
The Generation of Phrase-Structure
Representations From Principles

by

David C. LeBlanc

Technical Report 90-38
January, 1991

Department of Computer Science
University of British Columbia

Vancouver, B.C. V6T 1W5

Email: leblanc@cs.ubc.ca

Abstract

Implementations of grammatical theory have traditionally been based upon Con
text-Free Grammar (CFG) formalisms which all but ignore questions of learnabil
ity. Even implementations which are based upon theories of Generative Grammar
(GG), a paradigm which is supposedly motivated by learnability, rarely address such
questions. In this thesis we will examine a GG theory which has been formulated
primarily to address questions of learnability and present an implementation based
upon this theory. The theory argues from Chomsky's definition of epistemological
priority that principles which match elements and structures from prelinguistic sys
tems with elements and structures in linguistic systems are preferable to those which
are defined purely linguistically or non-linguistically. A procedure for constructing
phrase-structure representations from prelinguistic relations using principles of node
percolation (rather than the traditional X-theory of GG theories or phrase-structure
rules of CFG theories) is presented and this procedure integrated into a left-right,
primarily bottom-up parsing mechanism. Specifically, we present a parsing mecha
nism which derives phrase-structure representations of sentences from Case- and 0-
relations using a small number of Percolation Principles. These Percolation Prin
ciples simply determine the categorial features of the dominant hode of any two
adjacent nodes in a representational tree, doing away with explicit phrase struc
ture rules altogether. The parsing mechanism also instantiates appropriate empty
categories using a filler-driven paradigm for leftward argument and non-argument
movement. Procedures modelling learnability are not implemented in this work, but
the applicability of the presented model to a computational model of language is
discussed.

11

Contents

Abstract

List of Figures

Acknowledgements

1 Introduction
1.1 The Poverty of Stimulus Argument
1.2 Gold's Paradox
1.3 Universal Grammar
1.4 Principle-Based Approaches to Grammar
1.5 Contents of the Thesis

2 Government and Binding Theory
2.1 0-Theory
2.2 Case-Theory
2.3 Government Theory .
2.4 X-Theory
2.5 Binding Theory .
2.6 Bounding Theory
2.7 The ECP

3 A New Government and Binding Theory
3.1 Government

3.1.1 Internal Government .
3.1.2 External Government .

3.2 0-Theory
3.2.1 PRO
3.2.2 Internal 0-Assignment
3.2.3 External 0-Assignment .

3.3 Case-Theory
3.3.1 Internal Case-Assignment
3.3.2 External Case-Assignment

Ill

11

V

VI

1
2
2
3
4
5

6
6
8
8

10
11
12
14

15
16
16
17
18
19
20
21
21
21
22

3.4 Categorial Features . .
3.5 Percolation Principles .
3.6 An Example Parse

4 The Implementation
4.1 The Lexicon
4.2 Description of General Processing

4.2.1 The Building of Phrases
Building non-NP Phrases .
Building NPs

4.3 Movement
4.3.1 A-movement . .

NP-movement .
Clausal Movement
Subject Raising

4.3.2 A-movement . .
WR-movement
Topicalization .

4.4 Building Representational Trees
4.5 Special Conditions on Processing
4.6 An Example Parse

5 Evaluation of Results
5.1 The Theory and the Implementation

5.1.1 Building Phrases
5.1.2 Movement
5.1.3 The Percolation Principles
5.1.4 Special Processing
5.1.5 Final Notes

5.2 Principle vs Rule-Based Systems.
5.3 Principle-Based Systems
5.4 Discussion of a Similar System .
5.5 Future Issues

6 Conclusion

7 References

A Sample Parses

B The Prolog Code

lV

23
24
26

30
30
32
33
34
36
38
41
41
42
42
43
43
45
45
46
48

51
51
52
53
53
54
54
55
56
57
58

60

62

67

81

List of Figures

2.1
2.2

3.1
3.2
3.3

3.4

3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

5.1

Government and Binding model of grammar
NP-movement

Davis's GB structure
the NP "the meat" receives two 0-roles .
The insertion of the Adverbial phrase "very much" necessitates the
. . f h C . "C " msertion o t e ase-ass1gner 1or
Adverbial and parenthetical information may intervene between a an
external Case-assigner and receiver.
maximal government

the process_input and process_buff er predicates
the clause_check predicate
the process.ip predicate
example subcategorizations
Subject/matrix verb connections
the build..reLclause predicate .
NP movement
the chk_a....rnove predicate .
the insert..move predicate
Subject Raising
the insert..move predicate.
WR-movement
the ins_abar ..move predicate .
topicalization
the chk_abar ...move predicate .
the chk_tensed_verb predicate
aspectual have/be movement to INFL.
the chk.11./b_v predicate ...
the chk_aspec.11./b predicate .

X schema

V

7
8

16
20

21

22
23

33
34
35
35
37
39
40
41
42
42
43
43
44
45
45
46
47
47
48

57

Acknowledgements

First and foremost , I would like to express my gratitude to my supervisors:
Dr. Henry Davis for his constant, invaluable assistance with linguistic theory and
guidance throughout the course of this thesis, and Dr. Richard Rosenberg for his
constructive criticism and support.

I would like to thank Matthew Crocker for introducing me to the field of compu
tational linguistics and Dr. David Ingram for pointing me in the direction of Henry's
thesis and providing support and encouragement along the way. Special thanks go
out to my parents, John and Ruth, for the friendly words of encouragement from
home. Most importantly, my heartfelt thanks to Deborah Wilson for her continuous
support and understanding through the period of this work.

Finally, I would like to thank the Department of Computer Science for their
financial support.

VI

Chapter 1

Introduction

Computation~.l approaches to the derivation of phrase•structur have traditionally
been based upon the implementation of strategies which use expl icH phrase-structure
rules. Whether it was parsing tables, the ATN framework [Woods 70), or logi
grammars [Pereira et al. BOL early approach s to parsing normally relied upon a
list of simple rules which claimed to provide a broad cov rage of the language of
interest. Although rule-based systems remain popular, recent developments in the
field of natural language processing (NLP) suggest that researchers are looking more
to well developed, current linguistic theories for a working paradigm. This shift away
from the simplistic enumeration of phras -structure rules seems to be the result of
two developments in the NLP field. Firstly, researchers have experienced difficulties
in developing rule bases for naturnl languages. As Barton points out, rule.based
systems are both unconstrained and stipulative in nature [Barton 84]. The number
of rules can often become unmanageably large and the correctness of the rules is
difficult to ensur giv n th lack of underlying principles. Secondly, the mergence of
cognitive science has I d to th quest.ioning of traditional computational models on
the grounds of psychological validity. It can be argued that, given the rather dismal
record of NLP the most sensible approach is to try to emulate the only functioning
language processor in existence - the human brain. Of course, the human brain is
far too complicated to attempt an emulation of its specific fun tioning (at least at
thjs time); but one can use linguistic theory, which is bas . cl upon the study of the
'inputs and outputs' to and from lh,e brain, to attempt 'black-box' models.

Paramount in the cognitive science criticism of rul -based syst ms are questions
of learnability. If one is to design a system that emulates human processing, it must
not only work in a way that is arguably similar to an ad ult 's processing, it must
also be plausibly leamable by a child. This thesis will be • oncerned with just such
a goal, the implementation of a system which is conceivably learnable. To actually
demonstrate language acquisition would be an overly ambitious goal for this thesis ,
therefore we will concentrate only upon the implementat ion of a 'mature parsing
system, and leave acquisition for future research . W will st.ill present acquisition

1

arguments, but only in the context of justification for the presented parsing mech
anism.

Questions of learnability within a system are usually difficult in and of them
selves, but natural language acquisition systems must overcome two additional prob
lems which are products of the child's learning environment - the poverty of stimulus
argument and Gold's paradox.

1.1 The Poverty of Stimulus Argument

Researchers have long noted that the acquisition of language proceeds in an environ
ment which is not conducive to learning. Children are exposed to limited examples of
natural language, sometimes of ungrammatical form. Yet all children {not afflicted
with a major intellectual disability) in a given environment manage to achieve a
complete and structurally similar grammar. Hornstein and Lightfoot outline these
deficiencies on three levels [Hornstein et al. 81]:

(i) Children hear speech which does not consist of completely gram
matical sentences, but also sentences with pauses, incomplete state
ments, slips of the tongue, etc.

(ii) Despite being presented with finite d~ta, children become able
to deal with an infinite range of utterances.

(iii) People attain knowledge of the structure of language, despite
the absence of such data. That is, people are able to make judge
ments concerning complex/rare sentences, ambiguity relations, and
grammaticality using knowledge which is not available as primary
linguistic data (PLD) to the child.

The problem of language acquisition is that children acquire an extremely sophisti
cated knowledge of language despite it being underdetermined through the poverty
of environmental stimuli, as above. Furthermore, this occurs rather uniformly de
spite variation in intelligence and experience.

1.2 Gold's Paradox

In 1967, the publication of [Gold 67] posed questions of language learnability in
a mathematical framework, and presented researchers with a plethora of issues
which remain largely unresolved. The work defined language learning in terms of a
paradigm known as identification in the limit. By definition, a language is identi
fied in the limit when no string from that language will force a learner to alter the
grammars/he has hypothesized on the basis of previous strings. Gold showed that,
given a completely general learner, certain classes of languages within the Chomsky

2

hierarchy were identifiable in the limit, depending upon the way in which the strings
were presented. If appropriately labelled grammatical and ungrammatical strings
were presented, then the class of primitive recursive languages could be identified. If
only grammatical strings were presented, then only the finite cardinality languages
were identifiable.

The effect of these findings were to create a learnability paradox for researchers
of natural language since: a) it appears that children only make use of grammatical
strings in their acquisition process (see [Brown at al. 70] or [Newport et al. 77]), and
b) human languages are certainly of greater complexity than the finite cardinality
languages (which simply consist of a finite list of strings). Thus, researchers wishing
to postulate a theory of language acquisition based on a general learning procedure
(and classes of language in the Chomsky hierarchy) must adopt at least one of a
number of working techniques, the most popular of which are as follows:

(i) ordering the data presentation

(ii) relaxing the identifiability criterion

(iii) introducing a stochastic element into the learning procedure

(iv) constraining the learner's hypothesis space

It has been shown that any of these procedures will enable a learner to identify
the class of primitive recursive languages (which certainly does include natural lan
guage).

This thesis will be adopting the fourth assumption, the most widely accepted
of the techniques. As explained below, we will posit that the child's hypothesis
space inc;ludes but a small subset of possible languages (this subset being at least
all human languages) which the child must 'choose from' according to the language
s/he is exposed to.

1.3 Universal Grammar

Theories of Generative Grammar (GG) posit the same solution to both the poverty
of stimulus argument and Gold's paradox; a universal knowledge of grammar which
underlies all human language ability. This Universal Grammar (UG), which is in
herent in all persons, consists of a number of principles and parameters which guide
the development of grammar. Differing adult grammars (corresponding to different
languages) represent but a variation in parameter settings; all human language is
based upon the same, unaltering principles.

The existence of UG answers both of the problems raised above. UG provides
intrinsic knowledge of language to the learner, reducing the process of acquisition
from a general learning problem to a process of parameter setting. Children do
not have to be exposed to all language phenomena, only that necessary to select

3

the proper setting for the language of exposure (which would then regulate similar
phenomenon which the child has yet to encounter). Thus, the poverty of stimulus
argument is answered.

VG also limits (to the extent of parameter variation) the learner's hypothesis
space. Instead of having to select a valid grammar from all possible grammars, the
language learner need only select one of the grammars represented by parametric
variation. This reduction of the hypothesis space avoids Gold 's paradox and allows
the learning of any primitive recursive language represented in the hypothesis space,
which certainly includes human languages.

1.4 Principle-Based Approaches to Grammar

The development of GG theory is, in fact, the formulation of theories on the structure
of UG; what principles and parameters does it contain, and how do the principles
interact to produce observed human grammars? Given that GG is motivated by
questions of language acquisition, one would think that such questions would be
paramount in any theory of GG. Sadly, this is often not the case. Most GG theo
ries all but ignore questions of 'real-time' acquisition, concentrating instead on the
development of theories which explain observed adult grammar phenomena. Such
theories are often highly elegant and descriptive of mature grammars, but present a
language learner with a highly complex system to acquire. These theories also tend
to ignore the child's mapping of prelinguistic relationships onto grammars, instead
positing descriptiveness in purely linguistic terms.

One should not be too surprised by this. Theories in any immature discipline
tend to ignore . issues of high complexity to concentrate upon specific, bounded do
mai.ns, even if these complex issues directly affect the domain in question. Indeed,
many linguistic theories ignore the problems of acquisition entirely, not giving a
second thought to poverty of stimulus arguments or learnability theory. This, of
course,' does not mean that these theories are completely wrong, just that they are
incomplete at this time. One cannot realistically hope for a complete and correct
linguistic theory so early in the development of this field, only for theories that
contribute to the overall understanding of language.

This does not mean that one cannot compare and evaluate differing theories,
just that one must choose evaluation criteria to suit one's needs. The overall goal
of this thesis is to investigate linguistic theories which are amenable to both com
putational implementation and child language acquisition 1 . Therefore, a linguistic
theory which addresses questions of learnability and psychological validity will be
considered superior to one that does not. Thus, the reader should not be surprised
to learn that we will be investigating theories of GG in general (which is, at least
at the basic level, driven by questions of learna~ility), and a GG theory which is

1 Actually, we will be examining, in detail, one linguistic theory which meets these criteria.

4

based upon questions of learnability in particular. Such a theory, if amenable to a
computational implementation, could be the basis for a functioning model of lan
guage acquisition. Such a goal is beyond the scope of this thesis, but we can at
least perform the preliminary 'ground work' by implementing a model of a mature
grammar.

1.5 Contents of the Thesis

In this thesis we will present an example of such a 'conventional' approach to GG
theory (chapter 2) and then a recent GG proposal which is based upon questions of
language acquisition (chapter 3). Specifically, this latter theory relies upon prelin
guistic relationships to build a phrase-structure representation for a sentences. In
chapter 4, we will present a computational model of phrase-structure representation
based upon these prelinguistic relationships and, in chapter 5, argue that such a
model is superior to those which rely upon purely linguistic specifications of phrase
structure. Finally, chapter 6 presents a general summary of the work and results.
Appendix A presents a number of examples of phrase-structure construction gener
ated by the described system, while appendix B details the Prolog source code of
the system 2•

'

2The presented parsing system is written in CProlog. A working knowledge of Prolog on the
part of the reader is assumed throughout this thesis and may be necessary for the discussion of
the implementation. For an introduction to Prolog, the reader is referred to [Hogger 84], [Sterling
et al. 86] and/or [Clocksin et al. 81). For a more theoretical discussion see [Lloyd 87].

5

Chapter 2

Government and Binding Theory

The principle goal of theories like Government and Binding is the identification
and formalization of the principles which compose our innate knowledge of gram
mar (i.e., UG). These principles are usually stated in a general form and include
parameterization for specific types of language. Most theories postulate six main
components (modules) to the model which apply to one or more of the six main
levels of the grammar (see Fig. 2.1). The six components are:

1) X-Theory

2) 0-Theory

3) Case Theory

4) Bounding Theory

5) Binding Theory

6) Government Theory (ECP)

2.1 8-Theory

0-theory is concerned with the mapping of arguments bearing thematic roles into
syntactic trees. Although the concept of thematic roles is derived from semantics,
GB theory is primarily concerned only with the syntactic behaviour of those elements
which assign or receive 0-roles and not their semantic content. In English, and
apparently the vast majority of natural languages, there is a consistent assignment
of the 'agent' 0-role to the external argument position (the subject) and of other
0-roles to internal argument positions (complements).

The actual assignment of 0-roles itself is secondary in importance to the be
haviour of 0-marked arguments in syntactic derivations and repres~ntations. This
is constrained by the 0-criterion which states:

6

Lexicon Phrase-Structure
Rules

/
D-Structure

I
S-Structure

I
Phonetic Form Logical Form

Figure 2.1: Government and Binding model of grammar

The 0-Criterion:

Every syntactically expressed 0-role must be assigned to one
and only one argument chain.

where an argument chain is a series of coindexed positions within the representation
which constitute a history of movement. This version of the 0-criterion is a gen
eralization, as there are many competing versions in existence which make certain
differing predictions about certain problematic cases; but for the vast majority of
'normal' utterances this generalization is valid for most theories.

There is a significant difference in the application of the 0-criterion when it
comes to external and internal arguments. Internal argument positions are gen
erated solely to bear 0-roles - i.e., there is a one-to-one correspondence between
internal arguments and internal argument positions. On the other hand, subjects
are generated independently of 0-assignment - i.e., a subject position will exist
whether it receives a 0 -role or not. In turn, non-0-marked subject positions are the
only possible targets for NP-movement, since movement from one 0-marked position
to another (to receive obligatory Case) would violate the 0 -criterion. Additionally,
0-theory explain_s the distribution of pleonastic subjects such as "it" and "there"
(pleonastics receive no 0-roles) , which occur only in non-0 argument positions.

According to [Chomsky 81), the 0-criterion applies at all levels of the grammar
(except the lexicon), th us making it a general well-formedness condition on every
level of syntactic representation. At S-structure and LF this serves as a severe
constraint on possible A (rgument)-chains.

7

J---... ~ Case
Bill

1
e seems e

1
to like Mary.

[N] [I] [V] [N] (I] [V] [N]
"-... _,,"' ~ Theta -roles ____ ,.,,.

Movement

Figure 2.2: NP-movement

2.2 Case-Theory

Case-theory in English is rather straightforward. Certain elements always assign
Case in a predefined direction (always under government, see Section 2.3), and all
NPs in argument positions must receive Case. In certain other languages, Case mor
phology is much richer and requires a more complex discussion than is presented
here. We need to distinguish only three Cases in English: genitive (assigned to
the subject of NP), nominative (assigned by the abstract AGR element to the sub
ject of Tensed clauses), and accusative/objective (assigned by [-N] elements to NPs
immediately to their right).

The Case-filter, which blocks the derivation of representations in which an NP
receives no Case, is expressed as:

The Case-Filter:

*[Chain], where Chain contains a lexical element which has no
Case.

We say that the Case-filter applies ·at S-structure, although arguments have been
made for application at PF and LF.

Together with 0-theory, Case theory has the effect of forcing NP-movement. In
typical NP-movement cases, an NP in a complement position (which must receive
a 0-role) which does not receive Case is forced to move to a subject position which
receives Case but no 0-role (see Fig. 2.2).

2.3 Government Theory

The relation of government, a constraint on the form of derived representations, is
crucial to at least three (and possibly five) of the major components of GB: Case
theory, Binding theory, and the ECP (and possibly Bounding theory and 0-theory).
There are so many competing theories of government in existence that we will limit
ourselves to a discussion of only the 'core' concepts.

There are usually two parts to any definition of government, a list of possible
governors and a description of a structural relation between a governor and the

8

category it governs. In English, the set of relevant governors varies from module
to module. For 0-theory, it is a 0-assigner; for Case theory, either a [-N] lexical
head or AGR; for Binding theory, a lexical head; for Bounding theory, a 0-marking
lexical head; and for the ECP, a lexical head or coindexed antecedent. However, all
of the relations are centered around the 'core' notion of government as a relation
between a lexical head and its complements.

Turning to the structural part of the definition of government, we find that the
core notion of c-command

c-command:

A node X will c-command a node Y just in case there is a node
Z such that Z immediately dominates X and Y.

is matched by a less restrictive notion called m-command

m-command:

A node X will m-command a node Y just in case there is a node
Z such that Z is the Minimal Maximal Projection containing
X and Y.

The notion of Minimal Maxim.al Projection (MMP) refers to the 'next maximal
projection up' from both X and Y. Thus, given the configuration:

z

X y

we say that X m-commands W and m-commands and c-commands Y, if Z is a
maximal projection.

The th<:!ory of government incorpora.t.es c-command/ m-command by simply claim
ing that such a relationship must exist betw en a governor and the category it
governs. Far more complicated is th definition of a barrier to governmenL which
limits the notion of command downwards in a tree (the definitions of m-command/ ·
comrnand limit government upwards). Many different proposals have been mad
concerning what constitutes a barrier, but none is uncontroversial. We will not
discuss these proposals here, but instead direct the reader to [Chomsky 86b] and
[Kayne 84] for further discussion.

9

2.4 X-Theory

X-theory is a set of restrictions on the phrase-structure (base) component of a
generative grammar. While all conditions which characterize context free grammars
also characterize X-grammars (i.e., X-grammars are a proper subset of context
free grammars), several additional restrictions apply to X-grammars. The most
important of these restrictions are endocentricity, maximality, and succession; as
well, some X-grammars adhere to uniformity, optionality and centrality [Pullum
85].

Before we may discuss these restrictions, we must first (informally) define a
number of terms:

A head is a category xn which projects up to a phrase xn+i, where n refers
to the number of bar-levels.

A lexical head is of zero bar-level, its immediately dominating projection is
of bar level one, and so on.

A projection of a category xn is a category x>n bearing the same categorial
features as xn and which dominates xn.
A maximal projection is a phrasal category xn which is the 'highest' pro
jection of a lexical category X0 •

Categorial features are those features which determine the category of the
lexical item and all its projections in a phrase-structure tree. Chomsky's fea
ture system employs the features [+/- N], [+/- V] to characterize the major
syntactic categories V, N, A, P [Chomsky 70]. Note that this system does not
incorporate the 'minor' categories DET, INFL, COMP or other 'functional'
elements such as quantifiers, conjunctions, and markers of negation. Thus, N,
V, A, and P are all lexical heads which project their categorial features up to
the maximal projections NP, AP, VP, and PP, respectively (definitions taken
from [Davis 89]).

The first of the restrictions is endocentricity. An endocentric category is one
whose categorial features are those of a category it immediately dominates. The
'main' categories; VP, AP, NP, and PP; are all endocentric in that they are all
phrasal projections which contain a head with the same categorial features. There
is debate as to whether all phrasal categories are endocentric (S and S have been
claimed to lack heads). There also exist well known exceptions to endocen tricity
(eg., nominal gerunds [Abney 87]).

Maximality refers to the condition that all non-head categories be generated as
maximal projections. Although this seems generally true of complements, it is not
necessarily true for specifiers such as NP and S subjects, as well as lexical elements
such as determiners.

10

Succession refers to the condition that each member of a projection has a bar
level one more than its head. Most current versions of GB theory have relaxed this
condition to allow a projection to have the same bar-level. This modification allows
for the existence of adjunction structures in the base component.

Uniformity refers to the condition that all maximal projections have the same
bar-level. There is little agreement as to what this bar-level should be, and it may
be that uniform1ty is too strict a condition for natural language.

Optionality refers to the condition that ail non-bead projections are optional.
Once again, specifiers seem to violate this condition as, for example, S must al
ways have a subject (SPEC I), though this could conceivably be a result of other
components of the system.

Finally, centrality refers to the condjtion that the 'start symbol' in the grammar
(i.e., either S or S) be part of the X -system. This condition is also somewhat
controversial as there is a debate over the endocentricity of S and S.

There have been numerous phrase-structure schemas proposed which generally
meet these X conditions; we will examine that of [Chomsky 86].

X -+ (SPEC X) X
X -+ X (COMP X)

wher~both SPEC X and COMP X are maximal projections. S is analyzed as 1 and
Sas C.

This schema meets all of the X-grammar restrictions. It satisfies endocentricity
(each phrase xn has a _head x 01

-
1

), maximality (non-heads are all maximal projec
tions), succession (each projection xn contains a head xn-l which is one bar-level
less than itself), uniformity (all maximal projections are of bar-level two), optional
ity (SPEC X and COMP X are optional), and centrality (Sand Sare both described
within the X schema.

