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1 Introduction 

More than five years ago, Mike Gordon published a paper on "Why Higher-Order Logic is a 
Good Formalism for Specifying and Verifying Hardware" (15]. At that time, the concept of 
formal hardware verification was in its infancy and, in particular, the idea of using higher
order logic as a hardware description language ( due originally to Keith Hanna [22]) was 
largely unexplored. The purpose of Gordon's paper was to show that pure logic, both as a 
specification language and as a deductive system, is completely adequate for specifying and 
verifying hardware; that specialized description languages and specialized deductive systems 
are not needed. 

Since the publication of Gordon's 1985 paper, the idea of using higher-order logic for 
specifying and verifying hardware has been explored by a number of researchers. One of the 
best known ( and most impressive) examples of the higher-order logic approach is A vra Cohn's 
partial verification of the commercially available Viper microprocessor [7, 8, 9). Higher-order 
logic has also turned out to be a very good formalism for reasoning a.bout many other kinds 
of systems besides hardware. This includes reasoning about software [16], process algebras 
[5, 18], compiling algorithms (26], and communication protocols (6). 

The main purpose of this paper is to argue that higher-order logic, compare to less 
expressive formalisms such as first-order logic, is a very good formalism for specif-ying and 
verifying hardware. We focus on two main reasons: 

• The ability to support generic specifications of hardware, that is, hardware specifica
tions parameterized ( directly or indirectly) by functions and by data types. 

• The ability to embed special-purpose formalisms such as temporal logic. 
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We have experimented with both generic specification and embedded formalisms in the 
context of specify-fog and verifying a very simple microprocessor [27]. The arguments pre
sented in this paper are largely based on experience with this particular case study. 

2 Higher-Order Logic 

Higher-order logic extends first-order logic by allowing variables to range over functions 
and predicates._ Many basic concepts of higher-order logic are inherited -from first-order 
logic. Other concepts, such as the association of types with terms, are familiar ideas from 
experience with strongly-typed programming languages. Much of the actual notation of 
higher-order logic, in particular, the formulation described by Gordon for the Cambridge 
HOL system [17], should be familiar from informal ma.thematics, e.g., Y, 3, /\, V, -,, ==}. 

Allowing variables to range over functions and predicates allows functions and predicates 
to be quan ified. It also alloy.rs (higher-order) functions and (higher-order) predicates to 
be parameterized by other functions and predicates. A (higher-order) function may r turn 
another function or predicate as a result. 

The particular formulation of higher-order logic used in the HOL system is based on five 
axioms and eight primitive inference rules. The implementation of the HOL system uses this 
axiomatization as a basis for guaranteeing proof security: every theorem generated by the 
HOL system is indeed a theorem of higher-order logic. This approach (shared with several 
other verification systems) may be contrasted with verification systems that are implemented 
as a (possibly ad hoc) collection of decisions procedures. 

Although more expressive than many hardware specification languages, the HOL logi is 
less expressive than the constructiv type theory approaches described by Hanna [23), and 
by Basin, Brown and Leeser[2]. In particular, the.<Se approaches allow for dependent types 
which may be useful for some aspects of hardware specification. However, the price of this 
increase in expressive power is the loss of decidable type-checking. 

3 Generic Specification 

Generic description is already established as a powerful concept in many high-level pro
gramming languages . For instance, the 'generic mecharusm' of Ada allows a subprogram or 
package to be parameterized by types and subprograms as well as values and objects. This 
feature supports modularity and abstraction and provides a convenient mechanism for the 
reliable re-use of software. 

Elsewhere [27, 28], we have argued that generic description is also powerful concept in the 
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context of formally verifying digital hardware. In addition to the well known advantages of 
modularity, abstraction and reliable re-usability, the use of generic specification to eliminate 
non-essential detail from a formal specification sharpens the distinction between what has 
and what has not been formally considered. In a hierarchical proof effort, the elimination of 
non-essential detail isolates each level from details only relevant to other levels. Finally, the 
elimination of non-essential detail reduces the need for special-purpose proof infrastructure 
for reasoning about hardware, e.g., hardware-oriented data types. 

