z. They write the function Z as

Z = L e-PH,,(J,l) = L e-PE,,,(J,g) L e-/3E1i(J,l) (2.2)
J,1 ' J I

where °EJ,1 means the sum over all possible configurations of the fields f and l. The

effective potential is defined as

(2.3)

CHAPTER 2. THEORY AND MATHEMATICAL BACKGROUND 12

the data term plus the effective potential (2.5) represent the free energy of the system

[10). The mean field solutions are obtained by minimizing the free energy. In (11], the

following equations were obtained as a solution to (2.5):

7 .. = g· · - a(f-- · - f-- ·-1)(1 - v· ·) + a(f-- ·+1 - !-- ·)(1 - v· ·+1) J ,,, ,,., ,,., ,,., ,,., 1,3 ,,, ,,.,

- a(f-- · - f-·-1 ·)(1 - h· ·) + a(f-·+1 · - f-- ·)(1 - h ·+1 ·) 1,J I 1J 11) I ,J l,J I 1) (2.10)

where

- 1 h .. - -----,,-,-----,..,....---.,---,--=,--
,,.1 - 1 + e/3("'1-a(/,,; -li-uF)

- 1
V · . - --~-----,--...------:--:,.,-,,.1 - 1 + e/J(-y-a(f. ,;-l.,;- il2)

(2.11)

Equation (2.10) gives the field at site (i, j) as the sum of data at the same site, plus an

average of the field at its neighboring sites. This average takes into account the difference

between the neighbours. The larger the difference, the smaller is the contribution to the

average. This is captured by the term (1 - Ii,;), where li,j is either the horizontal or the

vertical line process. At the zero temperature limit (/3 -+ oo), the line process becomes 4

1 or 0, and then only terms smaller than a threshold must be taken into account for the

average.

2.3 Improving the weak membrane model

One property of physical images that has not been exploited in the previous model is the

smoothness of the discontinuity field. Isolated discontinuities are very unlikely to occur,

and the presence of a discontinuity at a site increases the probability of a discontinuity at

a neighboring site. This smoothness constraint was incorporated in the model by adding

a new term to the energy function (11], (10]. Thus the total energy becomes

4It is equal to 1, only when(/;,; - h-1,;) ~ ~-

CHAPTER 2. THEORY AND MATHEMATICAL BACKGROUND

where E 1 is given by (2.6), and the new term is defined as

E11 = -q L(hi,jhi,j-1 + Vi,jVi-1,;)
i,j

13

and E is a new parameter related to the degree of smoothness of the discontinuity field,

and will be discussed in more detail in the next section.

2.3.1 Averaging Out The Line Process

As in the previous case, we are interested in the contribution of the line process to the

partition function. This task is more difficult than the previous one, but the mean field

approximation is used in a similar fashion to obtain an approximate result for the effective

potential. Girosi and Geiger obtain the following equation for the effective potential:

EeJJ(j) = L { a((h; - fi-1,;) 2 + (/i,j - h;-1)2)
i,j

1 / [(1 -/3(G~ ·-f-yhi,j-1+hi.j+1))(1 -/3(G~ ·-f-yhi,j-1+",,;+1))]} - - n + e ,,, 2 + e ,,, :.i

(3

where G~; = 1 - a(/;,; - h-1,;)2 and Gf,; is analogous.

(2.12)

"The effect of this new effective potential can be understood if we think

of the system as an ensemble of interacting particles and if we study the

interaction force between particles (that is the negative of the derivative of

the effective potential); In this case the gradient of the field should be thought

of as the relative distance between the particles. We notice that when the

gradient is low, the force is linear and attractive, as the force of the ideal

spring. When the gradient increases, the force quickly decreases, and, unlike

the usual spring, becomes repulsive, pushing the particles apart. This effect

takes place only in a limited interval of values of the gradient; when it becomes

too large, the spring breaks up and the force goes to zero." [11]

CHAPTER 2. THEORY AND MATHEMATICAL BACKGROUND 14

As a result, the overall effect will be of a smoothing where the gradient is smaller

than a threshold, and an enhancing, where the gradient is "sufficiently large". Where

the gradient is too large, no smoothing or enhancing will take place. The enhancing effect

is d~ to the new term E11 in the energy function, and its intensity is controlled by the

parameter t.

As in the previous case, a set of non linear equations that relates the mean values of

the discontinuity field with the mean values of the surface field is obtained :

- ((- -)2 hij-1 + hij+l)
hi,i = <7f3 a h,; - h;-1 - , + f'Y , 2 '

and

- ((j,- j,-)2 'Vi-1,j + Vi+l,j)
Vi,j = <7(3 0 i,j - i-1,j - 1 + f'Y

2
(2.13)

where <7f3(x) = 1+~.S"' (the sigmoid function).

An analogous equation is obtained for the surface field f:

(2.14)

We notice that the set of equations above now form a set of non linear equations and

that they are not as simple as in the previous model.

The last set of equations has been used for the implementation of the algorithm. The

implementation details are discussed in Chapter 5.

Chapter 3

Related Work

The weak membrane energy function has been studied by Blake and Zisserman [2] in the

context of edge detection and surface interpolation. Their approach does not use Markov

Random Field formulation, but they minimize the energy function. From a statistical

mechanics point of view the mean field solution does not minimize the energy function,

but this becomes true in the case of a zero temperature [10]. The GNC algorithm is

presented below.

3.1 The Graduated Non Convexity Algorithm

The main problem with the weak membrane energy function is that it is not convex,

and a classical optimization technique can not be used to find the minimum because one

could be trapped in a local minimum.

· The GNC algorithm provides a convex approximation £(I) to the energy E. A family

of functions E(P), p E [O, 1] is defined such that E<1) = E, and £(P) varies continuously,

in a particular prescribed manner, asp decreases from 1 to 0

For O ~ p ~ I the E(P) itre non-convex. Of the whole family, only £(I) is convex. The

£(P) are obtained by replacing the local interaction energy term by a new energy term

15

CHAPTER 3. RELATED WORK 16

that is independent of the line process variable. The GNC algorithm for the weak string1

model is given in Fig. 3.1.

The combination of boolean and real functions complicates the minimization of E.

For this reason, the S and P energy terms in the weak string energy function are combined

and a new total energy is defined:

N N-1

F = L(ui - di)2 + L g(ui - Ui+i) (3.1)
1 1

where

(t) = { >.2t2 if !ti < fol>.
9 a, otherwise. (3.2)

The energy Fis now minimized only over Uj. The optimal values for l; can be recovered

from the optimal u; as follows

0 if lui - Ui+il < fo/>.
1, otherwise.

(3.3)

In the weak string algorithm, the parameter p varies from 1 to O as the solution pro­

ceeds. The solution space is correspondingly transformed from convex to non-convex. In

practice, p takes on a number of discrete values from 1 to 0. For each value of p, a gradi­

ent descent algorithm is used to determine the local minima. GNC actually incorporates

the successive over-relaxation (SOR) algorithm, which has a faster convergence rate than

the gradient descent.

1The weak string energy function is the one-dimensional case of the weak membrane. A reconstruction
U={ui,i=l,··•,N}, L={l;,i=l, .. · ,N-1}
is obtained from data d = {di, i = 1, • • · , N} by minimizing the energy E:
minE, where E=D+S+P
and D = E~ (u; - di)2

, S = ,\2 E~-1(ui - Ui+1)2(1 - l;), P = o E~- 1 l;.
The constant ,\ controls the scale of reconstruction. Constant o is a penalty levied for the inclusion of
a discontinuity and controls resistance to noise.

CHAPTER 3. RELATED WORK

Choose A and a
SOR parameter: w = 2/(1 + 1/A)
Function sequence: p E (1, 0.5, 0.25, ... , 1/ A)
Iterate n=1,2,
For i = 2, .. . ,N- l;

where

{

2A2t if ltl < q
g(p)' = - 2

1,,(ltl - r)sign(t), if q ~ ltl < r
o, if ltl ~ r

and

17

Initially p = 1. Can switch to successive p after convergence at current
p.
Appropriate modification is necessary at boundaries.

Figure 3.1: The GNC algorithm for the weak string

CHAPTER 3. RELATED WORK 18

3.2 Geman and Geman: Stochastic Relaxation

Geman and Geman (12] have used statistical mechanics to establish a link between me­

chanical systems and probability theory which they used in the field of image restoration.

They have shown that signal estimation using Gibbs probability distribution is the right

approach if you have certain a priori probabilistic beliefs about the world in which the

signal originated. Specifically, the beliefs are: that the signal being estimated is sampled

from a "Markov Random Field" and that Gaussian noise was added in the process of

generating the data.

