
Finding Extrema With Unary Predicates

by

Feng Gao, Leonidas J. Guibas, David G. Kirkpatrick,
William T. Laaser, James Saxe

Technical Report 90-39
January, 1991

READING ROOM - COMPUTER SCIENCE DEPT.
UNIVERSITY OF BRITISH COLUMBIA

6356 AGRICULTURAL ROAD
VANCOUVER, B. C.

V6T 1W5

Finding Extrema "With Unary Predicates

Feng Gao * Leonidas J. Gui bas t
William T. Laaser §

Abstract

David G. Kirkpatrick t
James Saxe 1

We consider the problem of determining the maximum and minimum elements
of a set X = {x1 , ... ,xn}, drawn from some finite universe U of real numbers, using
only unary predicates of the inputs. It is shown that 0(n + logjUI) unary predicate
evaluations are necessary and sufficient, in the worst case. Results are applied to
i) the problem of determining approximate extrema of a set of real numbers, in
the same model, and ii) the mu.ltiparty broadcast communication complexity of
determining the extrema of an arbitrary set of numbers held by distinct processors.

1 Introduction

A familiar guessing game has one player A choose a real number x, from a given finite
universe U, while a second player B attempts to determine x by a short sequence of yes-no
questions. It is widely appreciated (even by those who are not computer scientists) that
a guessing strategy exists for B which is guaranteed to identify the chosen number with
at most log2 I U I questions1 • The optimality of this strategy is easily established by an
elementary adversary argument (cf [l]); in effect A tries to postpone her specific choice
as long as possible.

We are interested in a generalization of this game in which some number n 2: 1 play­
ers A1, ···,An choose real numbers xi,•••, Xn respectively while a. last player B attempts
to determine some function f(X) of X = (x1 , x2 , • • •, xn) by means of yes-no questions
directed to A1 , ·••,An individually. It follows from the conventional game that B can de­
termine all of the values x1 , • • •, Xn (and thereafter, /(X)) in at most n log I U I questions.
However, the evaluation off may not require exact knowledge of all of its arguments and
hence more efficient guessing strategies may exist for specific functions of interest. In this
paper we show that this is the case for the functions max and min; their complexities in
this unary predicate evaluation model are shown to be 0(n + log I U I).

Before setting out our specific results in more detail it is worth describing some of
the motivation for our study. The multiplayer guessing game models in a natural way

•Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1W5, Canada.
tLaboratory for Computer Science, MIT, Cambridge, MA 02139, U.S.A., and DEC Systems Research

Center, 130 Lytton Avenue, Palo Alto, CA 94301, U.S.A.
i Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1 W5, Canada.
§Metaphor Computer Systems, 1965 Charleston Road, Mountainview, CA 94043, U.S.A.
11 DEC Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, U.S.A.
1 Hereafter all logarithms have base 2.

1

the evaluation of functions in two realistic computational settings. The first involves
a situation in which the function arguments are provided by independent black boxes.
Since the arguments are not available explicitly they can not be directly compared. Such
is the case, for example, if g1 • • • 9n is a sequence of strictly con vex functions on U and
x; is defined by the equation 9i(xi) = maX:i;eU 9i(x). In this situation, it is reasonable to
restrict algorithms to the use of (possibly constrained) unary predicates of the xi's.

The second setting captured by the multiplayer guessing game involves cooperative
distributed computation. In this case, the arguments x1 , • • • , Xn are known individually
and explicitly to n distinct processors Pi,••·, Pn respectively, and the objective is to
collectively determine f(X) by using the least amount of broadcast (one-to-all) commu­
nication. In this case individual processors can communicate information based on their
evaluation of arbitrary unary functions of their own input, together with earlier communi­
cations. Each bit of communication of processor Pi can be expressed as a unary predicate
of Xi, Our model for multiparty communication complexity is a natural extension of the
two-party model of Yao [9]. It closely resembles the multiparty models of [2] and [3] in
which parties communicate through a shared "blackboard". Our model differs from these
in that we assume no sharing of input values.