Having introduced X schemata, we must now ask ourselves what advantages
such schemata have over traditional versions of phrase-structure. The strong st ar
gument in favour of the X system is generality. It se ms to be generally true that
most categories are endocentric (eg., NP-+ AP Vis very unlikely if not impossible),
a prediction made by X-theory but not by ordinary phrase-structur grammars. Per
haps more importantly, a system which incorporates categorial features can capture
cross-categorial generalization (eg., only [-NJ categories assign objective Cas). Such
generalization may play an important role in explanalions of language l arning and
cross-linguistic generalization.

2.5 Binding Theory

The purpose of binding theory is to establish coreference between NPs. For the
purposes of binding theory, NPs are grouped into three classifications:

11

Anaphors include reflexive pronouns, the reciprocal expression "each other",
the trace of NP-movement, and PRO.

Pronouns include non-reflexive pronouns, pro and PRO (which is also an
anaphor).

R(eferring)-expressions include ordinary referential NPs (names) and A
traces (variables).

Each of the types of expressions are associated (for the purposes of binding
theory) with anaphoric arid pronominal features. Anaphors are said to be [+A,-P],
pronouns [-A,+P], R-expressions [-A,-P], and PRO [+A,+P] (since it is both an
anaphor and a pronoun). ·

Binding theory is said to have three Binding Conditions:

Condition A: An anaphor must be bound in its Minimal Governing Category
(MGC).

Condition B: A pronoun must be free in its MGC.

Condition C: An R-expression must be free.

where bound is defined as being coindexed with a c-commanding antecedent. We
also define locally A-bound, where the antecedent is the 'closest' available binder
occupying an argument position. Free is the opposite of bound, and an MGC is the
smallest category containing x (a pronoun or an anaphor), the governor of x, and a
SUBJECT accessible to x.

Accessible refers to two conditions on SUBJECTs. Firstly, they must c-command
x, the anaphor or pronoun whose governing category they are helping to define.
Secondly, they must not violate the i-within-i condition, which stipulates that no
category may be coindexed with a category containing it.

A SUBJECT is defined informally as "the most prominent subject" and formally
as:

SUBJECT:

The SUBJECT of a clause is [AGRi, S] if there is one, oth
erwise [NPi, S] or [NPi, NP] (where [X, Y] means "the X
immediately dominated by Y" (modulo such nodes as INFL
and AUX)).

2.6 Bounding Theory

Bounding theory, unlike any of the other major components of the GB system, is
a constraint on derivation rather than representation. This means that unlike the

12

other components of the theory which apply to one or more levels of representa
tion, bounding applies to the transformational mapping between D-structure and
S-structure (i.e., syntactic movement).

Bounding constrains the Move-o- transformational rule (move anything, any
where) by specifying that no single application of Move-o- ma,y cross more than
one bounding node, where a boundjng node is defined as NP and S (and , in some
languages, S). This constraint is known as subjacency and was introduced to in
corporate many features of constraints proposed by [Ross 67] (CNPC and SSC) and
[Postal 69] (WhIC):

Complex NP Constraint (CNPC): No element contained in an S domi
nated by an NP may be extracted from that NP.

WH-Island Constraint (WhIC): No element contained in an indirect ques
tion, S, may be moved out of that S.

Sentential Subject Constraint (SSC): No element may be extracted from
an S if that S is a (sentential) subject.

. In cases of apparently unbounded moveme.nt (eg. Wh-movement) subjacency
forces the adoption of a COMP-to-COMP analysis in which · the moving element
moves through a number of empty COMP elements by r peated applications of
Move-a, no single movement violating subjacency.

Recently, there have been attempts (sparked by [Chomsky 866]) to incorporat
the CED of [Huang 82]

Condition on Extraction Domain (CED): A phrase o- may be ex
tracted out of a domain /3 only if /3 is properly governed.

into the subjacency condition, leading to the development of barriers. A barrier is
defined as:

a is a barrier for /3 iff:

or,

i) o: is a maximal projection,

ii) o: is not L-marked, and

iii) o: dominates /3

i) o: is L-marked,

ii) o dominates /3, and

iii) f3 is a Bounding Category.

13

where a is 1-marked by f3 iff /3 is directly 0-marked by a [Lasnik et al. 86], and
Bounding Category is defined as follows:

Bounding Category

f3 is a Bounding Category if f3 is a maximal projection and f3
is not L-marked.

Subjacency is now expressed as follows:

Subjacency: f3 is subjacent to a if for every -y a barrier for (3, the
maximal projection immediately dominating -y dominates (3.

2.7 The ECP

The Empty Category Principle (ECP) is a complicated, much debated theory on the
distribution of empty categories (e) within a sentence. As the ECP is not particularly
relevant to this thesis, we will avoid the in-depth analysis and controversy which
normally accompanies such a discussion and present only the simplest definition.
Interested readers are referred to, for example, [van Riemsdijk et al. 86] for further
discussion.

Empty Category Principle:

[e] must be properly governed.

Proper Government:

X properly governs Y iff X governs Y and X is either X0 (i.e.,
V, N, A, P) or NPi, where Y (the governee) equels NPi,

14

Chapter 3

A New Government and Binding
Theory

As previously discussed, Government and Binding Theory is not one monolithic
theory, but rather a number of coexisting theories which share an approach to the
definition of grammar. New theories are constantly being brought forward to account
for a few more extraordinary cases, or to subsume one more linguistic phenomena,
or (as is most often the case) to dispute an existing theory of a portion of GB.
A particularly radical reinterpretation of GB theory has recently appeared in the
form of [Davis 87]. This version of GB interests the author because it has been
developed specifically to account for language acquisition. Davis bases his theory
on Chomsky's definition of epistemological priority

... we want the primitives to be concepts that can plausibly be presumed
to provide a preliminary, prelinguistic analysis of a reasonable selection
of presented data, that is, to provide the primary linguistic data that are
mapped by the language faculty to the grammar ... [Chomsky 81, p.10]

Thus, principles which match elements and structures from prelinguistic systems
with elements and structures in linguistic systems are considered to have epistemo
logical priority over those principles which are defined purely linguistically or non
linguistically. It is on this basis that Davis proposes to eliminate X-theory from GB
theory and replace it with a series of percolation principles which map prelinguistic
relations onto phrase-structure representations (formed in a level of representation
called NP-structure, as first proposed by Van Riemsdijk and Williams [81] - see
Fig. 3.1). In this chapter, we will recount the development of this theory, introduc
ing new concepts of government (Section 3.1), 0- and Case- theory (Sections 3.2
and 3.3 respectively), and a series of feature percolation principles that determine
which categorical features filter up to form the dominating node of two sister nodes
in a representational tree (Section 3.5).

15

Lexicon

I
NP-Structure

I
S-Structure

I ~
Phonetic Form Logical Form

Figure 3.1: Davis's GB structure

3.1 Government

In most versions of GB theory, government is said to impose a general condition
on the mapping of various syntactic components onto one another. Because of its
importance and application to a wide variety of component theories (i.e., components
of the overall GB theory), government is a potentially unifying concept. Yet, no
unified version of government seems to be forthcoming. Davis argues that this is
the way it should be, because there is no unified concept of government. Instead, he
posits two distinct forms of government, internal and external. Internal government
concerns the relationship between a lexical governor and elements within its maximal
projection. External government concerns the relation between a governor and the
elements within a maximal projection which it governs. It seems natural to treat
these two concepts separately, and thus we shall, starting with internal government.

3.1.1 Internal Government

The core case of internal government is defined as a lexical head governing its comple
ments (eg., a verb governing its direct object). This would give us the configuration:

y

A
w z

where W is a Case-assigning, 0-assigning head, Z is its complement, and Y is a
projection of W. In this case, we say that W and Z are in a Canonical Government

16

Configuration (CGC). More formally:

W and Z, immediately dominated by some Y, are in a Canonical Gov
ernment Configuration (CGC) iff:

a. V(erb) Case- and 0- marks NP to its right in the grammar of the
language in question and W precedes Z or

b. V Case- and 0- marks NP to its left in the grammar of the language
in question and Z precedes W. ·

English is an example of an a. type grammar. We refer to this core type of gov
ernment relation as minimal government, as opposed to maximal government as
described below.

Given the configuration:

w
where Wis a lexical governor, Zand X are projections of W, and Y is a specifier to
W, we say that W maximally governs Y. This corresponds to the widely accepted
version of government first proposed by Aoun and Sportiche [83], where a governor
governs everything up to a maximal projection (equivilent to the m-cornmand of
[Chomsky 866]).

3.1.2 External Government

External government is a rather murky concept which (fortunately) is unnecessary
for the generation of phrase-structure. Hence, we will not go into great detail but
rather present a cursory summation of its definition as a contrast to internal gov
ernment. Readers with an interest in this topic are referred to [Chomsky 86b) for
an in-depth analysis. Given the configuration:

17

F G

where B is a potential governor in a CGC with its complement C, D is a specifier
to F, and C and E are projections of the lexical head F; and given that B governs
C (and assuming that C is not a barrier to government - see [Chomsky 86b]), then
we can state that:

a. B governs D,

b. B governs F by the percolation of government down from the projections of
F, and

c. B does not govern G, since the government of G by F blocks government by
B.

Having characterized internal and external government, we can now distinguish (and
formally define) two distinct forms of government, minimal and maximal.

Minimal government:

a minimally governs /3 iff a minimally c-commands /3 and there
is no T such that a governs T and T governs /3.

Maximal government:

a maximally governs /3 iff a maximally c-commands /3 and
there is no T such that o governs T and T governs /3.

3.2 8-Theory

Central to the GB approach to the assignment of 0-roles is the 0-criterion:

18

The 0-Criterion:

Each argument bears one and only one 0-role, and each 0-role
is assigned to one and only one argument. [Chomsky 81, ch.2]

This is a slight simplification ([Chomsky 81, ch.6] reformulates this definition in
terms of Argument-chains) but it is ·sufficient for our purposes.

3.2.1 PRO

The 0-criterion has the effect of preventing movement from one 0-marked position
to another. Thus, raising to object is always prohibited (since complement positions
are always 0-marked) but raising to subject is permitted as long as the subject
position is not assigned a 0-role (for example, monadic predicates such as "seems"
do not assign a 0-role to their subject). If one adheres to this strict version of the
0-criterion, one must formulate a way of dealing with defective predicates. These
predicates are of two types. Firstly, adjunct predicates (so called ''small clauses").

John ate the meat raw.

Here "ate" assigns a 0-role to" John" and "the meat", saturating their 0-role receiv
ing capabilities, while "raw" assigns one 0-role to its left. Since all 0-role receiving
capabilities are saturated, an empty subject pronoun (PRO) must be postulated to
receive "raw" 's 0-role.

John ate the meat PRO raw.

Davis dismisses this formulation by referring to the work of Williams:

However, Williams (1980,1983) provides several arguments against this
type of structure ... the basic thrust of the argumentation is to show
that the adjunct predicates behave differently in the syntax from "true"
clauses, and treating the two as structurally parallel merely obscures
these differences. [Davis 87, p.104]

The second type of defective predicate is exemplified by certain types of non-clausal
complements. These include non-nominal gerunds, complements to verbs of per
ception, and temporal aspect, and the complements "to make" and "let". [Koster
et al. 82] claim defective complements uniformly contain PRO; [Emonds 85] takes
a 'mixed' position, claiming PRO is restricted to infinitivals. Davis argues PRO
may be disposed with altogether. The arguments are quite detailed and, again,
beyond the scope of this thesis. The main point made is that there are no strong
structure-based arguments for the existence of PRO. We must have a mechanism to
deal with defective predicates whether or not PRO is accepted; simply advancing
PRO as a solution is insufficient. Davis does this (as have others) by modifying the
0 -criterion. His approach is to observe that the 0-criterion can be broken into two
constituent parts:

19

John ate the meat raw.

'?r v
Figure 3.2: the NP "the meat" receives two 0-roles

The 0-Criterion:

a. each argument bears one and only one 0-role, and

b. each 0-role is assigned to one and only one argument

and then eliminating a. Now we allow NPs to receive two 0-roles, as shown in
Fig 3.2, thus eliminating the need for PRO.

Note that this 'weak' version of the 0-criterion allows many analyses that the
strong 0-criterion prohibits. For example, the 0-criterion no longer prohibits raising
to object. However, such structures are prohibited by the Projection Principle,
so adoption of the weak 0-criterion (and the elimination of PRO) has actually
eliminated a redundancy in the theory.

3.2.2 Internal 0-Assignment

Also central to the definition of 0-theory is the fact that internal 0-assignment
(assignment of 0-roles to the object) can only occur within a CGC. Thus, for the
simple case of verb assignment to NP, we get a structure such as:

VP

A
V NP

However, there are some verbs which assign two internal 0-roles, either to two
objects or to one object and one phrase. We still must adhere to 0-assignment
within a CGC, thus we derive structures with a tertiary branching structure:

VP

V NPI XP

20

a) I would like John to leave.

b) I would like very much *(for) John to leave.

Figure 3.3: The insertion of the Adverbial phrase "very much" necessitates the
insertion of the Case-assigner "for".

3.2.3 External 0-Assignment

Predication is the theory which stipulates how 0-assigners (i.e., verbs or possibly
VPs) are linked to their 'external arguments' (i.e., subjects). Most accounts of
predication are 0-based, in that they rely upon thematic linking between the verb
and subject (for example, see [Williams 80] and [Rothstein 83]). Davis proposes
that predication is in fact based upon the relationship between the verb and its
AGR bearing INFL, and case assignment by the INFL to the subject. The fact
that this relationship coincides with external 0-assignment is merely a coincidence,
not a given. Although quite complicated , and formulated more for the case of
A predication (which is beyond the scope of this thesis), the predication theory
highlights the fact that internal and external 0-assignment differ quite dramatically.
External 0-assignment does not occur within a CGC, and in fact only indirectly
involves the positioning of the 0-assigner to the subject.

3.3 Case-Theory

Ca,se-theory in GB can be informally defined by stating that all lexicalized NPs must
bear Case. The formal definition of the theory is complicated by the fact that Case
receivers (Arguments) can move, leaving behind a trai l of co- indexed (Argument
position) categories called an A(rgument)-chain. Most theories are further compli
cated by the need to include PRO as the head of an A-chain but as we have done
away with PRO, we can formally define the constraint on Case-assignment as:

an A-chain must be associated with Case.

As with 0-assignment, Case-assignment is divided into two types, internal and
external, each of which is governed by its own rules.

3.3.1 Internal Case-Assignment

Internal Case-assignment usually takes place in a CGC, although in certain cir
cumstances it is able to penetrate a derived XP to (exceptionally) Case-mark its
specifier. Internal Case is assigned by [VJ and [P] and is subject to an adjacency
condition which (in English) constrains Case-assignment to strict adjacency. Thus,

21

a) John probably did not realize how late it was.

b) John, I think, did not realize how late it was.

Figure 3.4: Adverbial and parenthetical information may intervene between a an
external Case-assigner and receiver.

in Fig. 3.3, the insertion of an Adverbial phrase between the Case-assigner "like"
and the Case-recipient "John" necessitates the insertion of the Case-assigner for.

3.3.2 External Case-Assignment

External Case-assignment differs from internal Case-assignment in at least the fol
lowing ways.

1. In direction of Case-assignment. In English, the two external Cases, nomina
tive and genitive, are assigned to the left, whereas the canonical direction of
Case-assignment is to the right. However, there is evidence that this distinc
tion does not hold over cross-linguistic analysis.

n. In adjacency parameters. As mentioned above, there is a strict adjacency
requirement on internal Case-assignment. This does not hold for external
Case-assignment, as adverbial and parenthetical information can intervene, as
in Fig 3.4.

m. In level of application. In conventional accounts of GB theory, internal Case
assignment occurs at D-structure (along with internal 0-assignment) while
external Case is assigned at S-structure (since NP-movement, a syntactic pro
cess, is forced by external Case requirements). Davis proposes that both ex
ternal and internal Case-assignment take place at NP-structure, but that the
latter type involves 'virtual' movement from a D-structure position.

1v. In obligatoriness. Internal Case-assigners will only assign. Case if they also as
sign an internal 0-role (even if the Case- and 0- assignments do not coincide).
External Case-assigners always assign Case, whether an external 0-role is as
signed or not. This means that nominative Case must be assigned whenever
AGR is present and genitive Case must be assigned whenever N is present.

v. In structural conditions on Case-assignment. Whereas internal Case is always
assigned in a minimal government configuration, external Case is always as
signed in a maximal government configuration, as shown in Fig. 3.5 for S and
NP.

22

a) IP b) NP

NP

I N

Figure 3.5: maximal government

3.4 Categorial Features

Most GB work assumes the schema adopted in [Chomsky 70] which accounts only
for the 'major' categories [A], [N], [V], and [P] .

A= [+N,+V]
N = [+N,-V]
V = [-N,+V]
P = [-N,-V]

Davis p1'oposes an alternative categorization based upon distinguishing three
types of categories: 0-heads, which includ s [NJ, [V] and [A]; G-heads, which in
cludes INFL and DET; and C-heads, which includes complement izers and preposi
tions. These three types of categories enter into categorical associations with each
other based on a notion of functional discharge (as elaborated by (Abney 85], (Fukui
et al. 86], [Higginbotham 86] and (Speas 86]) which forms the basis of the Percolation
Principles to be presented below.

0-heads include the primary 0-relat d categories [N] and [V], and the inflec
tionally deficient 0 -head, [A]. G-heads (INFL and DET) do not ass ign primary
0-roles but instead contain a small set of syntactically relevant feat m es including
those involving tense, definiteness, and number and p rson agreement. G-head a,s
sign external Case and enter into categorical associations with 0-heads. C-heads
(prepositions and complementizers) act as linkers between 0-heads and their com
plement and adjunct dependents. T hey may also assign Case or 'secondary' 0-roles.
In addition, they may bear G-features such as Tense and AGR. It may well be that
C-heads have no intrinsic features of their own, and must 'borrow' features from
G-heads and 0-heads. Just as G-heads enter into categorical association with 0-
heads, so C-heads enter into association with G-heads. Thus, we get the following
schema:

23

Nominal system
Verbal system

C-heads
p
C

G-heads
D
I

0-heads
N
V

We will assume that the heads {P,D,N} are canonically linked in the nominal system,
and the heads {C,I,V} are canonically linked in the verbal system. Thus, we get the
following phrase-structure representations:

a) [PP] b) [CP]

A A
[P] [DP] [C] [IP]

/ /~
[D] [NP] [I] [VP]

The above representations do not include the 0-head [A] which, because of its
special status, must be considered separately. [A] is special in that it assigns no
Case at all and cannot be associated with INFL, yet it is still considered to be an
(inflectionally defective) 0-head. Since they are inflectionally defective, in order
to assign internal 0-roles, adjectives must subcategorize for PP complements; and
in order to assign an external ff-role, the dummy verb "be" must be inserted to
bear Tense which in turn enables AGR to assign Case to the external argument. A
special property of the 'empty' 0-assigner be allows it to transmit a 0-role from an
adjectival head to its external argument. This can be done by having "be" 'adopt'
the 0-role of an [A] head and treating it as its own for external argument.

3.5 Percolation Principles

Given the feature-association model presented in Section 3.4, it is now possible to
formulate explicit feature-percolation principles which will determine the structure
of derived structural parse trees. Davis proposes four principles which, given two
adjacent nodes on a parse tree, determine which categorical features will 'percolate
up' to the dominating node. These principles are not meant as primitives to the
theory since if we are to derive phrase-structure from the interaction of other, more
primitive principles, then percolation · rules should be as unnecessary as explicit
phrase-structure rules [Speas 86]. Rather, they are meant as '"operating principles'
which relate licensing conditions to strings to derive labelled trees" [Davis 87, p.15O].

The first two principles straightforwardly define the relationships between 0-
and Case- assigners and receivers.

24

z

A
X y

Percolation Principle I:

Where X 0-governs Y, the categorical features of Z will be
those of X.

Percolation Principle II:

Where X assigns Case to Y, the categorical features of Z will
be those of X.

Percolation Principl III deals with the 'adjunction' set of a phrase, i.e., thos
elements which are not bound to others by 0 - or Case- relations. Such elements
typically have no effect at all on categorical strucLure. In other words, the category
dominating a member of an adjunction set will have the exact features as the other
category to which it is joined.

Percolation Principle III:

Where Xis a member of the adjunct set and Ya member of the
subcategorization set of a phrase Z, the categorical features of
Z will be those of Y.

A more formal definition of categorical set and adjuncts t requires a modification
of the Revised Extended Projection Principle of Chomsky, which Davis calls the
Generalized Revised Extended Projection Principle (GREPP).

Generalized Revised Extended Projection Principle:

Subcategorization requirements must be satisfied by all phrase
structure configurations, where "subcategorization requirements"
refer both to subcategorized and subcategorizing elements.

This redefinition of the Projection Principle differs in two significant ways from
the traditional definitions. Firstly, by applying the principle to" all phrase-structure
configurations", rather than all levels of the grammar, Davis has removed the restric
tion from D-structure. The theory we have presented here requires that D-structure
be "nothing more than a set of (internal) 0- and Case- relations, with at most a
partial representation in configurational terms" [Davis 87, p.155]. It is not until the
application of percolation principles that phrase-structure begins to emerge.

25

The second (and more important to PP III) difference in the definition of the
GREPP is the extension of the concept of subcategorization to include the subcat
egorized elements as well as the subcategorizing elements. This has the effect of
generalizing the Projection Principle from a constraint on the distribution of NPs
to a general constraint on the recoverability of lexical information.

Finally, we turn our attention to adjunc~ elements which are not found in any of
the above defined relations. In this case Davis defines a simple feature-percolation
hierarchy that determines which categorical features should dominate over others

' This hierarchy is given as Percolation Principle IV.

Percolation Principle IV:

Where X and Y are in a CGC, no Case or 0-relation holds
between them, and both are part of the subcategorization set
of Z, the following hierarchy determines which features will
percolate:

a. C-features of X and Y will percolate to Z

b. G-features of X and Y will percolate to Z

c. 0-features of X and Y will percolate to Z

3.6 An Example Parse

This concludes the definition of Davis' theory of GB and the percolation principles
which allow us to build phrase-structure. As a demonstration of these principles,
we now present an example taken from [Davis 87).

Let us consider the sentence:

John, I know that Bill likes.

