
\

From Formal Verification
to Silicon Compilation

by

Jeffrey J. Joyce

Technical Report 90-36
November, 1990

Department of Computer Science

University of British Columbia

Vancouver, B.C. V6T 1W5

From Formal Verification to Silicon Compilation

J. Joyce~ E. Liu, J. Rushby, N. Shankar, R. Suaya, F. von Henke

Computer Science Laboratory, SRI International
333 Ravenswood Ave., Menlo Park, California 94025

Appears in the Proceedings of Spring CompCon 91
San Francisco, 26-28 Feb. 1991, IEEE Computer Society Press

Abstract

Formal verification is emerging as a viable method for increasing design assurance
for VLSI circuits. Potential benefits include reduction in the time and costs asso­
ciated with testing and redesign, improved documentation and ease of modification,
and greater confidence in the quality of the final product. This paper reports on an
experiment whose main purpose was to identify the difficulties of integrating formal
verification with conventional VLSI CAD methodology. Our main conclusion is that
the most effective use of formal hardware verification will be at the higher levels of
VLSI system design, with lower levels best handled by conventional VLSI CAD tools.

1 Introduction
Design errors in digital integrated circuits are ruinous: the devices are manufactured in
vast quantities and, unlike software, errors cannot be remedied in the field by patching.
Recently discovered errors in the Intel 486 demonstrate that these concerns are not
academic. In addition to economic considerations, the use of digital systems in critical
applications (for example, flight-critical digital avionics, encryption and other security­
critical applications) increases the degree of design assurance necessary.

Simulation, the present method for verification of VLSI designs, is stretched to its
limits, and new methods are needed for the economical and reliable verification of VLSI
designs.

Formal verification, the mathematical demonstration of consistency between a spec­
ification and a design, has been applied to critical software systems for some time. It
now affords a promising new method for the validation of VLSI designs.

*Department of Computer Science, University of British Columbia, 6356 Agricultural Road, Vancouver,
B.C., Canada V6T 1 W5

1

VLSI designs and specifications are generally simpler and more regular than those
for software, and the theorem-proving bottleneck that afflicts formal verification of
software is a much smaller problem for VLSI designs. Instead, the limitations on
the application of formal verification to VLSI designs are those concerned with its
integration into engineering practice.

During the summer of 1989, members SRl's Computer Science Laboratory, Cam­
bridge Computer Science Research Centre, and the Integrated Circuit and Systems
Program collaborated on the experimental verification and implementation of a very
simple microprocessor using three different verification systems and a commercial sil­
icon compiler. This experiment identified several ma.in research issues including the
subject of this paper: the interface between formal verification and the capabilities and
requirements of VLSI CAD systems.

2 Formal Verification
There have been several applications of formal verification to VLSI designs in the last
few years, but the only VLSI device that has been subjected to formal verification and
is actually in production is the British Viper microprocessor [8, 9). This was designed
by staff at the UK oyal Signals and Radar Establishment (RSRE) and is intended
for civilian and military safety-critical applications (for example, railroad signaling and
missile guidance). Aspects of the Vi per microprocessor were formally verified by A vra
Cohn [5, 6, 7] at Cambridge University using a formal verification system called HOL
[14, 15) developed by Mike Gordon.

The HOL system is based on higher-order logic. The very advanced EHDM formal
verification system [24, 25, 26] developed for the National Computer Security Center
by SRI's Computer Science Laboratory, is also based on higher-order logic. Many of
the verification techniques developed for HOL can be reproduced in EHDM.

An early and substantial hardware verification experiment performed in the USA
was Warren Hunt's verification of the FM8501 /2 microprocessor [16) using the Boyer­
Moore Theorem Prover [2, 3). Unlike the higher-order approaches used in HOL and
EHDM, the Boyer-Moore Theorem Prover is based on quantifier-free first-order logic.

3 An Experiment
The goal of our collaborative experiment was not to develop new techniques for hard­
ware verification, but to identify principal difficulties preventing its more widespread
application, and to explore methods for alleviating those difficulties.

We conducted our investigation using the "Tamarack" microprocessor designed for
concrete experimentation. The original design was proposed by Gordon [13] as a verifi­
cation example; subsequent variants have been used to illustrate a variety of simulation
and verification environments [1, 4, 10, 11, 20, 21, 22, 23, 27, 28), and some have been
carried through to fabrication [17, 18).