A straightforward information theoretic argument shows that n(n log I U I) predicate
evaluations (not even necessarily restricted to unary predicates) are required to evaluate
the identity function, that is to determine all of the arguments x1 , • • •, Xn exactly. Other
functions, for example J(X) = x1 + • • • +xn, whose evaluation require complete knowledge
of all arguments, are similarly shown to require n(n log I U I) unary predicate evaluations.
It is of interest to identify or characterize functions f that do not have this property, that
is for which the exhaustive O(n log I U I) comparison algorithm is not asymptotically
optimal.

Hereafter we will restrict our attention ~o the cases where f is either max or min, the
complexity of which are well understood on a binary comparison model [6]. In general we
denote the value max{x1 , • • ·, Xn} (respectively min{ X ·1, • • •, xn}) by Xmax (respectively,
xmin). The possibility for improvement over the naive O(n log I U I) algorithm suggests
itself almost immediately in these cases. Obviously, if one has determined the value of x1

(or more generally max{x1 , · · · xi}) then the universe of interest for all subsequent values
has been reduced. (If Xi+i is determined to be no larger than max{xi, •••,xi} then it
can be ignored without being known explicitly.) However, this observation alone leads to
an algorithm using O(n log(! U 1/n + l)) predicate evaluations in the worst case, which
provides no asymptotic improvement for large universes.

The naive algorithm (and, presumably any other approach that has suggested itself
to the reader) exploits a total order on U and uses only threshold predicates, that is
questions of the form "is Xi greater than or equal to c", for fixed constants c. We have
intentionally included non-threshold predicates in our formulation of problem since their
use is another potential source of improvement over the naive schemes. As it turns out,
for the computation of max and min, threshold predicates suffice to realize (to within
small constant factors) the lower bounds required even with arbitrary unary predicates.

The problem of computing .max{x1 , · • ·, xn} using O(n + m) threshold predicates, for
U = {01 • • • ,zm - 1}, WM originally posed by J. Saxe [4], and solved shortly thereafter
by L. Guibas, W. Laaser and J. Saxe. The particular solution presented in this paper
(including the slightly more general setting) was derived by D. Kirkpatrick and F. Gao

and was presented in preliminary form in [5].
We begin by (temporarily) restricting our attention to threshold predicates. This

serves to simplify the expression of both lower bound arguments and algorithms. Under
this restriction our problems can be interpreted as natural matrix searching problems.
These matrix problems together with the associated lower bound results are described
in section 2. The corresponding algorithms (upper bounds) are presented in section 3.
Section 4 interprets the algorithmic results in the communication complexity setting and
describes the more general (non-threshold predicates) lower bounds.

Our principal results for the worst-case complexity of computing Xmax = max{ X1, • • • , Xn}

can be summarized as follows:

• Determining Xm.ax requires 0(n + log I U I) unary predicate evaluations.

• If U is any set of integers, Xm.ax can be determined in O(n + log lxmaxl) threshold
predicate evaluations.

• If U is the set of positive reals, then Xmax can be determined to within absolute error
e: in O(n + log Xm.ax + log 1/ E) threshold predicate evaluations. If U is the set of reals
in the range (0, 1], then x= can be determined to within relative error E :5 1 in
0(n + log log 1 / Xmax + log 1 / e:) threshold predicate evaluations.

• The communication complexity of determining Xmax in the multiparty broadcast
model is f2(n) messages and f2(n+log I U I) bits and these bounds are simultaneously
realizable.

2 Lower bounds for threshold predicates

Suppose that U = {O, • • •, m }, where m ~ 1. If we restrict our attention to algorithms that
use only threshold predicates then the problem of determining Xmax = max{x1 , · • • ,xn}

can be recast as a matrix searching problem. Consider the binary matrix M[l : n, 1 : m]
defined by M[i,j] = 1, if Xi~ j (and M[i,j] = 0 otherwise). The evaluation of a threshold
predicate on input Xi amounts to a single probe into the matrix M. Determining Xmax

corresponds to locating the rightmost (highest indexed) column of M containing a 1.
Since the entries of any row of M are monotonically decreasing, it is clear that exhausive
search of M is unnecessary. Indeed, the naive algorithm sketched in the introduction
can be viewed as the (binary) search in successive rows for the rightmost one in that
row. The question is, is there a significantly better probing strategy? Note that the
constraints implicit in the structure of M make the problem fundamentally different from
that associated with the detection of graph properties (cf. [8]).