Most languages used for specifying hardware, including conventional languages such as 
VHDL1 , do not provide explicit mechanisms for supporting and encouraging fully generic 
specification. (OBJ (13] and EHDM (37] are among the few specification languages with 
explicit mechanisms for generic description.) However, we have proposed a technique for 
expressing genericity in any language with ( at least) the expressive power of higher-order logic 
in a manner that avoids the need for explicit mechanisms to support generic specifications. 
This technique ( described fully in [27, 28]) is based on the use of higher-order predicates 
parameterized by function variables and type variables. We believe that this technique is a 
very direct (if not the most direct) way to specify hardware generically. 

Unlike ordinary simulation, formal verification does not require every symbol appearing in 
a formal specification to be fully defined. Often, symbols representing various data types or 
operations, e.g., arithmetic operations performed by an ALU, are only used as 'place-holders' 
in a correctness proof. This is particularly true in the case of very large verification problems 
which are organized into a hierarchy of verification problems. For instance, the formal 
verification of a microprocessor can be organized into a hierarchy of verification problems 
corresponding to the conventional view of a microprocessor as a hierarchy of interpreters 
[1 ]. In such a hierarchy, many data types and operations are typically used only as place
holders when deriving higher level correctness results. The used of defined symbols as mere 
place-holders is evident in the formal verification of the major state machine of the Viper 
microprocessor [8]. Cohn reports that this level of correctness proof was only concerned with 
the flow of control: 

"There was no computations of values at the major state level - that is, additions, 
comparisons, shifts and so on, [ .. J the proof did not require analysis of the 
functions the arithmetic-logic unit." 

In a conventional approach to hardware specification, every data type and every operator 
is fully defined whether or not it needs to be defined. These symbols are fully defined even 
if they will only serve as place-holders in the correctness proofs. This closed-world approach 
may be partly explained by the influence of "the more detailed, the better" attitude carried 
over from experience with multi-level simulation [12]. Some may also believe ( unaccountably) 
that the use of fully defined types ( even when their definitions are not used) is an extra 
measure of confidence in the correctness result. 

1 Limitations of VHDL with respect to fully generic hardware description are discussed in (29] . 
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In contrast to this conventional style of specifying hardware, we advocate a generic 
approa h where hardware specifications are parameterized (as much as possible) without 
changjng the essence of the verification problem. For data types and operators that are 
used merely as place-holders, we advocate treating them literally as place-holders, that is, 
as uninterpreted types and uninterpreted operations. 

The generic specification of hardware (as well as software) falls naturally within the 
domain of higher-order logic. Generic specifications are easily created by parameterizing 
specifications by functions and types. This can be illustrated by the formal specification of a 
simple ALU ( the ALU used in the formal specification of the formally verified TAMARACK-3 
microprocessor described in [27]). 

We first show how this ALU can be specified in a conventional style where every data 
type and every operator is fully defined. We assume that the functions INC16, ADD16 and 
SUB16 have been previously defined as arithmetic operations on a previously defined type 
: word16 (a data type representing 16-bit words). We also assume that ZER016 is a previously 
defined constant denoting the representation of zero as a 16-bit. word. 

Define ( 
"ALU (f0,f1,inp1,inp2,out) = 

Vt:time. 
out t = 

(((fO t,f1 t) = (T,T)) => (INC16 (inp2 t)) I 
((fO t,f1 t) = (T,F)) => (ADD16 (inp1 t,inp2 t)) 
((fO t,f1 t) = (F,T)) => (SUB16 •(inp1 t,inp2 t)) 

ZER016") 

The above specification can be transformed into a generic specification by replacing 
INC16, ADD16, SUB16 and ZER016 with the function variables incfun, addfun, subfun and 
zerofun (where zerofun is a 0-place function) to represent the arithmetic operations per
formed by this ALU. This generic specification does not specify any details about these 
operations. Furthermore, instead of a defined data type, the generic specification is param
eterized (implicitly) by the type variable : *word. 