We began our research by examining a verification of Tama;rack in the HOL system;
we then experimented with alternative specification and ve:::ifi.cation strategies using
HOL as well as two other verification systems, theEHDM system and the Boyer-Moore
Theorem Prover. We examined these various specifications and proof fragments from
technical viewpoints (e.g., how compact were the specifications, how difficult was it to

2

construct the necessary proofs), and also from the point of view of the potential user
of the technology. We also studied the problem addressed in this paper, namely, the
problem of converting the descriptions used in our formal specification and verification
of Tamarack to those required by modern VLSI CAD systems. We performed the
necessary translation for one particular CAD system - the GENESIL silicon compiler
[12] - and carried the design down to the level required as input to a VLSI fabrication
facility.

Our experiment lead to the identification of three main research issues:

• The use of abstraction, generic description and layering to structure and simplify
specifications and proofs.

• Technical issues concerning the use of functional as opposed to relational speci­
fication styles, the use of explicit quantification and higher-order functions, and
finally, the value of various theorem-proving capabilities and strategies.

• The need to consider the capabilities and requirements of VLSI CAD systems
when formulating a strategy for formal specification and verification.

These issues are discussed in detail in a forthcoming report (19]. Our experience
with the last of these three issues - the interface between formal verification and modern
VLSI CAD systems - is briefly summarized in this paper.

4 Interfacing with VLSI CAD
Formal hardware verification is no more than an academic exercise unless verified
designs can be turned into functional chips. The input usually required by VLSI fab­
rication systems is a very low-level description of the geometrical chip layout. Severa1
VLSI CAD systems are available that can produce a layout from a higher-level de­
scription of the desired chip. Such systems play a role comparable to compilers and
assemblers in software development - indeed, some VLSI CAD systems are referred to
as silicon compilers. A typical silicon compiler takes a register-transfer level (RTL)
design as input and produces a geometrical chip layout as output. Just as a modern
programming language is often supported by a complete programming environment, so
a silicon compiler CAD system usually provides additional tools such as a simulator,
and analyzers for timing and power dissipation.

In order to fabricate a verified VLSI design, it is necessary to translate the formal
specification into the notation required by the chosen CAD/CAM system. The shift
from one notational system to another necessarily incurs some risk, and it might seem
that the best way to minimize the risk is to remain with the purely formal system as
long as possible. Thus many papers on hardware verification are concerned with low­
level designs - for example, demonstrating the correctness of gate-level implementations
of register-transfer level components. In our view, this emphasis on low-level designs
is misplaced for the following reasons.

First, a VLSI chip is a physical device and its behavior must ultimately be modeled
by the laws of physics, not of logic. Purely logical gate-level models do not account
for such important physical considerations as fan-in and fan-out, power dissipation,
timing, or the geometrical design rules for the technology concerned. It is perfectly
feasible that a logically correct design could fail to function properly owing to the
neglect of these or other physical factors.

3

Second, modern VLSI CAD tools do deal with these physical constraints quite
successfully. By employing libraries of tried-and-tested implementations for stan­
dard register-transfer level components, by modeling the relevant physical properties,
by enforcing design rules, and by using mathematical optimization techniques, such
CAD tools deliver reliable, well-optimized, cleanly-routed chip layouts from a register­
transfer level design. Of course, there is no formal guarantee that the chip layout
produced a VLSI CAD tool correctly implements the register-transfer design provided
as its input, but there is a great deal of pragmatic evidence that it will do so. The
situation is analogous to that of a conventional software compiler: it is entirely possible
that a compiler may generate incorrect code, but the likelihood that a program will fail
because of a compiler bug is small (assuming it is a widely-used, mature compiler) com­
pa.red with the likelihood that a program will fail because of faults in its own design.
Similarly, we consider it much more likely that a VLSI chip will fail due to high-level
design errors, than due to a fl.aw in the implementation of, say, an ALU from a mature
cell library.

In an ideal world, compilers and VLSI CAD tools would be verified, but in the
world as it presently exists we believe that the cause of reliability (not to mention
cost-effectiveness) is likely to be best served by using mature, if unverified, high-level
compilers and CAD tools, and verifying the source text that is provided to them, rather
than in carrying formal verification down to levels where physical properties becomes
significant.

Given this perspective, we decided to construct an implementation of Tamarack
using GENESIL - a silicon compiler - in order to investigate the issues involved in the
transition between a formal specification and the notation required as input to this
VLSI CAD tool.