We start by formulating a simple adversary-based lower bound on the number of
probes required to determine Xmax·

Lemma 2.1. Finding Xmax requires n + log(m + 1) - 1 probes of M even if it is known
that Xmax - 1 :5 Xi :5 Xmax, for 1 $ i $ n.

Proof The adversary responds to successive probes in such a way as to maximize the range
of possible values (initially {O, • · ·, m}) that Xmax could assume. When this range has been

reduced to {j,j + 1}, for some j, the adversary responds M[i,j] = 1 and M[i,j + 1] = 0
for all subsequent probes. Since each probe reduces the size of the range by at most one
half, log(m + 1) - 1 probes are required to reduce the range to a size two. Thereafter
n probes are required to confirm that x= = j (and not j + 1). In fact 2n probes are
required to identify all Xi = Xmax• D

Remark. Essentially the same strategy shows that n + log(m + 1) - 1 probes are required
to determine Xmin as well.

Corollary 2.1. If U is any finite set of reals then determining x= or Xmin reqmres
O(n + log I U I) threshold predicate evaluations, in the worst case.

Corollary 2.2. IfU is the set of integers in the range {mL, •••,mu}, where mL < mu, then
determining Xm.ax or Xnun requires O(n + log(mu - mL)) threshold predicate evaluations,
in the worst case.

It is clear from corollary 2.2 that the worst case complexity of finding extrema in an
arbitrary collection of integers can be arbitrarily high. A third corollary suggests that it
may be more natural to attribute this complexity to the size of the output.

Corollary 2.3. If U is the set of integers in the range {2k + 1, • • •, 2k+l }, where k ~ 1,
then determining Xmax (or xmin) requires O(n + logxmax) threshold predicate evaluations,
in the worst case.

Despite the assumptions stated in Lemma 2.1 (which amount to significant constraints
on the adversary) the lower bounds of this section can be realized (to within small constant
factors) by a fairly straightforward algorithm. What the lower bounds suggest is that the
algorithm must somehow reduce the range of candidates for Xmax without investing too
many probes in any particular row of M.

3 Algorithms using threshold predicates

The previous section presented lower bounds on the number of threshold predicate eval­
uations required to determine Xmax (and xmm), when U = {O, • • •, m}. For ease of ex­
pression of our basic algorithm, it turns out to be convenient to consider the equivalent
problem of determining Xmax to within absolute error less than 1, when U = [O,m) (the
set of positive reals less than m). (The equivalence is established by noting that i)
lxd = max{ Lx1J, · · ·, LxnJ} implies max{x1 , · · ·, Xn} - Xi < 1, and ii) the reverse impli­
cation holds when all of the x/s are integers.)

In keeping with the earlier matrix formulation, let M : {1, • • •, n} x [O, m + 1) -+ {O, 1}
be defined by M[i, z] = 1 if and only if Xi ~ z. As the algorithm proceeds the state
of knowledge about Xi is captured entirely by the positions of the rightmost 1 and the
leftmost O discovered (so far) in row i. We denote these quantities by p(i) (rightmost 1)
and A(i) (leftmost 0), respectively. (Initially, p(i) = 0 and A(i) = m + 1). We denote by
PID4X the value max{p(i): 1 ~ i ~ n}, the rightmost 1 discovered so far. At any point in
time row i is said to be active if A(i) > Pmax, that is it remains a possibility that Xi > Pmax•

The idea of the algorithm is to maintain a set J consisting of the indices of all active
rows. The algorithm continues until .\(i) ~ Pmax + 1, for all i E J, at which point

Xmax - 1 < P= ~ xD'IAX. More specifically, I is maintained as a collection of disjoint
sets B., B 8+1, • · ·, Bt (called blocks), where i) A(i) = f3k, for all i E Bk (i.e. indices irl. the
same block share the same A-value) and ii) the block sizes and gaps between A-values of
successive blocks satisfy the relationship I Bk I= log(/3k-1 - f3k) - Iog(f3k - f3k+1).

