
A Theory of Multi-Scale, 
Curvature and Torsion Based 

Shape Representation 
for Planar and Space Curves+ 

Farzin Mokhtarian 

Technical Report 90-30 
October 1990 

Department of Computer Science 
University of British Columbia 

Vancouver, B.C. 
Canada V6T 1 W5 

+ A thesis submitted in partial fulfillment of the requirements for the degree 
of Doctor of Philosophy. 





ii 

Abstract 

This thesis presents a theory of multi-scale, curvature and torsion based 
shape representation for planar and space curves. The theory presented has been 
developed to satisfy various criteria considered useful for evaluating shape 
representation methods in computer vision. The criteria are: invariance, unique
ness, stability, efficiency, ease of implementation and computation of shape pro
perties. The regular representation for planar curves is referred to as the curva
ture scale space image and the regular representation for space curves is referred 
to as the torsion scale space image. Two variants of the regular representations, 
referred to as the renormalized and resampled curvature and torsion scale space 
images, have also been proposed. A number of experiments have been carried out 
on the representations which show that they are very stable under severe noise 
conditions and very useful for tasks which call for recognition of a noisy curve of 
arbitrary shape at an arbitrary scale or orientation. 

Planar or space curves are described at varying levels of detail by convolv
ing their parametric representations with Gaussian functions of varying standard 
deviations. The curvature or torsion of each such curve is then computed using 
mathematical equations which express curvature and torsion in terms of the con
volutions of derivatives of Gaussian functions and parametric representations of 
the input curves. Curvature or torsion zero-crossing points of those curves are 
then located and combined to form one of the representations mentioned above. 

The process of describing a curve at increasing levels of abstraction is 
referred to as the evolution or arc length evolution of that curve. This thesis con
tains a number of theorems about evolution and arc length evolution of planar 
and space curves along with their proofs. Some of these theorems demonstrate 
that evolution and arc length evolution do not change the physical interpretation 
of curves as object boundaries and others are in fact statements on the global 
properties of planar and space curves during evolution and arc length evolution 
and their representations. Other theoretical results shed light on the local 
behavior of planar and space curves just before and just after the formation of a 
cusp point during evolution and arc length evolution. Together these results pro
vide a sound theoretical foundation for the representation methods proposed in 
this thesis. 
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Chapter 1: 

Introduction 

Computer Vision is an area within the field of Artificial Intelligence which 
aims to develop techniques for analysis and interpretation of images. Those 
images may depict two- or three-dimensional real or synthetic objects. An impor
tant area of research within Computer Vision is the problem of shape representa
tion. This thesis considers the problem of representing the shapes of two
dimensional or planar and three-dimensional or space curves. A planar or a space 
curve is a set of points whose position vectors are the values of a continuous 
vector-valued function [Goetz 1970]. A planar curve can be represented by the 
parametric vector equation 

r( u) = ( x( u), y( u)) 

and a space curve can be represented by 

r( u) = (x( u), y( u), z( u)) 

where coordinate functions x( u), y( u) and z( u) are components of r( u) and 
u E [a,b] is the parametrization variable. Note that a planar or space curve as 
defined above is connected and has no branches. 

A note on the title of this thesis is appropriate. The title speaks of a 
"theory of multi-scale, curvature and torsion based shape representation for 
planar and space curves" rather than a "multi-scale, curvature and torsion based 
shape representation technique for planar and space curves." The word theory 
was chosen to indicate the approach used by the author in proposing a shape 
representation technique in this thesis. That approach is to propose and motivate 
a number of criteria that a general purpose shape representation technique should 
satisfy. Then shape representations were developed and evaluated according to 
those criteria. The evaluation shows that the representations satisfy nearly all of 
the proposed criteria. The properties of the representations were also studied for
mally and in detail in order to understand their possible behaviours. The result is 
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a number of theorems which clearly describe properties of the representations 
under conditions specified by the theorems. It is believed that the approach 
taken justifies the use of the term theory. 

1.1. Criteria for shape representation 

In the following, when two planar or space curves are described as having 
the same shape, there exists a transformation consisting of uniform scaling, rota
tion and translation which will cause orie of those curves to overlap the other. 

We believe that it is important for a general-purpose shape representation 
to satisfy the following criteria: 

Invariance: if two curves have the same shape, they should also have the same 
representation. 

Uniqueness: if two curves do not have the same shape, they should have 
different representations. 

Stability: if two curves have a small shape difference, their representations 
should also have a small difference and if two representations have a small 
difference, the curves they represent should also have a small shape difference. 

The importance of the invariance criterion is that it guarantees that all 
curves with the same shape will have the same representation. It will therefore be 
possible to conclude that two curves have different shapes by observing that they 
have different representations. Without the invariance criterion, two curves with 
the same shape may have different representations. 