5 GENESIL: A Silicon Compiler
The GENESIL silicon compiler is a system that generates VLSI design layouts from a
register-transfer level description of the design.

The GENESIL Function Set is a library of standard RTL components that can be
combined to form larger systems. This function set is comprised of various types of
functional blocks: independent blocks such as ROMs, PLAs and multipliers; datapath
blocks such as ALU s and shifters; random logic blocks including multiplexors, latches,
clocks, gates, decoders, flags, and synchronizers.

Instances of these blocks are specified when the user supplies the required param­
eters to GENESIL. The blocks are then combined and interconnected according to a
user-supplied description. The GENESIL compiler checks the design for design and
timing errors and produces a chip layout. Apart from the layout, GENESIL also pro­
duces a functional model for simulation, a timing model for timing analysis, and a load
model for studying power dissipation.

GENESIL supports a CMOS-based design methodology based on synchronous de­
sign, transparent level-sensitive latching, and two-phase non-overlapping clocks.

In the GENESIL system, signals are assigned timing attributes according to the
triggering clock phase of the devices that they can drive. A Valid-A(t) signal holds its
value through the t'th falling Clock-A edge, and similarly, a Valid-B(t) signal holds it
value through the t'th falling Clock-B edge. A Stable-A(t) signal sets up and holds
its value through the t'th falling Clock-B edge and the following t+l'th Clock-A edge.

4

Likewise, a Stable-B(t) signal holds its value through the t'th falling Clock-A and
Clock-B edges.

GENESIL functions blocks specify the timing attributes of the signals they can
accept and produce. The output of transparent latch (clocked on Phase-A, say) tracks
it input when Clock-A is high and latches the input value at the falling edge. The
output of such a latch is held until Clock-A goes high again. Thus, for a transparent
latch, the expected input is Valid-A(t) and the output is Stable-B(t). AD-type flip-flop
latch clocked on Phase-B expects Valid-A(t) input and the input value is available at
the output as a Stable-A(t+l) signal, i.e., with a half-cycle delay. Further attributes,
such as direct, precharged, and tri-state are applied to bus signals.

The GENESIL signal timing attributes and associated interconnections rules ~re
similar to the strong-typing schemes used in modern programming languages and serve
a similar purpose: to clarify the statement of the user's intent and to eliminate a class
of errors. In the case of GENESIL, the signal attribute and interconnection rules
eliminate a large class of race conditions and timing errors.

The user interacts with GENESIL through an editor that can be used to update
existing designs or add new designs. GENESIL displays a form that is specific to the
block being edited, and the user selects the appropriate options. Once a design is
complete, the GENESIL compiler can be invoked on the design. The user can then
examine the layout graphically or simulate its functional behavior.

6 Tamarack in GENESIL
The structural information (i.e., what components are needed and how they are con­
nected together) present in the formal RTL specification of Tamarack is very close to
the input required by GENESIL. Many of the components in the RTL specification of
Tamarack (e.g., ROM, RAM, registers, the ALU) correspond directly to blocks pro­
vided by GENESIL. Only a small amount of random logic was needed in the control
unit of the microprocessor - and that was developed directly from a lower-level formal
specification using random logic blocks provided by GENESIL.

It took about three days to construct an implementation of Tamarack in GENE­
SIL, and much of that time was spent in learning GENESIL. The principle difficulties
encountered were uncertainty about the precise functionality provided by some GEN­
ESIL function blocks, and by the plethora of sub-options available (despite copious
documentation, formal specifications would have been much more useful).

Another difficulty turned out to be surprisingly troublesome. The formal specifi­
cation of Tamarack, not unlike the formal specifications of both the FM8501 micro­
processor and the Viper microprocessor, is based on a single-phase clocking scheme.
Translation of this formal specification into a GENESIL design required a shift from
the single-phase scheme to the two-phase scheme supported by GENESIL. Obviously,
great care should be exercised when implementing a design that assumes a single-phase
clocking discipline within a two-phase discipline. Subtle errors can creep in through
clocking mismatches between the driver and the device being driven. One such error
occurred in our initial implementation of Tamarack. In the microcoded control unit,
the address of the next micro-instruction is latched in the microcode program counter
(MPC) on Phase-B but read by the microcode ROM on Phase-A. However, the ROM
delivers the corresponding micro-instruction a half-cycle later (on Phase-B) and alters
the value latched by MPC. The MPC therefore latches the wrong value for the current

5

micro-instruction address, which in turn affects all future values of MPC.
This error does not violate the GENESIL clocking rules which a.re automatically

checked by the GENES IL system. However, the non-detection of this error this does not
indicate a shortcoming in these rules; the error is at a higher level in that the resulting
circuit is an incorrect implementation of our abstract model of sequential behavior in
which every clock cycle is intended to cause a new state to be computed for the system
based on the current state and current inputs. This initial implementation of Tamarack
resulted in a perfectly valid circuit, but not a circuit with the behavior that we had
intended.