We are now in a position to present 'the algorithm in pseudo-code. We use the notation
s '\._ S (respectively S '\,. s) ·to denote the operation of removing an (arbitrary) element
of set Sand assigning it to the variables (respectively adding the element denoted bys
to the set S).

procedure find.max (M, n, m)
(* initialize *)

s+-t+-0
Bo +- { 1, · · · , n}; /3o +- m + 1
Pmax +- 0

while /311 > Pmax + l do (* Invariants 1 & 2 *)
begin
z '\._ B11 (* select next active row *)
J +- (Pmax + f3t)/2 (* select initial probe position *)
if M[z,J) = 0

then begin
(* start a new block *)

f3t+i +- J
Bt+i '\._ z
t+-t+l
end

else begin
(* find high~st indexed old block to assign i to *)

Pmax +- J
3 +- f3t
while t > s & M[z,]] = l do begin (* Invariants 3 & 4 *)

(* eliminate block Bt *)
Bt +- <P
t+-t-1

A

Pmax+-J
] +- f3t end

if t = s then begin
Bt+i +- Bt
f3t+1 +- f3t
s +- t +- t + 1 end

(* add z to block Bt *)
Bt '\._ z

end
if a. = 0 then s +- s + 1
end

return Pmax

The {partial) correctness of the above procedure hinges on two simple observations.
The first is the fact (mentioned earlier) that whenever a row index i is eliminated (no
longer belongs to ut=.,B,.,), >.(i) $ Pmax (that is row i is no longer active). The sec­
ond observation is that at termination /3,., $ Pma.x + 1, for all k ~ s, and consequently
Pma.x > Xma.x - 1. The termination (and hence correctness) of the procedure find_max is
an immediate consequence of the following complexity analysis.

To analyse the complexity of our procedure it suffices to verify some additional invari­
ant properties. Specifically, if we define ai =I Bi I, for i ~ O, it = (f3t - Pmax)/2, and
ik = /31e - /31e+1, for s $ k < t (see Figure 1 for a snapshot), and if #probes denotes the
number of probes made at a given point in time, then the following loop invariants are
straightforward to verify.

Outer loop invariants:

#probes= 2n + 2 log(m + 1) - 2a., - 2 log;., - t - 2

and
ik-1 = ik · 2a", for s < k $ t

Inner loop invariants:

#probes= 2n + 2log(m + 1) - 2a., - 2log;., - t - 3

and

. . .

(1)

(2)

(3)

(4)

a,{:% jB,
.... ~....:i..-~-----"""""""-"'"""-'""""""""""""'""-""'"""'"""-'"""-'""""'-'--~'-"'"'~""-"'--

~ t
'---"""'
"(l

Figure 1

m

'Y s+l

Since ;., 2:: 1 prior to termination, it follows from the above that log;., + a., ~ O
up to and including the time of termination. Since, in addition t > 0 at all times it , - '
follows immediately that #probes is bounded above by 2(n + log(m + 1)). Hence we have
established the following:

Lemma 3.1. Procedure find_max determines Xmax to within absolute error less than 1
using at most 2(n + log(m + 1) - 1) prob~s.

We now turn our attention to some direct applications of lemma 3.1.

Theorem 3.1. If U is any set of reals then Xmax and Xmin can be determined in 2(n +
log IU - 1) threshold predicate evaluations.

Proof Exploit the natural (order preserving) bijection from U to {O, •··,I U I -1}. To
compute Xmin note that min{xi, • • •, xn} = m - max{m - x1 , • · •, m - xn}. D

Theorem 9.2. If U is the set of all integers then xinAX and Xmin can be determined in
O(n+log(jxinAXl+l)) and O(n+log(lxminl+l)) threshold predicate evaluations respectively.

Proof It suffices to compute suitable upper bounds on lxm.axl and lxmml efficiently. For
example, if xlllAx is positive the following fragment determines a bound m satisfying m/2 ~
Xmax <min O(n + log(xmax + 1)) probes .