Now, assuming that all lexical categories have been correctly identified, we will get
the lexical string:

John,
[N]

I
[N]

know

[V]

thal
[C]

Bill
[N]

likes
[V]

Again, assuming that the subcategorization properties of the various lexical items
are known (since this is important to the operation of the GREPP, which in turn
determines the distribution of empty categories,) we can begin to apply the principles
themselves, beginning with the most embedded phrase, since we are assuming a
bottom-up procedure. First of all, by Principles I and II, and by the GREPP, we
construct the local tree:

26

[VJ

A
John, I know that Bill likes e

[NJ [NJ [VJ [CJ [NJ [V] [N]

Next, we come to the· Case-marked NP "Bill". By the GREPP, there must be
an element which assigns Case to this NP; since the NP receives its Case in a
non-canonical (external) government configuration, that elemenL roust·be a G-head;
since the G-head associated with [V] is [I], the missing element must be [I], and by
Principles IV and II the relevant structural repr sentation will be:

John,

[NJ

I
[NJ

know
[V]

that

[CJ

Bill
[N]

[11

[IJ

rx
e
[I]

likes

[V]

e

[N]

Next, by Principle IV, we will get the structural representation:

[IJ

rx
John, I know that Bill e likes e
[N] [NJ [VJ [CJ [NJ [IJ [VJ [N]

27

By Principle l, we then construct:

(V1

kJ\OW

(C1

that
(C1

Bill
(N1

(I}

/A
e likes e

(11 (V1 (N1

John,
(N1

l

(N1 (V1

Ne><t, by the GREPP, Principle IV, and Principle 11, we get:

(11

(11

(V1

(C1

(11

(11

/A
John, l e know

that Bill e \ikeS e

(N1 (N1 (11 (V1
(C1 (N1 lil (V1 (N1

28

Finally, by Principle Ul, we end up with the phrase-structure representation:

(l1

[11

[11

{V1

[C)

[11

(11

/A
John; l e know that Bill e likes e

(N1 (N) (I) {V) (Cl {.N) (n (V) (N)

29

Chapter 4

The Implementation

Now that we have presented the GB theory of Davis, we can introduce a parsing
mechanism based on the theory. As Davis' theory mandates, this parser forms
phrase-structure representations of sentences without the use of explicit phrase
structure rules. Instead, we use Percolation Principles to determine the categorical
features of the dominating node of any two adjacent nodes. The system can be
viewed as forming an augmented NP-structure representation of the sentence. We
say augmented NP-structure because, although none of the 'higher level' modules of
GB (such as Bounding, the ECP, etc.) have yet to act upon the representation (this
would occur between NP-structure and S-structure, as well as between S-structure
and LF), certain movement constraints already exist within the parsing mechanism
itself.

4.1 The Lexicon

The lexicon constitutes the vocabulary of the system. It is implemented in a rather
straightforward way as a list of elements representing each word the system recog
nizes and the lexical features associated with it. The representation of each word is
the same, although various lexical features apply only to certain categories of words.
This is done to provide a general form for all words, regardless of their category;
which, in turn, simplifies processing. Lexical features not relevant to a particular
category are assigned a value which represents a lack of this feature.

The general form of all entries in the lexicon is:

[Cat,Word,EC,ET,RC,RT,Ten,S,[Subcat]]

where the meaning of each identifier is as follows.

Cat - The category of the word. The lexicon provided for this implementation
contains words of the following categories:

n - Noun

30

d - Determiner

v - Verb

c - Complementizer

i - !NFL

adj - Adjective

adv - Adverb

p - Preposition

Word - The actual word. Note: different inflectival forms of the same root
word appear in the lexicon as no morphological analysis is performed.

EC - The assignment of external Case. A value of 1 is specified if external
Case is assigned, 0 otherwise.

ET - The assignment of an external 0-role. A value of 1 is specified if an
external 0-role is assigned, 0 otherwise.

RC - The word's status as a Case receiver. A value of 1 is specified if the
word receives a Case assignment, 0 otherwise.

RT - The word's status as a 0-role receiver. A value of 1 is specified if the
word receives a 0-role assignment, 0 otherwise.

Ten - The Tense of the word. A value of "+" is specified if the word bears
Tense, "*" other~ise.

S - An initially 'empty' identifier it is used to 'carry' a subscript value associ
ated with movement. All words have this identifier initially set to 0, indicating
the word is not associated with movement , and will only have this value a l
tered if processing recognizes the word to be associated with a movement trace.
Although this is not in any way a lexical feature, it has been included in the
lexical feature list for ease of processing.

Subcat - Subcat is a list containing the sub~ategorization information of the
word. Of course, this will only bear information if the word subcategorize for
other elements (for our purposes thjs includes a subcategor.iza.tion definitio 1 of
intransitive). All other words will simply be specified with an empty list. The
internal structure of the subcategorization list can be quite complicated, owing
to the complex subcategorizations associated with some words. For example
most subcategorizers subcategorize for more than one type of complement (i.e.
the verb "loves11 can be. transitive or intransitive) . Thus, the list Su beat must
contain multiple entries, one for each subcategorized type.

[[Subcatl], [Subcat2], ...]

31

Each subcategorization specification can possibly subcategorize for one or two
elements (for example, the verb "gave" can subcategorize for two NPs - "I
gave Mary a book."). Therefore, each Subcat entry must have the ability to
contain up to two subcategorized elements.

[[[Elementl], [Element2]], [Subcat2], ...]

Each element which is subcategorized for has the same specification:

[C,IC,IT,W]

where each identifier represents:

C - The categorical type of the (possibly maximal) element
being subcategorized for.

IC - The assignment of internal Case. A value of 1 is specified
if internal Case is assigned, 0 otherwise.

IT - The assignment of an internal 0-role. A value of 1 is
specified if an internal 0-role is assigned, 0 otherwise.

W - A small set of syntactic features which must be present on
the head of the phrase immediately following1 the subcatego
rizer (eg., +WH). This element is presently unused, thus every
lexical entry bears the 'null' value"*".

Thus, the general structure of Subcat can be represented as:

[[[C,IC,IT ,W], [Element2]], [Subcat2], ...]

When the user inputs a sentence to the system (as a string of characters), each
wor"d is extracted and placed in a list. Each word is then compared to the lexicon
and a representation list is built up containing the matched lexical entries as well
as an end-of-sentence marker which is added to the end of the list. This list is then
passed to the main parsing system where it is referred to as the Buffer.

4.2 Description of General Processing

The parsing mechanism is, in general, a bottom-up parser, although there are some
elements of top-down processing involved in the creation of phrases. There are
two distinct mechanisms within the parser, building of NPs and building of other
phrasal elements (inciuding S). We describe each mechanism separately, starting
with parsing of phrasal elements.

1The W specification may include phrases which have moved .

32

process_input(Input,Tree) :
process_buffer(Input,[[bot_of_stack]],

[0,*,0,0,*,0],Buf,Tree,Infolist).

process_buffer([[end_of_sentence]],Stack,Infolist,
[[end_of_sentence]],Stack,Infolist).

process_buffer(Buffer,Stack,Infolist,NewBuf,NewStk,Newinfo) ·
clause_check(Buffer,Stack,Infolist,Buf2,[Con11Stk2],Info2),
clausal_move([Con11Buf2],Stk2,Info2,[Con21Buf3],Info3),
process_buffer(Buf3,[Con21Stk2],Info3,

NewBuf,NewStk,Newinfo).

Figure 4.1: the process_input and process_buffer predicates

4.2.1 The Building of Phrases

The processing of phrases, other than NP, is driven by the fulfillment of the sub
categorization of subcategorizing elements. All phrases contain one subcategorizing
element2: verb for IP, VP and CP; preposition for PP. A phrase is 'completed' by
satisfying this subcategorization. So, when a phrase is 'triggered' (see below), all
elements encountered until the subcategorization is completed are considered to be
part of the phrase. The subcategorization of an element is said to be completed when
a maximal element corresponding to the type subcategorized for is constructed and
returned to the buffer position immediately following the subcategorizer. Of course,
a subcategorizer which is intransitive is said to be complete. Subcategorizers which
subcategorize for a phrasal element will cause a recursive invocation of the build
phrase procedure, thus only intransitive sub categorizers and NPs (which do not rely
upon subcategorizers for completion - see below) can truly complete a phrase (in
that they do not cause a recursive invocation of the build phrase procedure3).

The parsing procedure is driven by the process_input and process_buffer
predicates (see Fig. 4.1). process_input accepts the input Buffer and invokes the
parsing mechanism (process_buffer), passing the Buffer, an empty Stack, and the
lnfolist. Infolist is used for monitoring movement of elements and will be discussed
later. process_buffer builds the constituent sentence phrases until the end-of
sentence marker (found at the 'end' of the Buffer) is encountered. As each completed
phrasal element is returned, it also checks for clausal movement (i.e., fronted clauses)
and, if encountered, activates the appropriate movement flag in lnfolist. Clausal
movement is recognized as the return of a PP or CP which was not subcategorized

2Pluases may contain embedded phrases within them. It is correct to say that each phrase
contairu; one matrix subcategorizi_ng element.·

3 NPs may contain phrases, and thus will invoke the build phrase procedure, but they are not
dependent upon subcategorizer satisfaction. See Building NPs.

33

clause_check([[[p I Info] I Constit] I Buf_content],Stack,Infolist,
NewBuf,NewStk,Newinfo) :-

process_pp([[[p I Info] I Constit] I Buf_content],Stack,
Infolist,NewBuf,NewStk,Newinfo).

clause_check([[[c I Info] I Constit] I Buf_content],Stack,Infolist,
NewBuf,NewStk,Newinfo) :-

process_cp([[[c I Info] I Constit] I Buf_content], Stack,
Infolist,NewBuf,NewStk,Newinfo).

clause_check([[[v I Info] I Constit] I Buf_content],Stack,Infolist,
NewBuf,NewStk,Newinfo) :-

process_ip([[[v I Info] I Constit] I Buf_content], Stack,
Infolist,NewBuf,NewStk,Newlnfo).

clause_check([[[d,Word Info] I Constit] I Buf_content],Stack,Infolist,
NewBuf,NewStk,Newinfo) :-

Word\== max,
build_np([[[d,Word I Info] I Constit] I Buf_content], Stack,

Infolist,Buf1,Stk1,Info1),
process_ip(Buf1,Stk1,Info1,NewBuf,NewStk,Newlnfo).

clause_check([[[n I Info] I Constit] I Buf_content],Stack,Infolist,
NewBuf,NewStk,Newinfo) :-

process_ip([[[n I Info] I Constit] I Buf_content], Stack,
Infolist,NewBuf,NewStk,Newinfo).

Figure 4.2: the clause_check predicate

for (and is therefore returned to process_input as an independent phrase, and not
as a subcategorized constituent of a larger phrase).

The building clause procedure is triggered by the invocation of the clause_check
predicate (see Fig. 4.2). This predicate simply examines the category of the first
element of the Buffer and invokes the appropriate process...xp predicate (where xp
is either pp, cp or vp). Phrases fronted by nouns cause process_ip to be invoked,
phrases fronted by determiners cause an NP to be constructed and then process_ip
to be invoked. As we shall see, because all non-NP phrases are processed using
the subcategorization technique described above, the important distinction made by
clause_check is that between NPs and other phrases, as other phrases are processed
almost identically.

Building non-NP Phrases

The process...xp predicates (excluding np) all function basically the same way since
they are all based on the principle of subcategorization satisfaction. We show
process_ip as an example - see Fig. 4.3. All non-subcategorizing elements are
processed through a preliminary check to trigger any 'special case scenarios' (see

34

process_ip([[[Cat,Word,EC,ET,RC,RT,Ten,S,[[0]]] I Constit] I Buf_content],
Stack,Infolist,NewBuf,NewStk,Newinfo) ·

word_check([[[Cat,Word,EC,ET,RC,RT,Ten,S,[[[]]]] I
Constit] I Buf_content], Stack, Infolist,
[First_Buf I Bufl], Stkl, Infol),

process_ip(Bufl,[First_Buf I Stkl],Infol,
NewBuf,NewStk,Newinfo).

process_ip(Buffer,Stack,Infolist,NevBuf,NewStk,Newinfo) ·-
word_check(Buffer, Stack, Infolist, Buffer, Stack, Infolist),
process_ip2(Buffer,Stack, Infolist, NewBuf, NewStk, Newinfo).

process_ip(Buffer,Stack,Infolist,NewBuf,NewStk,Newinfo) :
word_check(Buffer,Stack,Infolist,

[First_Buf I Bufl], Stkl, Infol),
process_ip(Bufl, [First_Buf I Stk1] ,Info1,

NevBuf,NewStk,Nevinfo).

process_ip2(Buffer,Stack,Infolist,NewBuf,NewStk,Newinfo) ·
select_subcat(Buffer,Stack,Infolist,BufO,Newinfo),
build_stack(BufO,Stack,NewBuf,NewStk).

Figure 4.3: the process_ip predicate

Section 4.5) and then placed on the Stack. Subcategorizing elements are also pro
cessed through the preliminary check, and if they do not trigger a 'special case' which
causes a change in the contents of the Buffer, Stack or Infolist, they are passed on to
process _ip2. If the subcategorizer does trigger a 'special case scenario' which does
alter the representational structures (such as the insertion of an element into the
Buffer), then process_ip is invoked again. process_ip2 drives the satisfaction of
the subcategorizing element and then builds the representation of the IP by invoking
the build stack procedure.

Satisfying the subca.tegorization of a subcategorizing element is complicated by
two factors: subcategorizers often possibly subcategorize for one of many djffer-

a) I know that Bill loves Mary.
[]
CP

I know Bill.
[]
NP

b) I gave blood to my brother.
[] []
NP pp

Figure 4.4: example subcategorizations

35

ent specified elements, and some subcategorizers subcategorize for two phrasal el
ements. For example, the verb "know" subcategorizes for a CP or an NP, while
the verb "gave" can subcategorize for an NP and a PP (as well as other possible
subcategorizations) (see Fig. 4.4).

When dealing with verbs which subcategorize for more than one possible subcat
egorization, the parser must select the 'correct' subcategorization for the particular
sentence presented (i.e., the subcategorization which corresponds to the phrasal
element which is present). This is done by trying to build each possible subcatego
rization (starting with the first specified) and comparing the completed element with
the subcategorization specification4

• Note that because of the essentially bottom-up
nature of this parser, specifying that process...xp should be invoked to build the
phrase in no way biases the parser towards returning this element5 • The possible
subcategorizations are specified in a predetermined order (PP, IP, CP, NP) to ensure
that the subcategorization of a phrasal element is tried before the subcategorization
of an element it may contain (i.e., IP tried before NP)6 . When a match between sub
categorizer and the subcategorized (constructed) phrase is found, all other possible
subcategorizing specifications are eliminated and processing returns to process...xp
where a representation of the phrasal element is formed.

Verbs which subcategorize for two elements are handled in essentially the same
way (double subcategorizations appear first in the list of possible subcategoriza
tions). Rather than building up one phrasal element and comparing it to the sub
categorization specification, two separate build subcategorized element procedures
are invoked and both returned elements are compar~d to the subcategorization.
Special processing must also be included in the tree building process in order to
recognize a two phrasal element subcategorizer and to form the required tertiary
branching structure.

Building NPs

NPs differ from other phrases in that they can include post-noun modifying phrases
for which they do not subcategorize7

•

The man in the park. ..

They also can include any number of these post-noun modifiers. Because they do
not subcategorize for their complements, NPs cannot be processed by the general

4We will intentionally ignore the effect of moved elements at this point, leaving that discussion
for Section 4.3.

5This is not entirely accurate. To process CPs which are 'fronted' by complementizers, the
parser must be aware that it is trying to process a CP (so that the empty complementizer may be

. inserted). Thus, we cannot claim that clause processing is entirely bottom-up.
6This ordering is used to specify the difference between believe-type verbs and try-type verbs.

Believe must subcategorize first for IP, since it Case-marks the subject of the subcategorized phrase.
Try must subcategorize for CP first, as we want to 'block' such a Case-marking from occurring.

7The same problems affect NP-extraposition, but we will deal only with post-noun modifiers.

36

[The man who e~ Mary]~es Sue.

Subject
Subject

Figure 4.5: Subject/matrix verb connections

subcategorization satisfaction paradigm described above. Instead, we must theorize
another method which not only attaches post-noun modifiers to the NP, but that
distinguishes where the NP 'ends'

GB theory assumes that all languages have a general descriptor of NP /VP dis
t ribution within their grammar. English is known as an SVO language, meaning
that all English sentences have the general 'ordering' Subject.• Verb-Object. T hus,
argument NPs are terminated by either the matrix verb of the phrase, encountering
another noun or determiner element, or by the end of the phrase. Determining the
end of an object is trivial, the end of an object phrase is the end-of-sentence marker8 •

Subject NPs appear to be much harder· to distinguish. The end of a subject NP is
signified by the appearance of the matrix verb, but how does the system differentiate
between the matrix verb of the 'main' phrase, and the matrix verbs of post-noun
modifying phrases (see Fig. 4.5)?

In order to distinguish the matrix verb of the phrase, we must examine the Case
and 0- assignment structures of the sentence. Within the subject NP, we see that
"kissed" assigns internal Case- and 0- roles to the NP "Mary", and external 0- and
Case-9 roles to an empty NP which is co-indexed with "who". Thus, we can say
that "kissed" is saturated within the post-noun modifying phrase - that is, all of
its Case- and 0- assignments are associated with receivers. Examining the matrix
verb "loves", we see that it assigns internal Case- and 0- roles to the NP "Sue" and
external Case- and 0- roles to the subject NP.

Having examined the Case- and 0- role assignments of the verbs, we can now
explore how the parsing mechanism distinguishes the two (i.e., that one is the verb
of a post-noun modifying phrase and the other is the matrix verb of the entire
phrase).The first thing we notice is that, because of the left-to-right processing of
the parsing mechanism, the parser cannot determine the saturation of internal Case
and 0- roles since they are assigned to elements which have yet to be constructed.
Therefore, internal Case- and 0- assignment is not significant for identifying the
matrix verb. We then examine the external Case- and 0- assignments of the verbs.
The assignments of the post-noun modifying verb are saturated by the subject of this
embedded phrase (the empty NP co-indexed with "who"), whereas the assignments

8Sentential complements and adverbial information may appear after the object, but they are
ruled out by the subcategorization of the matrix verb, or are ambig4ous.

9Verbs do not assign external Case; but, if they are tensed, we know that an AG R bearing
INFL (which assigns external Case to the NP) must immediately precede the verb. T herefore, if a
Tense bearing verb is encountered, we know that external Case is assigned .

37

of the matrix verb are saturated by the entire subject NP (including the post
noun modifying phrase). Therefore, whenever we encounter a verb which cannot be
saturated by anything but the subject NP, it must be the matrix verb. Conversely,
if we encounter a verb when there are two possible Case- and 0- receivers, it is the
matrix verb of a post-noun modifying phrase.

We capture this generalization within the parser by the predicate build..reL
clause, pictured in Fig. 4.6. After constructing the DP consisting of the deter
miner, the first noun, and all intervening adjectives, then the features of the next
element are examined10• If the next element is not a noun or determiner, and its the
external Case - and 0- assigning attributes are zero, then a post-noun modifying
phrase follows. The modifying phrase is then built using the procedures described
previously, it is joined to the DP, and the matrix verb check is done again (see the
last instance of the build..reLclause predicate). Note that building the phrase
ensures that the Case- and 0- assignments of the phrasal verb are saturated. When
a Case- (actually, a Tense bearing verb) or 0- assigner is encountered by this check
(the first two instances of build..reLclaus~ pictured), the build-NP procedure is
completed and the constructed NP is inserted into the front of the Buffer to receive
the assignments of the matrix verb.

4.3 Movement

The movement of elements within the sentence to fulfill lexical requirements is con
trolled by the Empty Category Principle (ECP) which determines the proper con
figurations under which movement may occur. The ECP is considered to be one of
the 'higher level' GB constraints which affects the representation at S-structure or
'above'. As we are postulating a theory which forms correct phrase-structure repre
sentations at NP- structure, an alternative to the ECP must be found for controlling
movement. The alternative is the newly defined GREPP, repeated below.

Generalized Revised Extended Projection Principle

Subcategorization requirements must be satisfied by all phrase
structure configurations, where "subcategorization requirements"
refers both to subcategorized and subcategorizing elements.

The GREPP states that all subcategorization requirements must be satisfied at
all phrase-structure configurations, including NP-structure. The GREPP can be

10 Adverbial and parenthetical information may intervene between the subject and the matrix
verb. Adverbials to the verb are dealt with, in general, by vord_check and chk_adv. Although
this has not been done at this point in processing, a check for adverbial information could easily
be done at this point. Parenthetical information will, incorrectly, be processed as a post-noun
modifier.

38

build_rel_clause([Constitl,[[Cat,Word,EC,ET,RC,RT,+ I Info] I Constit2] I
Buf_content],

Stack,Infoliat,
[Constitl,([Cat,Word,EC,ET,RC,RT,+ I Info] I Constit2] I
Buf_content],

Stack,Infolist).

build_rel_clause([Constit1, [[Cat, Word,EC, 1 Info]
Stack,Infolist,
[Constitl,([Cat,Word,EC,1 Info]
Stack, Infolist) .

Constit2]

Constit2]

Buf_content],

Buf_content],

build_rel_clause([Constitl,[[d I Info] Constit2] Buf_eontent],
Staek,Infolist,
[Constitl, [[d I Info] Constit2] Buf_eontent],
Stack, Infolist).

build_rel_elause([Constitl,([n I Info] Constit2] Buf_content],
Stack,Infolist,
[Constitl, [[n I Info] Constit2] Buf_eontent],
Stack, Infolist) .

build_rel_clause([Constitl,[end_of_sentence]
Stack,Infolist,
[Constitl,[end_of_sentence]
Stack, Infolist).

Buf_content],

Buf_eontent],

build_rel_clause([Constit1 I Buf_content],Stack,Infolist,
levBuf,NevStk,Nevinfo) :

clause_check(Buf_content,Stack,Infolist,
Buf1,[Clause I Stkl],Infol),

[Maxinfo I Rest_con] = Constitl,
build_rel_clause([[Maxinfo,Constit1,Clause] Bufl],

Stk1,Info1,NevBuf , NevStk,Nevinfo) .

Figure 4.6: the build_reLclause predicate

39

Case 1--..
Bil11 e
[N] [I]

~roles

seems
[V]

~
e

1
to like Mary.

[N] [I] [V] [N]
~

Figure 4. 7: NP movement

viewed as more than just a definition of constraint, but as a definition of the phrase
structure that will be present in a (grammatical) sentence. Thus, if at some point
in processing we encounter a subcategorizer which subcategorizes for an element
which is not present, then the element must have moved from that position to some
leftward position in the sentence11 . Unfortunately, processing movement is not as
simple as this. Since most subcategorizing elements subcategorize for more than one
possible element, we cannot blindly assume that a subcategorized element which is
not present has simply moved. The element may, ip fact, not be present in the
sentence at all, and this subcategorization is meant to fail in order that the correct
subcategorization may be tried. Therefore, the parser must be able to recognize
an element which has moved (without encountering its proper subcategorizer), and
record this fact for later use (i.e., when the proper subcategorizer is encountered).
In other words, we wish to use a filler-driven rather than gap-driven procedure.
Fortunately, it is easy to recognize a moved element ~ it does not have its Case- and
0- requirements saturated.

For example, in the sentence:

Bill seems to like Mary.

the NP "Bill" requires both Case- and and 0- assignment. The verb "seems" is
Tensed, and thus is related to an INFL which assigns external Case, but does not
assign an external 0-role. Therefore, "Bill" must have moved from a position which
receives a 0-role (but not a Case-assignment) to its present position in order to
receive Case. In this example, the verb "like" assigns an external 0-role but, because
"like" is unTensed, its related INFL "to" does not assign external Case. Thus, we
have the configuration shown in Fig. 4.7.

The above is a simple form of movement, but there are a number of 'types' .
Movement is normally divided into two main categories: Argument-movement (A
movement), which is the movement of those elements which appear at S-structure
or NP-structure in positions which require Case- and 0- assignments; and non
Argument-movement (A-movement), which is the movement of WR-elements and
topicalized elements.

11The direction of movement is always leftward except in 'special cases' such as extraposition
and right-node raising.