The stochastic relaxation approach of Geman and Geman (12] can be informally

described as follows.

1. A local change is made in the image based upon the current values of pixels and

boundary elements in the immediate neighbourhood. This change is random, and

is generated by sampling from a local conditional probability distribution.

2. The local conditional distributions are dependent on a global control parameter

T called "temperature". At low temperatures, the local conditional distributions

concentrate on states that increase the objective function. At high temperatures,

the distribution is essentially uniform. The limiting cases, T = 0 and T = oo,

correspond respectively to greedy algorithms (such as the gradient descent) and

undirected (i.e. purely random) algorithms.

3. Local energy minima are avoided by beginning at high temperatures where many

of the stochastic changes will actually decrease the objective function. As the

relaxation proceeds, temperature is gradually lowered, and the process behaves

CHAPTER 3. RELATED WORK 19

increasingly like iterative improvement2
•

In the Geman and Geman algorithm [12], the original image is referred to as a pair

X = (F,L) where Fis the matrix of observable pixel intensities and L denotes a matrix

of unobservable edge elements. Fis referred to as the intensity process, and Las the line

process. Both the line and intensity processes are said to be Markovian in nature.

In their answer to the question: "What does it mean for a process to be Markovian

in nature?" Geman and Geman explain:

Let Zm = { (i, j) : 1 ~ i, j :5 m} denote the m x m integer lattice; then

F = {Fi,;}, (i,j) E Zm, denotes the gray levels of the original digitized image.

F is regarded as a sample realization of a random field, usually isotropic

and homogeneous. Specifically, Fis modelled as a Markov Random Field, or

equivalently, the probability law of F is assumed to be a Gibbs distribution.

That is, given a neighbourhood system r = {ri,;, (i,j) E Zm}, where ri,; ~

Zm denotes neighbors of (i,j), an MRF over (Zm, F) is a stochastic process

indexed by Zm for which, for every (i,j) and every f,

P(Fi,; = Ii,; I Fk,1 = fk,1, (k, I) # (i, j)) = P(Fi,; = Ii,; I Fk,1 = fk,1, (k, Z) E ri,;)

(3.4)

In other words, a Markov Random Field is a probabilistic process in which all in­

teraction is local. That is, the probability that a cell is in any given state is entirely

determined by probabilities for states of neighboring cells. The stochastic relaxation

(Heatbath) algorithm for the weak string case is shown in Fig. 3.2.

2This gradual reduction of temperature simulates "annealing'', a procedure by which certain chemical
systems can be driven to their low energy, highly regular states.

CHAPTER 3. RELATED WORK

Each iteration consists of N visits made to randomly picked sites i, to update
Ui and li. Successive new values of Ui, and li are generated by a Gibbs sampler
[12). Updating li is done by setting li = l where l is picked randomly from
the distribution:

P1i(l) = P(li = l j ui,J = 1,·· ·,N;lj,J = 1,·· ·,N-1,j :/: i),l E {0,1}.

For the weak string, this distribution turns out to be[l)

n (l) (o:l + (1 - l)(ui - u;+1)
2
,\

2
)

r1; ex: exp - T

Similarly ui is updated to a value u chosen randomly from the distribution

Pui(u) = P(ui = u I Uj,J = 1,··•,N;lj,J = 1,··•,N-1,j :/: i).

For the weak string this is

where

and
<1~ = 1/((2 - li-1 - li),\2 + 1)

The temperature Tis lowered according to a truncated logarithmic schedule

Figure 3.2: The heatbath algorithm for the weak string energy function

20

CHAPTER 3. RELATED WORK 21

The work done by Geman and Geman has forged an unintuitive, and elegant link

between mechanical systems and probability theory. Blake and Zisserman commented

on the novelty of their work:

"It comes as something of a shock, when happily using splines as a very

natural, mechanical model for smooth, physical surfaces, to find that this

is inescapably equivalent to making certain probabilistic assumptions! The

most disturbing thing is that one is forced to accept that the surface model

is a probabilistic one, and therefore includes an element of randomness." [2]

3.3 GNC Vs. Stochastic Methods

Stochastic methods were developed before deterministic ones, and they have offered cru­

cial insights, and achieved good results. However, the Computational cost of stochastic

methods is high. They have shown [1) to be two orders of magnitude slower than the

GNC algorithm (for the weak membrane case).

Blake and Zisserman [2] list the following advantages of the mechanical viewpoint

over the stochastic one.

• The MRF model is inherently discrete, whereas the mechanical one is continuous.

A continuous model allows rigorous mathematical analysis using the calculus of

variations and other tools.

• MRF parameters must be specified in the form of conditional probabilities. These

parameters are unlikely to be known in advance. An understanding of the pa­

rameters, however, is possible since the MRF formulation depends on the energy

function used to specify the model. In the mean field theory approach [11], the pa-

CHAPTER 3. RELATED WORK 22

rameters control such measures as the trust in the data, the threshold for creating

a line, the amount of propagation of the line, and the uncertainty of the model.

• The mechanical viewpoint (GNC) also requires some parameters to be specified,

but these are the more natural ones of spatial scale, desired sensitivity to contrast,

and magnitude of Gaussian noise.

• The continuous model allows viewpoint invariance, essential for veridical recon­

struction of 3D surfaces from range data, to be incorporated into the energy function

due to the explicit presence of differential geometric quantities in the continuous

formulation.

• MRFs are not able to specify all probability distributions or equivalently, all pos­

sible energy functions.

The mean field theory approach can be regarded as a link between stochastic algo­

rithms, and the GNC algorithm. It is based on the MRF formulation, like the stochastic

algorithms, and yet, it is deterministic, like the GNC algorithm. Girosi and Geiger [11]

show that the GNC algorithm can be regarded as a special case of their mean field ap­

proximation. In fact, the mean field formulation gives the GNC when (3 = oo (i.e. in the

zero temperature limit).

Chapter 4

Implementing Parallel Vision
Algorithms

One of the important goals of computer vision is to allow machines to undertake tasks

that could previously be performed only by humans or that were too difficult or dangerous

for humans to perform at all. These tasks include inspection of manufactured parts, robot

guidance, and autonomous vehicle navigation. In many of these applications, the vision

system must provide rapid responses to the real-time processes that interact with the

environment. Even the fastest sequential processors are not fast enough to process the

volume of data present in such environments. Thus parallel architectures are needed to

make these real-time applications feasible.

"Parallel architectures have been part of computer vision research for almost

as long as computer vision research has existed. The Illiac series of machines,

which were among the first parallel architectures, were intended in part for

image processing applications." [29]

Since then, many parallel architectures have been developed including cellular array

processors, pipeline machines, and pyramid machines. Some of these machines are single

23

CHAPTER 4. IMPLEMENTING PARALLEL VISION ALGORITHMS 24

instruction, multiple data (SIMD) architectures, some are multiple instruction, multiple

data (MIMD) architectures, and others are hybrid. Some are inexpensive, board level

products, and others are multi-million-dollar computers.

A network of transputers [22) comprises an inexpensive MIMD computer that has

become increasingly popular in the last few years. A detailed description of the network

used for the implementation is given in Section 5.1.1.

Parallel architectures have been difficult to program because it is not yet understood

how to "cover" parallelism (hide it from the programmer) and get good performance.

Therefore the programmer has to write her programs using a special language that ex­

ploits features of the computer, and that can not run on other computers, or she uses a

general-purpose language which runs on many computers, but does not make use of the

special features of the parallel computer.

The programmer is then faced with a dilemma: she must either ignore the special

features of her computer, to increase the generality, portability and understandability of

her program, or take advantage of those features to increase the efficiency and speed-up

at the cost of generality and portability.

The following sections present some of the work that has been done in the area of

programming parallel vision algorithms. These approaches are mainly aimed at low

level vision since this is usually the most computationally expensive part of a vision

system. Some of the approaches focus on providing better control and synchronization

for a given type of architecture rather than generality and abstraction. An example of

such an approach is the data flow model. Other approaches try to abstract away from

the machine architecture allowing the programmer to concentrate more on the problem

and the algorithm. They provide better portability, generality, and ease of programming.

CHAPTER 4. IMPLEMENTING PARALLEL VISION ALGORITHMS 25

512

C C C C C C C C C C
E E E E E E E E E E l
L L L L L L L L L L
L L L L L L L L L L 512

1 2 3 4 5 6 7 8 9 10 I
--►52.,..._ __

Figure 4.1: Input partitioning method on Warp

The Apply model is one example of such approaches. Some of the models were developed

for fine-grained machines, with fixed or variable interconnection topologies. Others are

better suited for coarse-grained parallel machines.