...
i._1,m._1
while i ~ n do begin

ifM[l,m]=l
then m ._ 2m
else i ._ i + 1

end

Similarly, assuming Xmin is positive the following fragment determines a bound m
satisfying m/2n ~ Xmin < m in O(n + log(Xmin + 1)) probes .

...
i ._ 0, m ._ 1

while M[i + 1, m] = 1 do begin
m ._2m
i ._ (i + 1) mod n
end

The cases where Xmax and Xmin are negative are similar. D

Theorem 3.3. If U is the set of all positive reals then Xmax (respectively Xmin) can be
determined to within absolute error f > 0 in O(n + log Xmax + log 1/t) (respectively
O(n + log Xmin + log 1/t)) threshold predicate evaluations.

Proof It suffices to apply Theorem 3.2 to the set {yl' ... 'y,J where Yi = r xd f 1. D

Theorem 3.4- If U is the set of all positive reals in (0, 1] then Xmax (r~spectively, Xmin) can
be determined to within relative error f, wh_ere O < f ~ 1, in O(n+log log(l/xmax)+log 1/t)
(respectively, 0(n + log log(1 / Xmin) + log 1 / f)) threshold predicate evaluations.

Proof. In this case we apply Theorem 3.3 to the set {z1 , • • •, zn} where Zi = logl+(1/x;
and observe that an absolute error of 1 in determining min{z1 , • • •, zn} corresponds to a
relative error off in determining max{x1, • • ·, Xn}. Since log z; = log log 1/xi-log log 1 +t
and log 1 + f ~ f for f E (0, 1], the result follows. D

4 Communication complexity of extrema finding

As we noted in the introduction, the determination, using unary predicates, of
max{x1 , • • •, xn} corresponds in a natural way to the distributed evaluation of
max{x1 , • • •, xn} on a rnultiparty broadcast model of distributed computation. In fact
a slight variant of our algorithm find_max presented in section 3 translates to a optimal
protocol for the cooperative evaluation of max{ x 1 , • • • , Xn}. In this protocol processor Pi
holds x, and broadcasts (in its turn) bits from specific positions of row i. If we ignore
the rows that have ceased to be active (the corresponding processors become passive in
the protocol) a natural implementation of procedure find_max processes rows of M in a
round-robin fashion. When its row is selected as the next active row, processor Pi sim­
ulates the sequence of probes of the ith row of M specified by the procedure find_max,
and packages the corresponding bit sequence into a single message for broadcast to the
other processors. This information suffices for all of the other processors to update their
ongoing simulations of procedure find_max.

As it has been described, each probe made by procedure find_max corresponds to a
single bit of communication in the protocol. Thus Theorem 3.1 can be reinterpreted as
asserting that Xmax and Xmin can be computed using 0(n + log I U I) bits of (broadcast)
communication in a distributed computation model. Note that the protocol may use
asymptotically as many messages as it does bits (since the procedure find_max may make
only 0(1) probes for each repetition of its outer loop). However a very simple modification
of procedure find_max ensures that the corresponding communication protocol uses only
0(n) messages while retaining the same asymptotic bound on the number of bits. The idea
is to replicate rows 1(log I U 1)/nl times. The resulting matrix has n' = 0(n + log I U I)
rows (with, of course, the same value of Xmax) a.nd hence requires (asymptotically) the
same number of probes. Assuming that bits from replicated rows are bundled into the
same message, it follows that each message contains at least 1(log I U 1)/n l bits and hence
there are 0(n) messages in total. We summarize the above construction in the following:

Theorem 4.1. There exists a multiparty communication protocol that determines
max{x1, • · ·, Xn} in 0(n) (broadcast) messages with a total of 0(n + log I U I) bits.

We conclude this section by outlining our argument that the protocol described in
Theorem 4.1 is asymptotically optimal. Specifically:

Theorem ,{..2. Any communication protocol that determines max{x1 , • • •, xn} in the mul­
tiparty broadcast model requires at least n messages and n + log IUI - 1 bits.