40

ch.k_a_move([[[n,Word1,EC1,ET1,1,1,Ten,S I Info1] I Constit1] I Buf_content],
[A_move,A_type,Scr1,Abar_move,Abar_type,Scr2],
[([n,Word1,EC1,ET1,1,1,Ten,NewScr1 I Info1] I Constit1],

[[v,Word2,EC2,0,RC2,RT2,+ I Info2] I Constit2] I Buf_content2],
[1,n,NewScr1,Abar_move,Abar_type,Scr2]) :

chk_adv(Buf_content,[[[v,Word2,EC2,0,RC2,RT2,+ I Info2] I
Constit2] I Buf_content2]),

NewScr1 is Seri+ 1.

Figure 4.8: the chk_a_move predicate

4.3.1 A-movement

NP-movement

NP-movement of the type described above requires that any NP which is not in
a position in which it receives a 0-role be flagged for movement. "Flagged for
movement" refers to the process of setting a flag value to I (from its default of 0)
to signify that a moved constituent has been encountered (and the empty category
associated with it has yet to be instantiated). The movement flags (one for A
movement and A-movement respectively) are found in the list structure lnfolist
which is passed, along with the Buffer and the Stack to most predicates. lnfolist
also contains a subscript counter (to link the flagged constituent to its corresponding
empty category) and a type holder which records the category which has moved.
The value of the subscript holder will be assigned to the S field in the list of the
NP's lexical features, and will be printed out beside the the NP in the printing of the
phrase-structure representation. The subscript will also be assigned to, and printed
beside, the empty category associated with the movement, producing a visual trace
of the movement.

The parser recognizes that movement has occurred, and flags this movement, in
the chk_a_move predicate, a sample of which is pictured in Fig. 4.8. If the first word
in the Buffer has the categorial features of a noun (i.e., NP, DP, or noun) and requires
Case- and 0- assignment12, and the following verb/INFL does not assign external
Case- and 0- roles, then movement is flagged. This flag (along with the subscript
and type) is 'carried' through the parsing process, until a subcategorizer which
subcategorizes for an NP is encountered. At this point, an empty NP is inserted
into the Buffer. This insertion, as are all other insertions of empty categories unless
specified otherwise, is performed by the predicate insert...move, the relevant section
of which is shown in Fig. 4.9.

12Pleonastics, such as "it", require only Case-assignment .

41

insert_move(Type,Butter,Stack,[1,Type,Scr1 I Info_content],
([[Type,e,0,0,0,1,•,Scr1, ([[]]]]] I Buffer],
[O,•,Scr1 I Into_content]).

Figure 4.9: the insert...move predicate

[
That Bill loves Mary seems

Figure 4.10: Subject Raising

Clausal Movement

The NP movement described above is the simplest form of A-movement; but, NPs
are not the only Arguments which can move. Entire phrasal elements, which require
at least a 0-role, can also move in a process called clausal movement (or fronted
clauses). Clauses may appear at the front of a sentence where they, obviously, are
not subcategorized for.

That Bill loves Mary seems to appear to be obvious.

If a clause is not subcategorized for in the position in which it appears, it must
have moved from a position in the sentence where it is subcategorized for. Clausal
movement is detected in the parsing mechanism by the predicate clausal...move.
After a phrasal element has been built and returned to the parse-driving predicate
(process_buffer), clausal...move checks to see if the phrase appeared at the be
ginning of the sentence (i.e., is a fronted clause). If so, the A-movement flag (part
of Infolist) is triggered and the subscript counter, Ser, (used to 'link' the moved
constituent to the empty category 'left behind') is advanced. The phrase is also
assigned the subscript value, which appears beside the phrasal maximal category in
the final printing of the phrase-structure representation. This flag, and subscript,
is 'carried' through the parsing process, until a subcategorizer which subcategorizes
for the phrasal type is encountered. At this point, an empty category of the phrasal
type is inserted into the Buffer.

Subject Raising

Arguments may also 'move through' a number of embedded phrases by a process
known as Subject Raising (see example in Fig. 4.10). In the example, the fronted
clause has moved from its subcategorized position (attached to "likely") to the front
of the sentence. But, the clause is also the subject of the IPs "e to appear" and "e to

42

insert_move(Type,Buffer,Stack,[1,Move_type,Scrl I Info_content],
[[[n,e,0,0,0,0,*,Scr1,[[O]]]] I Buffer],
[1,Move_type,Scr1 I Info_content]) .

Figure 4.11: the insert...move predicate

It is Bill ~ left.

Figure 4.12: WR-movement

be likely". The clause cannot 'stop' its movement in either of these positions since
neither 11 appears'' nor "likely" assign an external 0-role, and the clause requires a 0-
role13. Thus, the clause must continue its movement to the right14 in the sentence,
leaving an empty NP (which does not receive Case- or 0- roles) behind as the
subject of the phrases. It is only when the claus encounters a 0-marked position
that the movement can end and an empty category of the movement type (CP in
this example) be inserted .

Subject Raising movement is processed by the insert..move predicate pictured in
Fig. 4.11. Any position immedjately after a subcategorizing element which does not
receive a 0 -assignment from verb of the embedded phrase is assigned an empty noun
which does not receive Case- or 0- roles (of course, this only occurs if A-movement
has been flagged). The movement flag remains unchanged.

4.3.2 A-movement

A-movement differs from A-movement both in how it is flagged and how empty cat
egories are inserted. A- movement concerns two types of movement, WR-movement
and Topicalizations. WR-movement concerns the linking of WH-elements (who,
what , when, where) wHh the a,ppropriate empty position they are referring to. Top
icalization is the linking of phrases which are assigned neithei· Case- nor 0 - roles to
their appropriate position.

WR-movement

13The verbs "seems" and "appears" assign an internal 0-role, but these 0-roles are saturated
by the IPs they sub categorize for .

14For the purposes of this thesis, movement always occurs in a leftward direction. Here we are
talking about the construction of a trace by the parsing mechanism, and this must be done in a
rightward direction owing to the left-right processing of the sentence.

43

ins_abar_move([[[i,Word1,1 I Info1] I Constit1],
[[v,Word2 I Info2] I Constit2] I Buf_content1],

[[[Cat3,Word3,0,0 I Info3] I Constit3] I Stk_content],
[A_move,A_type,Scr1,1,Abar_type,Scr2],
[[[Abar_type,e,0,0,1,1,*,Scr2,[[[]]]]],
[[i,Word1,1 I Info1] I Constit1],
[[v,Word2 I Info2] I Constit2],
[[v,Word4,EC4,1 I Info4] I Constit4] I Buf_content2],
[A_move,A_type,S~r1,0,*,Scr2]) :-
have/be_word(Word2),
chk_adv(Buf_content1,[[[v,Word4,EC4,1 Info4] I

Constit4] I Buf_content2]).

ins_abar_move([[[i,Word1,1 I Info1] I Constit1] I Buf_content1],
[[[Cat3,Word3,EC3,ET3,0,0 I Info3] I Constit3] I Stk_content],
[A_move,A_type,Scr1,1,Abar_type,Scr2],
[[[Abar_type,e,0,0,1,1,*,Scr2,[[[]]]]],
[[i,Word1,1 I Info1] I Constit1],
[[v,Word4,EC4,1 I Info4] I Constit4] I Buf_content2],
[A_move,A_type,Scr1,0,•,Scr2]) :-
chk_adv(Buf_content1,[[[v,Word4,EC4,1 Info4] I

Constit4] I Buf_content2]).

ins_abar_move(Buffer,Stack,Infolist,Buffer,Infolist).

Figure 4.13: the ins_abar Jnove predicate

WR-movement occurs whenever a WR-element is encountered15 . Thus, WR
elements can never be Arguments, as they never appear in Argument position. The
flagging of WR-movement is trivial - whenever a WR-element is encountered, WR
movement is flagged. Insertion of the appropriate empty category is non-trivial how
ever, as WR-movement can occur from non-subcategorized positions (see Fig. 4.12).
Wh-movement can also occur in subcategorized positions, and insertion into these
positions is handled the same way as NP-movement (except that the subcategorizer
must assign both Case- and 0- roles). Inserting into an non-subcategorized subject
position is performed by the ins_abar Jnove predicate pictured in Fig. 4.13. If a
Tensed verb is encountered which assigns an external 0-role, and the previous ele
ment encountered (which is found on the top of the Stack) does not receive Case;
then an empty NP is inserted into the front of the Buffer and A-movement unflagged.

15Special cases of Wh-movement, such as echo questions and multiple WR-questions, are not
handled by the parsing mechanism.

44

Jo~.

Figure 4.14: topicalization

chk_abar_move([[[Cat1,Word,EC,ET,RC,RT,Ten,S I Info1] I Constit1],
[[Cat2 I Info2] I Constit2] I Buf_content],

[A_move,A_type,Scr1,Abar_move,Abar_type,Scr2],
[[[Cat1,Word,EC,ET,RC,RT,Ten,NewScr2 I Info1] I Constit1],
([Cat2 I Info2] I Constit2] I Buf_content],

[A_move,A_type,Scr1,1,n,NewScr2]) ·-
(Cat1 = n;
Cat1=d),

(Cat2 = n;
Cat2 = d),

NewScr2 is Scr2 + 1.

Figure 4.15: the chk_abarI11ove predicate

Topicalization

Topicalization, the occurrence of an NP 16 which is noL assigned Cas - nor 0 - roles~
occurs when two NPs appear beside each other (se Fig. 4.1 4). The flagging of Top
ica.lization (as A-movement) is a relatively straightforward matter. The predicate
chk_abar...move (pictured in Fig. 4.15) looks for' two NPs occurring beside each
other in the Buffer. If this situation is encountered, A- movement is flagged and
processed as described above.

4.4 Building Representational Trees

Once the parsing mechanism has collected all of the elements of a phrase, it must
'form them up' into a representational tree structure. Other than verbs which
subcategorize for two elements (which are automatically formed up into a tertiary
branching structure dominated by V, in accordance with Percolation Principle I),
the process is simply a matter of comparing the two top elements on the stack in
accordance with the Percolation Principles. The Percolation Principles determine a
dominating node for these two elements. A new element is then constructed con
sisting of the generated dominating node and the two elements, and this element
is then placed onto the top of the stack. Thus, each element is compared with the
dominating node of the previous two nodes to form the next dominating node.

16Other phrasal types can be topicalized, we deal here with NPs only as an example.

45

chk_tensed_verb(Buffer,
([[Cati I In:foi] I Constiti] Stk_content],
[([i,e,i,0,0,0,*,0,[[[]]]]],

([v,Word2,EC2,ET2,RC2,RT2,+ Info2] I Constit2]
Bu:f_content2])

Cati\== v,
Catl \== i,
chk_adv(Bu:ffer,([[v,Word2,EC2,ET2,RC2,RT2,+ I Info2] I

Constit2] I Buf_content2]).

chk_tensed_verb(Bu:f:fer,Stack,Buf:fer) .

Figure 4.16: the chk_tensed_verb predicate

4.5 Special Conditions on Processing

A small number of special conditions or circumstances exist within the syntax of
English which have not been built into the general processing mechanism of the
parser. These conditions tend to be of the form: if a certain condition exists within
the Buffer, then perform some action. For example, as has been previously men
tioned, all Tensed verbs must be associated with an AGR bearing INFL. Often this
INFL element is not present within the sentence, and an empty INFL element must
be created (immediately to the left of the verb) to bear AGR. Thus, we have the
condition: if a Tensed verb is encountered without an INFL immediately to its left in
the Buffer, create an empty INFL element (which assigns external Case) and insert
it into the front of the Buffer. This is performed by the predicate chk_tensed_verb,
pictured in Fig. 4.16.

There are a small number of special case scenarios such as verb/INFL association,
and all have the same general form: if X is found in the Buffer, then alter the Buffer
in some way. Because these 'special conditions' all have the same general form,
they are grouped together 'under' one driving predicate, word_check. Whenever
word_check is invoked (which is every time the system examines a new word in
the Buffer), all of the 'special checks' are done. Since all of these checks result
in some alteration of the Buffer contents, the parsing mechanism can use a simple
comparison to determine if any special cases were encountered and react accordingly
(see Section 4.2).

We will now discuss some of the 'special cases', the conditions which trigger
them, and their modifications to the Buffer.

word_check contains three calls to predicates which deal with the peculiar be
haviour of the verbs "be" and "have". Both "be" and "have" can appear as an aux
iliary to another verb (for example, "I am sleeping"). Although "be" and "have" are
still considered verbs in this instance, they exhibit non-verbal behaviour. Firstly,
they 'lose' their subcategorizations, subcategorizations they retain if not followed
by another verb. Even more peculiar, if the INFL element associated with the verb

46

IP

A
1A
It i A

wasi I A
e,

1 1 ~
hoped that Bill would leave

Figure 4.17: aspectual have/be movement to INFL

chk_h/b_v([[[v,Word,EC,ET,RC,RT,Ten,S,Subcat] I Constit1],
[[v I Info2] I Constit2] I Buf_content],

[[[v,Word,EC,ET,RC,RT,Ten,S,[[[]]]] I Constit1],
[[v I Info2] I Constit2] I Bui_content]) ·

have/be_word(Word).

chk_h/b_v(Buffer,Buffer).

Figure 4.18: the chk...h/b_v predicate

pair is empty, "be" and "have" will 'move into' the empty INFL, leaving behind an
empty verb position17 . Thus, a sentence such as

It was hoped that Bill would leave.

will produce the phrase-structure representation tree pictured in Fig. 4.17.
Although related, the two cases described above are handled by two separate

predicates. Elimination of "be" or "have" 's subcategorization is performed by the
predicate chk...h/b_v pictured in Fig. 4.18. If a "be" or "have" type verb is followed
by another verb, the subcategorization of the "be" or "have" type verb is elimi
nated. The movement of such a verb into an empty INFL element is handled by
the predicate chk_aspec...h/b, pictured in Fig. 4.19. If a "be'' or "have" type verb
is encountered which is followed in the Buffer by another verb which is Tensed, and
the previous element (found on the top of the Stack) is not an INFL; an INFL is
created, the "be" or "have" word moved into it, and an empty V left on the Buffer.

The verb "be" also exhibits peculiar behaviour when coupled with an adjective,
as described in Section 3.4. As was previously discussed, in such a case the "be"
verb is considered to be a dummy verb, inserted simply to bear Tense (and thus be

17[Pollock 89] associates this with failure to assign 0-roles.

47

chk_aspec_h/b([[[v,Word I Into] I Constit1] I But_content],
[Top_Stk I Stack],
[[[i,Word, 1,0,0,0,*,0, [[0]]]],
[[v,e I Into] I Constit1],
[[v I Into2] I Constit2] I But_content2]) ·
have/be_word(Word),
Top_Stk \== i,
chk_adv(But_content,[[[v I Into2] I Constit2] I But_content2]).

chk_aspec_h/b([[[v,Word I Into] I Constit1] I But_content],
[Top_Stk I Stack],
[[[i,Word, 1,0,0,0,*,0, [[0]]]],
[[v,e I Info] I Constit1] I Buf_content]) ·
have/be_word(Word),
Top_Stk \== i.

chk_aspec_h/b(Buffer,Stack,Buffer).

Figure 4.19: the chk_aspec..h/b predicate

linked by predication to an !NFL which assigns external Case). In such a case, we
must replace the normal subcategorization properties of "be" with the subcatego
rization properties of the adjective (modelling the 0-;ole transmitting properties of
a dummy "be" verb).

word_check also drives the formation of NPs fronted by determiners. Whenever
a determiner is encountered, the build...np predicate is immediately invoked, forming
up the NP and placing it back into the front of the Buffer. ·

4.6 An Example Parse

Having detailed the functioning of the parser, we now present an example parse to
further explain the parsing procedure. The example will be the same as presented
in Section 3.6, except, of course, that we will be presenting a computational solution
rather than a 'by hand' parse.

The sentence to be parsed is:

John, I know that Bill likes.

The input sentence is first divided up into individual words which are matched to
entries in the lexicon. The corresponding lexical entries are then slotted into a
buffer, maintaining the original sentence order.

"John" is the first word to be encountered by the system. Because the first word
is a noun, the process process_ip predicate is activated which will try to construct
an IP (i.e., a sentence). If, for example, a COMP had been encountered first, the
system would try to form up a CP, which would then be flagged as a moved phrase

48

fronting a sentence which follows. In the processing of the element "John', th
predicate chk_abar ..move recognizes the fact that the noun is followed by another
noun rather than a 0 -assigner. This is a case of topi alization, therefore th pred
icate flags an instance of WH-type movement. This is done by setting the varfabl
Abar..move to the value one, the variable Abar_type to "n\ and adding one to the
value of Ser (initially set to 0). These variables ar found in the Infolist argument
list which is used to flag all movement and 'carry along' necessary information al out
the movement. The S variable in the element ,, John"'s lexical features is also set
to the new Ser value. This number will be used to link the moved element to its
corresponding empty category. "John" is then placed on the stack.

The next element to be encountered is "I". Processing is still being driven by
the process_ip predicate and, as "P' neitl er satisfies the predicate (i.e., a complete
sentence formed) nor subcategorizes for anoth r element, it is simply placed upon
the stack.

The verb ''know' now occupies the front of the buffer. Special processing, which
occurs before the general processing of the parser, will recognize "know'' as a tensed
verb which was not preceded by an AGR bearing !NFL (as tie top of tb stack.is
not occupied by an TNFL). An empty INFL is immediately inserted into the front
of the buffer and processing continues as normal. Now when the general processing
begins, INFL is the element being processed, as it occupies the front of the buffer. As
with "I", INFL neither satisfies the current process nor subcategorizes for another
element, therefore it is simply placed on the top of the stack. Note: if we had chosen
so, we could now build a partial representation of t.he phrase-stru ture tre . INFL
assigns Case immediately to its left, therefore by PPII, its features will dominate it
regardless of the properties of the next element. Once on dominate node is known
all nodes to the left of it in the representational tree can b resolved. W hav
chosen not to form a partial tree at this point only to simp lify the implementation.

The parser again encounters "know" at th front of the buffer. As an INFL
occupies the top of the stack no new empty INFL will be inserted into the front of
buffer. Now as general processing starts . "know" occupies the front of the buffer.
Because 1'know" subcategorizes for a phrasal element, we must resolv which of
th possibly many subcategorizations listed as part of the verb's lexical features is
appropriat for this sentence. This is done by actually trying to form the approp1·iate
phrasal element for each subcategorizat.ion, starting with the first specified in th
list of possibl subcat gorizations. When th parser successfully returns from an
attempt to build such a phrase, thaL subcategorization is selected as the correct one
for this sentenc and all others are eliminated. In trus ase CP is listed first in the
subcat goriza.tion list so the parser will try to constru t a CP with the remaining
clements of the buffer. A recursive call is made to the parsing tn chanism (in the
form of an invocation of process_cp) passing in an mpty stack and th partial
buffer. The Infolist argument list remains intact.

We begin the building of a CP by looking for a COMP element. In this case

49

"that" is found in the front of the buffer and it is simply moved to the top of the
stack. If no COMP element was present, an empty COMP element would have
been created and placed on the stack (an action particular only to the build-CP
procedure).

"Bill" is now encountered by the parser. This noun neither completes the CP
nor subcategorizes for another element, so it is simply placed on the top of the stack.

The verb "likes" is now encountered. As it is a tensed verb with no preceding
INFL, an empty INFL is created and placed on the top of the stack, as described
above. The verb "likes" is then processed. "likes" subcategorizes for an NP, therefore
the parser must satisfy this subcategorization before it can complete the CP (and, in
turn, complete the IP). Before this subcategorization satisfaction is attempted (i.e.,
before the call is made to the appropriate predicate), the predicate insert..move
is invoked. This predicate (which is invoked for every element processed) usually
returns the buffer unchanged, but in this case it finds a match between a moved
Case- and 0- receiver (" John") and a Case- and 0- assigner without a following
receiver ("likes"). This is the condition for a WR-movement 'landing site' and thus
corresponds to the topicalized NP movement. An empty category is inserted after
"likes" which is assigned the categorial features of the type in Agr_type (n). The S
lexical feature of this empty category is given the value in the Ser variable (which
will link it to "John"), and Abar ...move is set to zero, unflagging movement.

The parser now tries to satisfy the NP subcategorization by checking for an
NP (or a determiner which fronts an NP) in the next buffer location. It finds the
empty NP and halts the recursive descent. We return to process_cp which we have
now completed by satisfying the subcategorization requirement of the subcategorizer
in the phrase. "likes" and the empty NP are then placed upon the stack (already
holding, from top to bottom, INFL, "Bill" and "that") and the build_tree predicate
invoked. This forms up a phrase-structure representation of the CP which provides
the crucial dominate element of the phrase which is needed for attachment to the rest
of the sentence. The completed CP is then returned as the subcategorized element
of "know". "know" and the CP are placed on the stack (containing INFL, "I",
and "John") and build_tree invoked once again. This builds the phrase-structure
of the entire sentence, attaching the already formed CP branch by the domination
relationship between "know" and the CP.

The parser has now returned through all levels of recursion. The mechanism
checks to see if anything remains in the buffer (certain constructions, such as a
cleft, hang from an IP) and, finding it empty, the completed representational tree is
passed to ppxmax where it is printed.

50

Chapter 5

Evaluation of Results

In this thesis we have introduced a computational model of an existing linguistic the
ory which heavily stresses questions of learnability. As such, any evaluation of our
model must first focus on the faithfulness of the implementation to the theory. We
will then focus on the actual parsing mechanism itself. Wel1ave introduced a parsing
model which does not use explicit phrase-structure rules to derive phrase-structure
representations of sentences. This is a rather radical departure from traditional
parsing methods. In this chapter we will also examine some of these more tradi
tional parsing methods and argue on the grounds of epistemological priority that
the proposed method is superior. We will then examine a parsing method based on
similar principles as ours and compare the two. Finally, we will discuss. a natural
evolution of the system to the field of language acquisition.

5.1 The Theory and the Implementation

The implementation of Davis' version of GB theory has basically been a process of
building a parsing mechanism to drive the activation of the Percolation Principles.
The parser must check the word order for correctness, insert any empty categories,
and recognize phrasal boundaries; the Percolation Principles then trivially build
the phrase structure representations. All parts of this mechanism (other than the
very basic left-right nature of the parser) are based upon the linguistic theory, the
faithfulness of this implementation being the subject of this section. We will examine
the parser as the sum of four parts: the recognition of phrasal boundaries and the
correctness of word order, movement (or the insertion of empty categories), the
Percolation Principles, and special processing modules as described by the theory.

51

5.1.1 Building Phrases

As we have seen, the building of phrases is a left-right process of subcategorization
fulfillment (for subcategorizers) and Case- and 0- role fulfillment (NPs)1

• No actual
proposal for a parsing paradigm was presented in Davis' work, not surprisingly as
it is a linguistic theory; not one based upon computation; but the in-depth analysis
of Case- and 0- role behaviour had a direct influence upon the parsing procedure
developed. This includes the analysis of phrase completion upon 0-role saturation
and NP completion upon encountering an external 0-assigner which saturates the
NP (correct word ordering is also partially checked by subcategori zation and also by
the NP building process). In fact , Davis' presentation of theory l ads one to believ
that a right-left implementation is favoured, as the percolation pr inciples construct
domination relationships in this manner (for example, see Section 3.6). This strategy
can be avoided by noting that PPI and PPII are actually contingent upon a single
node (not a pair of nodes), and thus one can form . the domination relationship
without ever examining the other (rightward) node. This, in turn, allows one to
'form up' the representational phrase-structure tree for all nodes to the left of this
point. Using this observation, one can process the sentence left-to-right, constructing
a portion of the representational tree whenever a node assigns Case or a 0-role to
an adjacent node2 • This allows one to avoid placing the entire sentence on the
stack and then applying the Percolation Principles (in effect, parsing right-to-left).
This means that the stack need not be unlimited and that partial representations
of the input sentence are constructed 'on the fly', both important psychological
considerations. In actuality, for ease of processing, a compromise approach to this
problem was implemented in which entire phrases were placed on the stack before
application of the Percolation Principles, allowing for simplified tree building. This
approach calls for a possibly unlimited stack, but does not affect the psychological
validity of the general approach (as the system could always be altered to perform
as described above).