This error was detected using the GENESil, functional simulator, and was easily
repaired by changing the implementation of the MPC from a D-type flip-flop to the
master-slave variety. Of course, an integrated methodology would have started with a
verified design employing a two-phase clock.

7 Conclusion
We found the experience of implementing Tamarack in GENESil, very illuminating.
It is clear that GENESIL and other silicon compilers provide an effective way to con­
struct VLSI implementations from relatively high-level descriptions. Concerns such
as gate-level design, layout, analysis of power consumption, timing and race condi­
tions, conformity to clocking rules, etc., are mostly handled automatically. However,
the real-world orientation of GENESIT, forced us to encounter issues such as multi­
phase clocking, dual-bus data.paths, precharged and tri-state busses, and a much more
concrete model of sequential behavior (i.e., the various sub-options concerning the ex­
act functionality and timing of devices such as latches and ROMs) than is normally
considered in the formal verification of hardware.

For the most part, work on formal hardware verification has not dealt with these
complications, yet it seem they are necessary for systems of realistic performance and
physical reliability. We strongly believe that the most effective use of hardware verifi­
cation will be at the higher levels of VLSI design, with lower levels handled by VLSI
CAD tools such as GENESIL. The important research topic then concerns the interface
between formally verified register-transfer level specifications and the input required
by VLSI CAD tools. The significant interface is the semantic one: for example, the
connection between the type system of the formal specification language and the sig­
nal types of the CAD tool, and the formal modeling of multi-phase clocking schemes. ·
These present interesting challenges for future research.

Acknowledgements

This work was funded by SRI International. The research of one of the authors (Joyce)
is currently funded by an NSERC Operating Grant from the Canadian Government.

References

[1] H. Barrow, VERIFY: A Program for Proving Correctness of Digital Hardware
Designs, Artificial Intelligence, Vol. 24, No. 1-3, December 1984, pp. 437-491.

6

[2] R. S. Boyer and J S. Moore, A Computational Logic, Academic Press, 1979.

[3] R. S. Boyer and JS. Moore, A Computational Logic Handbook, Academic Press,
1988.

[4] Albert John Camilleri, Simulation as an Aid to Verification Using the HOL The­
orem Prover, in: D. Edwards, ed., Proceedings of the IFIP TClO Working Con­
ference on Design Methodology in VLSI and Computer Architecture, Pisa, Italy,
19-21 September 1988, North-Holland, Amsterdam, 1989, pp. 147-168. Also Re­
port No. 150, Computer Laboratory, Cambridge University, October 1988.

(5) A vra Cohn, A Proof of Correctness of the Viper Microprocessor: The First Level,
in: G. Birtwistle and P. Subrahmanyam, eds., VLSI Specification, Verification and
Synthesis, Kluwer Academic Publishers, Boston, 1988, pp. 27-71. Also Report No.
104, Computer Laboratory, Cambridge University, January 1987.

[6] Avra Cohn, Correctness Properties of the Viper Block Model: The Second Level,
in: G. Birtwistle and P. Subrahmanyam, eds., Current Trends in Hardware Veri­
fication and Automated Theorem Proving, Springer-Verlag, 1989, pp. 1-91. Also
Report No. 134, Computer Laboratory, Cambridge University, May 1988.

[7) Avra Cohn, The Notion of Proof in Hardware Verification, Journal of Automated
Reasoning, Vol. 5, May 1989, pp. 127-139.

[8] W.J. Cullyer, Implementing Safety-Critical Systems: The VIPER Microprocessor,
in: G. Birtwistle and P. Subrahmanyam, eds., VLSI Specification, Verification and
Synthesis, Kluwer Academic Publishers, 1988, pp. 1-25.

[9] W.J. Cullyer, High Integrity Computing, in: M. Joseph, ed., Formal Techniques
in Real-Time and Fault-Tolerant Systems, Lecture Notes in Computer Science,

·No. 331, Springer-Verlag, Berlin, 1988. pp. 1-35.