Proof. The message lower bound is clear; in the worst case each participant must commu­
nicate something (here we exploit asynchrony) or else the value of max{x1 , • • •, xn} can
not be known to all processors.

The bit lower bound requires a modest generalization of Lemma 2.1. First, we note
that our translation of an algorithm for determining Xmax with unary predicates to a
(broadcast) protocol for computing Xmax, can be reversed. If we are only interest in bit
complexity any protocol can be trivially modified to use only 1-bit messages. Since each
such message can be interpreted as the evaluation of some unary predicate on one of
the inputs, a protocol specifies an algorithm for determining Xmax using unary (but not
necessarily threshold) predicates.

At any point in time there is partial information available to all of the processors about
each of the numbers x,. H a specific number is consistent with this partial information
we say that it is an i-candidate. The adversary maintains the subset C of U consisting
of numbers that are i-canclidates, for all i. With each successive unary predicate the
adversary responds in such a way that the size of C is decreased by at most 2. Since C = U
initially, after log IUJ - 1 predicate evaluations !Cl ~ 2. Thereafter, if each processor holds
min{xjx EC}, at lea.st one additional bit must be broadcast by each processor to confirm
this fact. D

Corollary 4- 1. If U is any set of reals then determining Xmax (or Xmin) requires 0(n +
log I U I) unary predicate evaluations, in the worst case.

5 Concluding remarks

We have identified the complexity of extrema finding using unary predicates to within
a factor of 2. It will be clear that the upper bound can be improved slightly by simply
avoiding questions (probes) whose results are implied by earlier questions. (In fact, a
slightly more careful analysis of our algorithm shows that it achieves the optimal bound
of log(m + 1) predicate evaluations, when n = l.) It remains to specify exactly the
complexity of extrema finding in this model, when n ~ 2.

It is of interest to study the complexity of other basic functions (for example, finding
the two largest elements, or finding the median) in this same model. Similarly, our results
motivate the investigation of the multiparty communication complexity of other basic
functions.

Our model ignores the cost of choosing and evaluating appropriate threshold predicates
for a given universe U. This is reasonable when the total order on U is given explicitly (for
example, by means of some easily computed index function). However, when this is not
the case the full complexity of extrema finding is not necessarily captured by the number
of unary predicate evaluations required. To illustrate this issue and the role our results
can play in its resolution, we point out the following result which is a direct consequence
of Theorem 3.3 and the central result of [7] .

Theorem 5.1. HU is the set of all rationals with numerator and denominator in { 1, · · · , m},
then Xmax can be determined in 0(n + log m) threshold predicate evaluations and 0(n +
log m) arithmetic operations on integers of size at most 2m.

References

[1] Aho, A.V., Hopcroft, J.E. and Ullman, J.D., The Design and Analysis of Computer
Algorithms, Addison-Wesley, 1975.

[2] Babai, L., Nisan, N. and Szegedy, M., Multiparty protocols and logspace-hard pseu­
dorandom sequences, Proc. 21st ACM Symposium on theory of Corr.puting (1989),
1-11.

[3] Chandra, A., Furst , M. and Lipton, R., Multiparty protocols, Proc. 15th ACM Sym­
posium on Theory of Computing (1983), 94-99.

[4] Guibas, L.J.(ed.), Problems, Journal of Algorithms 1(1980), 209-212.

[5] Kirkpatrick, D.G. and Gao , F., Finding extrema with unary predicates, Proc. SIGAL
International Symposium on Algorithms (August 1990), 400-413.

[6] Knuth, D.E., The Art of Computer Programming, Vol.3, Addison-Wesley, 1973.

[7] Papadimitriou, C.H., Efficient search for rationals, Information Processing Letters 8,1
(Jan. 1979), 1-4

[8] Rivest, R. and Vuillemin, J ., On recognizing graph properties from adjacency matrices,
Theoretical Computer Science 3 (1978), a71-384.

[9) Yao, A.C., Some complexity questions related to distributed computing., Proc. 11th
A CM Symposium on Theory of Computing (1979), 209-213.

..