One implementation issue which is not part of Davis' theory at all is the order
ing of a subcategorizer's different possible subcategorizations. This ordering (double
subcategorizations, then PPs, then IPs, etc.) was imposed when processing showed
that certain phrases could be construed as other (incorrect) phrases (eg., a CP with
an empty COMP rather than an IP) if ordering was random. Interestingly enough,
the imposed ordering works for the lexicon described, except for certain verbs which
Case-mark the subject of subcategorized phrases. These verbs, referred to in this
thesis as "believe-type verbs", have had their subcategorization ordering altered

1 It should be pointed out that sub categorization fulfillment is, in actuality, a slightly more
abstract form of Case- and 0- fulfillment . Subcategorizations specify the Case- and 0- role as
signments of a subcategorizer, and one can argue t.h aL I.he specification of a subcategorized phrasal
type is simply a special restriction upon these ro le assignments.

2In English, this will apply to cases of a node assigning Case to the left (which is always to an
adjacent node), or a 0-role assignment to the right (again, always to an adjacent node).

52

so that CP is attempted before IP; and such an alteration functions correctly in
this implementation. We do not mean to suggest that such results are a case for
subcategorization ordering in human language processing. Indeed, many possible
explanations could account for subcategorization selection, including possible par
allel implementations which try al"i possible subcat gorizations simultaneously and
select the 'best', or certain subcategorization selections being 'ruled out' by further
processing (i.e., constraint checking) not implemented here and backtracking to se
lect another subcategorization. We raise this point simply as a part of the discussion
of the operation of the parsing mechanism, and as an issue for future study.

5.1.2 Movement

The insertion of empty categories as described in Davis' theory is insufficient for a
computational implementation. Davis' method, as best illustrated in the example
in Section 3.6, is dependent upon the 'parser' (in Davis' example, the author) know
ing the assignment of 0-roles between sentence elements. When a position in the
sentence is encountered which would normally receive a 0-role, and no 0-receiver is
present, an empty category is inserted. One must know in advance that this position
receives a 0-role. With the elimination of PRO and the relaxation of the 0 -criteria,
this is no longer possible for subjects (i.e., positions which are not subcategorized
for, but do bear a 0 -role). Now when a 0 -assigner is encountered, we do not nec
essarily know if a corresponding subject 0 -receiver must be present (and an empty
category present if one is not found) or if one of the 0-receivers receives two 0-roles.
Thus, we cannot blindly insert an empty category whenever a 0-assigner without
receiver is encountered. Instead, we must keep careful track of where 0-assignments
have been made, and what possible 'landing-sites' exist for the movement. This
processing is described in Section 4.3 and will not be repeated; we simply wished to
point out a difference with Davis' theory.

5.1.3 The Percolation Principles

As has been previously mentioned, the implementation of the Percolation Principles
was quite straightforward. As they are simply dominance relationships between two
adjacent nodes, they could be implemented as simple comparison features. Only
PPIII, which refers to subcategorization and adjunction sets, was difficult to imple
ment, and then only because the W specification (the specification of particular syn
tactic features on a subcategorized head -a see Section 4.1) was not implemented3 . It
was discovered during testing of this implementation that, for the lexicon described,
PPIII could be expressed simply as a relation between S (JP) and other phrasal

3Specificly, PPIII could not. determine the set membership (either sub categorizaLion or adjunc
tion) of a CP headed by an empty complementizer without the featur specification contained in
the W identifier.

53

nodes, with S being dominant. The proper implementation of the W subcategoriza
tion feature would eliminate this somewhat ugly 'hack', and should be included in
any future implementations of this theory.

5.1.4 Special Processing

Finally, Davis' theory introduced a few 'special cases' of processing which did not fit
into the general functioning of the parser. The insertion of an AGR bearing empty
INFL immedjate1y before a Tensed verb (not already associated with an INFL) is
such a case. This condition, widely accepted in GB theory, is not triggered by the
movement of INFL out of this position (as are empty categories) and thus could
not be included as part of the more general movement procedures·. Empty !NFL
insertion must also happen before the processing of the Tensed verb (which would
be at the front of the buffer) to allow for Case-assignment to the subject of the
sentence, therefore it could not be part of the general processing of the verb (as

. Case-assignment is a function of the !NFL, not the verb). Thus, this case was
added to the special processing procedure of the parser, which operates before the
more general processing of the buffer.

The verbs "have" and "be" exhibit particular behaviour in that they 'move
into' an empty !NFL position associated with a Tensed verb following them in the
buffer (as described in Section 4.5). We cannot wait to encounter "have" or "be"
to perform this function as this would mean altering the contents of the !NFL
entry which has already been placed on the stack. To do so would mean 'backing
up' in the processing (i.e., reprocessing an element we have already finished with),
something which should be avoided for reasons of psychological validity. Thus we
institute a look-ahead in the buffer to spot the INFL - "have" or "be" - tensed
verb combinations and move "have" or "be" during the processing of the INFL. Of
course, this requires processing beyond the bounds of the general operation of the
parser, which deals with only the first element of the buffer.

The verb "be" also exhibits particular behaviour when coupled with a subcatego
rizing adjective. As explained in Section 3.4, in this case "be" is acting as a dummy
verb (i.e., a verb without subcategor1zation features) to bear Tense, and thus call
for the insertion of an empty INFL if no INFL already exists. We need to recognize
that "be" is a dummy verb before encountering the adjective (or else the "be" will
be processed as a subcategorizing verb), thus we again implement a look-ahead and
perform this check before the general processing of the parser.

5.1.5 Final Notes

As a final note, we wish to identify one other alteration of Davis' theory by this
implementation. Some recent GB proposals have been advocating the formation
of DP structures to accommodate post-noun modifiers. We follow this analysis

54

of such structures and build them as such , but an P is still placed at th head
of these structures (as opposed to a DP). This was done pur ly to simplify the
implementation (as these DPs are processed the same way as NPs, but differently
than determiners) and should not be construed to reflect upon the linguistic th ory
implemented.

5.2 Principle vs Rule-Based Systems

Despite the increasing popularity of principle-based parsing mechanisms in recent
years (see, for example, [Crocker 88], [Barton 84], [Stabler 87]), the dominant mod
elling strategy for the construction of parsers remains tl1e context-free grammar
(CFG) rule-based paradigm. Th.is is understandable considering the (relatively)
long tradition of CFG-based models and the existence of well proven implementa
tions. CFG-based models have proven to be at least nearly adequate to perform the
traditional task of a grammar (to generate all and only the sent nces of a language,
and to assign to each sentence its proper structure(s)) and to do it efficiently. Yet,
CFG-based models fail as an explanation of linguistic abiljty.

Firstly, CFG-based models say very little (if anything) about questions of lan
guage acquisition. CFC-based models, by emphasizing the configurational aspects
of language, emphasize an aspect of language wh1ch varies greatly from language
to language. There are no context-free rules which are universal [Abney et al. 86],
therefore language learners are forced to acquire the entire grammar of the language
they are exposed to. Given the poverty of stimulus argument (see Section 1.1)
and the fact that certain aspects of language are so complex as to be seemingly un
learnable (eg., conditions on long-r_ange quantifier-variable dependencies), this seems
highly unlikely, if not impossible. Principle-based systems on the other hand, posit
an innate Universal Grammar (UG) which defines the core grammar for all lan
guages. The same set of grammatical principles apply in every human language,
modulo limited parameterization. The process of language acquisition is thus re
duced to the setting of certain parameters within UG in accordance to the language
of exposure. This explains both the fact that linguistic knowledge is often acquired
with insufficient or no evidence, and that certain very complex knowledge is avail
able to the learne~. Unfortunately, the exact nature of the parameters and precisely
what aspects-of language they represent is not precisely known at this time, but an
incomplete theory is superior to an inadequate one.

Secondly, CFG-ba.sed models say little, if anything, about the ungrammaticality
of 'incorrect' sentences. If a rule-based system fails in its parsing, it is always for
the same reason - no corresponding phrase-structure rule was found to be consistent
with the exis ting structure. The parser may also return a trace of the representation
formed to that point in processing but it cannot say why the sentence is ungrammat
ical. Yet for some cases of ungrammaticality, such as subjacency violations, humans

55

are able to interpret an ungrammatical sentence; this implies that the human parser
assigns structure to at least some ungrammatical sentences. Again, principle-based
parsing provides an explanation for an observed linguistic phenomena such as this.
Phrase-structure representations are built up in GB theory at an elementary level,
before configurational checks are performed by the 'higher level' modules. The vio
lation of certain of these configurational checks (such as subjacency) will not cause
a total parsing failure, but will produce a 'most likely' structure and an explanation
of what principle(s) was vio_lated. Language users are not only able to interpret the
ungrammatical sentence, they are able to determine why it is ungrammatical.

Finally, context-free grammars presuppose that human language is a context-free
construction - but it is not. It has been shown that at least two human langu_ages,
Swiss-German and Bambara, are not context-free (in that they contain context
sensitive constructions - see [Shieber 85] and [Culy 85] respectively). CFG-based
parsers may perform well at providing a broad coverage of linguistic phenomenon,
but they do not reflect linguistic competence.

5.3 Principle-Based Systems

Assuming that one has decided to approach human language as a principle-based sys
tem, one must decide which 'version' of current linguistic theory to implement. On
this subject we will confine our discussion to the topic of this thesis, the generation
of phrase-structure configurations. Most systems use a 'straight-ahead' implemen
tation of X-theory to generate D-structure and then apply Binding, Bounding and
the ECP modules to generate movement chains. There are a number of arguments
against this method of deriving phrase-structure (see [Davis 87]), but we will present
only (in the author's opinion) the most compelling, which deals with epistemological
priority.

A conventional X schema, such as that suggested by [Chomsky 866] is:

X = XX* - -
X =X*X

where X* represents zero or more occurrences of some maximal projection and X ==
X 0 • Order is parameterized; the ordering pictured here is for English. This schema
is based upon the proposals of [Stowell 81] (pictured in Fig. 5.1), which in turn
follow from those originally put forward by [Chomsky 70].

Let us consider the proposals of Fig. 5.1 in terms of epistemological priority. Is
there any presyntactic basis for terms such as "head", "maximal projection", "bar
level", or even "specifier" or "complement"? The answer is obviously no, thus we
must reject X theoretic terms as plausible candidates for syntactic primitives. In
fact, most of the terms are described in terms of each other, leading to a type of
circularity which would be extremely difficult to comprehend for a child trying to
'break into' the linguistic system.

56

a. Every phrase is endocentric.

b. Specifiers appear at the X level; subcategorized complements appear within
x.
c. The head always appears adjacent to one of the boundaries of X.

d. The head term is one bar-level lower then the immediately dominating
phrasal node.

e. Only maximal projections may appear as non-head terms within a phrase.

Figure 5.1: X schema

Since the definition of X-theory relies upon syntactic non-primitives, we must
conclude that any system of phrase-structure generation which relies upon prelin
guistic data has epistemological priority over it. This is exactly what the theory
of Davis does and, by fiat, this is exactly what our parser does. By relying upon
the syntactically primitive concepts of Case- and 0- relations to generate phrase
structure, we claim that our parsing mechanism has epistemological priority over
those which use X-theory.

5.4 Discussion of a Similar System

We now turn our attention to a parsing system which embodies many similar aspects
of the linguistic theory presented here as Davis' theory. In '[Abney et al. 86] the
authors present a parser which relies upon Case- and 0- relations in much the same
way as our model does. Whereas the parser presented in this thesis relies upon
the fulfillment of subcategorization specifications, their parsing mechanism is based
upon the saturation of 0-roles (both external and internal); every Argument must be
linked to a 0-assigner, every 0-assigner to an Argument. Thus, when an Argument
is encountered, the mechanism searches to the left or the right looking for a 0-
assigner. When a 0-assigner is encountered, a 0-receiver must be located for it.
A failure to locate a 0-assigner for a receiver or vice-versa is recorded as a failure
(i.e., an ungrammatical sentence). Once the relationships between 0-assigners and
receivers have been established (called Ii censing relations), X -theory and government
are used to establish the proper bar-levels, dominance relations, and attachment to
the representation tree.

Movement in this parsing mechanism is recorded in a way similar to that of the
parser described in this thesis. When a licensing check fails to find a 0-assigner for
a receiver, or encounters an Operator, movement is flagged. Empty categories are

57

inserted by another failure in licensing (this time a failure to find a 0-receiver for an
assigner), and linking of the empty category to the phrase which has moved is done
by a procedure which checks that an excessive number of barriers are not crossed.

Abney and Cole's parser can be seen as a rather elementary implementation of
many of the concepts described in this thesis (although, of course, it was based on
the work of Abney himself). The parser described in this thesis did not follow the
licensing, 0-fulfillment paradigm for two reasons. Firstly, Abney and Cole's parser
ignores the fact that the same word can subcategorize for (and thus assign 0-roles
to) different complements. As discussed in Section 4.2.1, this variability can be quite
severe and have a major impact on the processing of the sentence. Secondly, use
of Abney-type licensing conditions was made impossible in our framework by the
elimination of PRO and the subsequent relaxation of the 0-criterion. Abney-type
licensing will only work if one subscribes to a strong 0-criterion. The adoption
of a 0-criterion which allows 0-receivers to receive more than one 0-role makes a
matching paradigm impossible.

There are a number of other differences between the two parsing mechanisms, the
construction of the phrase-structure representation being the predominant. Abney
and Cole still make use of X-theory to form the representational tree, using a 0-
licensing relation as a simple constraint test for grammaticality. We have eliminated
X-theory all together, using the 0- (and Case) relations themselves as the basis for
forming representational trees. Once again, we must claim epistemological priority
over a parsing mechanism which relies upon X-theory.

5.5 Future Issues

As we have discussed before, there are distinct forms of government within the lin
guistic theory we are working with. 0-government, and the slightly less restricted
relation which characterizes internal Case-assignment, constitute the most restricted
forms of government. The assignment of external Case- and 0- roles is governed by
a much 'looser' form of government, based upon the concept of absolute barriers to
upward government. We have also discussed how the Percolation Principles, which
determine phrase-structure, are actually non-primitive concepts which are based
upon the assignment of Case- and 0- roles. Given this theoretical basis, Davis pro
poses that the process of language acquisition is the process of progression from a
grammar ruled by only very strict forms of government through to a grammar deter
mined by more general (i.e., both restricted and less restricted) forms of government;
and that this gradual relaxation of government corresponds to a 'grammaticaliza
tion' of the child's language. Along with this process of government development,
Davis posits the setting of two parameters to determine the ergativity of a lan
guage (the 'richness' of morphological Case-systems, whether inflectionally-rich or
inflectionally-deficient). As the strictness of government is 'loosened', and as the

58

parameters are set, the Percolation Principles should develop naturally; allowing
the child to form more complex phrase-structure representations , and thus progress
towards a mature grammar.

Davis' proposals for an acquisition system are much more detailed than described
above and are beyond the scope of this thesis. Our purpose here is to simply intro
duce the idea of an acquisition system and to make a few 'bold-faced' predictions on
how it may be done. The obvious first step is to reduce the Percolation Principles
(at least PPI and PPII) to a state based more upon government relations and as
signments, and less upon explicit ordering (as different languages assign Case- and
0- roles in different directions). These new "statements of configurations" should
allow the acquisition system to form elementary (i.e., highly restricted) configura
tional structures, and eventually to generalize to Percolation P rinciples configured
according to the language of exposure.

Secondly, a language generat ion system based upon the child s hypothesized
'primitive' conception of language (i.e., argum nts and subcategorizers linked by
0-roles) would be an interesting development. Given this 'primitive' conceptualiza
tion of language, we would then monitor the generation of sentences in a gradually
developing system. Would these sentences correspond to observed child linguistic
development? This would be the true test of the system.

59

Chapter 6

Conclusion

This thesis has presented a system for building phrase-structure representations
without the use of explicit phrase-structure rules. Specifically, we have developed
a system which generates phrase-structure based on the Case- and 0- relationships
between component words of a sentence, as well as the subcategorization features
of subcategorizing elements. As such, the system can be seen as a principle-based
parser, albeit an unusual deviation from the 'standard' approach.

The derivation of phrase-structure from primitive components (without any
rules) is a rather radical departure from previous syntactic parsing systems which
relied upon either explicit lists of rules (eg., [Woods 70], [Pereira et al. 80], [Mar
cus 80]) or the very generalized phrase-structure rules of X-theory (eg., [Crocker
88], [Thiersch et al. 89;91], [Dorr 87]). We have argued that the elimination of
phrase-structure rules (which are purely linguistic in nature) in favor of a system
which relies upon prelinguistic primitives demonstrates epistemological priority and
therefore such a system is preferred on cognitive grounds.

The described system accounts for a significant subset of the English grammar,
including aspectual have/be movement to INFL, argument movement, A-movement,
subject raising, topicalization, and some relative clauses (including stacked relative
clauses). The system has difficulty handling some forms of post-noun modifiers1 ,

sentential adverbs, and a number of difficult linguistic phenomenon such as rightward
movement, multiple WH questions, etc. which are seen as problematic in GG theory.
Also, the present system makes no claim to recognizing the ungrammaticality of
ungrammatical input. Previous approaches to the implementation of principle-based
systems have relied upon the 'higher level' components of GB theory to act as
constraints upon generated phrase-structure representations (eg., [Sharp 85], [Dorr
87]). In other words, phrase-structure is generated first, and then grammaticality
checks are performed. The system presented in this thesis is only for the generation
of phrase-structure, the 'higher level' constraint checks would have to be added to

1 Problems with the processing of post-noun modifiers arises from the ambiguity of phrMe
attachment within the clauses and can only be resolved through the use of pragmatic information.

60

the system to produce a robust parser. Since ihe phrase-structure generated by this
system is virtually identical to that generated by existing principle-based systems,
-and as we posit no alteration to higher-level constraint. checking it was determined
to be unnecessary to implement constraint checking modules which have already
been demonstrated by other systems. The addition of such modules would produ e
a system which is at least as robust as the system from which the modules were
taken.

The construction of a prindple-based system for generating phrase-structure
from prelinguistic primitives is relevant to a number of disciplines. As a model
of the human language faculty, it is of direct interest to linguistics and cognitive
science. As an implementation of a proposed linguistic theory, it provides credence
to the theory while, at the same time, suggesting some slight alterations. As a parser
which relies upon prelinguistic primitives which are available to very young children,
the system presents itself as a natural 'building block' in the development of a model
of language acquisition. Finally as a natural language parser, the present. d system
provides an efficient and elegant technique for the g neration of phras structure.
which is of interest to the fields of computational linguistics and artificial intelligence.

61

Chapter 7

References

[Abney et al. 81] Steven Abney and Jennifer Cole, A Government-Binding Parser,
unpublished manuscript, MIT.

[Abney 85] S. Abney, Functor Theory and Licensing: Toward an Elimination of
the Base Component , ms., MIT, Cambridge, MA.

[Abney 87] S. Abney, The English NP in its Sentential Aspect, MIT PhD disser
tation.

[Anderson 77] John R. Anderson, "Induction of Augmented Transition Networks",
in Cognitive Science l: 125-157.

[Aoun et al. 83] Y. Aoun and D. Sportiche, "On the Formal Theory of Govern
ment", in The Linguistic Review 2: 211-236.

[Barton 84] G. Edward Barton, Toward a Principle-Based Parser, Al Memo 788,
MIT AI ·Laboratory, Cambridge, MA.

[Berwick 82] Robert C. Berwick, Locality Principles and the Acquisition of Syn
tactic Knowledge , PhD dissertation, MIT Department of Computer Science
and Electrical Engineering.

[Berwick 85] Robert C. Berwick, The Acquisition of Syntactic l{nowledge , The
MIT Press.

[Berwick et al. 84] Robert Berwj ck and Amy Weinberg, The Grammatical Basis
of Linguistic Performance , Th MIT Press.

[Brown et al. 70] R. Brown and C. Hanlon, "Derivational Complexity and Order
of Acquisition in Child Speech", J .R. Hayes, ed.

[Collins Hill 83] Jane Anne Collins Hill, A Computational Model of Language Ac
quisition in the Two Year Old, Ph.D dissertation, University of Massachusetts.

62

[Chomsky 70] Noam Chomsky, "Remarks on Normalization", in R eadings in En
glish Transformational Grammar, R. Jacobs and P . Rosenbaum, ds. Waltham,
MA: Ginn and Co., pp. 184-221.

[Chomsky 81] Noam Chomsky, Lectures on Government and Binding, Foris Pub
lications, Dordecht.

[Chomsky 86a] Noam Chomsky, Knowledge of Language: Its Nature, Origin, and
Use , Convergence Series, Praeger, New York.

[Chomsky 86b] Noam Chomsky, Barriers, The MIT Press.

[Clocksin et al. 81) W.F. Clocksin and C.S. Mellish, Programming m Prolog ,
Springer-Verlag, 2nd edition.

[Crocker 88] Matthew W. Crocker, A Principle-Based System for Natural Lan
guage and Translation , TR-88-18, University of British Columbia.

[Culy 85) C. Culy, "The Complexity of the Vocabulary of Bambara", in Linguistics
and Philosophy 8: 345-351.

[Davis 87] He_nry Davis, The Acquisition of the English Auxiliary System and its
Relation to Linguistic Theory, PhD dissertation, University of British Columbia,
Vancouver, Canada.

[Davis 89) Henry Davis, Basic Concepts of Government-Binding Theory, unpub
lished manuscript, UBC.

[Dorr 87) Bonnie Dorr, UNITRAN: A Principle-Based Approach to Machine Trans
lation , ms., MIT, Cambridge, MA.

[Emonds 85] J. Emonds, A Unified Theory of Syntactic Categories , Foris Publi
cations, Dordrecht.

[Fukui et al. 86] N. Fukui and M. Speas, "Specifiers and Projections", m MIT
Working Papers in Lingitistics 8.

[Gold 67] E. Gold, "Language Identification in the Limit", Information and Con
trol 16: 447-474.

[Higginbotham 86) J. Higginbotham, Elucidation of Meaning , ms., MIT, Cam
bridge, MA.

[Hogger 84] Christopher J. Hogger, "Introduction to Logic Programming", Vol
ume 21 of APIC Studies in Data Processing, Academic Press, London.

63

[Hornstein et al. 81] Norbert Hornstein and David Lightfoot, Explanation in Lin
guistics. The Logical Problem of Language Acquisition I Longman Group Lim
ited.

[Huang 82] C.-T. J. Huang, Logical Relations in Chinese and the Theory of Gram
mar, unpublished MIT PhD dissertation.

[Hyams 86] Nina Hyams, Language Acquisition and the Theory of Parameters ,
D. Reidel Publishing Company.

[Kayne 84] R. Kayne, Correctedness and Binary Branching , Faris Publications,
Dordrecht .

. [Kelly 67) K.L. Kelly, Early Syntactic Acquisition , PhD dissertation, University
of California at Los Angeles.

[Koster et al. 82] J. Koster and R. May, "On the Constituency of Infinitives",
Language 58: 116-143.

[Lasnik et al. 88] Howard Lasnik and Juan Uriagereka, A Course in GB Syntax
, The MIT Press.

[Lloyd 87) John W. Lloyd, Foundations of Logic Programming , Springer-Verlag,
2nd edition.

