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This paper studies the continuum between implicates and minimal implicates; and the continuum between expla­
nations and minimally consistent explanations. The study is based on the approximation of the set of these objects. 
A general definition for approximated minimal implicates, called selective implicates, is presented. Three specific 
instances of selective implicates: query-based, ATMS and length-based are studied. Using the set of query-based 
minimal implicates, explanations are generated and the properties of these explanations are studied. The goal of 
these studies is to extract computationally feasible properties in order to achieve tractable abduction. The setting 
is the compiled approach using minimal implicates in Clause Management Systems. 

1 Introduction 

In Artificial Intelligence, abduction - a form of reasoning by finding explanations - is 

emerging as an important reasoning paradigm in many applications such as diagnostic reasoning. This is 

evident in the development of systems like RESIDUE [6], THEORIST [11], ATMS [3]; and theoretical 

work like Clause Management Systems [12, 13, 9]. 

In Clause Management Systems (CMS), abduction is formulated as deducing a consistent 

sentence (an explanation) that implies a given query from its knowledge base. The computatiorl of 

abduction in the CMS is formulated in terms of compiling (preprocessing) its knowledge base into a 

set of equivalent sentences called minimal implicates. The search for an explanation for a given query 

is achieved by fast set operations on the set of minimal implicates. Unfortunately, this achievement is 

attained at the expense of the potentially exponential storage required for the set of minimal implicates 

[2, 8]. 

In light of such a drawback, a problem in computational abduction is to find a useful tradeoff 

between preprocessing and explanation finding in abduction. In this paper, we shall study this tradeoff by 

examining the role of approximation of implicates and explanations. 
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What is an approximation ? One possible definition is in terms of the quality of being close or 

near the desired quality. In the case of implicates, the desired quality is the property of being a minimal 

implicate of its knowledge base!:. In the case of explanation, the desired quality is being the minimally 

consistent explanation of a given query with respect to!:. The difference between the desired quality and 

that of the approximation will be the measure of the adequacy of the approximation. 

1.1 Implicates and Explanations 

We shall first examine the role of implicates in abduction. To simplify the presentation, we shall 

assume a propositional language C over a vocabulary V. A literal is either x or ,x for any x E V, a 

clause C is a disjunction of literals, and a formula r. is a conjunction of clauses. Clauses and fonnulae are 

sometimes represented by sets, thus if C = CJ V c2 V c3, its corresponding set notation is C = { CJ , c 2 , c3 }. 

The negation of a clause (or set) C (represented by the over-strike bar), is •CJ /\ ,c2 /\ ,c3 and in set 

notation { -,c1, -,c2, -,c3}. For legibility, we shall use implication as in a I\ b --. c to denote the clause 

,a V -,b V c. And, we shall also use E--. G to denote EU G for clauses E and G. 

A clause P subsumes a clause Q if P ~ Q. The function SU B(I:) is a subset of :E such that 

no C E SUB(!,) is subsumed by another clause C' # C in!:. A clause R is fundamental if a pair of 

complimentary literals { x, ,x} g R for any x, otherwise it is nonjundamental. 

Given a formula !:, a clause P such that !: F P is an implicate of !:. An implicate P of :E is 

minimal if there is no other implicate P' # P of :E such that P' subsumes P. In more familiar terms, the 

set of all implicates of!: is the set of all theorems of!: (i.e Th(!:)). Thus, the set of all minimal implicates 

of !: is the set 

M J(:E) ={MI no M' <t. M for M, M' E Th(1:.)}. 

Studying the set of minimal implicates is of great importance in the computational aspect of abduction. In 

abduction, an explanation for G with respect to I: is defined as (l):E FE--. G and (2):E ~ E (or :EU E 

is consistent). Similarly, a minimal explanation E of G with respect to!: is one such that no proper subset 

of E is an explanation for G with respect to !:. 

If we knew the set MI ( :E), finding a minimal implicate E --. G E MI (:E) will ensure that E is 

a valid explanation for G and is consistent with r.. For example, let!:= { a I\ b--. g, a}. The clause a I\ b 

cannot be an expl-anation for g because it is inconsistent with a. By minimality, a E MI(!:) ensuring that 

the clause a I\ b --. g is not in MI (::E) and therefore there is no explanation for g in !:. 
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Additionally, the minimality of an implicate guarantees to some extent the minimality of the 

explanation 1. For example, let :r. = { a I\ b -+ g, a -+ g}. The explanation a for g is more minimal 

than a I\ b. Again, by minimality, { a -t g} E MI (:r.) ensuring that the clause a I\ b - G will not be 

considered. Thus, the minimality of an implicate plays two important roles in finding an explanation: 

1. to ensure consistency of the explanation E, and 

2. to achieve to some extent the minimality of E . 

The approach of pre-computing minimal implicates to speed search for minimal explanations 

is extremely useful when the tum-around time for query processing is crucial. In another scenario where 

response time to query processing is compromized in favour of storage space, the interpreted approach 

supplemented with partial compilation is called for and is studied elsewhere [7]. 

In the case of the compiled approach unfortunately, the most distinct drawback is the size of the 

set of pre-computed minimal implicates. It is known in the literature that in the worst case the number of 

prime implicates (a subset of minimal implicates) of a formula :r. is exponential to :E [2]. 

When the set of prime implicates is compiled incrementally that is, 11 is a set of prime implicates 

of :I: and C is a new clause, the number of prime implicates of 11 UC is the size of 11 with an exponent of 

the size of C [8]. 

1.2 Constraints and Approximation 

In fact, the other drawback is that most of the minimal implicates compiled are not used in any 

way in the query processing. For illustration, consider a formula 

:I: = { a -t b, b -t c, c - d, d -t g} 

where g is the query literal. The set of all minimal implicates of :I: are 

{ a -+ b, a -+ c, a -+ d, a -+ g, 

b-+ c, b-+ d, b-+ g, 

C - d, C-+ g, 

1 Unfortunately, it does not guarantee the absolute minimal explanation. To achieve that, the set of all explanations of G with 
respect to l: must be available to ensure minimality. This is an inherent property of minimality [12, 13]. 
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d-+g, 

a-+ a, b-+ b, c-+ c, d-+ d, g-+ g }. 