Define ( 
"ALU (incfun,addfun,subfun,zerofun) (f0,f1,inp1,inp2,out) = 

Vt:time. 
out t = 

(((fO t,£1 t) = (T,T)) => (incfun (inp2 t)) I 
((fO t ,f1 t) = (T,F)) => (addfun (inp1 t,inp2 t)) 
((fO t,f1 t) = (F,T)) => (subfun (inp1 t,inp2 t)) 

zerofun") 
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Type variables and function variables are used in the above specification to stand for 
uninterpreted types and uninterpreted operators. The transformation of a conventional spec
ification of this simple ALU into a generic specification only requires the addition of a few 
extra parameters to the parameter list of the predicate ALU. (Only the function variables, 
but not the type variables, appear explicitly in the parameter list). However, a large generic 
specification such as the generic specification of complete microprocessor is likely to involve 
a large number of uninterpreted operators which could lead to an excessively parameterized 
specification. 

Excessive parameterization can be avoided by 'packaging' all of the uninterpreted op
erators into a single 'representation variable'. Individual operators are 'selected' from the 
representation variable by previously defined selector functions. A revised version of the 
generic ALU specification is shown below where the selectors functions inc, add, add and 
zero are used to select individual operators of the representation. Only the representation 
variable, rep, appears explicitly in the parameter list of ALU. 

Define ( 
"ALU rep (f0,f1,inp1,inp2,out) 

Vt:time. 
out t = 

(((fO t,f1 t) = (T,T)) => 
((fO t,f1 t) = (T,F)) => 
((fO t,f1 t) = (F,T)) => 

= 

((inc rep) (inp2 t)) I 
((add rep) (inp1 t,inp2 t)) 
((sub rep) (inp1 t,inp2 t)) 
(zero rep)") 

The definitions of the selector functions inc, add, sub and zero depend on the 'com
position' of the representation variable. If this generic specification of the ALU was a part 
of a larger specification, then the representation will likely be composed of other operations 
besides those selected by add, sub, inc and zero. For example, the representation variable 
used in the generic specification of the TAMARACK-3 microprocessor represents thirteen 
different operations. Phil Windley (38] has described support tools for the HOL system 
which are helpful when applying this technique of generic specification to large specification 
problems. 

In a hierarchical approach to generic specification, a common representation variable can 
be passed downwards level by level. For example, the top-level architectural specification of 
the TAMARACK-3 microprocessor is parameterized by the representation variable rep which 
is passed down to the next lower level, namely, the architectural specification of the control 
unit and datapath. In turn, these levels of specification pass the representation variable 
down to even lower levels. This is illustrated below by the definitions of Tamarackimp and 
DataPath which comprise one branch of the specification hierarchy down to the level of 
register-transfer level primitives including the ALU. 
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Define ( 
11 Tamarackimp rep 

(datain,dack,idle,ireq,mpc,mar,pc, 
acc,ir,rtn,arg,buf,iack,dataout,wmem,dreq,addr) = 

3zeroflag ope cntls. 
CntlUnit rep (dack,idle,ireq,iack,zeroflag,opc,mpc,cntls) A 
DataPath rep ( 

Define ( 

cntls,datain,mar,pc,acc,ir,rtn,iack, 
arg,buf,dataout,wmem,dreq,addr,zeroflag,opc) 11

) 

"DataPath rep -
(cntls,datain,mar,pc,acc,ir,rtn,iack, 
arg,buf,dataout,wmem,dreq,addr,zeroflag,opc) = 

3bus busokay alu pwr gnd rmem wmar wpc rpc 
wacc race wir rir vrtn rrtn varg aluO alu1 rbuf. 