4.1 The Apply programming model

The Apply language was designed by Hamey, Webb, and Wu [13] for implementing

parallel low level algorithms on the Warp machine 1 , which has been developed for image

and signal processing.

Low level vision algorithms are mapped onto Warp by the input partitioning method;

On a Warp array of ten cells, the image is divided into ten regions [13], by columns as

shown in Fig. 4.1. This gives each cell a tall narrow region to process. The advantage of

such partitioning is that each cell sees a connected set of columns of the image which is

1The Warp machine is a linear array of ten cells called Warp cells, which are identical, and which
include local data, and microcode memory, input and output ports, and a 5 MFLOPS multiplier, for a
total of 10 MFLOPS per cell.

CHAPTER 4. IMPLEMENTING PARALLEL VISION ALGORITHMS 26

useful in many vision algorithms (e.g., median filter), and the memory requirements at

a cell are minimized, since each cell must store only 1/lOth of a row.

The Apply programming model is a special purpose programming approach which

simplifies the programming task by making explicit the parallelism of low level vision

algorithms. The Apply programming language embodies this approach. When using the

Apply language, the programmer writes the procedure which defines the operation to be

applied at a particular pixel location. The procedure conforms to the following:

• It accepts a window or a pixel from each input image.

• It performs arbitrary computation, usually without side effects.

• It returns a pixel value for each output image.

The Apply compiler converts the procedure into an implementation which can be run

efficiently on Warp, or on a uni-processor machine in C under Unix.

An example of an Apply program is given in Fig. 4.2. In this example, a procedure

for image reduction is presented. The sample parameter used in the procedure specifies

that the Apply operation is to be applied not at every pixel, but regularly across the

image, skipping pixels as specified in the integer list after sample. The window around

each pixels refers to the underlying input image. For example, the program in figure 4.2

performs image reduction using overlapping 4 x 4 windows, to reduce an n x n image to

an n/2 x n/2 image.

4.2 The Dataflow Language Approach

Shapiro, Haralick, and Goulish [30) proposed a Reconfigurable Computational Network

(RCN) machine as an inexpensive, and flexible architecture that can execute a variety of

CHAPTER 4. IMPLEMENTING PARALLEL VISION ALGORITHMS 27

procedure reduce(inimg: in array (0 .. 3, 0 .. 3) of byte sample (2, 2),
outimg: out byte)

is
sum
i,j

begin

integer;
integer;

sum:= 0;
for i in 0 .. 3 loop

for j in 0 .. 3 loop
sum:= sum+ in(i,j);

end loop;
end loop;
outimg := sum /16;

end reduce;

Figure 4.2: An Apply program for image reduction

algorithms from low to high level vision. The RCN is a multi-instruction, multi-data­

stream network of processors and memories with the ability to reconfigure connections

from processor to processor, and from processor to memory.

The operation of the RCN involves the flow of sequences of values through a network

of architectural primitives. More formally, a configuration consists of a set of processors

Panda specification C of the interconnections between processors [29]. Each processor

p E P is a pair p = (I,,, O,,) where I,, is a named set of input lines and O,, is a named

set of output lines. Each connection c E C is a quadruple c = (o,pi,i,p2) specifying

that output line o of processor Pi connects to input line i of processor p2 • There is also

a state associated with each data line where a state is a pair of values s = (r, q) where

r is an indication of readiness, and q is an indication of acceptance. Legal values of r

are: preactive (the processor has not produced any values yet), active and ready (valid

data, ready to be us~ by other processors), active and not ready (the new data is not

CHAPTER 4. IMPLEMENTING PARALLEL VISION ALGORITHMS 28

yet ready to be consumed), and postactive (the processor has terminated production).

Legal values of q are consumed, and unconsumed.

A process can execute when all of its inputs are in the state (active and ready, un­

consumed), and all of its outputs from its previous execution have been consumed by

every process to which they are inputs. A sequence is an ordered stream of values that

are either input to the RCN, or are produced by one of the processors of the RCN.

The INSIGHT language was developed by Shapiro et.al. [29] as a dataflow language

to run on the RCN.

INSIGHT programs specify relationships among sequences that will translate to re­

lationships among architectural primitives of the RCN. A program is a sequence of con­

figurations of the RCN designed to achieve some goal. The arguments of a program are

supplied by, and its results must be received by, entities outside the RCN such as frame

buffers, other external memories and CRTs.

INSIGHT programs are modular; th~y may invoke INSIGHT functions to perform

subtasks. An INSIGHT function translates into a subgraph of the configured hardware

that is useful in one or more parts of the total algorithm. It is, however, closer to the

usual concept of a macro than a function in a procedural language, since a new copy of

the subgraph must be included wherever the results of the function are needed. This

allows all such copies of the function to operate in parallel.

Example: Convolution

Convolution is one of the most frequently used neighborhood operations. The output of

a digital convolution operator at pixel (i, j) of an image can be written as [29]

n

O;; = E a1cN1c(i,j),
k=O

CHAPTER 4. IMPLEMENTING PARALLEL VISION ALGORITHMS 29

where the ak's are coefficients, N0(i,j) = hi (the value of the input pixel), and Nk(i,j), i =
1, ... , n are then neighbors of pixel (i, j). The Nk(i,j)'s constitute the kernel of the con­

volution (29).

The convolution function can be implemented in a pipelined manner by considering

the image as a linear sequence of pixels and thinking of the neighbors of a given pixel

as other pixels in the sequence whose position are offset from its position by a constant

amount. For example, in a 512 x 512 image, the pixel above a given pixel is offset from

it by 512 positions in the linear sequence of pixels. An INSIGHT operator delayed by

(dby) allows the offset idea to be efficiently used to program a pipelined convolution.

Fig. 4.3 illustrates the INSIGHT code for the convolution operation (29). The coeffi­

cients and delays for the particular convolution are assumed to be stored in the integer

memories coefficients and delays. The processing is carried out by a sequence array of

processing subnets, each of which multiplies the value of the appropriately delayed pixel

by the corresponding coefficient and adds the result into the overall sum. Fig. 4.4 shows

the architectural configuration that would be generated from this INSIGHT program.

4.3 The Parallel Vector Model

The parallel vector model (24) is used by Little, Belloch, and Cass to describe a variety of

vision algorithms to run on fine-grained parallel machines such as the Connection machine

[14). The algorithms are implemented using a set of primitive parallel operations. These

primitives include general permutations, grid permutations, and the scan operation.

In a parallel vector model, all the primitive operations are defined to work on a vector

of atomic values. This model is well-suited to problems where the data are numerous

and the computations on the data elements are similar. Early vision problems have such

CHAPTER 4. IMPLEMENTING PARALLEL VISION ALGORITHMS

function convolve(image_in: integer sequence,

delays: integer memory,)

:integer sequence;

where

declare

size,stages: translator integer;

result[O:size], image[O:size]: integer seqarray;

relations

result[O] = coefficient[O] * image_in;

image[O] = image_in;

foreach stage= 1 to size

image[stage] = image[stage-1] dby delays[stage];

result[stage] = result[stage-1]

+ coefficient[stage]*image[stage];

endfor;

convolve= result[size];

endwhere

Figure 4.3: INSIGHT code for a convolution operation

image[O) ..------. image[l] .------. image(size-1] [.]
.. . . . delay size delay[O) r delay(l)

coeff[l] coeff[size-1) ------i* coeff(size)
*

* -
coeff(O)

result[! J I + I result[siz"' 1]

Figure 4.4: Architectural configuration for the convolution operation

30

CHAPTER 4. IMPLEMENTING PARALLEL VISION ALGORITHMS 31

properties. Early vision algorithms can then be expressed in terms of routines using

primitives of the parallel vector model and modules composed of these routines.

Little et.al. [24] also show that using the routines and modules in the model, middle

and high level vision algorithms can also be formulated in a natural manner for imple­

mentation on a fine-grain.ed architecture. The primitives defined are:

• Elementwise Arithmetic and Logical Primitives: Each primitive operates on equal

length vectors providing a result vector of the same length. Such primitives include

+, -, x, OR, and NOT.

• Permutation primitives: The permutation primitive takes two arguments: a data

vector, and an index vector. It then permutes each element in the data vector to

the location specified by the index vector.

• Grid Permutation Primitives: A grid permutation maps a vector onto a grid and

permutes elements to the closest neighbour in some direction on the grid.

• Scan Primitives: The scan operation takes a binary associative operator EB, and a

vector [a0 , a1, ... , an-l] of n elements, and returns the vector [a0 , (a0 EB a1), ... , (a0 EB

a1 EB ... EB an-i)]. Such operators include +, max, min, AND, or OR.