The uniqueness criterion is important since it guarantees that two curves 
with different shapes will have different representations. It will therefore be possi
ble to conclude that two curves have the same shape by observing that they have 
the same representation. Without the uniqueness criterion, two curves with 
different shapes may have the same representation. 

The significance of the stability criterion is that it guarantees that a small 
change in the shape of a curve will not cause a large change in its representation 
and a small difference between two representations does not indicate a large 
shape difference between the curves they represent. As a result, when two 
representations are close, the curves they represent are close in shape and when 
two representations are not close, the curves they represent are not close in 
shape. When this criterion is satisfied, the representation can be considered to be 
stable with respect to noise. One way to measure the shape difference between 
two planar or space curves is the H ausdorf d~tance [Hong & Tan 1988]. 
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A useful shape representation in computational vision should make accu
rate and reliable recognition of a shape possible. Therefore it is useful for a shape 
representation to satisfy a number of additional properties in order to become 
suitable for shape recognition tasks in computer vision. The following is a list of 
such criteria. Note that similar criteria have been proposed in [Nishihara 1981], 
[Mokhtarian & Mackworth 1986) and [Haralick et al. 1989). 

Efficiency: The representation should be efficient to compute and store. This is 
important since it may be necessary for an object recognition system to per
form real-time recognition. By efficient we mean that the computational com
plexity should be a low-order polynomial in time and space ( and in the 
number of processors if a parallel computing architecture is used) as a function 
of the size of the input curve. 

Ease of implementation: If two or more competing representations exist, it is 
advantageous to choose one of those representations such that the implementa
tion of the computer program which computes that representation requires the 
least time spent on programming and debugging. 

Computation of shape properties: It may be useful to be able to determine 
properties of the shape of a curve using its representation. For example, if a 
curve has a symmetric shape, it may be desirable to be able to determine that 
fact from its representation (the 3ymmetry criterion). Furthermore, if the shape 
of a whole curve or part of a curve is the same as the shape of part of another 
curve, it may be useful to be able to determine that relationship using their 
representations (the part/whole criterion). 

1.2. Contents of thesis 

The following is a description of the contents of the remaining chapters of 
this thesis: 

Chapter 2 reviews the computer vision literature in the area of shape representa
tion which is relevant to planar and space curves. A comprehensive survey of 
techniques for representation of shapes of planar curves is given and ways to gen
eralize each technique to apply to space curves are described. Each technique is 
then evaluated according to the criteria proposed in this chapter. 

Chapters 3 and 4 propose a novel theory of multi-scale shape representation for 
planar and space curves. Chapter 3 introduces a multi-scale, curvature based 
theory of shape representation for planar curves. Three variations of the represen
tation have been developed, each most suitable for particular applications. A 
number of theorems provide a sound theoretical foundation for the 
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representation. Chapter 4 introduces a multi-scale, torsion based theory of shape 
representation for space curves. Again three variations of the representation are 
described. A number of parallel theorems provide a similarly sound theoretical 
foundation for the representation. 

Chapter 5 discusses a number of issues which arise when implementing the curva
ture and torsion scale space representations of planar and space curves and gives 
algorithms to compute various curvature and torsion scale space representations 
proposed in chapters 3 and 4. It also presents a complexity analysis of each of 
those algorithms. 

Chapter 6 provides a number of examples of curvature scale space representations 
of planar curves and torsion scale space representations of space curves. It also 
provides examples of curves distorted by uniform and non-uniform noise and its 
effect on the representations of those curves. This chapter also includes a discus
sion of the significance of the theorems of chapters 3 and 4 and an evaluation of 
the curvature and torsion scale space representations according to the criteria set 
forth in chapter 1. 

Chapter 7 presents a summary and the conclusions of this thesis. It also proposes 
avenues of further research on multi-scale geometry-based shape representation 
techniques. 

Appendix A contains the proofs of the theorems of chapter 3 and appendix B 
contains the proofs of the theorems of chapter 4. 
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Chapter 2: 

Survey of Literature 

This chapter contains a comprehensive survey of representation techniques 
for the shapes of planar and space curves. Each technique is described and a pos
sible way to generalize it to apply to space curves is explained. The reason is that 
almost all three-dimensional shape representation techniques proposed in com
puter vision have been concerned with surfaces but not curves. An evaluation of 
each technique according to the criteria proposed in chapter 1 is also presented. 
By default, each technique satisfies all criteria of chapter 1 except the ones 
pointed out following the description of that technique. 