The set of all minimal explanations of g with respect to :Eis the set { a, b, c, d, g}. Notice that the set of so 

called "intermediate" clauses involved in the transitive closure for g, for instance a -+ c, a -+ d, b -+ d . .. , 

is not used to process the query g after its compilation. The following table illustrates those implicates 

that are kept and those that are ignored. 

ii original I keep I forget II 
a-+b a-+ g a-+c 

b-+c b-+ g a-+ d 

C-+ d C-+ g b-+ d 

d-+ g 

Such scenario arises very commonly in circuit diagnosis where the query g is usually some observation 

of the inputs and outputs, and the "intermediate" clauses are those describing the circuits in between the 

input and the output. 

This suggests that when using the compiled approach in a setting where the query literals are 

known, only the set of minimal implicates that are "relevant" to the query should be kept. If such scheme 

is employed, the obvious question would be what is the relationship between this restricted set of minimal 

implicates and the unrestricted minimal implicates ? The simple answer is that the restricted set is a 

subset of the set of minimal implicates, precisely corresponding with our motivation of storage saving 

and approximation. This suggests that a general scheme of implicate restriction can be defined for the 

purpose of abduction. 

Definition 1.1 A clause C is a selective implicate of L if:E p= C and R.( C) holds for some constraint n. 
The clause C is a selective minimal implicate of :E 1/ there is no other implicate C' =j:. C of :E such that 

C' subsumes C. 

In general, a set of minimal implicates of :E that is selective will be a subset of Th(I..) and also 

a subset of M J(I..). We can view this restricted set as a form of approximation of the minimal implicates 

of :E. The differences between the minimal explanation for the query G with respect :E obtained from 

the restricted set and the unrestricted set will be the measurement of success in the approximation. This 

subset may not be easily computed and hence an approximated computation is called for. 
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This paper studies such scheme of approximation of minimal implicates in the compiled approach 

for abduction. The goal is to discover the type of restriction on implicates that has overall saving in storage 

and minimal inaccuracy in the explanations computed. 

2 Query-based Implicates 

As suggested in the previous section, a useful restriction n is to select implicates that have 

common literals with the query. Intuitively, since we know a priori the vocabulary of the queries, 

we should only deduce consequences that have these vocabulary. One application for such paradigm 

is the notion of compile on-demand in the framework of the CMS. Starting with a set of knowledge 

L, each request for a minimal explanation of G will begin by compiling the set of G-related minimal 

implicates, followed by finding the resulting explanation for G. If the G-related minimal implicates are 

already present, the compiler will use minimal effort to detect it and produce no new G-related minimal 

implicates. 

Thus over a sequence of queries, the set. of minimal implicates will grow. If the vocabulary of 

all the queries covers the vocabulary of the knowledge base, then the entire knowledge base is compiled. 

This has the flavour of any-time strategy in computation as in the more queries with different vocabulary 

being asked, the more minimal implicates are being compiled. 

If some of the G-related minimal implicates are removed because of limited storage, the compi­

lation will detect it and regenerate those that are missing. The caveat is that the original set of knowledge 

must be intact at all times, that is none of the clauses it contains can be deleted2. 

We shall first introduce the notion of a query-based implicate. Let L be a formula and Q = 
{ q1, ••• qn} be a set of distinguished literals that occur in the queries. 

Definition 2.1 A clause C is a query-based implicate oj"I, restricted by Q ifL F C and C_n Q =I= 0. The 

clause C is a query-based minimal implicate of L restricted by Q if there is no other implicate C' =I= C 

ofL such that C' subsumes C. 

Example 2.1 

2Toe idea is similar to the notion of TE'( fonts generated by METAFONT upon request when the desired font is not available. 
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o-x----~ ---Y--o 

Figure 1: An Inverter Circuit I 

Consider the following simple circuit with an inverter J, input X and output Y. The issue of 

knowledge representation for abduction (in this case diagnosis) is an on going research problem. The 

representation used here is consistent with earlier work in [13] . For more details on this issue, see [10]. 

To start, if the input is X = 0 and the output is Y = 1, the inverter I is not abnormal denoted by the 

predicate -,ab(]) that is, 

X = 0 I\. Y = 1 -+ -.ab(J). 

Similarly, to describe the abnormality of the inverter, we need the description 

X = 0 I\. Y = 0 -+ ab(I). 

Also, we include the equality axioms 

X = 0 -+ -.X = 1 and -.X = 1 -+ X = 0 

to describe the fact that wire X can have exactly one value (exclusive) and wire X must have one value 

(existence). Thus our knowledge base l: contains the following information: 

I:= { (i) X = 0 I\. Y = I -+ -.o.lJ(J), 
(ii) X = 0 I\. Y = 0-+ ab(I). 
(iii) X = 0 -+ -.X = 1, 
(iv) Y = 0-+ -.Y = 1, 

(v) X = 1 A. Y = 0 --+ -.o.b(I), 
(vi) X= 11\.Y= 1--+ ab(I ), 
(vii) -.X = 1 --+ X = 0, 
(viii)-.Y = 1 --+ Y = O}. 

The observation for the inverter circuit in example 2.1 is X = 0 --+ Y = 0. Thus, by simplifying 

into clausal form, the set of query literals is Q = {-.X = 0, Y = 0}. As a notation, we shall use 

M JIQI (:r.) to. denote the set of all query-based minimal implicates of l: restricted by Q and MI (l:) to 

denote the set of all minimal implicates of l: without restriction. The query-based minimal implicates 

of :E restricted by Q for the circuit example is denoted in the following set. Note that the first four are 

implicates from the original set l: and the rest are deduced implicates. 