• Global Primitives: The global primitives reduce the value in a vector using a binary

associative operator. Applying+ as a global primitive produces the sum of all the

elements of the vector.

• Segmented Primitives: The segmented primitives are useful when working on many

sets of data. A vector can be broken into contiguous segments in which the begin­

ning of each segment is marked with a flag.

CHAPTER 4. IMPLEMENTING PARALLEL VISION ALGORITHMS 32

In this model, routines are functions composed of the various primitives described

above. These routines include pointer jumping, ordering, region summation, outer prod­

uct, and histograms. As an example, a brief description of the region summation routine

is given below.

For region summation [24], each pixel in a grid is required to sum a (2m+ 1) x (2m + 1)

square region around it. This procedure can be implemented using a constant number

of grid scans and permutations. First, for each element, the sum of of the 2m pixels
\

around it along a row is calculated using the following steps: perform a grid scan using

+ in x, then permute elements at +m, or -m offset in x in the scan result to the central

element, and take their difference. Repeat this in the y-direction on the result of the

first step. This procedure based on scan operations takes a constant amount of time,

independent of m. Region summation and other routines can be used in the formulation

of many vision algorithms. In [24], the authors show that region summation can be used

to efficiently implement Boxcar convolution.

4.4 The Systolic Approach

A systolic system [19] consists of a set of interconnected processing elements (or cells),

each capable of performing some simple operation. Because simple and regular structures

have substantial advantages over complicated ones in design and implementation, cells in

a systolic system are typically interconnected to form an array or a tree. Information in

a systolic system flows in a pipelined fashion, and communication with the outside world

occurs only at the "boundary cells". For example, in a systolic linear array, inputs fl.ow

into the first cell, are subjected to a series of operations, and eventually become outputs

that fl.ow out of the last cell.

CHAPTER 4. IMPLEMENTING PARALLEL VISION ALGORITHMS 33

This method requires that the algorithm be regular, so that each cell can do nearly

an identical operation. This is not always the case in image processing, so this method

has not been as widely used as other image partitioning methods. The advantage of the

systolic approach is that there is no duplication of data structures between cells; each

cell maintains only the data structures necessary for its stage of the computation. Also

the input and output sets are not divided, so that there is no extra cost associated with

splitting them up or recombining them.

Some of the image processing tasks suited to this mode of computation are one­

dimensional convolution, fast Fourier transform, and relaxation which is discussed in the

next subsection.

Relaxation

In some image processing algorithms, the input image is subject to multiple passes of the

same operations [20). This process is called relaxation, in which pass i + 1 uses the results

of pass i. A natural way to implement relaxation on a systolic array (such as Warp)' is

to have cell i perform pass i and send results to cell i + 1.

Relaxation could also be implemented on Warp using input partitioning. But this

requires more communication and control between cells. For example, as each cell com­

pletes a pass of the relaxation method over its portion of the image, it must communicate

the results of its computation to its neighbors - both its predecessor, and its successor.

This requires bidirectional communication on the Warp array, and special handling of

boundary conditions. Therefore, it is better to implement relaxation by pipelining, with

each cell performing one stage of the relaxation.

CHAPTER 4. IMPLEMENTING PARALLEL VISION ALGORITHMS 34

4.5 Summary

In this chapter, we have presented four different approaches to programming parallel

vision algorithms on a variety of parallel architectures. Although all the models presented

were designed for the purpose of running parallel low level vision algorithms, each model

seemed to focus on a specific goal for a particular architecture, or class of machines. Thus

no one model can be regarded the best, the easiest, or the fastest in a general sense.

Rather, the best model for any low level vision task depends on the given problem, and

the programming environment.

The Apply programming model and the Apply language have been developed for the

Warp machine. The Apply model tries to minimize memory requirements at a cell by

dividing images into contiguous regions, and communication requirements by mapping

adjacent regions to neighboring processors. Therefore the Apply model is suitable for

coarse-grained parallel machines.

The Apply language provides a level of abstraction in which programs are easier to

write, and are more comprehensible. Apply also allows the programmer to get good

efficiency in low-level vision programming, by incorporating expert knowledge on how to

implement such operations. Apply has also been used on a number of different parallel

machines, including a distributed memory machine.

Webb [33] developed another programming model based on the Apply programming

model, called the split and merge model. A new language (Adapt) was also developed

which is machine-independent. Unlike Apply, Adapt enables the programmer to imple­

ment global algorithms such as connected component, and histogramming.

INSIGHT is a datafl.ow language that can be used to program parallel vision algo­

rithms. It allows relational expression of algorithms, provides operators that work with

CHAPTER 4. IMPLEMENTING PARALLEL VISION ALGORITHMS 35

sequences of data, and translates into graph structures representing configurations of an

RCN machine. The RCN is a coarse-grained machine with a reconfigurable topology.

The INSIGHT language has been designed to run on the RCN exploiting all the special

features of the machine to provide a greater degree of control and synchronization, but

also limiting the generality and portability of its applications.

INSIGHT programs have been written for both low-level, and mid-level vision algo­

rithms, as well as some high-level vision tasks where the data can be naturally arranged

in sequences. The INSIGHT language, together with the RCN have been designed for

the purpose of building cost-effective machines for industrial vision applications.

In the parallel vector model, algorithms can be described in terms of primitives which

are defined for a fine-grained parallel machine {the Connection Machine [14)). These

primitives provide a simple and uniform way of describing algorithms. This makes the

task of programming the parallel machine an easy and efficient one. This generality also

does not allow the algorithms to exploit specific properties of a particular architecture,

the interconnection topology, or the machine structure.

In contrast to the Apply programming model, the issues of memory requirements and

communication constraints are not as critical in the parallel vector model. This is due

to· the fact that the number of cells is much greater for a fine-grained machine than a

coarse-grained one, and each cell is responsible for the processing of one pixel of the image

instead of a larger region of it. Many of the algorithms implemented using the parallel

vector model had very short run-times on the Connection Machine. The Connection

Machine, however, is one of the most expensive parallel computers and for that reason,

can not be used in many industrial applications.

The systolic approach has been used in low-level vision applications, as well as many

CHAPTER 4. IMPLEMENTING PARALLEL VISION ALGORITHMS 36

other matrix computations, graph algorithms, language recognition, dynamic program­

ming, and relational database operations.

The systolic approach relies on simple and regular structures. It can be used in a

fine-grained or coarse-grained environment, although special-purpose fine-grained systolic

architectures (19] provide the best performance for most applications. Using the systolic

approach, no input partitioning is required, and each input data can be multiply used.

Thus high throughputs can be achieved with modest 1/0 bandwidths.

The processing power of systolic systems comes from the parallel processing of differ­

ent data elements, as well as pipelining the stages involved in the computation of each

result. Data and control flows are also simple and regular in systolic systems. The only

problem that might arise is the problem of synchronization of large systems since they are

controlled by a global clock. Wave-front systems [21] have been proposed as a solution

to this synchronization problem.

The implementation approach used here is similar to the Apply programming model.

The Apply model is well suited for the transputer-based multicomputer architecture for

the reasons discussed above. The C programming language is used, since an Apply

compiler is not available. The implementation details are presented in the following

Chapter.

Chapter 5

Software Implementation

5.1 Software development environment

Based on the mean field theory approach [10, 11), a sequential algorithm was implemented

and run on a Sun-4 workstation. This chapter, however, presents the details of the parallel

implementation and the parallel development environment.

5.1.1 Hardware Architecture

The complete architecture of the transputer-based multicomputer system used for the

implementation is shown in Fig. 5.1. The system consists of a host machine (a Sun-4),

and 17 lnmos T-800 transputers, each of which has a 32-bit 10 MIPS processor, 1 or 2

MBytes of DRAM and four 20 Mbit/sec bi-directional serial links [22).

One of the transputers is connected to the host via a VME bus interface and acts as

a master node (does most of the input/output), the other 16 transputers are intercon­

nected through programmable cross-bar switches to form a two-dimensional mesh. The

interconnection topology of the transputer network can be dynamically reconfigured by

having the controlling software running on the Sun send switch setting commands to the

crossbar switches [17].

37

CHAPTER 5. SOFTWARE IMPLEMENTATION 38

This two-dimensional mesh configuration has been chosen because it provides the

most efficient communication pattern for this class of algorithms. This is because the

image is divided into 16 subimages (approximately square1 and of equal sizes). In this

type of algorithm, each pixel has to communicate its value with its nearest neighbors.