It should be noted that any of the techniques listed below may be quite 
suitable for special-purpose shape representation and recognition tasks. Therefore 
failure to satisfy one or more of the criteria listed in chapter 1 does not imply 
that a particular shape _representation should not be used under any cir
cumstances. The criteria listed in chapter 1 have been proposed for a general
purpose shape representation technique independent of any particular applica
tions. Furthermore, note that some of the representations were not originally pro
posed for shape matching applications and therefore invariance, · stability and 
other issues were not a major concern. It may well be possible to deal with some 
of these issues through, for example, the use of normalization techniques. 

a. Hough transform: Has been used to detect lines [Hough 1962], circles [Duda & 
Hart 1972] and arbitrary shapes [Ballard 1981]. Edge elements in the image 
vote for the parameters of the objects of which they are parts. The votes are 
accumulated in a parameter space. The peaks of the parameter space then 
indicate the parameters of the objects searched for. In theory, the Hough 
transform can be generalized to space curves by increasing the dimensions of 
the parameter space. However, the parameters which define an object change 
when it undergoes rotation, uniform scaling or translation therefore the invari
ance criterion is not satisfied. 
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b. Chain encoding [Freeman 1974, McKee & Aggarwal 1977, Gallus & Neurath 
1970]: The curve is approximated using connected line segments which lie on a 
grid. This method can be generalized to space curves by using a three
dimensional instead of a two-dimensional grid. Note that this technique was 
originally used to encode contour data but was later used for recognition as 
well. This method does not satisfy the invariance criterion since the approxi
mating chain code rotates, scales and moves as the original curve rotates, 
scales and moves. The uniqueness criterion is not fully satisfied either since the 
mapping of a curve to its chain code involves loss of information. The degree 
of information loss depends on the resolution of the approximating grid. 

c. Medial axis transform [Blum 1973, Marr 1977): The medial axis transform com
putes the skeleton of a two-dimensional object by a thinning algorithm that 
preserves connectivity of regions. This method can be g neraliz d to space 
curves by using a three-dimensional thinning algorithm. Let S be the set of 
boundary points of a region. For each point P in that region, find its closest 
neighbors on the region boundary. If more than one boundary point is at a 
minimum distance from P, then P is on the skeleton of the region. This 
method does not satisfy the invariance criterion since the skeleton of an object 
rotates, scales and moves as the original curve rotates, scales and moves. It 
also fails to satisfy the stability criterion since a small change in the shape of 
the object could result in a significant change in its representation. 

d. Quad trees [Samet 1980, Schneier 1979): A spatial occupancy array is first 
computed for a region on a raster device by assigning the value 1 to any array 
element which is in the region and value 0 otherwise. The quad tree can then 
be thought of as an intermediate pyramid representation of the spatial occu
pancy array. Each pixel in images above the lowest level has one of three 
values: black, white or gray. A pixel in an upper level is black or white if all 
its corresponding pixels in the next low r level axe black or white respectively. 
If some of the lower level pixels are black and others are white, th 
corresponding pixel in the higher level is gray. This method is area-based and 
can not be applied to space curves. Note that Quad trees were proposed 
mainly for use in computer graphics and image processing. Quad trees do not 
satisfy the invariance criterion since shape-preserving transformations of the 
object change the structure of the representation. They also do not satisfy the 
stability criterion since making a small change to the spatial occupancy array 
can cause a dramatic change in the resulting quad tree. 

e. Shape factors and quantitative measurements [Danielsson 1978, Brown 1979): 
The shape of the object is described using one or more global quantitative 
measurements of the object such as area, perimeter, compactness 
(perimeter2 /area) and eccentricity (ratio of the principal axes of inertia). Some 
of these measurements such as perimeter, can also be computed for space 
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curves. The uniqueness criterion is not satisfied by this class of representations 
since there is a drastic reduction in data. However, they may be useful when 
the global measurements are sufficient to distinguish among a class of objects. 

f. Slope density function (Nahin 1974]: Let </> be the angle made between a fixed 
vector and a tangent to a curve. The slope density function is the histogram or 
frequency distribution of </> collected over the entire length of the curve. Note 
that the SDF is flat for a circle or any curve with a monotonically varying </>. 

This method can be applied to space curves as well. The uniqueness criterion 
is not satisfied by this method since the mapping involves a loss of informa
tion. The stability criterion may also be violated if the input curve is noisy. 
However, smoothing the curve may remedy this problem. 