[Marcus 80] Mitchell Marcus, A Theory of Syntactic Recognition for Natural Lan
guage , The MIT Press.

[Newport et al. 77] E. Newport, H. Gleitman and L. Gleitman, "Mother, I'd
Rather Do It Myself, Some Effects and Noneffects of Maternal Speech Style",
in Talking to Children: Language Input and Acquisition , C. Snow and C;
Ferguson, eds., Cambridge University Press, Cambridge.

[Otsu et al. 83] Y Otsu, H. van Riemsdijk, K. Inoue, A. Kamio, and N. Kawasaki
eds., Studies in Generative Grammar and Language Acquisition. A Report on
Recent Trends in Linguistics, Editorial Committee, Tokyo 1983.

[Pereira ,et al. 80] F.C.N. Pereira, D.H.D. Warren, "Definite Clause Grammars for
language analysis", in Artificial Intelligence , 13: 231-278.

[Pollock 89] "Verb Movement, Universial Grammar, and the Structure of IP", in
Linguistic Inquiry 20(3): 365-425.

[Postal 69] P. Postal, "Anaphoric Islands" in Chicago Linguistics Society 5: 205-
239.

64

[Pullum 85) G. Pullum, "Assuming Some Version of X-Bar T heory", in Papers
from the General Session of the Twenty-First Regional Meeting of The Chicago
Linguistics Society , University of Chicago.

[Radford 81] A. Radford, Transformational Syntax , Cambridge University Press,
Cambridge.

[Roeper et aL 85) Thomas Roeper and Edwin Williams eds., Parameter Setting ,
D. Reidel Publishing Company.

[Ross 67] J .R. Ross, Constraints on Variables in Syntax , unpublished MIT PhD
dissertation.

[Rothstein 83) S. Rothstein, The Syntactic Form of Predication , unpublished
MIT PhD dissertation.

[Sampson 83] G. Sampson, "Deterministic Parsing", in Parsing Natural Language
, M. King ed. Academic Piess, pp. 91-116.

[Sells 85) Peter Sells, Lectures on Contemporary Syntactic Theories , Center for
the Study of Language and Information.

[Selfridge 80] Mallory Selfridge, A Process Model of Language A cquisition , Re
search Report 172, Yale University, Department of Computer Science.

[Selfridge 86] Mallory Selfridge, "A Computer Model of Child Language Learn
ing", in Artificial Intelligence 29: 171-216.

[Shieber 85] S. Shieber, "Evidence Against the Context-Freeness of Natural Lan
guage", in Linguistics and Philosophy 8: 333-343.

[Speas 86] M. Speas, Adjunctions and Projections in Syntax , unpublished MIT
PhD dissertation.

[Stabler 87] E. Stabler, Logic Formulations of Government-Binding Principles for
Automatic Theorem Provers, Cognitive Science Memo 30, Un}versity of West
ern Ontario, London, Ontario, Canada.

(Sterling et al. 86] Leon Sterling and Ehud Shapiro, The Art of Prolog. The MIT
Press Series in Logic Programming , The MIT Press.

(Stowell 81] T. Stowell, Origins of Phrase Structure , unpublished MIT PhD dis
sertation.

65

[Thiersch et al. 89;91] Craig Theirsch and Hans-Peter Kolb, "Levels and Empty
Categories in a Principles and Parameters Approach to Parsing", technical re
port, Universiteit Brabank, Tilburg [89]; also to appear in Representational
and Derivational Approaches to Generative Grammar, H. Haider and K. Net
ter eds., Dordrecht: Reidel [91].

[van Riemsdijk et al. 86] Henk van Riemsdijk and Edwin Williams, Introduction
to the Theory of Grammar. Current Studies in Linguistics , The MIT Press.

[Wexler et al. 80] Kenneth Wexler and Peter Culicover, Formal Principles of Lan
guage Acquisition , The MIT Press.

[White 82] Lydia White, Grammatical Theory and Language Acquisition , Foris
Publications.

[Woods 70] W. Woods, "Transition Network Grammars for Natural Language
Analysis", in CA CM 13(10): 591-606.

66

Appendix A

Sample Parses

I. J\. n·r~· ~i111pl<' SP11l<·11n· c·o11si!-ili111?; of rt 1101111 rtnd <1 '('(-.flS<·d intra11sili\"£ .. vrrh.

I: bill slept.

0: infl
1: n: bill
1: infl

2: infl: e
2: v: slept

2. t\11 PXi'l1nph· of 1rc1nsill,·r vt•rh us~l?;C" ,

I: bill kissed mary.

0: i nfl
1: n: bill
1: infl

2: rnfl : e
2: V

3 : v: kissed
3 : n: mary

r;,

3. Example of a simple NP (the man).

I: the man kissed mary.

0: infl
1: n

2: d: the
2: n

3: n: man
1: infl

2: infl: e
2: V

3: v: kissed
3: n: mary

4. A verb which subcategorizcs for a PP.

I: the man sat on a chair.

0: infl
1: n

2 : d: the
2: n

3: n: man

1: infl
2: infl : e

2: V

3 : v : sat
3 : p

on 4: p:
4: n

5: d: a
5: n

6: n: chair

68

~- A VNl1 wloirl, suloc.tl<'~oriz•·s for lwo 01,j,·cts .

I: the man gave mary a book.

0: infl
1: n

2: d: the
2: n

3: n: man

1: infl
2 : infl: e
2 : V

3 · v: gave
3 : n: 11ary
3 : n

4: d: a
4: n

5: n: book

6. An rxamplr of hr/adjective feature passing.

I: i am fond of asparagus.

0: infl
1: n: i
1: infl

2: infl: am

2 : V

3 : v: e

3: adj
4: adj :
4: p

5: p:
5: n:

fond

of
asparagus

li11

7. /\spcctual have/he movement into the empty INFL, leaving behind an c111pty
Verb.

I: it vas hoped that bill vould leave .

0: infl
1: n: it
1: infl

2: infl: vas
2: V

3: v: e
3: V

4: v: hoped
4: C

5: c: that
5: infl

6: n: bill
6: infl

7: infl: vould
7: v: leave

8. Insertion of an empty COMP into the head position of a phrase.

I: i tried to leave .

0: infl
1: n: i
1: infl

2: infl : e
2: V

3: v: tried
3: C

4: c: e
4 ; infl ·

5: infl: to
5: v: leave

70

!l. An AclV<·rh i11L,•rvc11i11g IH'l.wc.-11 a V.-rh and ils associalcd (Tense bearing)
INFL. ·

I : i quietly asked bill to leave.

0 : infl
1 : n : i

1 : infl
2: infl : e
2: V

3: V

4 : adv : quietly
4: v: asked

3 : n : bill
3: C

4 : c : e
4 : infl

5: infl : to
5: v: leave

10. NI' 111ov,•111,•11I.

I : bill seems to like mary .

0 : infl
1 : n: bill (1)

1: infl
2 : infl : e
2 : V

3 : v : seems
3 : infl

4 : n:e(l)
4 : infl

5: infl : to
5: V

6 : v : like
6: n: mary

71

I I. The PP is an adjunct to the sentence.

I : ·bill vas seen by mary .

0 : infl
1: infl

2: n : bill (1)

2: infl

1 : p

3 : infl: vas
3 ; V

4 : v : e
4 ; V

5 : v:
5 : n :

2: p : by
2: n: mary

12. Argument movement.

seen
e (1)

I : a book vas given to mary .

0 : infl
1 : n (1)

2 : d: a
2: n

3: n : book
1: infl

2: infl : vas
2: V

3: v : e
3 : V

4: v: given
4 : n:e(1)
4 : p

5: p : to
5: n: mary

7'2

l'.I. Cla.nsill mm·rmrnl..

I: that bill loves mary i knov .

O: infl
1: C (1)

2: c: that
2: infl

3: n: bill
3: infl

4: infl: e
4: V

5: v: loves
5: n: mary

1: infl
2: n: l

2: infl
3: infl: e
3: V

4: v: knov
4:c:e(1)

1•1. A-1110\'<'lllt'llt., int.his c~s•· topi.-aliza.lion ,

I: john i knov loves mary.

0: infl
1: n: john (1)

1: infl
2: n: i
2: infl

3: infl: e
3: V

4: v: knov
4: C

5: c : e
5: i nfl

6 : n:e(1)

6 : infl
7 : infl : e

7: V

8 : v: loves
8 : n: mary

i '.I

15. Subject raising through intervening phrases.

I: that bill loves mary seems to appear to be likely .

o: inn
1 : C (1)

2 : c : tha t
2: infl

3 : n : bill

3: inf l
4 : i nfl : e
4 : V

S: v : loves
5: n: mary

1: infl
2: infl: e
2: V

3 : v: seems
3 : infl

4:n:e(1)

4: infl
5: infl: to
5: V

6: v: appear
6 : infl

7: n: e (1)

7: infl
8: infl: to
8: infl

9: infl: be
9: V

74

10: v : e

10: V

11 : v: likely
11: c: e (1)

l(i \Vll-111ov<'T11l'lll. a11 !'Xa111pl,· of .-l-111ovi,rn<'11t .

I: vho did you say sav bill 7

0 ; C

1 : c : who (1)
1 : mfl

2 : infl: did
2 : infl

3: n: you
3: infl

4: infl : e
4: V

5: v : say
5: C

6 : c : e

6 : infl
7 : n : e(1)

7 : infl
8 : infl: e

8 : V

9 : v : saw
9 : n: bill

17. Wll-movement within a post-noun modifying phrase.

I : the man vho bill sav left _

O: infl
1 : n

2 : d : the
2 : n

3: n
4: n: man

3 : C

4 : c: vho (1)
4 : infl

5: n: bill
5: infl

6: infl: e

6: V

7: v : saw
7 : n : e(1)

1 : infl
2: infl: e
2 : v: left

~ ~

IH. ,\ rdatiw• daus<' (Iii<' 111.>n in the park).

I: the man in the park kissed mary .

0: infl
1: n

2: d : the
2: n

3: n
4 : n: man

3 : p
4: p : 1n

·4_, n

5 : d: the
5: n

6: n : park
1: infl

2 : infl : e

2: V

3: v: kissed
3: n: mary

19. The following two examples highlight the problem of building relative clauses
- where to join the constituent clauses. The clauses can be joined so that
each clause dominates all following clauses (as we have done), or they can he
constructed so that subordinate clauses are all attached to the 'head' up. The
only way to determine which is correct for a given sentence is by pragmatic
information, which is clearly beyond the abilities of a purely syntactic parser.
So, we have arbitrarily chosen to construct relative clauses by attaching to the
immediately dominating clause, while recognizing that this will often times
generate incorrect p.;rses.

I: the man in the park vith the big trees kissed the girl.

0: infl
1: n

2 : d: the
2: n

3: n
4: n: man

3: p
4: p: in

4: n
5: d: the
5: n

6: n
7: n: park

6 : p
7: p: vith
7: n

8 : d : the
8 : n

9: n
10 : adj : big
10: n: trees

1: infl
2: infl : e
2: V

3 : v: kissed
3 : n

4 : d : the
4: n

5: n: girl

78

'.W. An cxampl<' of a11 i11con<'clly p,usc-cl rdalivc clause; incorrect.ly parsed for the
u·asons sl:'ll<"tl ahovr.

I: the man in the park vith the little boy kissed the girl .

0: infl
1: n

2: d : the
2 : n

3 . n

4: n : man
3 : p

4: p : in
4: n

5 : d: the
5 : n

6: n
7 : n: park

6 : p
7 : p: vith
7 : n

1: infl
2: infl : e
2: V

3: v: kissed
3: n

4: d: the
4: n

8 : d: the
8: n

9 : n

10: adj: little
10: n: boy

5: n: girl

T'I

21. A slacked rclalive clause.

I : the man vho i liked vho had a red car kissed the girl .

0: infl
1: n

2: d: the
2: n

3: n
4 : n

5: n : man

4 : C

5 : c: vho (1)

5 : infl
6: n: i
6: infl

7: infl : e
7 : V

8: v : liked
8 : n : e(1)

3: C

4: c: vho (2)

4: infl
5: n : e (2)

5: infl
6: infl : had
6: V

7: v : e

7: n
8: d: a

8: n

9: n
10: adj: red
10: n: car

1: infl
2: infl: e
2: V

3: v: kissed
3: n

4: d: the
4: n

5: n: girl

80

Appendix B

The Prolog Code

r.- ---
7. Sect ion : Process Input
r.
Y. Paradigm: process_input(Jnput, Tree)

%

-~

¼ Description : Constru c ts a representational tree of the inpu~ted Buffer .
%

process_ input (Input, Tree)
process _buffer (Input, [[bot_of _stack]] ,

[o. • ,0,0, • ,0] , Buf ,Tree, tnfolist)

¼--
% process_buff ar(Buff er ,Stack, Infolist, levBufhr , levStack, lOlJlnfolist)

r.
X Builds the phrasal type represented by the front of the Buffer,
7. checks the phrase for moTement (clausal 11over1ent), and recursively
Y. calls itself if the Buffer isn't empty .
,:

process_buff er([[end_cf _sentence]] ,Sta.cit, In:folist,
[[end_of_sentence] J ,Stack, Infolist) .

process_bu:ff er(Buff er , St act, Infolist, NauBuf, laaStlt, levlnfo)
clause_check(Buff er, Stack, Infolist, Buf2. [Cont I Stk2] , Info2),
clausal_110 .. ([Cont 1Buf2] ,Stk2, Info2 , [Con21Buf3], Info3),
process_buffer(Buf 3, [Con2 I Stk2] , Info3,

lovBuf , lovStk, leolnfo) .

r.--- -------
x clausal _11ove(Butter, Stack, Intol ist .leaBu:ff er O leulntolist)
Y. •
Y. Fla.gs clausal r1ove,aent and sets the subscript values .

%

81

cla.usal_11ove([Conatit1, [end_o1_sentence] I Buf_contont] ,Stack, Infolist,
[Conatitt, [end_of_sentence] I Buf_content] , Infolist) .

clauaal_move([[[c,mu,EC,ET,llC,t,Ten,S •I Info] I Constit] I Bu!_content].
[[bot_of_stack]],
[.&_move ,.&_type ,Sert, lbar_move ,Abar_type ,Scr2],
[[[c,max,EC,ET,llC,O,Tan,levScrt I Info] I Constit] I Buf_content].
[t, c, Je,.Scr1 ,Abar_11ove, Abar _type ,Scr2J)

levScrt is Sert + t.

cla.usal_11owe([[[p,■u,EC,ET,RC , t,Ten , S I Info] I Constit] I Buf_content].
[[l>ot_of_stack]],
[A_move,A_typa , Scrl ,Abar_■ove,Abar_typa,Scr2],
[[[p ,11ax,EC,ET,RC,O,Ten,lnScrt I Info] I Constit] I Buf_content] .
[1 ,p,levScrl,Abar_■ove,Abar_type ,Scr2])

l•vScrt i• Sert + 1.

clausal_move(Buff er ,Stack, Infolist, Buffer, In1'olist) .

82

7.- - ------ - --------- ----- --- --- ---------- -----
Y. Sect ion : Word Check
:r.
Y. Paradigm : aord_check(But fer ,Stack. Infolis·t. JlevButter. levStack. levinf'olist)
Y.
Y. Oeacription : Thia module performs the preliminary check• on the contents
Y. of the buffer: the 'special proce ■ sing.

:r.

uord_check(Buffer, Stack, lnfolist, llevBuf. Stack, levlnto)
chk_det (Buff er, Infolist, BufO, Info!),
chk_h/b_ • (BufO , But I),
chk_be_adj (Buf I, Buf2),
chk_asp,c_h/b(Buf2 , Stack, Buf3).
chk_ten,ed_ verb(But 3, Stack . Buf 4).
chk_a_move(Buf4, Infot ,BufS, Into2),
chk_abar_■ovo(Buf6, Info2, Buf6, Info3),
ins_abar _raove(Buf6 ,Stack. Info3, Buf7, "•vlnfo), ! ,
chk_adv(Buf7, RevBuf).

7.-------------------------- -------------------·
Y. chk_det (Buffer I Infolist, levBuff er, NeV"lnfolist)
:r.
¼ Build! an IIP (should be a DP for theoretiq1.l correctness) if a determiner
¼ i11 found in the frobt of the Buffer . The constructed NP is then inserted
Y. into the front of the Butter ,
%

chk_det([[[d I Into) I Constit) I Buf_content].Infolist,
lnBuf, levinto) : -

build_np([[[d I Info) I Const it) I But_content),
[[bot_of_stack]], Infolist , JevBuf, levStk, •••Info) .

chk_det (Buffer, lnfolist, Buff er, Infolist) .

%- -- - - - - --- - - - - - - - - -- - - - - - - - - - - - ---- - - - - -- - - - - - --- - - - -- - - - -- - --------- - - --
% chk_h/b_v(Buffer, levBuffer)

:r.
Y. Strips "have"- or "be"- type verbs of their subcategorizing features if
% they a.re followed by another verb.

:r.

chk_h/b_v([[[v , Vord,EC,ET,RC , RT,Ten,S,Subcat) I Constitl) ,
((y I Info2) I Constit2) I Buf_content),

(([v , Vord , EC,ET , RC,RT,Ten,S,[[[JJ]) I Constitl),
[[v I lnfo2) I Constit2) I Buf_content)) :

haYe/be_vord(Vord).

chk_h/b_ v (Buff er ,.Buffer) .

R:I

Y.----- --- --
Y. chk_be_adj (Buffer, levBuffer)
X
Y. Eliminates the subcategorizing features of "be"-type verbs if they are
Y. followed by a subca1;egorizing adjective .
Y.

chk_be_adj(([[i,llord I Infol) I Constit!],

[[v,e,EC2,ET2,RC2,RT2,Ten2,S2,Sub2] I Constit2],
[[adj I Info3] I Constit3] I
Bufcontent).
[([i , Vord I Info!] I Constitt].
((y ,e,EC2.ET2,RC2,RT2, Ten2 , S2, ([[))]] I Constit2] ,
([adj I Info3] I Constit3] I
But content)) : -

be_vord(llord).

chk_be_adj (([[,, llord, EC2 ,ET2, RC2, RT2, Ten2 ,S2, Sub2] I Constit2) ,
[[adj I Info3] I Constit3] I
Bufcontent] ,

[([v, Word ,EC2, ET2 ,RC2, RT2, Ten2, S2, [[0)]] I Constit2] ,
[[adj I Info3) I Constit3] I
Bufcontent)) :-

be_vord(llord).

chlt_be_adj (Buffer, Buffer) .

Y. - - - - - ---
:r. chk_aspec_h/b(Buffer ,Stack, levBuffer)
¾ .
¼ Mo••• a "have" - or "be"- type verb into an e11pty IIFL position, vhich
X it creates (given that no IIFL is already present).
X

chk_aspec_h/b([[[v,llord I Info) I Const it!] I Buf_content],
[Top_Stk I Stack] ,

[[[i,llord,t,o,o,o,•.o, [[[))])],
[[Y,e I Info] I Constit!],
[[v I Info2) I Constit2] I Buf_contont2))
bavo/be_word(Word),
Top_Stk \== i,

chlt_adv(Buf_content,[[[v I Info2) I Constit2) i Buf_content2)) .

chk_aspec_h/b([[[v, llord I Info] I Const it!] I Buf _content].
[Top_Stk I Stack],

[[[i ,Word, 1 ,0,0 ,0, • ,0, [[[))])],

[[i, •• I Info) I Constitl] I Buf_content))
have/be_vord(Vord),
Top_Stk \== i.

81

chk_aspec_h/b(Bufhr ,Stack, Buff er) ,

%---
¼ chk_ tensed _ verb(Buft'er .Stack, leu8uff er)

r.
Y. Insert• an empty IIFL element into the front of the Buffer upon
Y. encountering a Tense bearing verb, provided no IIFL already immediately
Y. preceeds the verb.
%

chk_ tensed_ verb(Bufter 1

([[Cati I Infol) I Constitl] I Stlc_contont],
[[[i,e,1,0,0,0,•,0,[[[J]JJ],

[[v,Vord2,EC2,ET2,llC2,RT2,+ I Info2] I Constit2]
Buf_content2]) -

Cati\== v,
Cati \== 1,
chk_adv(Buffer, [[[v,Vord2,EC2,ET2,llC2,RT2,+ I Info2] I

Constit2] I Buf_content2]).

chit_ tensed_ verb(Buf:fer . Stack, Buff er) -

Y.-------------------- . ----- -----------------------
% cht_a_move(Buf fer, Infolist, Neu Buff er, leulnt'olist)

Y.
Y. Flags argument movement and sets the subscript Yalues to be used in
Y. creating a movement trace.

r.

chk_a_move([[[n,Vordl,ECl,ETl,1,1,Ten,S I Info!] I Constitl].
lnfl_constit,
[[v I Info2) I Constit2] I Buf_contentl),

[A_move, A-Type, Ser I, Abar_move, Abar_type ,Scr2] ,
[[[n,Vordl,ECl,ETl,1,1,Ten,leuScrl I Info!) I Constit!].
lnfl_constit.
[[v I lnfo2] I Constit2],
[[v,Vord3,EC3,0 I Info3] I Constit3] I Buf_content3],

[t .n. levScr1. lbar _move, Abar _type ,Scr2]) : -
chk_adv(Buf_contentl, [[[v, Vord3, EC3 ,0 I Info3] I

Constit3] I Buf_content3]),
levScrt is Serl + 1.

chk_a_move([[[n,Vordl,ECl,ETl,l,1,Ten,S I Info!] I Constitl).
Infl_constit I Buf_contentt],

[A_11ove, A_ type, Serl, Abar _mowo, Abar_ type, Scr2],
[([n,Vordl,EC!,ETl,1,1,Ten,WeuScrl I Info!) I Constitll,

Infl_eonstit,
[[w,Vord3,EC3,0 I Info3] I Constit3] I Buf_content3],

8!",

[1 .n. levScrt. Abar_m.ove ,Aba.r _type ,Scr2]) : -

chl<_adv(Buf_contentl, ([[v ,Vord3,EC3,0 I Info3] I
Conatit3] I Buf_content3]),

levScrt is Sert ♦ 1.

chk_a_mo .. ([[[n,Vordl,EC!,ETl,1,1,Ten,S I Info!) I Constitl] I Buf_content].
[l_moYe, l_type ,Sert ,lbar_move, Abar _type ,Scr2],
([[n,Vordl,EC!,ETl,1,1,Ten,levScrt I Info!] I Constitl].

([v,Vord2,EC2,0,RC2,RT2,+ I Info2] I Constit2] I Buf_content2],
[1, n, levScrl, Abar _move, Abar _type ,Scr2]) :-

chl<_adv(Buf_content, [[[v,Vord2,EC2,0,RC2,RT2,+ I Info2] I
Constit2) I Buf_content2]),

le1ii1Scr1 is Sert + 1.

chk_a_move(Buffer, Infolist, Butter, Infolist) .