DecodeCntls ( 
cntls, 
wmem,rmem,wmar,vpc,rpc,wacc,racc, 
wir,rir,wrtn,rrtn,varg,alu0,alu1,rbuf) A 

BusOkay (rmem,rpc,racc,rir,rrtn,rbuf,busokay) A 
Interface rep (busokay,wmem,rmem,bus,datain,dataout) A 
OR (wmem,rmem,dreq) A 
Register (busokay,wmar,gnd,bus,bus,mar) A 
AddrField rep (mar,addr) A 
Register (busokay,wpc,rpc,bus,bus,pc) A 
Register (busokay,wacc,racc,bus,bus,acc) A 
TestZero rep (acc,zeroflag) A 
Register (busokay,wir,rir,bus,bus,ir) A 
OpcField rep (ir,opc) A 
Register (busokay,wrtn,rrtn,bus,bus,rtn) A 
JKFF (wrtn,rrtn,iack) A 
Register (busokay,warg,gnd,bus,bus,arg) A 
ALU rep (alu0,alu1,arg,bus,alu) A 
Register (busokay,pwr,rbuf,alu,bus,buf) A 
PWR pwr A 
GND gnd 11

) 

There are unmistakable indications that large scale verification efforts of the future will 
depend on support for generic specifications. In a 1989 NASA-sponsored review of the Viper 
microprocessor verification project, David Musser [32] wrote: 

"The major weakness of HOL appears to be the lack of effective support for con
structing specifications and proofs at a high level of abstraction, ... " 
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and more specifically, 

"HOL is also lacking in packaging features that would help in structuring large 
specifications, such as those of VIPER or more complex microprocessors" 

While the HOL logic does not provide explicit constructs to support generic specification 
(as Musser may have hoped to see), it is clear that HOL logic (along with any any other 
formulation of higher-order logic) has the innate capability to suppor t generic specification. 

Although generic specification falls naturally within the domain of higher-order logic, it 
is admittedly possible to thjs add this capability to a less expressive language by introducing 
special constructs for generic specification. An example is the OBJ (first-order equational 
logic with second-order universal quantification) which provides support for 'parameter ized 
modules' [13]. 

While special constructs may be included in a specification language to provide a capa
bility for generic specification, this has the disadvantage of requiring additional proof rules 
needed to manipulate specifications involving these special constructs. We believe, in gen
eral, that the int roduction of special const ructs and p roof rules should be avoided if possible. 
Their introduction is likely to increase the difficulty of implementing a reliable verification 
system, i.e., a system which ensures proof security. The introduction of special constructs 
to support generic specification also lessens the possibility of being able to reproduce veri
fication results in other verification systems - whereas the specification techniques outlined 
in this paper should be applicable in any higher-order specification language. 

4 Embedded Formalisms 

Our second main reason for claiming that higher-order logic is a good formalism for specifying 
and verifying hardware is the ability to embed special-purpose formalisms in higher-order 
logic. Diverse aspects of hardware behaviour are described informally in an equally diverse 
range of styles: finite-state machines, pseudo-code, logic expressions, timing diagrams are 
some common examples. However, the conventional approach to hardware specification is, 
in general, to re-cast these diverse forms of informal description into one basic mold. For 
example, the specification style advocated by Bevier et al. [3] adheres rigorously to a fixed
format based on self-recursive functions (in Boyer-Moore Logic). 