g. Polyline or polygonal approximation (Pavlidis 1972, 1973, 1975, 1977, Pavlidis 
& Horowitz 1974, Horowitz & Pavlidis 1976, Tomek 1974, Sklansky & Kibler 
1976, Turner 1974, Roberts 1965, Shirai 1975]: A polyline or polygon (when 
the curve to be approximated is closed) is used to approximate the curve to 
any desired level of accuracy. The problem is to find corners or breakpoints 
that yield the "best" polyline or polygon. Various criteria have been used to 
solve that problem which can be characterized by the concepts of splitting and 
merging. In a merging algorithm, points along a curve are accepted into a 
linear segment as long as they fit sufficiently well. A concept of scale can be 
introduced by adjusting the number of breakpoints or the total approximation 
error allowed. This method can easily be applied to space curves by using 
three-dimensional polylines or polygons. This class of representations does not 
satisfy the invariance criterion since the approximating polyline or polygon 
rotates, scales and moves with the curve. The uniqueness criterion is satisfied 
well when the input curve consists mainly of segments with little or no curva
ture. Otherwise, the approximation error depends on the size (measured in 
terms of the number of vertices) of the approximating polygon. 

h. Strip trees (Davis 1977, Ballard 1981]: A strip tree is a set of approximating 
polygons or polylines ordered such that each polygon or polyline approximates 
the curve with less approximation error than the previous polygon or polyline. 
Initially, an open curve is approximated by a line segment which joins its end
points and a closed curve is approximated by a line segment joining two points 
on the curve that are furthest away. At each level of refinement, a point on a 
curve segment that is furthest away from its approximating line segment is 
joined to the endpoints of that line segment to obtain better approximations. 
This method can be generalized to space curves by using three-dimensional 
polygons or polylines to approximate the curves. Strip trees do not satisfy the 
invariance criterion since they move, rotate and scale with the curve. They 
also do not satisfy the stability criterion since a small change in the shape of 
the curve can result in a large change in its representation. 
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i. Splines [deBoor 1978, Barnhill & Riesenfeld 1974, Ballard & Brown 1982]: The 
curve is represented using a set of analytic and smooth curves. This method 
can also be generalized to space curves by making use of three-dimensional 
splines. Note that splines have been used primarily in computer graphics for 
object modelling. The invariance criterion is not satisfied since shape
preserving transformations of the curve and the choice of knot points for the 
approximating splines change the parameters of those splines. The uniqueness 
criterion is partially satisfied. The approximation error depends on the degree 
of approximating splines. 

j. Smoothing splines [Shahraray & Anderson 1989]: The curve is parametrized to 
obtain two coordinate functions. Cross-validated regularization [Wahba 1977] 
is then used to arrive at an "optimal" smoothing of each coordinate function. 
The smoothed functions together define a new smooth curve. This technique 
can also be generalized to space curves: three coordinate functions instead of 
two are obtained by parametrizing the curve. The invariance criterion is not 
satisfied since shape-preserving transformations of the curve also change the 
smoothing splines. 

k. Fourier descriptors [Persoon & Fu 1974, Schwartz et al. 1983, Richard & 
Hemami 1974]: The curve is represented by the coefficients of the Fourier 
expansion of a parametric representation of the curve. This method can be 
applied to both two-dimensional and three-dimensional curves. The invariance 
criterion is not satisfied by this class since shape-preserving transformations of 
the curve will change its Fourier coefficients. 

l. Curvature primal sketch [Asada & Brady 1986]: The curve is approximated 
using a library of well-defined, analytic curves. Then the curvature function of 
the approximating curve is computed and convolved with a Gaussian of vary
ing standard deviation. This technique can . be generalized to space curves by 
computing either the curvature or the torsion function of those curves. This 
method may fail to satisfy t he stability criterion. If the original curve is noisy, 
then computing its curvature function is an error-prone process and the com
puted representation may change significantly. 

m. Scale space blackboard [Saund 1989]: A scale space blackboard is constructed 
by adding a notion of scale to Marr's [1976] Primal Sketch. Two types of 
grouping operations are introduced: (a) Aggregation of fine scale primitive
edge tokens into coarser scale edge maps, and (b) pairwise grouping of sym
metrically placed primitive-edges into primitive-partial-region type tokens 
denoting curved-contour, primitive-corner, and bar events. It is possible to 
compute a scale space blackboard for space curves by introducing grouping 
operations for three-dimensional edges. However, the method fails to satisfy 
the invariance crit erion since the primitive-edges move, rotate and scale as the 
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curve to be represented moves, rotates and scales. It also does not fully satisfy 
the uniqueness criterion since the process of approximating curved objects 
using straight line segments involves some loss of information. 

n. Extended circular image [Horn & Weldon 1986]: This representation is the 
two-dimensional equivalent of the extended Gawsian image. In the extended 
circular image, one is given the radius of curvature as a function of normal 
direction. This technique can also be generalized to space curves. However, the 
resulting representation will be spherical rather than circular since the normal 
vectors will not all lie in the same plane. The invariance criterion is not fully 
satisfied by this method since the representation rotates as the original curve 
rotates. The uniqueness criterion is satisfied only for the class of simple and 
convex curves. 