(1) -.X = 0 V -,y = I V -,(Lb(I), 
(2) -,X = 0 V -,y = 0 V a,u(I), 
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(3) -,x = ov-,x = 1, 
(4) Y = 1 VY= 0, 

(5) -,X = 1 V ab(J) VY= 0, 
(6) X = 1 VY= 0 V -iab(I), 
(7) X = 0 V ab(I) V Y = 0, 
(8) -iX = 0 VY = 0 V -iab(I), 
(9) Y = 1 V -,X = 0 V ab(I), 
(10) X = 0 V -,X = 0, 
(11) Y = 0 V -,y = 0}. 

7 

The following set denotes some non-query-based minimal implicates of L restricted by Q for 

the circuit example but are minimal without restriction. That is, they are members of M I(L). 

M I(r.) - M IIQI (r.) = { 

-iab(I) V X = 0 VY= 1, 
-,y = 1 V ab(I) V X = 0, 
ab(I)VX= 1 VY= 1, 
X = 1 v-,x = 1, 
Y=lV-iY=l, ...... }. 

Also, we shall use L FIQI C to denote the restricted entailment in definition 2.1 that is, L F C 

and C n Q -=I= 0 for some set of q~ery literals Q. The following lemma 2.1 describes a property of this 

restricted entailment. 

Lemma 2.1 Given a formula L, a set of query literals Q and a clause C ~ Q, L FIQI C if! there is a · 

C' E M JIQI (L) that subsumes C. 

Proof: 

if: LetL FIQI C. IfthereisnopropersubsetC'ofCsuchthatL p C',thenbyminimalityC E M/IQl(:E). 

Assume there is such a proper subset of C. Since C ~ Q hence C' ~ Q. Then by the definition of 

minimal query-based implicate (definition 2.1), the smallest such subset C' is in M JIQI (L). 

only-if: Let C' EM JIQl(L) and C' subsumes C. By definition 2.1, L p C'. Since C'-+ C and Cc Q, 

therefore L FIQI C. D 

Other trivial facts concerning minimal implicates and query-based minif!lal implicates are: 

1. M I(L) ~ Th(L) and 
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Alternately, the set M IIQI (I:) can be defined in terms of Th(I:) as follows: let Th(I:) be the set 

of all theorems of I:, thus 

M I(I:) =SUB( Th(I:) ) 

and the set of query-based minimal implicates restricted by Q with respect to I: is 

M 11Q1(r.) ={PIPE M I(r.), P n Q "# 0}. 

Proposition 2.1 Let r. be a formula, MI (I:) be the set of minimal implicates of I, and M JIQI (1:) be the 

set of query-based minimal implicates of 'f- restricted by Q, the set M JIQI (I:) ~ MI (I:). 

Proof: Let CE MJIQl(I:) and assume that C ~ MJ(:E). By definition 2.1 the clause C is an implicate 

and it is minimal with respect to I:. According to the definition of minimal implicate, C is also a minimal 

implicate, contradicting the assumption. Therefore C E M J(I.). D 

The inclusion properties of the sets Th(:E), MI (I:) and M JIQI (I:) are illustrated in figure 2. 

Th(!: ) 

MICE) 

Figure 2: Set Inclusion Properties of Th, MI and M JIQI of r.. 

3 Approximating Query-based Implicates 

According to the definition 2.1 of query-based implicate, a query-based implicate is minimal if 

no proper subset of it is an implicate of I:. This implies that a minimal query-based implicate relies on 

the fact that all other minimal implicates (without restriction) of r, are known. 
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Example 3.1 To illustrate this fact, let the query literals Q = { q}, 

and two deduction sequences using clauses in :E tabulated as follows : 

non-query-based implicate 
-,a V b1 
-,b, V b2 
-,b2 V b3 

query-based implicate 
...,p V q 
p V -,a 

-,a V q 
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The deduced clause -ia from the left deduction sequence, is a non-query-based implicate and 

it subsumes -,a V q which is a query-based implicate deduced from the right deduction sequence. Thus, 

to ensure the minimality of -ia V q, the long sequence of deduction on the left is required. Intuitively, a 

clause is minimal with respect to :E if we know that all other clauses in :E are not minimal than it. Also 

note that every clause on the left deduction sequence is not a query-based implicate because they have 

empty intersection with Q. 

Consequently, to ensure a query-based implicate is minimal, all other implicates (query-based or 

not) must be generated. This poses the question can we approximate the set M I IQI (:E) without computing 

all the minimal implicates ? We shall attempt to characterize such an approximation with the help of a 

variant of query-based implicate. 

Definition 3.1 A clause C is a qb-implicate of:E restricted by Q if :E F C and C n Q i- 0. The clause 

C is a qb-minimal implicate of:E restricted by Q if thqe is no qb-implicate C' i- C of 'f. such that C' 

subsumes C. 

The above definition 3.1, which is a variant of query-based implicate, suggests that the mini­

mality of a qb-implicate is restricted only to the set of qb-implicates. For example, let 

:E= { (1) ,a Vb, (2) ,b, (3) ,pVq, (4) pV,a, (5) hVcVq, (6) -ihV-ia} 

and the set of query literals Q = { q} . 
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( 1 )&(2) ~ -ia, 

(3)&(4) ~ q V -ia, 

(5)&(6) ~ c V q V -ia. 

Clauses ( 1 )&(2) resolved to produce a clause which is not a qb-implicate because it does not contain 

q. The resulting resolvent of clauses (3)&( 4) is a qb-minimal implicate because it is not subsumed by 

any other qb-imp/icate, and the resolvent of clauses (5)&( 6) is not a qb-minimal implicate because it is 

subsumed by the resolvent of clauses (3)&(4). In the circuit example 2.1, clause (i) and (ii) in I: produce 

the clause -iX = 0 V -,y = 0 V -,y = 1 which is a qb-minimal implicate because it is not subsumed by 

clause (iv) in I: which is not a qb-implicate. Intuitively, the set of all qb-minimal implicates M I(QI (I:) 

contains the set M I\Q\(:E). 

Proposition 3.1 Let :Ebe a formula and Q be a set of query literals. The set M IIQl(:E) ~ M I(QI (I:). 