Hence, for each subimage, the processor has to communicate the borders of the subimage

(top and bottom rows, left and right sides) with the four processors to which it is directly

connected.

5.L2 The Trollius Operating System

The Trollius operating system [3], [4] developed out of dissatisfaction with the standard

software environment for transputer-based multicomputers. It was developed at Cornell

University and Ohio State University to run on distributed memory multiprocessors.

Trollius is a dynamic programming environment that is easy to use, and one that uses

standard FORTRAN and C programming languages.

It consists of two parts, running on the front-end workstation and transputer nodes

respectively. Trollius operates over UNIX on the-host, providing a user command inter­

face to boot the multicomputer nodes, load parallel programs to transputers, al)d kill

processes, among other facilities.

Trollius is designed in layers of functionality, starting with message passing within

a node, extending to nearest neighbor communication, then to arbitrary node to node

communication at the higher level. Along with standard programming languages, Trollius

provides for the inclusion of standard UNIX libraries, access to standard I/O from all

processes, and dynamic memory allocation.

1 A square's geometry provides the greatest area (number of pixels) with the least circumference
(communication constrain ts), and hence increases the efficiency.

CHAPTER 5. SOFTWARE IMPLEMENTATION 39

I I I I
- 0 1 2 3 --

SUN 4 - 4 5 6 7 -
(HOST)

I
Master

75 8 9 10 11 -
I

- 12 13 14 15 -
I I I I

Figure 5.1: The Hardware architecture

CHAPTER 5. SOFTWARE IMPLEMENTATION 40

A Trollius process sending a message does not directly specify the process to receive

the message, or vice versa. Instead, each process specifies an event type in the header of

the message. If the event type specified by the sending and receiving processors match,

the message will be passed from the sender to the receiver. The Trollius Interprocess

Communication follows a semi-blocking send/receive model. In network level message

passing, the sender also has to specify the destination node of the message. Since the

recipient of the message does not have to specify the source node, it is capable of receiving

messages from a variety of senders.

Trollius is a topology-independent operating system which also provides Stand-Alone

Trollius. Stand-Alone Trollius allows users to debug their programs on the host without

tying up valuable computing resources. It can also simulate as many nodes as desired

through the use of a special router on the host.

In tliis implementation, the network communication layer has been used for most

of the communication. It provides a high degree of network transparency, but also an

increasing degree of communication overhead.

5.2 The Parallel Implementation

In this section, the parallel algorithm based on the mean field ·theory approach is pre­

sented. The first problem that has to be considered is the one of mapping the input data

to the processors of the network.

5.2.1 Mapping of images to processors

Input partitioning is natural in low level image processing. Image operations are local

and regula_r, or produce data structures that are easy to combine. Image sizes tend to be

CHAPTER 5. SOFTWARE IMPLEMENTATION

N/M

J

!
N/M-fi

N mod l1

l

N/M -
N+M+

--►NmodM-

◄-------------------------------------

Node Node
0 --------------------- M-1

Node --------------------- Node
,N-1)* M M*M -1

- 1 .

41

Figure 5.2: Input partitioning of an M x M image on an N x N mesh of transputers

large (for example 512 x 512) so that much parallelism is available even if the image is

divided along one dimension (i.e., each processor gets a set of adjacent columns). Every

processor does the same operation on its portion of the input. The input partitioning of

an N x N image on an M x M mesh is illustrated in Fig. 5.2.

The advantages of input partitioning are its ease of programming, and the good speed­

up it usually gives to the algorithm. Using a simplified cost model (20), we can calculate

the speed-up from input partitioning as follows:

Suppose that the computation of the output for the complete input image on one pro­

cessor takes time n. Then computation of the input on k processors takes time n / k + kc,

CHAPTER 5. SOFTWARE IMPLEMENTATION 42

where c is the time required to combine two processors' outputs. If it is possible to know

the time n, then we can choose the optimal number of processors to do the computation

which is k = R"c- Computation is wasted if the number of processors is greater than

this, and as the number of processors approaches this point, adding more processors

becomes less cost-effective. A cost model for the transputer-based implementation is

constructed in Section 7 .2.

The overhead in computation time for input partitioning comes from three sources:

• The cost of dividing the image into subimages, and distributing them across the

system.

• The cost of additional bookkeeping on the part of each processor to allow outputs

to be recombined later in the right order.

• The cost of recombining outputs at the end of the computation

These costs are usually negligible if the image is large and the operation is a com­

putationally intensive one. Other potential disadvantages are the replication of data

structures at each processor, wasting memory, or the fact that there may not always be

efficient ways of recombining the output. In our implementation, image partitioning is

done by the one transputer in the network designated the master node, whose role will

be described in the next section.

5.2.2 The Algorithm

Our implementation follows the Apply programming model (Section 4.1) to a certain

extent. Some restrictions apply when using a distributed memory multiprocessor message

passing system. In this case, each processor returns a region instead of a pixel value at

CHAPTER 5. SOFTWARE IMPLEMENTATION 43

the end of the computation. The programs were written in C, and compiled to run on

the transputers under Trollius.

The implementation consists of two parts which we will refer to as the master part

and the computing part. The Master part runs on the master transputer (labelled 75 in

Fig. 5.1), and it is responsible for the following tasks:

1. Image Input The master node reads in the input image from the host's file system.

Trollius enables any node in the network to access the file system. But giving that

responsibility to the master node which is directly connected to the host helps avoid

communication delays.

2. Image Distribution The master node does the input partitioning as described

above, and distributes the subimages across the network. It sends a contiguous

set of rows (or segments of rows) to the appropriate processor. This step forms

the bottleneck of the computation and further work can be done to improve the

performance at this stage.

3. Image Collection This task is carried out when the participating processors finish

their computation, and start sending back their output. The master node rec~ives a

number of messages which contain the processed subimages. The messages contain

enough information to enable the master to recombine them in the right order to

produce the final image. Notice that the master node may be idle between the

second and third steps.

4. Image Output This step is very similar to the first one. At this stage, the par­

ticipating processors have completed their tasks, and the final image is written to

a file on the host's system.

CHAPTER 5. SOFTWARE IMPLEMENTATION 44

The computing part is the procedure that satisfies the Apply model requirements.

The computing program runs on each one of the participating processors, and performs

the following tasks:

1. Receive Subimage Each processor waits for the master node to send it its share

of the input data. The processor receives a number of messages, each containing

one row of the subimage. These rows are then stored in a 2-dimensional array

to be processed. As soon as a terminal signal is sent, the processor starts the

computation on its subimage.

REPEAT THE FOLLOWING

2. Communicate Borders After every iteration, and before the first iteration, each

processor needs to receive the borders of its neighboring processors. Every processor

sends four messages to its neighbors. Each message is given an event number that

matches the node id of its destination. These messages contain the updated borders

of the subimage. (The number is less than four for nodes lying on the borders of the

mesh). For example, processor 6 in Fig 5.1 sends the top row of the array to node

2, the bottom row to node 10, the leftmost column to node 5, and the rightmost

column to node 7.

3. Iterate on Subimage This is the procedure where the main computation is per­

formed on each pixel of the subimage. The mean field values of the surface field

and the line process at every pixel in the image are calculated. Equations (2.13),

and (2.14) are used. A lpokup table is also built at every node for some of the

values required repeatedly during iteration.

UNTIL CONVERGENCE

CHAPTER 5. SOFTWARE IMPLEMENTATION

Master

Node

Input

Image

Distribute

Image

Collect

Image

Output

Image

Computing

Nodes

Receive

Subimage

,

Communicate

Borders

Iterate

Return
Final
Subimage

Figure 5.3: The Program Structure

45

4. Return Final Subimage Send the final subimage back to the master who by

now is idle and awaiting to collect the final outputs. The rows of the subimage are

concatenated to form an array of intensity values. This array is then sent as one

message back to the master. The sending node also identifies itself to the master

node, so that the master can place the subimage in the appropriate location.

The structure of the system is illustrated in Fig. 5.3.

Chapter 6

Results

6.1 Parameter Estimation

The parameters a, 1 and f must be estimated in order to develop an algorithm that

smoothes, enhances, and finds the discontinuities in a given set of data. In Section 6.2, the

results of running the program on a test image with different values of these parameters

will be shown.