o. Curve signatures [O'Rourke & Washington 1985]: The signature of a planar 
curve r in class C1 is a function s( w) where w is the normalized arc length 
parameter on r. For each value w0 of w, s( w0) is defined to be the total length 
of those segments of C which are to the left of the tangent vector to C at point 
P= C( w0). This technique is also generalizable to space curves. The stability 
criterion is not satisfied by curve signatures since noise on the curve can 
significantly alter the representation. 

p. Volumetric diffusion [Koenderink & van Doorn 1986]: A geometrical object is 
defined by way of its "characteristic function" x(r) which equals unity when 
the point r belongs to the object and zero otherwise. The object is then 
blurred by requiring that its characteristic function satisfy the diffusion equa
tion. The boundary of each blurred object is defined by the equation 
x(r) = 0.5. Alternatively, the boundary can be extracted by applying a Lapla
cian operator to the blurred function. This method does not generalize to space 
curves. The invariance criterion is not satisfied by this method since shape
preserving transformations of the object also affect the blurred objects com
puted by this method. This problem may be remedied by locating the curva
ture zero-crossing points of those curves and mapping those points to a curva
ture scale space representation as described in chapter 3. The stability cri
terion may also be violated since a small change to the shape of an object 
could result in a significant change in its computed deformations. For exam
ple, the contour of a dumbbell may remain a connected curve or may split into 
two disconnected contours when the thickness of its neck varies by an 
infinitesimal amount [Babaud et al. 1986). 

q. Scale space image [Witkin 1983): The scale space image was in fact introduced 
as a representation for one-dimensional signals and functions. The input func
tion f(x) is convolved with a filter approximating the second derivative of the 
Gaussian. The standard deviation a of the Gaussian is varied from a small to a 
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large value and the zero-crossing points of the convolved functions are located 
and marked in the x-u space. A scale space volume can also be computed for a 
2D function or image f(x,y) by convolving it with the Laplacian of a 2D Gaus
sian function as the standard deviation u varies from a small to a large value 
and marking the zero-crossing points in the x-y-u space. 

r. Reactive and diffusive deformations of shape [Kimia et al. 1989]: Chapters 3 
and 4 will introduce multi-scale theories of shape representation for planar and 
space curves which are based on computing specific deformations of the curves 
to be represented. Kimia, Tannenbaum and Zucker [1989] have proposed some
what different deformations of shape. Let 1 be the input curve and let N be 

--+ 
the normal vector. The deformation of , is defined as: 

: = fj(K)N 

where (3( K) is a function of curvature and t is time and determines the amount 
of deformation. This method is somewhat similar to the technique described in 
this thesis and can also be applied to space curves. However, it fails to satisfy 
the stability criterion since a small change to the shape of an object could 
result in a significant change in its computed deformations. For example, the 
contour of a dumbbell may remain a connected curve or may split into two 
disconnected contours when the thickness of its neck varies by an infinitesimal 
amount. The method also fails to satisfy the invariance criterion since defor
mations of a curve are not invariant with respect to shape-preserving transfor
mations of that curve. This shortcoming may be remedied by locating the cur
vature zero-crossing points of those curves and mapping those points to a cur
vature scale space representation as described in chapter 3. 

As demonstrated, each of the existing shape representation techniques for 
planar and space curves in computer vision fails to satisfy one or more of the cri
teria considered useful for a general-purpose representation. Chapters 3 and 4 
present theories of shape representation for planar and space curves which 
attempt to meet the criteria for shape representations proposed in chapter 1. An 
evaluation of those representations is presented in chapter 6. 
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Chapter 3: 

A Theory of Multi-Scale 
Shape Representation for 
Planar Curves 

Multi-scale approaches to various computer v1s1on problems have been 
investigated by many vision researchers recently. Multi-scale analyses of those 
problems have proven more fruitful than attempts at solving those problems at a 
single scale. A multi-scale approach allows one to obtain an initial approximate 
solution at a stable higher scale. Such a solution can be obtained efficiently by 
searching a reduced search· space. That initial solution can then be used to guide 
one through lower scales in order to obtain more accurate solutions at any 
desired level of accuracy. Examples are signal matching using scale space [Witkin 
et al. 1987], multi-resolution computation of surfaces [Terzopoulos 1984], organi
zation of image curves at multiple scales [Lowe 1988], hierarchical models of 
three-dimensional objects [Koenderink & van Doorn 1986], hierarchical surface 
interpolation [Szeliski 1989] and solving the depth interpolation problem using a 
multi-grid approach [Choi & Kender 1988). 