~-----·------------
¼ chk_abar _move(Buffer, Infolist, levButf er, levinfolist)
Y.
¼ Flags non-argument movement and sets the subscript values to be used
Y. in creating a movement trace.
Y.

chk_abar_move([[[c,1/ord,EC,ET,llC,llT,Ten,S I Info] I Constit) I Buf_content].
[A_move, A_typ• ,Serl, Abar _move, Abar _type ,Scr2) ,
[[[c,Vord,EC,ET,RC,llT,Ten,JeuScr2 I Info] I Constit) I
Buf_content] ,

[A_move, A_type ,Serl, I ,n,ReaScr2])
is_vhvord(Vord),
levScr2 is Scr2 + t.

chk_abar_move([[[Catl,llord,EC,ET,llC,llT,Ten,S I Info!] I Constitl),
[[Cat2 I Info2) I Constit2] I Buf_content],

[A_move, l _type, Sert, Abar _move ,Abar_type ,Scr2],
[([Cat1,\/ord,EC,ET,R.C,llT,Ten,lnScr2 I Info!) I Constitl) ,
[[Cat2 I Info2) I Constit;?] I Buf_content],

[A_move, A_ type, Serl , 1, n, levScr2])
(Cati n;

Cati = d),
(Cat2 = n;
Cat2 = d),

levScr2 il!I Scr2 + 1.

ehk:_abar_move(Butter, Infolist, Buffer. Infolist) .

,:
¼ ins_abar _move(Buffer I Infolist, Jl'egBuffer ,levinfolist)

r.
¼ Inserts an empty category corresponding to a iaoved non-argument in

86

Y. that case of the ea pty category appearing to the left of a
Y. subcategorizing element . Also unflags non-argument movement .
Y.

ins_abar_move([([i,Vordl,1 I Infol) I Constitl).
[(v,Vord2 I Info2) I Constit2) I Baf_contontl),

[[[Cat3,Vord3,0,0 I Info3] I Con ■ tit3] I Stk_contoni],
[A_move, A_type. Ser 1, 1 , &bar _type ,Scr2) 1

[[[Abar_typo ,o,0,0, I, I,• ,Scr2, [[[)]])),
[[i,Vordl,I I Infol) I Constitl),
[[v,Vord2 I Info2) I Constit2).
[[v,Vord4,EC4,1 I Info4) I Constit4) I Buf_content2).
[A_110-ve 1 A_type,Scrt 1 0,• 1 Scr2]) :
have/be_vord(Vord2),
chk_adv(Buf_contentl,[([v,Vord4,EC4 , I I Info4] I

Constit4] I Buf_contont2)).

ins_abar_moYO([([i,Vordt,1 I Info!) I Constitl] I Buf_contont!l,
[([Cat3 , Vord3,EC3,ET3,0,0 I Info3) I Constit3) I Stk_content] ,
(A_move, A_typo, Serl, I, Abar_ typo ,Scr2),
([[Abar_ typo,• ,0 ,0 , 1, l, • ,Scr2, [[[)]))) ,
[[i,Vordl,I I Info!) I Constitl).
[[v,Vord4,EC4,I I Info4) I Constit4) I Buf_content2),
(l_movo,l_typo,Scrl ,O,• , Scr2)) :
chk_adv(Buf_contentl, [([v,Vord4,EC4,1 I Info4) I

Constit4) I Buf_contont2)) .

ins_abar _move(Buffer, Stack, Infolist. Buff er, Inf olist) .

Y.- ------------ --------------- --
Y. chk_adv(Buffer ,levBuffer)
,:
% Forms .,erb/adverb (or a.d.,erb/verb) combinations into a VP and inserts
Y. the VP into the front of the Buffer.
Y.

chk_adv([[[adv I Info!) I Const it!),
([v , Vord2 I Info2) I Constit2] I Buf_contont] ,

hvBuf)
chlt_adv([[[v,■ax 1Info2l. [[adv I Info!) I Constit1).

[[,,Vord2 I Info2) I Constit2)) I Buf_contont),
levBuf).

chk_adv([[[v,Wordl I Info!) I Constitl].
[[adv I Info2] I Constit2] I Buf_content],

hvBuf)
chk_adv([[[v,max !Info!). [[v,Word1 I Info!) I Constitl).

[[adv I Info2] I Constit2)] I Buf_contont),
levBuf).

~i

chlt_adv(Buffer ,Buffer) .

Y. check■ only tor verb/adverb combinations .

nrb_adT([[(T,Vordl I Info!] I Constitl).
[[ad• I Info2) I Constit2) I Buf_content),

••vBuf) :-
nrb_adv([[[v , ■a:r IInfoll,[[v,Vordl IInfol) I Constitl).

[[adv I Info2) I Conatit2)) I Buf_content),
lnBuf) .

verb_adv(Butter ,Butter) .

Y.----------- -- ----
Y. selected 111ord check■ for membership in special vord sets .
Y.

hue/bo_vord(Vord) 1Dember(Word, [ha.•e,has ,had ,haYing, be, is ,am,are ,vas,
vere, been. being]) .

be_vord(Vord) :- ■ember(Vord, [be, is,am,a.re,vas ,vere, been.being]) .

is_vhvord(Vord) : - W[leaber(Vord, [vho . vhat,vben,vhere)) .

88

%------------------------------- - ----- ----------·-----
1. Section : Clause Check

%
¼ Paradigm : clause_chect(Buf t'er, Stack, Infolist, levBuffer, levStack, levln!'olist)

%
Y. Description:

%
Y.
%

Drivee the formation of phrase ■ . Triggered by encountering
a phrasal head or being apocifiod to ful1ill tho
subcategorization requirement• of a aubcategorizer .

clauso_chock([[[p I Info] I Constit] I But_contont] ,Stack,Infolist,
levBuf, levStlt, levlnfo) : -

process_pp([[[p I Info] I Constit] I Buf_content] ,Stack,
In'f olist, levBuf, le11Stk, le'liil'Info).

cl>uso_chock([[[c ,o I Info] I Const it] I But_content] ,Stack, Infolist,
lovBut,levStk,levinfo) : -

procoss_ip([[[c,o I Into] I Constit] I But_contont], Stack,
lnt'olist, levBuf, levStk, levlnto).

clauso_chock([[[c I Info] I Const it] I But_contontl,Stack, Infolist,
llevBuf, levStk, levlnfo) : -

procoss_cp([[[c I Into] I Constit] I But_content], Stack,
lnfolist ,levBuf ,levStk,levlnfo).

clauso_chock([[[, I Info] I Constit] I But_contont] ,Stack,Infolist,
levBuf, levStlr:, levlnfo) ; -

proces,_ip([[[v I Into] I Const it] I But_contont], Stack ,
lnfoli•t, louBut ,lnStk, Wo•Into).

clauso_chock([[[d, llord I Into] I Consti t] I But_contont] , Stack, Inf olist,
l••But ,lovStk,leulnfo) : -

Vord \== ll&J:.

build_np([[[d,llord I Info] I Const it] I But_contont], Stack,
Infoli!t ,But1 ,Stkl, Info!),

procoss_ip(Buf I, Stkl, Info!, ■••But, IHStk, lovlnfo).

clau,o_chock([[[d I Info] I Const it] I Buf _contentl,Stack, lnfolist,
lovBuf ,lovStk, hulnfo) : -

proc•••-ip(([[d I Info] I Coutit] I But_content], Stack ,
Infolist , l evBu:f ;1evStt,levinfo).

clau,e_check([[[n I Info] I Coutit] I Buf_content] ,Stack,Infolist,
lfevBuf, levStk,levlnfo) :-

proce•• _ ip([[[n I Info] I Const it] I Buf_content], Stack,
Inf ol is t, NevBuf, l euStk, levlnf o).

%-- -
% process_xp(Buf fer ,Stack, Inf oli9t, l evBut':f er, Jl'evStack, llevinfolist)

%

8!)

Y. Builds a. phrase of the specified type (i.e., xp) by processing
Y. (placing constituents on the stack) Wltil the •ubcategoriza.tion of
Y. the phrase• s subcategorizing element is satisfied .
%

procoss_pp([[[p,mu
[[[p,mu

Info]
Info]

Const it]
Const it]

But _content] ,Stack, Int'olist,
Buf_contont] ,Sta.ck,lnfolist) .

procoss_pp([[[Cat,Vord,EC,ET,ltC,ltT,Ton,S,[[O]]] I Constit] I Buf_contontl.
Stack,Infoli•t, lnBuf ,levStk,lovinfo) : -

vord_chock([[[Cat ,Vord,EC,ET ,RC,ltT, Ton,S, [[□]]] I
Const it] I Buf_content], Stack, Infolist,
[First_Buf I But!] , Stkl, lnfol),

procoss_pp(Bufl, [First_Buf I Stk!], Info!,
leuBuf ,levStk,leulnfo) .

procesa_pp(Buffer ,Stack ,Inf olist, levBuf, levStJr: ,lesrlnfo)
sel"ct_subcat(Buff er ,Stack, Infolist, BufO, levlnfo),
build_,tack(Buf0, Stack ,lovBuf, levStk) .

%
%

procon_cp([[[c,•,EC,ET,RC,RT,Ten,S I Info] I Constit] I Buf_content],
Sta.ck I lofolist. Buf_content,
[[[c,o,EC,ET,RC,RT,Ten,S I Info] I Constit)

S \== 0.

process_cp([[[Cat I Info] I Constit] I Buf_content],
Stack. Infolist, levBuf, levStk, levlnfo)

Cat \== c,
Cat \== n,
Cat \== d,
procoss_cpl([[[c, • ,0 ,0 ,0 ,0, • ,0, [[□]]]] ,

Stack] , Infolist)

[[Cat I Info] I Conoti.t] I But_content],
Stack,Intolist ,louBuf ,hvStk,leuinfo).

procoss_cp(Buffor ,Sta.ck, Infoliat ,huBuf ,lnStk,Jevlnto) : -
procon_cpl (Buffer ,Stack, Infoli•t ,I .. Bnf, louStk, lnlnfo) .

process_cpl ([[[Cat, Vord, EC, ET, RC, RT, Ten ,S, [[[]]]] I Con•tit] I Buf _content] ,

Stack ,Infolist,le•Buf ,NeuStk,levlnfo) :-
vord_chock([[[Cat, llord, EC, ET, RC, RT, Ten,S, [[[]]]] I

Consti t] I Buf_content] , Stack, Infolist,
[Fint_Buf I But!]. Stkl, Info!),

procou_cpl (But!, [Fint_Buf I Stkl] , Info!,
IHBuf , ■ .. Stk,lovlnfo).

process_cpl (Buffer ,Stack, Infoli•t, leuBuf ,lnStk, Joulnfo)

90

vord_check(Butter. Stack. Infolist. Butter, Stack, Infolist),
proce,,_cp2(But fer ,Sta.ck. Infoli1t, levBuf, levStlt, levlnfo) .

process_cpt (Buff er ,Stack I Intoli1t I levBuf, le11Stlr., levlnto) :
vord_checlt(Buff er ,Stadt, Infolist,

[Fint_Buf I Bufl]. Stkl, Info!),
proce .. _cpl (Bufl, [Fint_Buf I SU:!) ,Info!,

levBuf ,lovStk,le•Info).

proces1_cp2(Buffor ,Stack, Infoliat, lnBuf, lnStk, hvlnfo)
■ •lect_subcat (Buff er. Stack. Infoli1t, BufO, le11Info),
bu ild_s tack (Buf0, Stack, .. uBuf, levStk) .

Y.
Y.

proceu_ip([[[Cat,Word,EC,ET,RC,H,Ten,S,[[O))) I Constit) I Buf_content) ,
Stack I Infoliat. levBuf, leuStk I le11Info) : -

•ord_check([[[Cat, Word ,EC, ET, RC, RT, Ten, S, [[[J]J] I
Const it] I Buf_content], Stack, Infoli,t,
[Firat_Buf I Bufl]. Stk1, Info!),

process_ip(Bufl. [Firat_Buf I Stkl), Info!,
levBuf, hvStk, levinfo).

process_ ip(Buf fer ,Stack, lnfolist. levBuf, levStk I lewlnfo) : -
vord_cbeck(Buffer, Sta.cir., Infoli1t, Buff er, Staclt, Infolist),
process_ip2(Buff er ,Stack, Infolist, levBuf, leaStk, levlnfo) ,

process_ip(Buffer. Sta.ct, Infolist, leuBuf, le11StJc ,levlnfo) : -
vord_check(Buff er ,"Sta.cit, Infol ist,

[Fiut_Buf I But!), Stkl, Info!),
proceH_ip(Bufl, [First_Buf I Stkl], Info!,

hvBuf ,levStk, Jevinfo).

proceH_ip2(Buffor ,Stack, Infoliot, lnBuf, h•Stk, In Info)
••lect_1ubcat(Buffer, Stack. lnfoli ■ t, BufO, levlnfo),
build_otack(Buf0 ,Stack ,lnBuf ,lnStk).

Y,--
Y. build_np(Buffer, Stack, Infolist, lewBuff er, levStack, Newinfoliot)
1/,
¼ Builds an IP by first forming the determiner-noun, and then
Y. attaching a.ny post-noun ■odifiert. The d•terminer-noun is built
Y. by simply attaching all constituents to a dominating IP until a
X noun is encountered.
Y.

build_np([[[n I Info) I Coutit) I Buf_content) ,Stack,Infoliot,

!II

...

levBuf ,lewStk,levlnfo) : -
build_to_noun([[[n I Info) I Co111Uit] I Stack) ,Stkl),
[IPl,[[d,Word2,EC2,ET2,RC2,llT2 I Info2] I Con2J I Stli:2) = Stkl,
build_rol_clauu([IP! I Buf_content], [[bot_of_stackl],

Infolist, [IP2 I 8uf1] ,lovStk,lninfo),
lewBuf = [[[n,•u,EC2,ET2,l,I I Info2).

[[d,Word2,EC2,ET2,RC2,RT2 I Info2) I Con2) ,IP2)
Bufl] . .

build_np([Conatit I Buf_contont) ,Stack,Infolht ,lnBuf ,loaStk ,lnlnfo)
build_np(Buf_contont, [Con■tit I Stack] ,Infolist,

lnBuf, lnStk,lninfo).

Y.------------------------------- ---
Y. build_to_noun(Stack,lo•Stack)
'Y.
Y. Attaches tho content■ of the stack to a dominating nod•
Y.

build_to_noun([[[n,Word1 I Info!) I Conotitl),
[[d,Word2 I Info2) I Constit2J, [bot_of_otack) I SJ,

[[[n, ■u I Info!]. [[n,Wordl I Info!) I Constitl)).
[[d, Word2 I Info2) I Conotit2]. [bot_of_stack) I SJ) .

build_to_noun([[[n, Word I Info) I Const it !).Conotit2 I Stack). leaStk): -
Vord \== ■ax,
build_to_noun([[[n,■ax I Info) ,Constit2, [[n,Word I Info)

Constitl)) I Stack) ,levStk) .

build_to_noun([[Top_■as I Top_constit) ,Conotit2 I Stack) ,lewStk)
build_to_noUB([[Top_■a,,Constit2, [Top_■a, I Top_constit))

Stack] ,lnStk).

'Y.----------·
'Y. build_rel_clause(Buffor ,Stack, lnfoliat ,leaBuffer ,lnStack,levinfolist)
'Y.
'Y. Build■ a post-noUB ■odifier bJ forming phrasH until tho IP' s Caso
Y. and Theta reqaireaent• are saturated.
'Y.

build_rel_clauH([Con■ tit1, [[Cat,Word-,EC,ET,llC,RT,+ I Info] I Constit2] I
Buf_contont].

Stack, Infolist,
[Constit1. [[Cat,Word,EC,ET,RC,RT,+ I Info] I Conotit2) I
Bu1'_content],

Stack, Infolist) .

build_rol_clause([Const it!, [[Cat, Word, EC, I I Info]
Stack, Intolist,
[Coutitl,[[Cat,Word,EC,1 I Info]

92

Constit2] I Buf_content] ,

Constit2] I Buf_content] ,

Stack, Infolist) .

build_rel_clause([Const it!, [[d I Info] I Constit2] I Buf_contant],
Stack,Infolist,
[Conatit!,[[d I Info] I Constit2] I But_content] ,
Stack, Inf ol ist).

build_rel_clause([Constitl, [[n I Info] I Constit2] I Buf_content],
Stack, Info list,
[Const it!, [[n I Info] I Conatit2] I But_content],
Stack, Infolist).

build_rel_clause([Con·stit1. [end_ot'_sentence] I Buf_content),
Stack. In:fol ist,
[Constitt, (end_of_sentence] I Buf_content],
Stack, Infolist) .

build_rel_clause([Const it! I Buf _content] , Stack, Infolist,
hvBuf ,h•Stk,hvinfo) :

clause_check(Buf_content, Stack, Infolist,
But!, [Clause I Stk!]. Info!),

[Mai:Info I Rest_con) = Constitt,
build_rel_clauso([["axlnfo,Constitl ,Clause] I But!],

Stkt, Into 1, JlevBuf, levStk, levinfo) .

%-- ----------------- ------ ----------
% aelect_subcat (Buffer, Stack•, lnt'olist, le"Buft' er, lfeuStack ,Jl'eglnfolist)

Y.
o/. Attempts to satisfy the subcategorization specification of a
Y. subcategorizer by building the subcategorized phrase. If a
Y. specific subcategorization fails, then it is eliminated from the
¼ subcategorization features of the element, and the next tried.
¼ If a specified subcategorization successfully completes, then all
¼ other eubcategorizations are eliminated , If all specified
¼ subca.tegorizations fail, then the parse fails.

Y.

select.:.subcat (Buffer, Stadt, tnfolist, leaBuf, levlnfo) :-
tryone_subcat (But fer ,Sta.ck, Infolist, le1ii18Uf, le1iillnfo) .

tryono_subcat([[[Cat,Word,EC,ET,RC,RT,Ten,S,[Typo I Subcat]] I
Constit] I Bu·f_content],

Stack,
Infolist,
[[[Cat, Word, EC, ET, RC, RT, Ton, S, [Typo]]
Const it] I Buf3] ,levinfo) :-
length(Type,,),
•ord_chock([[[Cat, Word ,EC, ET, RC, RT, Tan, S, [Type]] I Cons tit] I

Buf _content] , Stack, Inf ol ist,
[Constit2 I Bufl] ,Stkl,Infol),

!J:l

[[Stype I Rest] I Sub] = Type,
inaert_movo(Stype, Bufl, [Constit2 I Stkll.Infol,

Buf_content2, Info2),
build_subcat (Type, Buf _content2, [[bot_ot_atack]], Info2,

Buf3,Stlt3,h•Info), !
chlt_aubcat (Typo, Buf 3) .

tryone_subcat([[[Cat,Word,EC ,ET ,RC,RT, Ton,S, [Typo I Subcat]] I
Conatit] I But_contont],

Stack,
Infolist,
[[[Cat ,Vord,EC,ET ,RC,RT, Tan,S, [Typo])
Constit] I But3] ,loolnfo) : -

•ord_choclt([[[Cat, Word ,EC, ET ,RC ,RT, Ten,S, [Type]] I Const it] I
Buf _content] ,Stack, Infolist,
[Constit2 I But!] ,Stkl,Infol),

[[Stype I Rest] I Sub] = Type,
insert_mon (Stypo, Bufl, [Constit2 I Stkl]. Info!,

Buf_content2, Info2),
build_subcat(Type, Buf_contont2, [[bot_of _stack]] , lnfo2,

Buf3,Stlt3,Ke•lnfo), !
chk_aubcat (Type, Buf3).

select_subcat{ [[[Cat, Word,EC,ET ,RC,RT, Tan,S, (Type I Subcat]] I
Constit] I Buf_contont],

Stack,
Infolist,
le1iil'Buf, levlnfo)

aalact_subcat(([(Cat ,Word,EC,ET ,RC,RT, Ton,S,Subcat]
Const it] I But_content] ,Stack, Infolist ,levBuf, Nevlnfo) ,

Y,:---- ·----- - ----------- - --------------
¼ chk_subcat (Subcat_spec, Buff er)

Y.
¼ Checks to see that the constructed element matches the
Y. subca.tegorizat ion requirement.

Y.

chk_aubcat([[Type! I Sinfol], [Typo2 I Sinfo2]],
[[[Typol I Info!] I Constitl], [[Type2 I Info2] I Constit2] I
Buf_content]).

chk_subcat([[intr I Sinfo]] , Buffer) .

chk_subcat([[Type I Sinto]], [[[Type I Into] I Constit] I Buf_content]) .

Y.----- ---------------------- --------
Y. insert_110Te(Subcat_spec, Buffer ,Stact, Infolist, leuBuff er, Jfevlnfo)

'I.

91

Y. Inserts an empty category i mm .. diately after a subcategori zing
Y. element• if the element S\lbc.ategorizes for the flagged a-a.vement
1. type and the proper Case ud Theta assignments are present.
Y.

insert_1P1ove(Type.Buffer,Stae\, [1,Type.Scr1 I Info_content],
[[[Type,e,0,0,0,t,•,Scrt,[[[J]J]] I Buffer],
[O,• , Scrt I Info_content]) .

insert_snove(i.
[[[i I Info!]
[[v I Info2]

Sta cit-,

Constitt]
Constit2]

[1,n,Sert I lnfo_content],

But_content],

[[[n, •, O, o, O, I , •, Ser 1 , [[[]]]]] ,
[[i I Info!] I Constitt],
[[, I Info2] I Con,t it2] ,
[[v,Vord3,EC3,t I Info3] I Constit3] I Buf_contenttl.

[O,•,Scrt I Info_content)) :
chk_adv(Buf_content,[[[v,Vord3,EC3,t I Info3] I Constit3]

Buf_contentt]) .

insert_move(i,
[((v I Info!] I Const it!] I Buf_contont],
Stack,
[I ,n,Scrl I Info_contont],
[[[n ,e,0,0,0, t ,•,Sert,[[[]]]]],
[[v I Info!] I Constitl],
[[v,Vord2,EC2,I I Info2] I Constit2] I Buf_contenttl.

[O, • .Serl I Info_content]) :-

insert_move(i ,

chk_adv(Buf _contont, [[[,,Vord2,EC2, t I Info2] I Constit2]
But_contentl]) .

[((i I Info!] I Const it!] I Buf_content] ,

Stack,
[1,n.Scrt I Into_content],
[[[n, •, 0, 0, 0, t , • , Sert , [[[]]]]] ,
[[i I Info!] I Constitl],
[[v,Vord2,EC2,I I Info2] I Constit2] I Buf_contentll.

[O,•,Scrt I Info_ content)J : -
chk _adv(Buf _contont, [[(v, Vord2, EC2, I I Info2] I Const i t2]

Buf _contentl]) .

insert_move(i 1 [Const it I Buf_content],
Stack.
[t,n,Scrt I Info_content],
[[[n, •, O, O, O , I , • , Ser I , (([]]]]] ,
Constit I Buf_contont],

[O,•,scr"t I Info_content]) : -
chk_adv(Buffer, [[[v,Vord,EC,1 I Info] I Constit] I

q;,

Buf_contont]) .

inaert_move(Type, Buff er ,Stack, [1, Mo l'e_type I Sert I Iufo_content] ,
([[n,e,0,0,0,0,• ,Serl,[([]]])] I Buffer],
[1,NoH_type,Scrl I lnfo_content]).

inoert_DIOH(Type, ([[Coel ,Vorill.SCl ,ET! , 0,0 I lnfol] I Constitt] I Buf_content] ,
([[Cat2, Vor d2, £~ , ET2,RC2 ,RT2,Ten2,S2, [[[Type2, 1, 1,V2]]]]
Const i t2] I Stk_content] ,

[A_move, A_type ,Seri, 1, Abar _type ,Scr2],
[[[n, •, 0 ,0 ,0 ,0, • ,Scr2, [[[]])]],

[[Cat1,llord1,EC1,ET1,0,0 I Info!] I Constitl] I Buf_content].
[A_mova, A_typo, Serl, 0, •, Ser2]).

insert_mowe(Ty~, [[end_of_aentenc.e] 1 Buf_content] •
[([Cat2, llord2 ,EC2 ,ST~, RC2, RT2, Ten2 ,S2, [[[Typa2, 1, t, V2J]]]

Constit2] I Stk_content],
[A_movo ,A_ typo, Sert, 1, Abar_ typo ,Scr2],
[[[n,e,0,0,0,0,•,Scr2, [[[]]]]],

[end_of_sentence] I Bu:t_content],
[A_move, A_typo, Serl, 0, •, Scr2]).

insert_1r1ove(Type ,Buff er, Stacie, Infolist .Buff er, Infolist).