Proof: Let the clause C E M IIQ\ (I:) and assume that C </. M I(QI CE). By the definition 2.1 of query-based 

implicate, the clause C is an implicate of I:, C n Q i= 0 and there is no C' C C is an implicate of I:. By the 

definition 3.1 of qb-implicate, C is a qb-minimal implicate of I:, contradicting the assumption. Therefore 

C E M IIQI (I:). D 

Since the set M IIQ\ (I:) ~ M ICJ:.), trivially the intersection of M ICL) and M I(QI (I:) is the set 

M I\QI (I:) as shown in the following figure 3. 

Th(r) 

Figure 3: Set Inclusions Property of Th, MI, M IIQI and M I(QI of I:. 

Proposition 3.2 Let :E be a set of clauses and Q be a set of query literals. The set M IIQl(:E) = 

M J(:E) n M JIQl(:E). 
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Proof: Assume that the clause CE MJ(r.) n MI(Q1(r.) and C ¢ MJIQl(r.). By the definition 3.1 of 

qb-implicate, C E M I(QI (I:) implies that C is an implicate of I:, C n Q # 0 and there is no C' C C such 

that C' n Q # 0 is an implicate of I:. Since C is also in M IIQI ("f.), no C' C C is an implicate of L. By 

the definition 2.1 of query-based implicate, C E M IIQI (I:) contradicting the assumption. Let the clause 

CE M JIQl(r.). By propositions 2.1 and 3.1, CE M J(l:) n M I(Ql("f.). □ 

In fact, definition 3.1 suggests a systematic algorithm to compute the set M I(QI (I:). To imple­

ment this, we need a notion called the consensus operation used commonly in switching theory [l ). The 

consensus method is simply propositional resolution in clausal form with added restrictions. 

Definition 3.2 Let A = { x} U A' and B = {x} U B' be two clauses. The consensus of A and B with 

respect to the variable xis CS(A, B, x) = A' U B' if A' U B' is fundamental. 

For instance, using clause (i) and (vii) in the circuit example, 

CS(-,X=OV-,Y=IV-iab(I), X=lVX=O, -iX=O) = X=lV-iY=lV-iab(J) . 

Subsequently, using clause (viii) to resolve with the above consensus, we obtained 

CS(X = 1 V -,y = 1 V -iab(I), 1,. = 1 VY= 0, .,y = 1) = X = 1 VY= 0 V -iab(I). 

Thus, every consensus obtained from clauses in r. is an implicate of L 3• In order to obtain a 

qb-implicate, the consensus operation is given the additional restriction that C S(A, B, x) n Q # 0 for 

some set of query literals Q. Obviously, CS(A, B, x) n Q = 0 if both An Q = 0 and B n Q = 0. This 

suggests that the consensus operation for finding qb-implicates is guided by the participating clauses that 

have non-empty intersection with the set of query literals. 

Unfortunately, the definition of M I(QI ('1:.) in definition 3.1 contains more implicates than those 

generated solely from the restricted consensus operation. For example, if r. = { a V b} and Q = 
{ q1, ••• , q11 }, then every a V b V q; for 1 S i S n, is a qb-implicate of I:. This also implies that the size of 

MI(Q1(r.) is as large as MI(L). 

However, if we restrict our implicate generation to only those generated by the restricted 

consensus operation, we should obtain a subset of M I(QI (I:) which is much smaller than MI ("f.) and 

3For more details, see [8] . 
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M IIQI (:E) but contains M IIQI (:E). To characterize such a subset, consider first the definition of a restricted 

generalized consensus. 

Definition 3.3 (Restricted Generalized Consensus) 

Let C = { C1, . .. , Cn} and Q = { q1, . .. , qm}. A generalized consensus of C restricted by Q is defined 

as 

ifC = {Ci} and C1 n Q -I= 0 

GCS(C)= S=CS(GCS({C1, ... ,Cn-d), Cn, x) ifC={C1, ... ,C11 }andSnQ"1=0 

undefined otherwise 

Note that the definition implies the order of clauses in C is crucial because, if rearranged, it 

might not yield a restricted generalized consensus. That is when !Cl > 2 it is not commutative. For 

example, let C = { ( 1) -ia Y b, (2) -,b Y c, (3) -,c Y q} and Q = { q}. 

I. GCS( {l, 2, 3}) = undefined because CS(l, 2, b) n Q = 0. 

2. GCS(_{l, 3, 2}) = undefined because there is no consensus between clause (1) and (3). 

3. GCS({3,2,l})=CS( CS(3,2,c), 1,b) 

= CS( CS( -ic Y q, -,b Y c, c), -,a Yb, b) 

= CS( -ibV q, -ia Yb, b) 

= -ia V q 

Fortunately, if a generalized consensus exists for a set of clauses C restricted by Q, then any 

permutation of C that has a generalized consensus restricted by Q will yield the same consensus. 

Proposition 3.3 Let C = { C1, ... , C11 } be a set of clauses and GCS(C) be a generalized consensus 

restricted by Q for the ordering in C. Any permutation C' ofC such that GCS(C') exists, then GCS(C') = 
GCS(C). 

Proof : Observe that each consensus operation CS(A, B, x) involves removing a pair of compli­

mentary literals, say {x, -ix}. Thus the GCS(C) = S has all the pairs of complimentary literals 

{ x 1, -,x 1}, ... , { Xn-I, -ixn-l} removed by the sequence of consensus operations 
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to yield S. Any permutation C' of C such that GC S ( C') = S', if the same set of complimentary literals 

{ x 1, -,x 1}, ... , { Xn-1, -,xn-1} is removed, then S' = S. If S' ¥- S, then there is at least a pair of 

complimentary literals {y, -,y }, y ¥- Xj, 1 ~ j ~ n - 1 used in place of some {xi, -,xi} . Since every 

clause Ck, 1 ~ k ~ n participates in the restricted generalized consensus operation to produce S', thus 

{xi, -,xi} ES' contradicting the definition that GCS(C') = S' is fundamental. □ 

As a consequence of the above proposition, the set of all possible consensus of a set of clauses 

C restricted by Q is the set of all possible generalized consensus of the members of the powerset of 

C restricted by Q. Additionally, we shall also speak of the minimality of a consensus in terms of the 

subsumption relation. 