Similarly, multi-scale approaches to the shape representation problem have 
been proposed in the vision literature. Some examples can be found among the 
shape representation techniques reviewed in chapter 2. Using a multi-scale 
representation of an object, a matching algorithm can obtain a quick, approxi
mate match at a coarse scale where the shapes of the objects are relatively simple 
and then use that initial match to guide the search through the finer scales and 
obtain more accurate matches. 

A number of multi-scale shape representation techniques can be identified 
among methods reviewed in chapter 2. However, as it was pointed out in that 
chapter, each one fails to satisfy some of the criteria listed in chapter 1. This 
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chapter introduces a multi-scale shape representation which satisfies nearly all 
the criteria proposed in chapter 1. 

A multi-scale representation for one-dimensional functions was first pro
posed by Stansfield [1980] and later developed by Witkin (1983]. The function 
f(x) is convolved with a Gaussian function as its variance (J2 varies from a small 
to a large value. The zero-crossings of the second derivative of each convolved 
function are extracted and marked in the x-(J plane. The result is the scale space 
image of the function. 

The curvature scale space image was introduced in [Mokhtarian & Mack
worth 1986) as a new shape representation for planar curves. The representation 
is computed by convolving a path-based parametric representation of the curve 
with a Gaussian function, as the standard deviation of the Gaussian varies from a 
small to a large value, and extracting the curvature zero-crossing points of the 
resulting curves. The representation is invariant under rotation, uniform scaling 
and translation of the curve. This and a number of other properties makes it suit
able for recognizing a noisy curve of arbitrary shape at any scale or orientation. 
The process of describing a curve at increasing levels of abstraction is referred to 
as the evolution of that curve. The evolution of a planar curve and the curvature 
scale space image are described in detail in section 3.1. 

Mackworth and Mokhtarian [1988] introduced a modification of the curva
ture scale space image referred to as the renormalized curvature scale space 
image. This representation is computed in a similar fashion but the curve is 
reparametrized by arc length after convolution. As was demonstrated in [Mack
worth & Mokhtarian 1988], the renormalized curvature scale space image is more 
suitable for recognizing a curve with non-uniform noise added to it. However, 
the renormalized curvature scale space image is more computationally intensive 
than the regular curvature scale space image. The renormalized curvature scale 
space image is described in detail in section 3.2. 

The resampled curvature scale space image is a substantial refinement of 
the curvature scale space which is based on the concept of arc length evolution. It 
is shown that the resampled curvature scale space image is more suitable than 
the renormalized curvature scale space image for recognition of curves with added 
non-uniform noise or when local shape differe~ces exist. The comparison table in 
chapter 6 lists the advantages and disadvantages of each representation. The arc 
length evolution of a plana~ curve and the resampled curvature scale space image 
are described in detail in section 3.3. 

Section 3.4 contains a number of theorems which demonstrate a number of 
global and lo al properties of planar curves during evolution. Together, these 
theorems constitute a sound theoretical foundation for the representation tech
nique presented in this chapter. 



13 

3.1. The curvature scale space image 

The following is a review of those concepts of differential geometry of 
planar curves which are relevant to the theory presented in this chapter. 

A planar curve is a set of points whose position vectors are the values of a 
continuous vector-valued function. It can be represented by the parametric vector 
equation 

r( u) = ( x( u), y( u)) (3.1.1) 

The function r( u) is a parametric representation of the curve and u E [a,b] is the 
parametrization variable. A planar curve has an infinite number of distinct 
parametric representations. A parametric representation in which the parameter 
is the arc length s is called a natural parametrization of the curve. A natural 
parametrization can be computed from an arbitrary parametrization using the 
following equation 

s = fir( v)ldv. 
0 

where . represents the derivative, i.e. 

and 

For any parametrization 

r( v) = -2!... 
dv 

r(u) = (i(u),y(u)) 

li-(u)I = (x2 + il)112 

. ( . . ) r X y 
t( u) = -

1
•

1 
= ( •2 •2)1/2 ' ( •2 -2)1/2 r x+y x+y 

( -y :i; ) 
n( u) = ( •2 •2)1/2' ( ·2 •2)1/2 x+y x+y 

where t( u) and n( u) are the tangent and normal vectors at u respectively. 

(3.1.2) 

For any planar curve the vectors t( u) and n( u) must satisfy the simplified 
Serret-Frenet vector equations (Goetz 1970]: . 

t( S) = K( S) n( S) 

n(s) = -K(s)t(s) 

where K( s) is the curvature of the curve at s and is defined as the limit of the 
ratio of the angle</> between t(s) and t(s+h) to has h-+0. That is 
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K(s) = limi.. 
h-+O h 

A straight line has zero curvature everywhere. A circle is an example of a closed 
cw-ve with constant curvature. An ellipse is another closed curve with positive 
(but not constant) curvature everywhere. 