We advocate a different approach, namely, to embed natural notations from well-established 
formalisms such as temporal logic in the framework of higher-order logic. This approach ben
fits from the built-in economy of th ese special-purpose notations when they are appli d to 

particular areas of formal descriptjon. The,se benefits include improved specifications (more 
concise and easier to read) and ease of proof (more powerful proof rules). 
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Figure 1: Asynchronous Microprocessor-Memory Interface 

The advantages of an embedded formalism are illustrated in this section by the use of 
temporal logic operators to (partially) specify the asynchronous interaction of a micropro
cessor with an external memory device using a handshaking protocol. Figure 1 shows the 
inter-connection of a microprocessol' (CPU) with an external memory device. The request 
and acknowledge signals, req and ack, are used to synchronize the transfer of data between 
the microprocessor and external memory. A timing diagram, such as the one shown in Fig
ure 2, is the standard method used by engineers to informally describe how the transfer 
of data between the two devices is synchronfa:ed using req and ack. The timing diagram 
describes constraints on the relative order of events which must be satisfied for the transfer 
of data to be properly synchronized. These constraints may also be expressed in natural 
language as shown below: 

"whenever the request signal becomes true, it must remain true 
until it is acknowledged" 

"every request must eventually be acknowledged" 

"whenever the acknowledgement signal becomes true, it must remain true 
until the request signal returns to false" 

"the request signal will eventually return to false after 
the request is acknowledged" 

"whenever the request signal is false, it will remain false until 
the acknowledgement signal is also false" 

"the acknowledgement signal will eventually return to false after 
the request signal returns to false" 
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ack 

Figure 2: Simplified Timing Diagram for Handshaking Signals 

"once false, the acknowledgement signal will remain false until 
there is a request" 

"whenever the acknowledgement signal is false, 
there will eventually be a request" 

We first consider the uninspired approach of translating the above assertions directly into 
standard predicate calculus notation (these are just 'first-order' formulae). 

Vt. req t ==> (Vn. (Vm. m < n ==> ,ack(t + m)) ==> req(t + n)) 

Vt. req t ==> (3n. ack(t + n)) 

Vt. ack t ==> (Vn. (Vm. m < n ==> req(t + m)) ==> ack(t + n)) 

Vt. ack t ==> (3n. ,req(t + n)) 

Vt. ,req t ==> (Vn. (Vm. m < n ==> ack(t + m)) ==> ,req(t + n)) 

Vt. ,req t ==> (3n. ,ack(t + n)) 

Vt. ,ack t ==> (Vn. (Vm. m < n ==> ,req(t + m)) ==> ,ack(t + n)) 

Vt. ,ack t ==> (3n. req(t + n)) 
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The above set of logical formulae accurately capture the handshaking protocol ( as in
formally described by both the timing diagram and the set of natural language assertions). 
However, these formulae are neither concise nor easy to read (and understand). For example, 
the formula, 

Vt. req t ==} (Vn. (Vm. m < n ==} ~ack(t + m)) ==} req(t + n)) 

is supposed to say: 

"whenever the request signal becomes true, it must remain true 
until it is acknowledged" 

However, most people would find it difficult to translate between this natural language 
description and the logical formulae shown above. 

In contrast, the elegant notation of temporal logic can be used to write a concise and 
easy to read specification of the handshaking protocol. For example, the constraint, 

"whenever the request signal becomes true, it must remain true 
until it is acknowledged" 

translates easily into the formulae, 

(req ---t (req U ack)) 

where ---t and U may be read as "implies" and "until". 

Similarly, instead of, 

Vt. req t ==} (3n. ack(t + n)) 

we can use the notation of temporal logic to express this same condition, 

(req ---t ( ◊ack) ) 

"every request must eventually be acknowledged" 
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where '◊' can be read as "eventually". 

The notation of temporal logic can be used in a similar manner to formalize the other 
six natural language assertions describing the handshaking protocol. 

(ack --+ (ack U (~req))) 

(ack --+ (◊(~req))) 

( (~req) --+ ( (~req) U (~ack))) 

((~req) --+ (◊(~ack))) 

( (~ack) --+ ( (~ack) U req)) 

((~ack) --+ (◊req)) 

The use of temporal logic operators to specify handshaking protocols is well known from 
previous work [4, 11, 19]. Indeed, temporal logic has been used in a more general way as a 
hardware specification language [30, 31]. However, our interest lies in the use of temporal 
logic notation alongside other specialized notations within the context of large, many-sided 
specification problems. For example, the verified computing system described in [27], which 
includes both software and hardware levels, uses temporal logic to specify the asynchronous 
interface of a verified microprocessor as well as notation from denotational semantics to 
specify the semantics of a simple programming language. 