Corollary 3.1 Let C = { C1, ... , Cn} be a set of clauses. The set-of all minimal consensus of C restricted 

by Q is 9(C) = SUB({GCS(S) I 'vS ~ C}). 

Finally, the set inclusion properties amongst (J (:E), M IIQI (I:) and M 1101 (I:) are expressed in the 

following lemma. 

Lemma 3.1 Let I: be a formula, Q be a set of query literals and 9(.I:) be the set of all minimal consensus 

restricted by Q. 

Proof: (1)9(:E) ~ MI(Q
1
(r): Assume that there is an SE 9(:E) such that Sf/. MIIQl(:E). Observe 

that every minimal consensus restricted by Q is an implicate of :E. Thus S is a qb-implicate and since 

S E 9(:E) implies that no proper subset of Sis in 9(:E), hence Sis a minimal qb-implicate (definition 

3.1) contradicting Sf/. M I(Q
1
(:E). 

(2)MIIQl(:E) ~ 9(:E): Let SE MIIQl(:E). By the definition 2.1, Sis an implicate of r, Sis 

minimal and Sn Q ¥- 0. By corollary 3.1,the set 9(:E) contains all the implicates that are minimal and 

has non-empty intersection with Q, therefore S E 9(:E). □ 
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Figure 4 illustrates the set inclusion relationship amongst Th(!.), M J(:r,), M IIQI (:~:), M I(QI (:E) 

and the approximated implicates Q(:E) denoted by the circular dotted line. The partition in the dotted 

circle (Z) that is outside of M IIQI (L) contains those qb-minimal implicates that are not minimal globally 

with respect to :E. As shown in example 3.1, the -,a V q is a qb-implicate generated by the restricted 

generalized consensus operation but is not minimal with respect to :r. globally. 

Th(! ) 

· ... .. •···· 

Figure 4: Set Inclusions Property of Th, MI, M IIQI, M I(QI and the approximated implicates Q of :r.. 

In fact, we can characterize the property of the set Z exactly. First, it is obviousthat 9(!.) = 

Corollary 3.2 Let :r. be a formula, Q a set of query literals and a clause Z. 1/ Z E Z then there exists a 

clause M E M I(:E) such that Mn Q = 0 and M subsumes Z. 

Proof : Assume that Z E Z thus Z E 9 (L). Since Z is a qb-implicate and it is not minimal by the 

fact that it is not in M JIQI (!.), therefore there is an implicate that subsumes it. If there is an implicate 

M E M IIQI (!:) that subsumes it, then by the definition of Q (!:), Z ,t 9 (:E) contradicting the fact that 

Z E 9(!:). Thus, the only minimal implicate M that can subsumes Z is the minimal implicate outside of 

M JIQI(!:). By minimality, such ME M J(I,) and Mn Q = 0. □ 

4 The Algorithm 

Intuitively, the restricted generalized consensus suggests that the search for a qb-implicate 

through a chain of restricted consensus operations should always select participating clauses that has a 

non-empty intersection with Q. This fact is stated more precisely in corollary 4.1. 
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Corollary4.1 LetLbeaformu/aandQasetofqueryliterals. lJS ~ Lsuchthat\/Si E S(SinQ = 0), 

then GCS(S') = undefined for all S' ~ S. 

That is, any subset S of r, such that every member of it has an empty intersection with Q, we can 

safely ignore for purposes of restricted consensus. Recall that in the definition of restricted generalized 

consensus (definition 3.3), the GC S of a set of clauses can be computed via a sequence of restricted 

consensus of two clauses. Thus by searching for two clauses at a time such that at least one of the clauses 

have non-empty intersection with Q ensures the elimination of redundant search as suggested by corollary 

4.1. We shall introduce a naive method for computing restricted consensus in algorithm 1. 

Algorithm 1 Naive QBIG 

Input: A formula r, arid a set of query literals Q. 
Output: The set g (L). 

Let tem,p +- 0 
While tem,p -::/- r, do 

tem,p +- L 
r, +- r, U CS (A, B, x) for some A, B E r, such that A n Q -::/- 0 or B n Q -::/- 0. 

end 
r, +- r, u { { q, -.q} I \/q E Q} 
r, +- qb-Subsumption(r., Q) 

end 

Algorithm 1: Naive QBIG 

Finally, to obtain the subset of qb-minima/ implicates, the subsumption operation is performed 

according to the rule that clause A subsumes clause B only if A C B and both clauses have non-empty 

intersection. with Q. Algorithm 2 shows a simple restricted subsumption method. 

To illustrate the search space, consider the following set of clauses in r, and assume that the 

query literals are Q = { q1, q2}. 

(I) a4 --+ C 

(2) a1 I\ a2, C --+ d 
(3) a3 I\ a1, d -+ qi 
(4) a4 I\ a2, d --+ q2 
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Algorithm 2 qb-Subsumption 

Input: A fonnula l: and a seL of query literals Q. 
Output: Minimal clauses of l: restricted by Q. 

Let temp+- 0 
While temp =I= l: do 

temp+- L 
l: .._. I - A for some A EI such that 3B EI (B C A), An Q # 0 and B n Qi= 0. 

end 

end 

Algorithm 2: Algorithm qb-Subsumption 

16 

The set of minimal implicates are depicted in figure 5. The original clauses are enclosed in 

solid boxes and the derived minimal implicates are outlined by dotted boxes. A solid arrow between 

boxes indicates potential consensus and a dotted arrow denotes subsumption relation. The numbers in 

brackets denote the clauses involved in generating the implicate. For example, box (2, 3) is the consensus 

of clauses (2) and (3). Notice that the dotted box (1, 2) is not a qb-implicate because it has no common 

literals with Q. Also note that clause ( 1, 2) is also the intermediate clause that produces the other two 

implicates denoted by dotted boxes ( 1, 2, 3) and ( 1, 2, 4) respectively . 