Now observe that: 

t(s) = ~ = dt du. 
ds du ds 

Therefore 

dt ds • 
- =-Kn= lr!Kn. 
du du 

Hence . 
( ) 

t. n 
KU=~• 

Differentiating the expression for t( u), we obtain: 

It now follows that: 

i u _ ( -iJ(x1i-xiJ) x(xii-xiJ) ) 
( ) - ( ·2 ·2)3/2 ' ( ·2 ·2)3/2 . x+y x+y 

K( u) = x( u)y( u) - i{'u)x'( u) 
( x( u)2 + i;( u)2)3/2 

Therefore it is possible to compute the curvature of a planar curve from its 
parametric representation. 

Two special cases of the parametrization, of interest here, yield 
simplifications of these formulas. If we have a natural path representation with s, 
the arc length parameter, ranging over [O,L) then: 

I r(s) I= I (x(s), y(s)) I= (:i:2{s)+:v2(s))112 = 1 

To see this, note that it follows from equation (3.1.2) that: 

;: = Ir( u)I-

Therefore 

Ir( s )I = Ir( u) I~ = I~( u)I = 1. 
ds Ir( u) l 

Furthermore, 

t(s) = (x(s), y(s)) 



and 

Note also 
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. 
t ( s) = ( x( s) , ii( s)) 

n(.,) = ( -y( s) ' x(.,)) 
. 

1e(3) = t(s)·n(-') 

,c(.,) = x(.,)ii(-') - x·(.,)y(.,). 

1e
2(s) = lt(s)l2 

,c2( 3 ) = :i2( 3 )+y2( 3 ). 

If the parameter is a linear rescaling of the arc length ranging over (0, 1], 
the normalized path length parameter w, then 

and 

., 
w=-

L 

li-(w)I = L 

t( w) = 1 (x( w), y( w)) 

n( w) = 1 (- y( w), x( w)) 

,c( w) = ..!...(x( w)y( w) - x( w)y( w)) 
L3 

1e
2(w) = --½-(x2(w)+ii 2(w)). 

L . 

This concludes the review of differential geometry of planar curves. 

Given a planar curve 
r = {(x(w),y(w))lw E [0,1]} 

where w is the normalized arc length parameter, an evolved version of that curve 
is defined by 

rO' = {(X(u,a), Y(u,a))lu E [0,1]} 
where 

X( u,a) = x( u) @g( u,a) 

Y( u,a) = y( u) @g( u,a) 
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and ® represents the convolution operator. Function g( u,O') denotes a Gaussian 
of width O' [Marr & Hildreth 1980] and is defined by 

( ) 1 2u2 
g u,a == ~e . 

av 2,r 

As it will become clear in appendices A and B, the use of the Gaussian filter 
results in a number of important properties of the representations which other 
smoothing filters do not provide. Functions X( u,a) and Y( u,a) are given expli
citly by 

and 

00 -(u-11)2 

X(u,a) == jx(v) ) e 2cr dv 
a 21r 

-00 

00 - (u- 11)2 

Y(u,a) = jy(v) ~e 2cr dv. 
a 21r -00 

The curvature of r (T is given by 

Xu( u,a) Yuu( u,a) - Xuu( u,a) Yu( u,a) 
K:( u,a) = 3/2 

(Xu( u,a)2 + Yu( u,a)2) 

where 

8 Xu( u,a) = -
8 

(x( u) ®9( u,a)) = x( u) ®gu( u,a) 
u 

and 

. Y"u( u,a) = y( u) ®9ui u,a). 

The process of generating the ordered sequence of curves {r <Tla~O} is referred to 
as the evolution of r. 

Note that when a planar curve evolves according to the process defined 
above, its total arc length shrinks. The amount of shrinkage is directly propor
tional to the value of u. In certain applications, this may be an undesirable 
feature. For example, the evolution process defined above may be used to smooth 
edges ext racted from an image by an edge detector. However, it may be advanta
geous to have the smoothed edges close to the physical location of the original 
edges. This can be accomplished by estim ating the amount of movement at each 
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point on the smoothed edges and adding a vector to the location vector of that 
point to compensate for that movement [Lowe 1988]. The result is a smoothed 
curve which is physically close to the original curve. 

The function defined implicitly by 

1e( u,<7) = 0 

is the curvature scale space image of-r [Mokht~an & Mackworth 1986]. 

3.2. The renormalize_d curvature scale space image 

Mackworth and Mokhtarian [1988] observed that although w is the nor
malized arc length parameter on the original curve r, the parameter u is not, in 
general, the normalized arc length parameter on the evolved curve r u· In other 
words, arc length does not shrink uniformly everywhere on the curve during evo
lution. To correct this problem, Mackworth and Mokhtarian [1988] proposed the 
renormalized curvature scale space image. 