When a variety of specialized notations are used in a large specification effort, we can 
ensure that the sum of the specification parts results in a unified whole by embedding the 
specialized notations into the common framework of higher-order logic. Strictly speaking, 
each notation can be regarded as high-level notation for higher-order logic. In the HOL 
formulation of higher-order logic, this can be done safely in a definitional manner where: 

l. Primitive operators are defined as higher-order functions. 

2. Transformation rules are derived as theorems of higher-order logic (as consequences of 
the operator definitions). 

For example, a useful set of temporal logic operators (including those already mentioned) 
can be defined as follows: 
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Define ("DP = At. Vn. P (t+n) 11
) 

Define ("◊P = At. 3n. P (t+n)") 

Define ( 11 QP = At. P (t+1)") 

Define ("P U Q = At. Vn. (Vm. m < n ~ -,(Q (t+m))) ~ P (t+n)") 

Define ("~P = At. -,(p t)") 

Define ("P and Q = At. P t /\ Q t") 

Define ("P -:--+ Q = At . P t ==>- Q t") 

Assertions in temporal logic are predicates of time. To convert temporal logic assertions 
into assertion of higher-order logic, we introduce a simple notion of validity2 where a temporal 
logic assertion is valid if and only if it is true at all times. 

Define ("VALID P =Vt.Pt") 

Improved specifications are not the only potential benefit of using a more specialized 
notation such as temporal logic; another potential benefit is the introduction of powerful 
transformation rules contributing to a considerable reduction in overall proof effort. For 
instance, the transformation rule, 

P and ~Q-+ QP 
P -+ (P U Q) 

can be used to achieve in a single proof step what would otherwise require a relatively complex 
sequence of low-level proof steps. Transformations can be safely introduced as theorems of 
higher-order logic (as logical consequences of the operator definitions). For instance, the 
above transformation rule is expressed by the following theorem of higher-order logic: 

v'P Q. VALID ( (P and ~Q) -+ QP) => VALID(P -+ (P U Q)) 

2 Although this definition of validity allows us to express temporal logic assertions in higher-order logic 
(and is essentially the same as the approach used by Hale [20]), it does not capture the 'whole meaning' of 
validity in a model-theoretic sense [21]. 

12 



The introduction of transformation rules in this manner is safe because they are merely 
consequences of the operator definitions. In the case of HOL logic, constraints on the intro
duction of definitions (in general) prevent the possibility of inconsistency arising from the 
definitions of these operators [17]. 

Higher-order logic is a natural choice as a general framework for supporting embedded 
notations. This is easily seen in the case of temporal logic. Temporal logic formulae are nat
urally represented as predicates of time. Temporal logic operators are naturally represented 
as higher-order functions by regarding them as functions which are applied to formulae (i.e., 
predicates of time) to yield new formulae. 

The definitional approach to embedding a specialized notation in a verification system 
such as the HOL system contrasts with syntax-based approaches. For example, the Cornell 
Synthesizer Generator (34] can be used to build support tools for specialized notations. In 
a syntax-based approach, transformation rules are simply 'programmed' (perhaps inconsis
tently) into the system. This contrasts with a definitional approach where transformation 
rules are derived as logical consequences of a semantic theory (i.e., the set of primitive 
operator definitions). 

The embedding of specialized notations in higher-order logic is currently a very active 
area of research within the HOL community. This includes work on: programming logics 
[16]; temporal logics [20, 25]; and process algebras such as Hoare's CSP [5] and Milner's 
1r-calculus (18]. 