....................... x 
:-a,.v...;J,,~ v. d: ( 1.2) 

, ..... ............. .................. . 
(2,3):-a, v- a,.v.-a, v-Cv Q,: 

(1.2,3) 
... ...... ................... ............. 
:- a, v-32v-a,v-a. v q1: . .. . .................................. r~ .. v-ii ... -a. • q, : (1.2.4) 

: q, V - qi: . ______ ,. ___ _ _ ! Q, V -q,: ·--·---------

Figure 5: Minimal Implicates Space 

Alternatively, the other two implicates (2, 3) and (2, 4), which are qb-implicates, also are capable 

of producing the qb-implicates (1, 2, 3) and (l, 2, 4) respectively. Thus, following the algorithm QBIG, 

we first select a clause that has non-empty intersection with Q, that is either clause ( 3) or ( 4). Let us 



5 APPROXIMATED EXPLANATIONS 17 

assume clause (3) is selected and resolved with clause (2) with respect to literal -,d to produce clause 

(2, 3). Subsequently, clause (2, 3) resolves with clause (1) with respect to literal -,c to produce clause 

(1, 2, 3). 

Similarly, when clause ( 4) is chosen to resolve with clause (2) with respect to literal -,d, it yields 

clause (2, 4). A subsequent consensus operation with clause ( 1) with respect to literal -,c produces clause 

( 1, 2, 4). Notice that clause ( 1, 2) is never produced using algorithm QBIG and thus the computational 

saving. 

Since the complexity of minimal implicates generation is equivalent to the number of minimal 

implicates, the restriction on generating only a subset of minimal implicates obviously suggests low_er 

complexity. Nevertheless the worst case where every clause in I: has non-empty intersection with Q, will 

have the same complexity as the non-restricted case. The key argument is that it provides a framework 

for query-based computation as in the compile on-demand scenario. Obviously the above algorithm is 

naive and further improvement can be achieved. We shall leave this investigation for future work. 

5 Approximated Explanations 

In this section, we shall demonstrate the use of the approximated query-based minimal implicates 

in computing explanations. Recall that an explanation for a query G with respect to a formula I: is 

(1) I: FE-+ G and (2) I:~ E. And Eis minimal ifno proper subset of it has the same property. To 

compute the set of minimal explanations from M J(I:), one simply computes the set [13] 

ME(G,MI(I:)) = SUB({E IM E MJ(I:),Mn G-/= 0 and E = M- G}) . 

Recall our motivation is to compute the set of minimal explanations from a smaller set of 

minimal implicates M JIQI (I:), or more precisely the approximated set 9 (:E) computed using algorithm 

QBIG. The question remains what are the discrepancies between the minimal explanations obtained from 

MI (I:) and M JIQI (I:) and thus 9 (I:). In reality, what is important to us is the property of explanation 

obtained from the set 9 (:E). Since the set Q (:E) is a superset of M JIQI (:E), thus studying the properties of 

explanations from M JIQI (:E) will suggest to the properties of explanations obtained from the set g (I:). 

There are two basic properties for an explanation E of G with respect to a knowledge base I:. 

These are the minimality and the consistency of the explanation E. Let the set M E(G, M JIQICE)) be the 
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set of all minimal explanations for G with respect to I: restricted by the set of query literals Q, that is 

ME(G, MIIQl(I:)) = SUB({E IM E MIIQl(I:), Mn G # 0 and E = M - G}). 

Note that in the general case, there is no restriction that G n Q # 0. This is deliberate since this framework 

is also aimed at other potential application like assumption based reasoning [9]. 

Corollary 5.1 Let I: be a formula, Q be a set of query literals and G be a non-empty clause. If 

EE M E(G, M IIQl(I:)) then Eis consistent with I:. 

Proof: If E E M E(G, M IIQ)('L)), then 'L F EU G for non-empty G and EU G is minimal. Assume 

that I: F E, but E C (EU G) thus contradicting EU G is minimal. Consequently I: ~ E or 'LUE is 

consistent. D 

Furthermore, if E E M E(G, M I1Q1CE)) then E is minimal for G with respect to M IIQl(:E). 

Unfortunately, Eis no longer minimal with respect to I: globally. More precisely, 

Corollary 5.2 Let 'L be a formula, Q be a set of query literals and G be a non-empty clause. If 

E E ME( G, M IIQI (!:)) then there exists an E' E ME( G, MI ('L)) such that E' subsumes E. 

Proof: Let EE ME(G,MIIQl(I:)), thus by the definition of ME(G,MIIQl('L)), there exists ME 

M IIQI (:I:) such that E = M - G and M n G # 0. Since M is minimal with respect to :E, therefore 

ME M I(:I:) and E = M - G. By the minimality of M E(G, M I(:E)), there is an E' E M E(G, M I('L)) 

that subsumes E. □ 

Note that the E' does not necessary equal to E as illustrated in the following example. Let 

:I:= { a Vb V c, a V d V c V q}, Q = {q} and G = b V c V q. Thus, a V d V c V q E M IIQl('L) and both 

a Vb V c and a V d V c V q are in M I('L). From M I1Q/E) the explanation -,a V-,d E M E(G, M JIQI (!:)). 

Conversely, from M I('L), -,a EM E(G, M J('L)) because -,a subsumes the explanation -ia V -,d , Thus 

the explanation -,a V -,d in ME( G, M IIQI (I:)) is not in ME( G, MI (:I:)). This is simply stating the fact 

that a minimal explanation obtained from a smaller subset M IIQI (I:) cannot guarantee that it is minimal 

with respect to explanations obtained from a larger set M I('L). 

Obviously, the converse of corollary 5.2 does not hold in general either. For example, let 

'L = {a Vb V c, a V q V c}, the set of query literals Q = {q} and G = b V c. Since a V q V c EM JIQl('L) 
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hence a minimal explanation of G from M JIQI (I:) is E = ,a I\ ,q. That is, the clause a V q V c is· a 

query-based minimal implicate and E is obtained from M JIQI (I:). Conversely, a V b V cM JIQ I (I,) but 

a Vb V cM J(I:) and hence a minimal explanation for G with respect to I: is E' = ,a. That is, the clause 

a Vb V c is a minimal implicate but not query-based. Now that E' subsumes E thus Eis not a minimal 

explanation for G globally with respect to I:. 