6 .1.1 The parameter a

The parameter a controls the balance between the "trust" in the data and the smoothing

term. The noisier are the data, the less we want to "trust" them, so a is larger. If the data

are less noisy, a should be smaller. To estimate a, various mathematical methods are

available. Girosi and Geiger used the Generalized Cross Validation method introduced

by Wahba [32]; it states that the optimal value of a can be obtained by minimizing the

functional

V(a) = !_ t [/n,o(ti - 9i)]2 wl(a)
n i=O (1 - akk(a))2

where fn,a(ti) is the smoothed solution, wk(a) = (l - akk(a))/(1 -1/n~j=oajj(a)) and

46

CHAPTER 6. RESULTS 47

akk(o:) = ,5~h Un,a)(tk),

In their implementation [10], Girosi and Geiger use a = 4. It was found, however,

that for a value of o: > 1/4, the method did not converge for most experiments. If we

look back at the simplified form of the solution:

f-. · = g .. - a(f-· · - f-· ·-1)(1 - v· ·) + a(f-· ·+1 - f-· ·)(1 - v· ·+1) ,,3 ,,3 ,,3 ,,3 1,3 1,3 1,3 1,3

- a(f-· · - f-·-1 ·)(1 - h· ·) + a(f-·+1 · - f-· ·)(1 - h·+1 ·) 11J I 1J 11J I 1J 11J I 13 (6.1)

where

(6.2)

It seems that giving a a larger value than 1 / 4 gives more weight to the gradient differences

than needed for the averaging process. The effect of this will be too much smoothing at

the discontinuities, or equivalently propagation of noise. This is one aspect of the algo­

rithm that can be further studied and analyzed. Further analysis of the above equations

may lead to more accurate values of o: required for convergence.

6.1.2 The parameter 1

From equation (2.11), we can see that ~ is the threshold for creating a line ·in the

weak membrane energy. From the expression of the effective potential, we can see that

if the gradient D..fi./ is above the threshold, there is no smoothing, and if the gradient is

below the threshold, then smoothing is applied. The value of the threshold defines the

resolution of the system. Once a has been estimated, a value of , can be chosen to give

the desired resolution.

1 Afh - I,· . I,· 1 . Af," - I · . f · . ~ i,j - l,J - ,_ ,,, ~ i,j - 1,J - ,,,-1

CHAPTER 6. RESULTS 48

6.1.3 The parameter E

The parameter f allows the energy to be more general by controlling the amount of

propagation of the line. So, once a line is created, the price to pay for another line next

to it will be lowered by the amount of 1t. In other words, from the definition of E 2

(Section 2.3), we can see that the difference in the energy corresponding to the creation

or not of a line at pixel (i - l, j) is given by ,t. This is what characterizes the threshold

and the suprathreshold, or the hysteresis phenomena [10]. The threshold is given by

✓1<10-c> and the suprathreshold by ~ , f varying from 0 to 1. When f = 0, lines are

created everywhere, since when a line is created, there is no cost for creating another

line. The value off should be chosen to guarantee that ✓1< 10-c) is below the desired edge

threshold.

6.1.4 The parameter {3

The parameter /3 controls the uncertainty of the model. The smaller /3 is, the more

inaccurate the model is. This suggests that for solving the mean field equations, a rough

solution can be obtained for a small value of /3 (high uncertainty) and therefore, we can

increase /3 (small uncertainty) to obtain more accurate solutions [10].

6.2 Implementation results

The performance of the algorithm on a synthetic noisy image is shown in Fig. 6.1. The

original image consists of a square of intensity 150 on a background of intensity 100. The

image is corrupted by adding random noise in the range (-30, 30). The top left figure is

the original synthetic image. The top right one is the noisy image, the bottom left is the

reconstructed image, and the bottom right image is the edge file. The parameters used

CHAPTER 6. RESULTS 49

were a= 0.12, f3 = 100, ,-y = 150, and t = 0.8. It took 15 iterations for the algorithm to

converge.

The algorithm was tested on several images. In many cases, 30 iterations were enough

to achieve convergence. This, however, depended on the choice of the parameter values.

Changing one or more of the parameter values could lead to divergence, or inappropriate

thresholding. In fact it was found that there was a small range of the value of a for each

image for which convergence was guaranteed.

Figure 6.2 shows a 512 x 512 image, which contained someone's hands holding a a

manual drill. Figure 6.3 contains the edges obtained by running the program on the

original image. We can see that the algorithm· worked well at detecting the edges of

the wheel where other algorithms could fail. It took less than 15 iterations and about

8 minutes on a Sun-4 to produce the edges. Notice that an t value of 0 gives the weak

membrane energy function.

The behavior of the algorithm was examined for a variety of different parameter

choices. The program was run on 256 x 256 image. The original image is shown in

Fig. 6.4. The edge files obtained from different parameter values are shown in Fig. 6.5.

6.3 Parallel Performance

Parallel systems are not only hard to program, but they also do not provide adequate

support for users to understand the run-time behavior of their programs and detect per­

formance bottlenecks in their applications. A new performance monitoring tool "Tmon"

(5) developed at UBC has been used to monitor the performance of the programs. It is a

real-time performance monitor designed to run on the transputer system. A graphical in­

terface to Tmon has also been developed by Hilde Larsen at the department of Computer

CHAPTER 6. RESULTS

Top Left: Synthetic image 47 x 47
Top Right: Noise added randomly
Bottom Left: The reconstructed image
Bottom Right: The detected edges

Figure 6.1: The Performance of the algorithm on a synthetic image

50

CHAPTER 6. RESULTS 51

Figure 6.2: The Original 512 x 512 Image

CHAPTER 6. RESULTS 52

Figure 6.3: The edges; a= 0.15, /3 = 1000, 1 = 35, t = 0

CHAPTER 6. RESULTS 53

Figure 6.4: The original 256 x 256 image

Science (UBC), which made understanding the performance results much easier.

6.3.1 Monitoring Results

Tmon [5] uses a new performance analysis method called weighted critical path analy­

sis (WCPA). WCPA incorporates parallelism into critical path analysis2, and provides

several performance metrics such as program execution time, speed-up3
, and efficiency4 •

When the monitor was used initially, with the program performing only one iteration

on an image of size 64 x 64, the speed-up on 16 nodes was approximately 3, but the

efficiency was less than 20%. The ratio of computation to communication in the program

2 A critical path is defined as the path through the program that consumed the greatest amount of
execution time.

3Speed-up is defined as the ratio S = T(l)/T(N), where T(l) is the time it takes to run the algorithm
on one node, and T(N) is the time it takes to run the algorithm on N nodes.

4Efficiency is defined here as the ratio of computation to communication.

CHAPTER 6. RESULTS

(top left) o: = 0.1, /3 = 1000, 'Y = 40, E =, 0.0
(top right) a= 0.2,/3 = 1000, 'Y = 40, c = 0.0,
(bottom left) o: = 0.1, /3 = 1000, 'Y = 80, E = 0.1,
(bottom right) o: = 0.1, /3 = 1000, 'Y = 40, E = 0.8

...

:---.,...
~·' . :.: :::,:::;
.I~· ."i .-:~..-)

~' , , ! . -.. ~

i . : -~· ··.. ';J ... r.. . " ... ,.. . ~,

Figure 6.5: The edge files

54

CHAPTER 6. RESULTS 55

was 20 : 80, which meant that 80% of the execution time was spent in the communication

routines. Examination of the critical path revealed that most of the delay was caused by

the communication activities of distributing and returning subimages. The critical path

was divided into five segments, and the weight of each phase on the critical path was

calculated. The weights are shown in the table below [5] .

Phase of Computation Weight on Critical Path
Read Image 29%

Distribute Image 5%
Process Image 8%
Return Image 47%
Writ!:! Image 11%

The input and output of the image weigh 40% on the critical path. This is due to the

inherent serial nature of reading and writing the image to the host file system. Because

only one transputer is connected to the host, other nodes can not obtain data directly

from the host system. The processing of the subimages over the mesh weighs only 8% on

the critical path. This is because a high degree of parallelism is achieved when all nodes

are busy processing the subimages .

. The one area where the performance of the program could be improved was at the

distribution and return of subimages. The subimages were initially returned to the master

node as a sequence of messages, each message containing one row of the subimage. It

was later found out that in Trollius network level message passing, the header attached

to each message was more than 50 bytes in size. Therefore the overhead of sending

a message that is less than 100 bytes is very high (up to 40%). This problem was

then solved by combining all the rows and sending the whole subimage back to the

master as one message. This change in the program resulted in a 55% improvement over

CHAPTER 6. RESULTS 56

the initial implementation in program execution time [5). The ratio of computation to

communication has been improved to 63 : 36, which indicates that 63% of the time is

spent in effective computation tasks. Speed-up and efficiency have improved to become

6, and 40% respectively. That is, an improvement of a 100% due to the improvement of

program execution time, which resulted form lowering the overhead in communication

by combining smaller messages into one large message.