[10] Paul Curzon, A Structured Approach to the Verification of Low Level Microcode,
Ph.D. Thesis, Computer Laboratory, Cambridge University, 1990.

[11] Bruce S. Davie, A Formal, Hierarchical Design and Validation Methodology for
VLSI, Ph.D. Thesis, Report CST-55-88, Dept. of Computer Science, University of
Edinburgh, October 1988.

[12] GENESIL System: System Description and Users Manual, Silicon Compiler Sys­
tems Corporation, 2045 Hamilton Avenue, San Jose, CA 95125, 1988, Order No.
110013-3.

[13] M. Gordon, Proving a Computer Correct using the LCF -1SM Hardware Verifica­
tion System, Report No. 42, Computer Laboratory, Cambridge University, 1983.

[14] Michael J. C. Gordon, A Proof Generating System for Higher-Order Logic, in:
G. Birtwistle and P. Subrahmanyam, eds., VLSI Specification, Verification and
Synthesis, Kluwer Academic Publishers, 1988, pp. 73-128. Also Report No. 103,
Computer Laboratory, Cambridge University, January 1987.

[15] Michael J. C. Gordon et al., The HOL System Description, Cambridge Research
Centre, SRI International, Suite 23, Miller's Yard, Cambridge CB2 lRQ, England.

[16] Warren A. Hunt, FM8501, A Verified Microprocessor, Ph.D. Thesis, Report No.
47, Institute for Computing Science, University of Texas, Austin, December 1985.

7

[17] Jeffrey J. Joyce, Formal Specification and Verification of Synthesized MOS Struc­
tures, in: G. Musgrave and U. Lauther, eds., VLSI 89, Proceedings of the IFIP
TCiOjWG 10.5 International Conference on Very Large Scale Integration, Mu­
nich, Germany, 16-18 August 1989.

[18] Jeffrey J. Joyce, Formal Specification and Verification of Microprocessor Systems,
Integration, the VLSI journal, Vol. 7, September 1989, pp. 247-266.

[19] J. Joyce, E. Liu, J. Rushby, N. Shankar, R. Suaya, F. von Henke: From Hardware
Verification to Silicon Compilation, (in preparation) SRI International, Menlo
Park, 1990.

[20] Jeffrey J. Joyce, Multi-Level Verification of Microprocessor-Based Systems, Ph.D.
Thesis, Computer Laboratory, Cambridge University, December 1989. Report No.
195, Computer Laboratory, Cambridge University, May 1990.

[21] Jeffrey J. Joyce, Generic Specification of Digital Hardware, in: M. Sheeran and G.
Jones, eds., Proceedings of a Workshop on Digital Circuit Correctness, September
1990, Oxford. Also Report No. 90-27, Department of Computer Science, The
University of British Columbia, September 1990.

[22] Jeffrey J. Joyce, More Reasons Why Higher-Order Logi is a Good Formalism
for Specifying and Verifying Hardware, in: P. Subrahmanyam, ed., Proceedings
of a Workshop on Formal Methods in VLSI Design, 9-11 January 1991, Miami,
Florida.

[23] Martin icha:rds, BSPL: A Language for Describing the Behaviour of Synchronous
Hardware, Report No. 84, Computer Laboratory, Cambridge University, July
1986.

[24] F. W. von Henke, J. S. Crow, R. Lee, J.M. Rushby and R. A. Whitehurst The
EHDM Verification Environment: An Overview, Proceedings of the 11th National
Computer Security Conference, Baltimore, October 1988, pp. 147-155.

[25] Friedrich von Henke and John Rushby, Introduction toEHDM, Computer Science
Laboratory, SRI International, Menlo Park, CA 94025, September 1988.

[26) Friedrich von Henke, Natarajan Shankar, and John Rushby, Formal Semantics of
EHDM, Computer Science Laboratory, SRI International, Menlo Park, CA 94025,
September 1988.

[27] John P. Van Tassel, The Semantics of VHDL with VAL and HOL: Towards Practi­
cal Verification Tools, M.Sc. Thesis, Dept. of Computer Science and Engineering,
Wright State University, 1989.

[28) Daniel Weise, Formal Multilevel Hierarchical Verification of Synchronous MOS
VLSI Circuits, Ph.D Thesis, Report No. 978, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, 1987.

8