Fortunately, there is a special case when the query G is a unit clause (i.e. contains a single 

literal) and G n Q =I- 0, these two sets are equivalent as expressed in the following lemma 5.1. 

Lemma 5.1 Let I: be a formula, Q be a set of query literals and G is a unit clause such that G n Q =I- 0. 

The set M E(G, M JIQl(I:)) = M E(G, M J(I:)). 

Proof: Let E E M E(G, M JIQl(I:)) and since G is a unit clause, (EU G) E M JIQ[(I:). By corollary 

5.2, there is an E' E ME ( G, MI (I:)) that subsumes E. Assume that E' C E, then I, I= E' U G and 

(E' U G) n Q =/- 0. But (E' U G) C (EU G) thus contradicting (EU G) E M JIQl(I:), therefore E' = E. 

LetE E ME(G,MJ(I:))andsinceGisaunitclause,(EUG) E MJ(l:). Since(EUG)nQ =I- 0 

and by minimality, (EU G) E M JIQl(I:). Assume that there is a E' E M E(G, M JIQl(I:)) such that 

E' CE. SinceGisaunitclause, (E'UG) E MJIQl(I:). ButE' C Econtradicting (EUG) E MIIQl(l:), 

therefore EE M E(G, M JIQl(I:)). □ 

In summary, obtaining explanations from the set M JIQI (I:) preserves consistency and in general 

sacrifices minimality globally with respect to I:. Nevertheless, it does preserve minimality with respect to 

M JIQI (I:) locally. In the special case, if the query G is a unit clause and has non-empty intersection with 

Q, we preserve both properties and gain by searching only a subset of the minimal implicates space. 

Turning to the set of approximated query-based minimal implicates of Q (I.), we know from 

lemma 3.1 that M JIQI (I.) ~ g (I,). Thus, explanations obtained from the set g (I.) inherit at least the 

properties mentioned above. Recall from figure 4 and corollary 3.2, there exist implicate in the set 9(1:) 

that are not minimal globally with respect to I.. This is illustrated by the area denoted by Z in figure 4. 

This property implies the explanations obtained from implicates in this subset Z might not be consistent 

globally with respect to I.. 

Since the subset Z is not known a priori , the question remains whether there is a sign where 
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the explanations obtained from the set (J (1:) can guarantee consistency. Let 

ME(G,9(1:)) = SUB({E IM E 9(1:), Mn G =fa 0 and E = M - G}) 

be the set of minimal explanations obtained from the set 9 (1:) computed by algorithm QBIG. 

Lemma 5.2 Let l: be a formula, Q be a set of query literals, Q(l:) be the set of implicates computed from 

algorithm QBIG and G be a clause. If EE M E(G, Q(l:)) and (EU G) ~ Q, then LUE is consistent. 

Proof: Since E E M E(G, Q(!:)) and (EU G) ~ Q, by the definition of (J(!:), (EU G) is a minimal 

query-based implicate, that is, (EU G) E M IIQI (1:). Assume that Eis inconsistent with r., that is, there 

is a E' ~ E such that 1: ~ E'. But E' ~ (EU G) contradicting (EU G) EM IIQICE). Therefore there 

cannot be such a E' and consequently 1: U E is consistent. D 

In short, lemma 5.2 states that if the explanation (to be precise, the negation of the explanation) 

and the query G contain only query literals from Q, we are certain that the explanation is consistent. 

Nevertheless, to ensure minimality, we require that G is a unit clause in addition to the condition stated in 

lemma 5.2. This is stated more formally in lemma 5.3. 

Lemma 5.3 Let L be a formula, Q be a set of query literals, Q(l:) be the set of implicates computed from 

algorithm QBIG and G be a unit clause. EE M E(G, Q(!:)) and (EU G) ~ Q if! EE M E(G, M J(!:)) 

and(EUG)~Q. 

Proof: 

if: Since E E M E(G, Q(!:)), (EU G) E (J(r.) and is minimal. Additionally, (EU G) ~ Q implies 

that (EU G) E M JIQJ(!:). Since G is a unit clause, E E M E(G, M IIQI(!:)) and by lemma 5.1, 

EE ME(G,MI(1:)). 

onlyif: Let EE ME(G,MJ(r.)) and since (EU G) ~ Q and G is a unit clause, by lemma 5.1, 

EE ME(G,MJIQI(!:)). Hence (EUG) E MJIQl(l:) and it is minimal. SinceMJIQJ(!:) ~ Q(!:) by 

lemma 3.1, (EU G) E g (r.). Again by minimality and the fact that G is a unit clause, E E ME( G, Q (L.)). 

□ 

Consider example 3.1 again, the algorithm QBIG will only derive the implicate -,a V q but not 

the long chain for non-query-based implicate -,a. Thus if the query is q, then the explanation a obtained 
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from a -+ q is inconsistent globally with respect to :E. In short, sacrificing minimality in implicates 

introduces inconsistency in explanations in general except the two special cases in lemma 5.2 and 5.3. 

Now, the tradeoff becomes that between the saving over computing all the minimal implicates, 

versus relaxing consistency in explanation. One may argue that consistency of an explanation is crucial 

and it should be required at any cost, but indicated in example 3.1, to derive ,a is expensive. On the 

other hand, one could argue that obtaining an explanation quickly is better. This is supported by two 

major reasons. Firstly, obtaining an explanation is bett!!r than not as in the example 3.1, where there 

will be no explanation for q if we insist on consistency. Thus from the information processing point of 

view, the user is left guessing which part of the explanation is inconsistent. Secondly, since reasoning is 

continuous, asking more queries will eventually lead to the detection of the inconsistency. For example, 

after obtaining the explanation a for q, asking for the explanation of ,a thus changing the set of query 

literals to Q = {,a}, will ensure the detection of ,a in the knowledge base. 

This paper argues for the second proposition above, that is relaxing minimality and consistency 

in favour of faster computation. In a much looser argument, one can view such approximation as lazy 

reasoning as in working on only the easily accessible facts. As the demand for precision increases, more 

work is required. 