Graphical Interface

An X window-based graphical interface has been developed to display performance results

to the user as easy-to-read charts an,d graphs. A brief description of the graphical display

is given below.

The output of the graphical display includes: network topology, global clock, system

load and event history. The graphical display of the programs running on the 4 x 4 mesh at

a certain period during execution is shown in Figure 6.6. The network topology window

displays the interconnection of the transputer network as a graph. The global clock

window shows the current time relative to the elapsed time of the whole computation.

The clock can be set, reset, started, stopped or the speed adjusted by clicking on the

buttons in the window. Clicking on a node in the network topology graph will display

the CPU utilization of the node selected with regard to the global clock. The event5

history display the execution graph of the parallel program reconstructed from the event

traces. The zoom in/zoom out and scrolling ability allows users to browse through the

event history or focus on a portion of the execution graph conveniently. Communication

patterns of the parallel program such as multicast can be easily visualized on the event

5 An event is one of: process creation, process exit, a message sent, a message received, and a call to
receive a message.

CHAPTER 6. RESULTS 57

history. The user can also examine the details of each event in the execution graph by

clicking on the node, which will pop up a new window with detailed description of the

event selected.

The monitoring results together with the graphical interface make it much easier to

debug and monitor the execution of the parallel programs.

CHAPTER 6. RESULTS 58

1.4,1,,1.e.CII.- ll!ll lolmlo -~::::::===~• I xwrm

115 176

Each horizontal line in the bottom window represents the activities of one processor. A
triangle pointing to the right indicates that a message is being sent out. A solid triangle
pointing to the left indicates that the node is waiting to receive a message. When the
message is received, a left-pointing triangle appears in the display.

Figure 6.6: Graphical Display of the System's Performance

Chapter 7

Conclusions

In the following sections we present some characteristics and criticisms of both the mean

field theory approach, and the transputer-based multicomputer as an image processing

environment. In the last section, possibilities for future work to improve the system's

performance are discussed. Improvements can be applied to both the algorithm and the

transputer-based implementation.

7.1 The Mean Field Theory approach

The work done by Girosi and Geiger proposed a link between the statistical algorithms

[12] and the alternative deterministic graduated non convexity algorithm [2]. The algo­

rithm is a deterministic one, yet it uses Markov Random Fields in a similar fashion to

the stochastic algorithms.

The algorithm was fast, and provided good results for reconstruction and edge de­

tection tasks. The only drawback is the difficulty in estimating the parameters of the

model, considering how much the solution depends on those parameters. The algorithm

has the following characteristics:

• The surface field is smoothed when its gradient is not too high.

59

CHAPTER 7. CONCLUSIONS 60

• Contrast will be enhanced at discontinuities .

• The discontinuity field is likely to be smooth (isolated discontinuities are inhibited).

• Hysteresis and adaptive multiple thresholding arise naturally from the model.

• Edge localization is good. However, edges are frequently missed if inappropriate

parameters are specified.

/
• It is naturally extendable to the case of sparse data.

• It provides edge magnitudes (from the line process variables) instead of binary

values.

• An understanding of the parameters needed to specify the model is possible.

7.2 The Transputers and Low Level Vision

The transputer-based implementation can be considered a general framework under which

other low-level vision algorithms can be implemented. The only part that may have to

be changed would be the ITERATE module (refer to Fig. 5.3). It is the procedure that

contains the actual operation to be performed on each pixel of the image.

The transputer-based system offers a great amount of flexibility in terms of intercon­

nection topology. This flexibility, together with the network transparency provided by

Trollius make the task of programming the transputers an easy and efficient one. We

have also seen from the monitor results (Section 6.3.1) that the parallelism of the network

provided a speed-up of approximately 6 when 16 processors were used.

The speed-up factor can be higher for larger images distributed on a greater number

of transputers. The optimal number of processors can be determined and used to achieve

CHAPTER 7. CONCLUSIONS 61

the maximum speed-up. According to the cost model presented in Section 5.2.1, the

maximum speed up can be obtained by minimizing the equation

where Tis the time it takes to perform the computation on k processors, n is the time it

takes for one processor to do the computation, c1 is the time required to combine two pro-
•,

cessors results (distribution and collection of data), s is the number of iterations needed

to do the computation, and c2 is the time it takes for two processors to communicate

their intermediate results (communication requirements). Intermediate communication

is done in parallel and is assumed to take a constant amount of time.

If we assume that it takes one time step to compute one pixel of the image, then

for an image of size m x m, partitioned on a -J'f x -J'f mesh of processors, n = sm2
•

Optimal T is then achieved for a value of k = mj;r;;. If we take c1 ex m/-J'f (since

each processor has to communicate a constant number of columns each of size~ m/vk),

then the optimal number of processors k = (ms)113 .

We can see from the equation above that the optimal number of processors is directly

proportional to m. If we takes = 50 iterations, then for a 64 x 64 image, the optimal

number of processors k ~ 14 processors. For a 256 x 256 image, k ~ 24 processors.

For a 512 x 512 image, k ~ 30 processors. These results show that for larger images, a

greater number of processors can be used to achieve a smaller run-time and hence greater

speed-up.

If we disregard the time it takes to distribute and collect the data on the network,

then the model can be simplified further, and we can look at the computation involved

in one iteration only. In this case, the maximum speed-up per iteration can be obtained

CHAPTER 7. CONCLUSIONS 62

by minimizing

T = n/k + c

where Tis the time it takes to perform one iteration on k processors, n is the time it takes

for one processor to do the computation, and c is the time it takes for two processors to

communicate their borders (c2 in the previous model). Again, if we assume that it takes

one time step to compute one pixel of the image, and d time steps to commmiicate one

pixel between two neighboring processors, then for an image of size m x m, partitioned

on a v'k x v'k mesh of processors, n = m2
, and the time c ~ 4md/ v'k since each

processor has to communicate a border of size ~ m/v'k. These values, however, are

very approximate and oversimplified. For example, the time it takes to send a message

between two nodes does not simply increase linearly with the size of the message (in this

case the border); rather, there is a constant overhead associated with every message (see

· Section 6.3.1). Thus, concatenating a group of smaller messages to form a large one is

much more efficient than sending them individually.

To continue with this approximate model, minimizing T with respect to k now gives

k = m 2
/ 4<12. If we take d to be one time step, then for a 64 x 64 image, k ~ l, 000

processors. For a 256 x 256 image, k ~ 16,000 processors, and for a 512 x 512 image,

k ~ 64, 000 processors. Therefore, by disregarding the communication with the "outside

world", we notice that a massively parallel, fine grained machine provides the maximum

speed-up for such an algorithm.

7.2.1 Drawbacks of the System

The transputer system under Trollius had a few drawbacks. One of the drawbacks was

the congestion of messages over the links. This sometimes did not allow for dynamic

CHAPTER 7. CONCLUSIONS 63

memory allocation. This was a problem only when larger images were used, and it was

mainly caused by Trollius network layer message passing. The problem can be solved by

direct routing of the messages. This, however, was not favourable since other facilities

like the monitor, and the graphical display require that network layer communication is

used.

Another drawback that appears when using smaller images is that the time to load

several copies of the program (in this experiment 16) on 16 nodes is large compared to

the time it takes to operate on a small image. In such a situation, it is more efficient to

use a sequential version of the algorithm on a uni-processor machine.

One drawback of link communications in transputers is that communication takes

place only when both the receiver and the sender are ready. This can result in the idleness

of a processor waiting to communicate for as long as it takes the other processor to get

ready for communication. This was observed in the graphical display of the system's

execution. This aspect of the system's performance can be improved, and is discussed in

the following section.

7.3 Directions for Future Work,

There are possibilities for improvements and further research in both areas: the algo­

rithm, and the implementation. In terms of the algorithm, these are:

• Analysis of the convergence of the algorithm, and the effect of changing the param­

eter values.

• Introduction of extra terms to the energy function, for example, one that gives the

interaction between the horizontal and vertical line process.

CHAPTER 7. CONCLUSIONS 64

• More sophisticated neighborhood cliques can be used to provide more information

about the neighbors. .

For the transputer-based implementation, these are the possible directions for improve­

ment:

• Minimizing the processor idle time by finding the optimal communication pattern.

Currently, the communication at each node is done by first sending all the mes­

sages to the neighbors, then waiting to receive the incoming messages. Alternating

sends and receives in the appropriate manner could decrease the processor idle time

significantly.