5 Arguments Against Using Higher-Order Logic 

The use of higher-order logic for specifying and verifying hardware is sometimes criticized 
as impractical or extravagant. These criticisms often have the flavor of: 

"The logic of higher-order functions is difficult, and in particular, higher order 
unification is undecidable. Moreover, higher order expressions are notoriously 
difficult for humans to read and write correctly." 

These concerns about undecidability and difficult notation seem, in practice, to be ei
ther unimportant or unaccountable. Even for approaches that place considerable emphasis 
on proof automation, experience shows that higher-order unification is required only infre
quently to perform higher-order proofs [33]. While certain notations for higher-order logic 
may be less readable than others, it seems unaccountable to suggest that all such nota
tions are inherently difficult to read. Indeed, a major point in this paper is to argue that 
the expressibility of higher-order logic can be used to improve the readability of a formal 
specification by means of an embedded notation. 
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Sometimes it is argued that formal proofs in higher-order logic are generally more dif
ficult than formal proofs in other formalisms such as first-order logic. It is true that some 
specialized forms of proof, for instance, those involving Hilbert's c:-operator, can be difficult. 
But these specialized forms of proof are not frequently encountered, if at all, in most prac
tical verification work - and such proofs generally yield highly re-usable theorems. Many 
practically-oriented hardware proofs in higher-order logic are similar in difficulty to proofs 
in first-order logic. · 

Another criticism is that the use of higher-order logic as a hardware specification language 
is extravagant. This is sometimes argued by showing how simple examples of hardware 
specification can be rendered in less expressive formalism, e.g., the formal specification of 
an n-bit ripple-carry adder. However, simple examples of hardware verification cannot test 
the adequacy of a hardware specification language in any reasonable way. A better test of 
the adequacy of a hardware description language is a problem such as the one encountered 
by Warren Hunt [24) when specifying the FM8501 microprocessor without the benefit of 
existential quantification. The absence of existential quantification in Boyer-Moore Logic 
made it difficult to specify the unknown duration of delays in asynchronous handshaking 
interactions of the FM8501 with external memory. Great interest has been shown in this 
particular problem of specifying asynchronous interfaces by number of researchers [10, 27, 
35, 36). 

6 Summary 

This paper has characterized conventional approaches to hardware specification in two main 
ways: 

Closed-World: Every symbol which appears in a specification is fully defined even when 
the definitions of some of these symbols are not relevant to the verification problem. 

Fixed Format: Diverse forms of informal behavioural description (e.g., timing diagrams, 
flowcharts, pseudo-code, block diagrams) are re-cast into one fixed format pre-determined 
by the specification language. 

This conventional approach has been successfully applied in many examples of hardware 
verifications, notably, the impressive work by researchers at Computational Logic, Inc., on 
the formal verification of a complet·e computing system. The formal specification of the Viper 
microprocessor was also rendered as essentially a closed-world, fixed-format specification. 

In spite of the success thus far of these conventional approaches, we advocate an alter
native approach characterized by: 
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Generic Specification: The explicit or implicit parameterization of formal specifications to 
the greatest possible extent without changing the essence of the verification problem. 

Embedded Formalisms: The embedding of diverse notations in a common framework to 
support formal specifications of an equally diverse range of behaviours. 

We believe that approaches based on generic specification and the use of embedded no
tations will be more likely to succeed as verification problems grow in complexity beyond 
the current state-of-the-art examples. The same forces that lead to the emergence of generic 
software description will also contribute to the emergence of generic hardware description. 
The advantages of improved specification and easier proofs resulting from the use of natural 
notations such as temporal logic will prevail over the limitations of fixed-format specifica
tions. Because higher-order logic naturally supports both generic specification and the use 
of natural notations, we believe that higher-order approaches will contribute significantly to 
future developments in formal hardware verification. 
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University of Idaho). This research is currently funded by an NSERC Operating Grant froin 
the Canadian Government. 
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