:t.---------- --------------------- ---- -
¾ build_subcat (Subcat_spec, Buff er ,Stack. Inf olist.
Y. Neu8,uff er , leuStaclr:, levinfolist)
:.:
'X Atte.mp~s to build the ~ubc.a tegor l :z.ed element by invoking the
Y. appropriat e proc o1s_rp pr edica t e tor PPs, CPs and IPs ; bu i ld_np
i for 1?.s -t.rontt!.d by de t•rmin• rs : and no processing for NPs fronted
'l. by nouns and int.ra.sit ive spe: c i ti,a.t i.ons .
1/,

build_subcat([[Typal I Sin1ot].[Type2 I Sinfo2]].Buffer,Stack,Infolist,
[Front _Buft I Buf2] ,Stk2,Info2) :-

build_subcat (([Type! I Sinf oil] , Buff er, Stack, Infolist,
[Front_Bufl I Bufl] ,Stkt, Info!),

build_subeat([[Typo2 I Sinfo2]] , Buf 1, [[bot_of_staek]] , Info!,
Bu12, Stk2, Info2) .

build_subcat([[intr I Sinto]] , Buff or, Stack, lnfolist, Buff or ,Stack, Infolist) .

build_subcat ([[p I Sinfoll, Buffer ,Stack, Inf olist,
[Top_Stk I Butt]. Stkt, Infol) : -

procoss_pp(Buffer ,Stack, Infolist ,Butt, (Top_Stk I Stkl], Into!) .

build_subeat([(i I Sinfo]] ,Buffor,Staek,Infolist,
[Top_Stk I Butt]. Stkt , Infot) :-

proeass_ip(Buffer, Stack, Infolist, Buf I, (Top_Stk I Stkt] , Info!)

96

build_subcat ([[c I Sinfoll , Buffer, Stack, Infoliat,
[Top_Stk I BuU] ,Stk! ,Info!) :-

procoss_cp(BuUor ,Stack, Infolist ,Bufl, [Top_Stk I Stkl], Info!) ,

build_subcat([[n I Sin foll, [[[n I Info] I Const it] I Buf_contont) ,Stack,
Infolist, [[[n I Info) I Constit] I Buf_contontl.Stack,Infolist).

build_subcat([[n I Sinfo)], [[[d I Info) I Constit) I Buf_content) ,Stack,
Infolist ,Bufl ,Stkt, Info!) :-

build_np([[[d I Info] I Const it] I Buf_contont) ,Stack,
Infolist ,Buft ,Stkt ,Info!).

!J i

x:-~---
¼ Section: Build Stack
Y.
i Paradigm: build_atack(Bu:ffer ,Stack.lev-Buffer ,leaStack}
Y.
Y. Description:
Y.
Y.
Y.
Y.
Y.
Y.
Y.
Y.
Y.
Y.

Forms the required phrase-structure representations by
building a tree structure vith the contents of the
stack and the first element in the Buffer. The Buffer
element represents ·the completed subca.tegorization
requirement ot the top element of th• stack .
Tree building is accomplished by comparing tvo
adjacent elements in the epreaentation vith the
percolation principles and :toning dominant nodes.
The completed tree (possibly fragment) is placed into
the 1'ront o1 the Buffer.

build_stack([[[v ,Vord,EC,ET ,RC,RT, Ton,S, [Su beat)) I Const it!),
Constit2.Constit3 I Bu:t_content] ,Stack,Buf_content.levStk)

longth(Subcat ,2),
build_stk([Constit3, Cons ti t2,

[[v,Word,EC,ET,RC,RT,Ten,S,[Subcat)] I Constitt) I
Stack] ; RovStk) .

build_stack([Constit1 • [end_of _sentence] I Buf] .stack.
[[ond_of_aentence]J ,levStk) :-

build_stk([Constit1 I Stack), levStk) .

build_stack([Constit1 ,Constit2 I Buf_content] ,Stack, Bu:f _content, llevStk)
build_stk([Constit2,Constitl I Stack) ,hvStk).

build_stk([Const it, [bot_of_stack) I Stk). [Const it, [bot_of _stack) I Stk)) .

build_stk([Constitt ,Constit2, [[v, Word, EC, ET, RC, RT, Ten ,S, [SubcatlJ I Constit3]
Stack) , lovstk) :-

length(Subcat ,2),
build_stk([[[v ,max, EC, ET, RC, RT, Ten, S, [Subcat)) ,

[[v,Word,EC,ET,RC,RT,Ton,S,[Subcat]) I Constit3l,
Constit2 . Constit1] I Stack] ,le'liilstk).

build_otk([Conotitl ,Constit2 I Stack], levStk) :
pp(Constitl ,Constit2, "ax),
build_atk([["ax ,Constit2 ,Constitt] I Stack], RevStk) .

Y.-- -----
¾ Percolation Principle
7.

- ------------

Y. Where I Theta-govern:s Y • the categorial features of Z vill be those of X.

9S

'Y.

pp([[Catl,llord!,EC!,ETl,RC!,1 I Info!] I Constit1].
[(Cat2, Word2, EC2, ET2, RC2, RT2, Ton2 ,S2, [[[Subcat2, IC2, I, 112))]] I Constit2] ,
Max)

cht_max ([Cat2, max, EC2. ET2, RC2, RT2, Ten2, S2, [[[Subcat2, IC2, I, 112))] J , Hax)

'1.--------------------------------------- - --- ----- ------
r. Percolation Principle II
¼
¼ Where X assigns Case to Y. the categorial features of Z vill be those of X.

pp([[Catl ,llordl, I I Info!] I Constittl,
[[Cat2,llord2,EC2,ET2,I I Info2] I Conotit2],
Max)

cht_iu,([Catt, .. ax,1 I Infotl,Max).

pp([[Cat1,llord1,ECl,ETl,1 I Info!] I ConstittJ,
[[Cat2, Vord2, EC2, ET2, RC2, RT2, Ton2, S2, [[[Subcat2, 1, IT2, 112)])J I Cons ti t2] ,
Max)

chk_max([Cat2 ,max, EC2, ET2, RC2, RT2, Ten2 ,S2, [[[Subcat2, 1,IT2 ,112]])] ,Max) .

Y. Percolation Principle III
1/,
Y. Where X is a member of the adjunct set and Y a member of the
Y. aubcategorization set of a phrase Z, the categorial features of Z
Y. vill be those of Y.
¼ In fact implemented to specify that the features of S (IP) vill
Y. dominate over those of any other phrase.

¼

pp([[Cat ,max I Info!] I Constitl],
[[i,max I Info2] I Conotit2] ,Max)

chk_max([i ,max I Info2l,Max).

pp([[i,11ax I Info!] I Const it!],
[[Cat,max I Info2] I Constit2] ,Max)

chk_max([i ,max I Infol].Max).

'1.------------------------------------- ------ -- ----
¼ Percolation Principle IV
¼
Y. Where X and Y are in a CGC, no Case or Theta relations holds bet'lileen
Y. them. and both are pa.rt of the subcategoriz:a.tion set of Z, the
r.
'l.
¼

folloaing hierarchy determines vhich featun!s vill percolate:
a. C-features of I and Y vill percolate t o Z
b. G-features of X and Y will percolate to Z

')'I

¼ c. Theta-features of X and Y vill percolate to Z
¼

pp([[Cat1,llordl I Info!] 1Constitll,[[Cat2,Word2 I Info2] I Constit2].
Max)

(Cat2 = c;
·cat2 = p),
chk_max([Cat2,max I Info2l,Max).

pp([[Cat1,llordl I Infol] 1Constitll,[[Cat2,llord2 I Info2] I Constit2l,
Ku)

(Cati = c;
Cati = p),

chlt_max([Cati ,max I Info!] ,llax).

pp([[Catl,llordl I Info!] 1Constitll,[[Cat2,Word2 I Info2] I Constit2l,
Max)

(Cat2 = i;
Cat2 = d),

chk_max([Cat2,max I Info2l,Max)

pp([[Catl,llordl I Info!] 1Constitl).[[Cat2,llord2 I Info2] I Constit2l,
Max)

(Cati = i;
Catt = d),

chk_max([Cati ,max I Infol] ,llax).

pp([[Catl,llordl I Info!] 1Constitll,[[Cat2,llord2 I Info2] I Constit2].
!lax)

chk_max([Cat2,max I Info2] ,Max).

Y.
¼ chk_ma.x("a.x_element ,levNax_element)

¼
¼ Adds a Theta requirement to any maximal PP. CP or IP . ~.
chk_1ux([p,max,EC ,ET ,RC,O, Tan,S

[p,max, EC ,ET ,RC, I, Ton,O

chlt_ma:r:([c ,ma:r:, EC, ET ,RC, 0, Ten,S
(c ,max.EC ,ET ,RC, I, Ten,O

chk_max([i,max,EC ,ET, RC ,0, Ton,S
[i,max, EC,ET ,RC, 1, Ten,0

chlt_ma:r (Const it, Const it) .

Info],
Info]) .

Info],
Info]) ,

Info],
Info])

100

,: _________________ _
Y. Th• 'convert• predicate, takes an input sentence, and return• a list
Y. of the lei:ical ud categorial 1ea.tures o1 the original 110rda .
Y.

convert.input(D, [)).
convert.input ([Puncl Restll), Restf)

member(Punc, [• . ', '?',' ! ']),
con•ert_input (Restll, flestF) .

convert.input([llord I Rea ti/] , [[[Cat, llord, EC, ET, RC ,RT, Ten,S ,Subcat]] I RestF])
lu(Cat, llord, EC, ET ,RC,RT, Ten,S ,Subcat),
convert_input (RestW, RestF).

lH(n, bill,0 ,0, I, I,• ,0, [[[]))).
lH(n,11ary ,o,o, I, I,• ,o, [[[]]]) .
ln(n,man ,0,0, I, I,• ,0, ([[]]]).
ln(n, boy ,0,0, I, I,• ,0, ([[]]]) .
ln(n ,lips ,0,0, I, I,• ,0, [[[]]]).
lu(n,girl, 0,0, I, 1, •,O, [[[)]]).
lex(n,chair ,0,0, I, I,• ,0, [[[)]]).
lor(n, book,O ,0 , 1, 1, • ,0, [[[)]]).
ler(n,asparagus,0,0,1, I ,•,O, [[[]]]).
le,(n, it ,0,0, 1,0, • ,0, [[[]]]) .
lu(n,john,0,0, I, I,• ,0, [[[]]]).
lor(n ,park,O ,0, I, 1, • ,D, [[[]]]) .
ln(n, trees ,0,0, t, t .• ,o, [[[)]]).
ln(n ,car ,0,0, I, t, • ,0, [[[]]]).
lu (n, i, 0, 0, t , t, • , 0, [[[]] J) .
ln(n ,you,0,0, I, t, • ,0, [[[]]]).

lu(d, the,0 ,0,0,0, • ,0, [[[]]]).
ln(d,a,0,0,0,0, • , 0, [[[JJJ) .

lor(i ,vould, t ,0,0 ,O,• ,0, [[[))]) .
lex(i ,did, 1,0,0,0, • ,0, [[□]]).
ln(i, to, 1,0,0,0 , • ,0, [[[]JJ).
lu(i ,dont, 1,0 ,0,0, • ,0, [[[)JJ J .

lu(adj, tond,0,0,0,0,• ,0, [[[p,O, 1, •JJJ).
lor(adj ,obvious ,0,0 ,0 ,0 ,• ,0, [[[c ,0, 1, •Jll) .

lu(adj, fond ,0 ,0,0 ,0, • ,0, [[[)])).
lor(adj ,obvious ,0,0 ,0 ,0 ,• ,0, [[[)])) .
ln(adj ,red ,0 ,0 ,0,0, • ,0, [[[)])) .
lor(adj ,big,o,o,o,o,• ,o, [[[JJJ l .
lor(adj ,little ,o,o ,o,o, • ,0, [[□]] J.

ln(adv ,quietly ,0,0 ,0,0, • ,0, [[[)))) .

lu(c, that,O ,0,0,0, •,O, [[[)))).

IOI

lH(c ,vho,0,0,0,0,• ,O, [[□]]).
lex(c,vhat,0 , 0,0 , 0 , • ,0, [[OJ)) .
ln(c,vhere,O,O,O,O,•,O, [[[)JJ) .

lex(p,on,0,0,0,0 ,• ,0, [([n, 1, 1,•]]]).
lex(p, in,o,o ,o ,o,• ,o, [[(u, t, 1,•l]J) .
ln(p,of ,0,0,0,0,• ,0, [[[n, 1, 1,•JJJ).
lex(p, by ,0,0, 0 ,0, • ,0, [[[n, t, 1, •]]]).
lex(p,vith,0,0,0,0,• ,0, [[[n, I, 1,•l]J) ,
lex(p, to,0,0,0,0 ,• ,O, [[(n, 1, t ,•JJ]).

lex(v ,kiased,O, 1,0 , O,+ ,0, [[[n, 1, t, •], [p,O, t ,•]], [[n, t ,1 .•]]]).
ln(v,oat,O, t ,o,o,+,O, [[[p,O, 1,•JJJ).
lex(v ,gave,O, t ,0 ,0 ,+,O, [[[n, 1, 1, •], [p,O, t ,•]],

[[n,1 , t ,•], [n, 1 , t ,•]], [[n, 1, t .•JJJ) .
lex(v ,knov,O, t ,0,0,+,0, [[[c ,0, 1, •]], [[n, t, t ,•JJJ) .
lex (v, loves, 0, t, 0, 0, +, 0, [[[n, t, t , •] J]) .
lex(v,aeem• ,o,o,o,o,+,O, ([[i,O, t .•JJ, [[c,0, t,•Jll) .
lex(v ,given,0,0,0 ,O,• ,0, [[[n, t, t ,•], [p,O, 1,•J], [[n, t, t, •J, [n, 1, 1 , •JJ,

[[p,O , t .•]], [[n, t, 1,•Jll) .
lex(v ,hoped,0,0,0 ,0 ,• ,0, [[[c, 1, 1, •lJJ) .
lor(v ,leave,O, 1,0,0,+ ,0, [[[intr , 0,0 , •])]).
lex(v ,seen,0,0,0,0,• ,0, [[[p,O, 1, •]], [[n, 1, I,•]]]).
lor(v, tried,O, 1,0,0,+ ,0, [[[c ,0, I , •]), [[p,O, t, •)] , [[i ,0, I , •]JJ) .
lex(v ,asked,O, 1,0 ,0 ,+ ,0, [[[n, 1, I,•], [c ,0, 1, •]], [[c ,0, 1, •JJ]).
ln(v ,appear ,0,0 ,0 , O,+ ,0, [[[i ,0, 1,•J]]) .
lex(v ,likely ,0 ,0,0,0,• ,0, [[[c ,0, 1, •]JJ) .
lex(v ,aee,0, 1 , 0,0,+ ,0, [[[n, t, I,•]]]) .
lex(v ,sav,O, 1,0,0,+ ,0, [[[n, 1, 1, •JJJ) .
lex(v ,say ,o, 1,0,0,+,0, [[[c,0, 1, •JJJ).
lox(v ,left, 0 , 1, 0, 0, +, 0, [[[intr, 0, O, •JJJ).
lex (v, Hpect , 0, 1 , 0, 0, •, 0, [[[n, 1 , I,•]] J) .
lor(v ,slept ,0, 1 , 0,0,+ ,0, [[[intr ,0 , O, •J)]).
lex(v ,like,O, 1,0 ,0 ,+,O, [[[n , I, I,•]]]) .
ln(v ,likes ,0, 1,0,0 ,+ ,0, [[[n, 1, 1, •]]]) .
lex (v, liked, 0, 1, 0, 0, +, 0, [[[n, 1, 1 , •]J J) .
lex (V, had, 0, 1 , 0, 0, +, 0, [[[n, 1, 1, • JJ]) .
lu(v ,likely ,0 ,0,0,0, • ,0, [[[c ,0, 1, •JJ]) .
lex (v, am, 0, I , 0, 0, +, 0, [[[p, 0, 1 , •]] , [[n , 1, 1, •]]]) .

lex(v, vas ,0,0,0,0, + ,0, [[[n, 1, 1, •]], [[intr ,0 ,0 ,•]]]) .
lex(v,io,0,0,0,0,+,0, [[[c,O, I ,•JJ , [[n, 1, 1,•J], [[intr,O,O,•J]]) .
lor(v, bo,0,0 , 0,0 , + ,0, ([[]]]) .

102

~- -------------------- ----- ---- -----
Y. The 'begin' predicate is used to initiate the reading ot input from
Y. the lteJboard, call the parser, and the print the parse tree .

Y.

begin
read_in(Input).
vrite(Input),nl, ! ,
convert_input (Input, Output),
appond(Output, ((end_ot_sentence)J , Butter),
process_input(Buff'er, Tree) ,nl,

Y. ppI11u(O,Treo) ,nl,nl.
ppxma.:r2(0, Tree) ,nl.

Y. The folloving is taken from Cl:K. It reads an input sentence, and puts
Y. it in list forni.

rud_in((llllls]) :- getO(C), readuord(C,11,Ctl, restsent(ll,Cl,lls) .

rostsont(II,_, (]) :- lastuord(II), ! .
rostsont(ll,C,(ll!llls)) : - roadvord(C,111.Ctl , rostsent(l/1,Cl,lls) .

roadvord(C,11 , Ct) : - single_char(C), ! , n...,e(II, [C)). getO(CI) .
readvord(C,ll,C2) :-

invord(C,NevC), ! ,
getO(Ct),
restvord(C1, Cs, C2),
name(II, [hvC I Cs)) .

roadvord(C,ll,C2) : - getO(CI), readvord(Cl,ll,C2)

rostvord(C, [hvCICs) ,C2)
invord(C, levC), ! ,

getO(CI),
rostvord(C! ,Cs ,C2) .

restuord(C, [) ,C).

singlo_char(44) .
single_char(S9) .
singlo_char(SB) .
singlo_char(63).
• inglo_char(33) .
einglo_char(46) .

inuord(C,C) C>96, C<l23.
invord(C,L) C>64, C<91, Lis C•32 .
invord(C,C) :- C>47, C<SB.
invord(95,95).
invord(39,39).
invord(45,45) .

lastvord('. ') .

10:1

lastvord(• ! 1
) .

lastvord('? 1) .

104

"-------------------------------- ----------
Y. The folloaing routines are used to pretty-print the parse tree that
Y. is generated by the parser . 'ppx■ax' prints the ttee vith al,l
Y. a.wailable information .. 'ppHta::12 ' prints it vith ■ome ot the features
Y. removed. for easier readability.
Y.

ppuu(Indent,O) : - !.

ppxaax(Indent, [[bot_of_stack]])

ppzmax(Indent, [[[Cat ,11ax I Rost] I Const it] I Remainder])
spaces(Indent),
write([Cat ,11az I Rest]) ,nl,
lealn.dent is Indent + t ,
pp.1:11ax:(levlndent ,Constit) .
pp1:■ax(Indent ,Remainder).

ppuax(Indent, [Lnite11I Rost])
spaces(Indent),
vrite(Lexltem) ,nl,
ppxmax(Indent, Rest).

ppxmaz_2 (Ind ant, [J) : - ! .
ppr11ax2(Indent,[[bot_of_stack]J) :- 1

ppxaax2(Indent,[[[i,aa.x,EC,ET ,RC,RT,Ten,S I Rest) I Consti"t] !Remainder))
S \== 0,
•paces (Indent),
vrite(• infl') ,vrite(' (•) ,vrite(S) ,vrite(•) •) ,nl,
levlndent is Indent + t,
ppx11u2(1evindent,Constit),
ppx11.a.x2(Indent, Remainder).

ppx11ax2(Indent,[[[Ca.t,11ax,EC,ET,RC,RT,Ten,S I Rest] I Constit] IRe■a.inder))

S \== 0,
spaces (Indent) ,
vrite(Cat), vri te(' ('), vri te(S) , vrite(') '), nl,
levlndent i11 Indent • 1,
ppx■ax2(1evindent ,Constit),
ppx11a.:r2(Indent ,R011ainder) .

ppxmax2(Indent , [[[i, ■a.x I Rest) I Constit] !Remainder])
spaces(Indent),
vrite(' int'l 1) ,nl,
lelillndent is Indent + 1,
pp:rttaJt2(1evlndent , Constit),
pp:r11ax2(Indent ,Remainder).

ppxmax2(1ndent,[[[Cat,max I Rest) I Constit] !Remainder])
spaces(Indent).
vrite(Cat) ,nl,

Ill~

levlndent ia Indent + t,
ppXllax2(1nindent,Constit),
ppxaax2(Indent ,Re11ainder).

ppxmax2(Indont, [[[i,Vord,EC,ET, RC,RT, Ten,S I Rest] I Cons tit] I Remainder])
S \== 0,
apar:ea(lndent),
arite('intl•),vrite(' : 1),vrite(Word),1rrite(' ('),
vrite(S), vrite(') ') ,nl,
ppuu2(1ndent •Remainder) .

ppxaax2(Indent, [[[Cat,Vord,EC,ET,RC,RT, Ten,S I lest] I Const it) I Remainder])
S \== 0,
spaces(lndent),
vrite(Cat) , nite(': ') , vrite(Word) , vrite(' (•).
vrite(S) • ll'Tite(') ') ,nl •
ppx•a:r2 (Indent, Remainder) .

ppx■a:r2(Indent, [[[i , Vord I Rast] I ConstitJ I Re■ainder])
spaces(Indent),
vrite('intl') ,vrite(• : ') ,vrite(\lord) ,nl,
ppxmax2(Indent ,Remainder).

ppxma:r2(Indent,[[(Cat,Vord I Rest) I Constit] I Remainder])
spaces(lndent),

vrite(Cat) ,vrite(': ') ,vrite(Word) ,nl,
ppxma.x2(Indent ,Reaa.inder) .

uri te_epaces (0)

vrite_spaces(I)
vrite(• •),

11 i• I - 1,
vrite_spaces(Jl) .

spaces(Level) :-
HouNa.n7 is 3•Level + 1,
vrite_spaces(Bovftany),
vrite(LeTel) ,vrite(': ') .

■e■ber(I,[11_]) .

me■ber(I,LIY]) : - 11ember(X.Y) .

106

7.----
o/. utility predicates

7.

vritHtring([]) .

aritootring([1 lls])
namo(■am•, [I]),
vrite(lame),
•ritestring(ls) .

Hlo(P,Filo) :
tolling(Old),
told,
toll(Filo),
nec(P),
told,
toll(Old) .

euc(P) : - P .
nee(_).

vritol([nl I Xs]) :- !

nl,
uritel(h).

aritel([XIX.]) :- !

■rite(l),

vritel (ls).

vritel([]) .

difforonce(X-Y ,L)
append(L, Y ,I) .

moro(rile) :
name(File,FileString),
append(.. ■ore ",f'ileString,Co1N11and) •
oyotem(Command) .

vi(File) :-

ls

name(File ,FiloString),
append("vi 11 ,FileString,Command).
system(Co..,.and),
[-File] .

system("ls") .

107

append(0 ,X,X).
append([lll], Y, [AIZ]) append(X, Y, Z).

108