• The idea of activity flags was mentioned by Blake and Zisserman [2]. Activity flags

are used in the later iterations to indicate whether a change in the pixel value has

taken place in the last iteration, if the value has not changed, then the activity

flag is switched off. If thei:e is an activity at a certain pixel, the activity flags

for that pixel and all of its neighbors are switched on. Pixels whose activity flags

are switched off are not updated until the :flag is on again. Activity flags speed

up the computation on a serial machine, but they impose extra communication

constraints in a message-passing distributed-memory machine. This is particularly

true for kernel level message passing. The overhead associated with each message

sent is ~ 50 bytes. Thus sending activity flags as 1-bit arrays is still an inefficient

way of communicating them.

It would be of interest to measure the trade-off costs, and perhaps try to find a

fast way of exchanging activity flags on different transputers (kernel level message

passing may be fast enough).

CHAPTER 7. CONCLUSIONS 65

• Building a user interface that would allow the programmer to specify an image,

and an operation to be performed on that image, and according to the image size

and the cost of the operation, the optimal number of transputers is chosen, and

configured into a 2-dimensional mesh topology.

• Investigating the possibility of each transputer being responsible for reading its

share of the data and writing results directly to the host's file system. This would

result in a reduction of the reading/writing time which in our experiment (Sec­

tion 6.3.1) represented 40% of the total execution time.

7.4 Summary

Based on the mean field theory approach of Geiger and Girosi [10, 11], an algorithm

for image reconstruction and edge detection has been implemented. The algorithm was

tested on a synthetic noisy image (Fig. 6.1), and the results show that the algorithm

works well for both edge detection, and reconstruction of the noisy image. The algorithm

was also tested on a real still life image (Fig. 6.2), and it can be seen that specular,

shadow, and contour edges have been detected and enhanced, while the noise has been

smoothed away (Fig. 6.3). In addition to that, the algorithm was tested on another

image with different values of the parameters. The results (Fig. 6.5) agree with the

expected performance of the algorithm after varying the parameter values (as discussed

in Section 6.1).

A parallel transputer-based multicomputer version of the algorithm was also con­

structed and implemented on a 16-node network of transputers. A monitoring tool

developed at UBC (Tmon) allowed us to monitor the parallel performance of the al­

gorithm, and measure the speed-up and efficiency rates. The experimental results show

CHAPTER 7. CONCLUSIONS 66

that a speed-up rate of 6 was obtained when 16 processors were used to run the algorithm

on a small test image (Section 6.3.1).

The parallel implementation can be regarded as a prototype for many other low level

vision algorithms. In fact, all the modules responsible for image partitioning, image col­

lection, communication between the master node and other transputers, communication

of subimage borders among neighboring processors, and image input/ output, all of these

modules can be left without any change. Only the ITERATE module which contains

the computations to be performed at every pixel in the image needs to be modified to

contain the new operations.

Bibliography

[1) Andrew Blake, Comparison of the efficiency of deterministic and stochastic algo­
rithms for visual reconstruction, IEEE Transactions on Pattern Analysis and Ma­
chine Intelligence, PAMI 11, 1989.

[2] Andrew Blake and Andrew Zisserman, Visual Reconstruction, MIT Press, Cam­
bridge, Massachusetts, 1987.

[3] M. Braner, Trollius User's Reference. Research Computing Center at Ohio State
University and Advanced Computing Research Institute at Cornell Theory Center,
Document series 2/1, January 16 1990.

[4) M. Braner, Trollius Reference Manual for C Programmers. Research Computing
Center at Ohio State University and Advanced Computing Research Institute at
Cornell Theory Center, Document series 2/2, January 22 1990.

[5) S. Chanson, J. Jiang, and A. Wagner, Tmon: A real-time Performance Monitor for
Transputer-based Multicomputers, Computer Science Dept., UBC. To appear in the
proceedings of fourth NATUG conference, Oct 1991.

[6) H. Derin1 H. Elliot, R. Cristi, and D. Geman, Bayes' Smoothing Algorithms for Seg­
mentation of Binary Images Modelled by Markov Random Fields, IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 6, No. 6, Nov. 1984.

[7] Shirin Eghtesadi and Mark Sandler, Implementation of the Hough transform for
intermediate-level vision on a transputer network, Microprocessors and Microsys­
tems, April 1989.

[8] D. L. Fielding, J. R. Beers, M. Braner, and R. Leibensperger, The Trollius pro­
gramming environment for multicomputers, Transputer Research and Application,
NATUG 3, edited by Alan Wagner, April 1990.

[9] J. A. Fortes and B. W. Wah, Systolic Architectures: From Concept to Implementa­
tion, IEEE Computer, Vol. 20, No. 7, July 1987.

67

BIBLIOGRAPHY 68

(10] D. Geiger and F. Girosi, Parallel and deterministic algorithms for MRFs: Surface
reconstruction and integration, AI Lab Memo 1114, MIT April 1989.

[11) D. Geiger and F. Girosi, Mean field theory for surface reconstruction AI Lab, MIT,
April 1989.

[12] S. Geman and D. Geman: Stochastic relaxation, Gibbs distribution,and the Bayesian
restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelli­
gence, PAMI 6, 1984.

[13] L. G. C. Hamey, J. A. Webb, and I. C. Wu, Low Level Vision on WARP and the
APPLY programming model, CMU Tech. Rep., Carnegie-Mellon University, Dept.
of Computer Science.

[14) William D. Hillis, The Connection Machine, MIT Press, Cambridge, Ma.; 1985.

[15] C. A. R. Hoare, Communicating Sequential Processes Englewood Cliffs, N.J.
Prentice-Hall, 1985.

[16) B. K. P. Horn, Robot Vision, MIT Press, Cambridge, MA. & McGraw-Hill, New
York, NY. 1986.

[17) Jie C. Jiang and H. V. Sreekantaswamy, Transputer based multicomputer user's
manual, Dept. of Computer Science, UBC, September 1989.

[18) S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by Simulated Anneal­
ing, Science 220, 1983.

[19) H. T. Kung, 'Why systolic architectures, IEEE Computer, Vol. 15, No. 1, Jan._.1982.

[20) H. T. Kung and J. A. Webb, Mapping Image Processing Applications onto a Linear
Systolic Machine, CMU-CS-86-137, Pittsberg: Carnegie-Mellon University, Dept. of
Computer Science, 1986.

[21) S. Y. Kung et. al. Wave Front Array Processors: From Concept to implementation,
IEEE Computer, Vol. 20, No. 7, Jul. 1987.

(22) IMS TB00 transputer: Engineering Data, lnmos, January 1989.

[23) J. J. Little, Integrating Vision Modules on a Fine-Grained Parallel Machine, Ma­
chine Vision: Algorithms, Architectures, and Systems, edited by H. Freeman, Aca­
demic Press Inc., 1988.

BIBLIOGRAPHY 69

(24] J. J. Little, G. E. Belloch, and T. A. Cass, Algorithmic techniques for Computer
Vision on a Fine-Grained Parallel Machine, IEEE Transactions on Pattern Analysis
and Machine Intelligence, PAMI 11, 1989.

(25] N. Metropolis, A. Rosenbluth, A. H. Teller, and E. Teller, Equation of state calcu­
lations by fast computing machines, J. Chem. Phys., Vol. 6, 1953.

(26] J. Marroquin, S. Mjtter, and T. Poggio, Probabilistic Solutions of fll-Posed Problems
in Computational Vision. J. Amer. Stat. Assoc., Vol 80, 1987.

(27] ·Jeffrey Mock, Processes, Channels and semaphores (Version 2), Pixar.

(28] G. Parisi, Statistical Field Theory, Addison-Wesley, Reading, Mass., 1988.

(29] Linda Shapiro, Programming Parallel Vision Algorithms: A Datafiow Language Ap­
proach, The International Journal of Super Computer Applications, VoL 2, No. 4,
Winter 1988.

(30] L. Shapiro, R. Haralick, and M. Goulish, INSIGHT: a datafiow language for pro­
gramming vision algorithms in a reconfigurable computational network., Internat. J.
Pattern Recognition Artificial Intelligence, Vol. 1, 1987.

(31] D. Terzopoulos, Visible Surface Representations, AI Memo No. 800, MIT AI Lab
Cambridge, Mass., March 1985.

(32] G. Wahba, Practical approximate solutions to linear opemtor equations when the
data are noisy, SIAM J. Numer. Anal., Vol. 14, 1977.

(33] J. A. Webb, Architecture-Independent Global Image Processing, Proc. 10th Int.
Conf. on Pattern Recognition, 1990.

(34] Alan Yuille and Davi Geiger, A common framework for image segmentation by
Markov Random Fields and Nonlinear Diffusion, AI Lab, MIT, 1989.