6 ATMS implicates 

In this section, we shall demonstrate the use of the definition of selective implicates in defining 

ATMS implicates. The purpose is merely an exercise to show the generality of the definition and that the 

formalization of ATMS is feasible following the original motivation of Reiter and de Kleer [ 12). Let :Ebe 

a formula, Let A= { a1, ••• an} be a set of distinguished positive literals called assumptions. 

Definition 6.1 A clause C is an ATMS-implicate of:E if:E F C and 

1. C = a1 I\ ... I\ am -+ qfor some literal q, 

A clause C is an ATMS-minimal implicate of :E if no proper subset C' of C is an ATMS implicate of''i,. 

A nogood is an ATMS implicate C = a1 I\ ... I\ am -+ □ where □ denotes empty clause. 
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Thus, the definition is also an approximation of implicates and minimal implicates with the added 

restrictions. Obviously without restrictions on the formula l:, the minimality of an ATMS-implicate with 

respect to 1: globally is sacrificed anolog to minimal qb-implicate described earlier. Consequently, such 

sacrifice will result in possibly inconsistent explanations. 

To circumvent this drawback, de Kleer in his original ATMS [3], restricted the formula L to 

be composed of HORN-clauses. Furthermore, no assumption literals can be justified, that is, neither 

a 1 /\ a2 -+ a V b nor c -+ a3 is allowed. It can be shown easily that such a restriction guarantees that 

every minimal ATMS-implicate is minimal globally with respect to L 4 • 

The ATMS algorithm exploits all the restrictions mentioned above so that computing minimal 

ATMS-implicates is fast. Using the above definition would allow us to study variants of ATMS and their 

corresponding algorithms by varying the restrictions. For example, one interesting variation is to allow 

multiple definitions of sets of assumption literals A, for some integer i > 0. Thus, for each A, we build 

a window (set) of ATMS-minimal implicates on demand. Searching for explanations for a query can 

switch among windows depending on the focus of the sets of assumption literals. 

7 Length-based Implicates 

In this section, we describe another example of approximation using the length of a clause as its 

measurement. 

Definition 7.1 A clause Lis a length-n implicate ofL ifl: ~ Land ILi ~ nfor some natural number n . 

A clause Lis a length-n minimal implicate ofl: if no proper subset L' of Lis a length-n implicate ofl:. 

The motivation for such a definition is based on the resources bound for computing time and 

storage. For instance, under stringent storage requirements, requesting length-3 minimal implicates 

proceeds by computing the consensus of two clauses A and B such that IA U Bl ~ 5. Thus after removing 

the complimentary literals, the size of the consensus must be less than or equal to 3 literals. Such a 

constraint will avoid generating implicates of size greater than 3 and potentially save time and storage. 

Obviously if n :2: IVI, the size of the vocabulary, then it is equivalent to generating all the minimal 

implicates. Also note that if the clause L is a length-i minimal implicate of L, then L is a minimal 

4For non-HORN extension in ATMS, see NATMS in [4]. 
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implicate of any length and thus l:. 

Corollary 7.1 Let "I, be a formula and Li be the set of a/1 length-i minimal implicates. If L E £,i then 

LEM J(l:). 

Proof: Let L E Li and note that L can only be subsumed by another implicate smaller than L. By the 

definition of length-based minimal implicate (definition 7.1), the minimality of Lon length-i ensures no 

other implicate of length greater than i can subsume L. Consequently L is minimal with respect to r, and 

LE MJ("I,). □ 

As a consequence, an explanation E for a query G generated from length-i minimal implicates 

guarantees the consistency of E with respect to l:. Unfortunately, it does not guarantee the minimality of 

the explanation E for all lengths as illustrated by the following example. 

Example 7.1 Let "I,= {(l) a Vb V q1, (2) a V c V q1 V q2} and G = c V q1 V q2 and Q = {q1, q2}. The 

implicate ( 1) has length 3 and (2) has length 4. The explanation generated from length-3 implicates is 

a Vb and from length-4 implicates is a, which is more minimal. 

Nevertheless, at the expense of minimality of the explanation, this idea also has the advantage 

of being able to compile on-demand. For example, given a query G, generate the explanations for G 

from the set of all length-i minimal implicates. If more precision is required, generate minimal implicates 

of length i + 1 and so on. This again, has the flavour of any-time computation in which the length as 

the variable, will guide the computation of a partial subset of minimal implicates to the complete set of 

minimal implicates as the length increases. 

With regard to the issue of computation, generating smaller implicates first has the advantage of 

subsuming larger implicates. This is similar to the unit-resolution strategy in theorem proving where a unit 

literal is resolved first. Other uses for this definition include the formalization of constraint satisfaction 

problems in ATMS as presented in [5]. 

8 Conclusions 

This paper has presented a general definition for an approximated implicate called the selective 

implicates. Three instances of selective implicates include query-based, ATMS and length-based impli-
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cates were studied. In depth study of the properties of query-based minimal implicates, their variant 

qb-minimal implicates· and the approximated set 9(:E) .generated by the algorithm QBIG suggests the 

feasibility of such approach. The explanation for a given query generated from the approximated subset 

of minimal implicates Q (!:.) deviates from the explanation generated from the set of minimal implicates 

of r. in two aspects. Firstly, the approximated subset of minimal implicates contains possibly globally 

non-minimal implicates which in turn introduces inconsistency in explanation. Secondly, the minimality 

of an explanation is sacrificed because not ·all minimal implicates are available. Exceptions to the above 

two discrepancies were also discovered. 

An ATMS-implicate was de~ned to demonstrate the generality of the definition of selective 

implicates and finally, a length-based implicate was introduced to further illustrate the notion of approxi­

mating implicates. As for future work, specific algorithms based on the consensus method for generating 

specific selective implicates must be investigated. Hopefully, the classes of consensus methods will reveal 

the. possibility of amalgamating them into a system as a whole. Further investigation into new instances 

of selective implicates based upon application domain should be rewarding. 
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