Let 

and 

where 

Now define 

R( u,o-) = (X( u,o-), Y( u,o-)) 

u 

fJRv(v,a)ldv 

cl>u(u) = -~---
flRv(v,a)ldv 
0 

A -1 X(w,o-) = X(cl>u (w),<7) (3.2.1) 

That is, each evolved curve r u is reparametrized by its normalized arc length 
parameter w. 

Notice that 

cl> u(O) = 0 

cl>u(l) = 1 

and 
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IRu(u,o-)1 
----- >0 
1 

JIRv(v,u)ldv 
0 

at non-singular points. 

<Jl0( u) = u. 

<Jlo-(u) deviates from the identity function <Jlo-(u) = u only to the extent to which 
the scale-related statistics deviate from stationarity along the original curve. 

Once we have changed parameters according to equations (3.2.1), the cur
vature of the curve with the normalized path length parameter is given by 

1 ,.. ,.. .... A 

1e(w,o-) = -[Xw(w,o-)Yww(w,o-)- Xww(w,o-)Yw(w,o-)]. 
L3 

The function defined implicitly by 

K(w,o-) = 0 

is the renormalized curvature scale space image of r. 

3.3. The resampled curvature scale space image 

Note that as a planar curve evolves according to the process defined in sec
tion 3 .1, the parametrization of its coordinate functions x( u) and y( u) does not 
change. In other words, the function mapping values of the parameter u of the 
original coordinate functions x( u) and y( u) to the values of the parameter u of the 
smoothed coordinate functions X( u,o-) and Y( u,o-) is the identity function. 

For both theoretical and practical reasons, it is interesting to generalize 
the definition of evolution so that the mapping function can be different from the 
identity function. Again let r be defined by: 

r = {(x(w),y(w))lw E (0,1)}. 

The generalized evolution which maps r to r tr is now defined by: 

where 

and 

Note that 

r tr= {(X( W,o-), Y( W,o-))1 WE [0,11} 

X( W,o-) = x( W) @g( W,o-) 

Y( W,o-) = y( W) G)g( W,o-). 
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and 

W(w,o-0 ) 

where o-0 is any value of o-, is a continuous and monotonic function of w. This 
condition is necessary to ensure physical plausibility since Wis the parameter of 
the evolved curve r rr· 

An important case is when W always remains the arc length parameter as 
the curve evolves. When this criterion is satisfied, the evolution of r is referred to 
as arc length evolution. An explicit formula for W can be derived [Gage & Hamil
ton 1986]. 

Let 

R( W, o-) = ( X( W, o-), Y( W, o-) ). 

The Frenet equations for a planar curve are given by 

&t 8R 
au = I au l11:n 

8n 8R 
OU = -I au I II: t. 

Let t = a2 /2. Observe that 

.£..c1 aR 12) = .£..c aR . 8R) = 2( aR . a2R ). ot au at au au au auot 
Note that 

and 

8R 
- =Kll at 

since the Gaussian function satisfies the heat equation. It follows that 

.£..c1 8R 12) = 2(1 aR It . ..£..(11:n)) = 2(1 aR It . ( 811: n - I aR I K2t)) = -21 8R 1211:2. at au au au OU au au au 
Therefore 

or 
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.£. I 8R I = -I 8R I 11:
2 • 

8t 8u 8u 

Let L denote the length of the curve. Now observe that 
L L 1 

{)L = f .£.1 {JR I du = -JI {JR I K- 2 du = -J K-2 dw. 
8t oat au O au 0 

Since the value w0 of the normalized arc length parameter w at a point P meas
ures the length of the curve from the starting point to point P, it follows that 

and therefore 

Note that 

w 
0
~ =-f1,,2(W,t)dW 
ut 

0 

tW 

W( w,t) =-ff 1,,
2
( W,t) dW dt + w. 

0 0 

W( w,O) = w. 

The function defined implicitly by 

"-( W,a) = 0 

is the resampled curvature scale space of r. 

(3.3.1) 

Since the function K(W,t) in (3.3.1) is unknown, W(w,t) can not be com
puted directly from (3.3.1). However, the resampled curvature scale space can be 
computed in a simple way. A Gaussian filter based on a small value of the stan
dard deviation is computed. The curve r is parametrized by the normalized arc 
length parameter and convolved with the filter. The resulting curve is 
reparametrized by the normalized arc length parameter and convolved again with 
the same filter. This process is repeated until the curve is convex and no longer 
has any curvature zero-crossing points. The curvature zero-crossings of each 
curve are marked in the resampled curvature scale space image. Note that the 
standard deviation of the Gaussian chosen above should be small enough so that 
the deviation from arc length parametrization after each iteration is negligible. 
Then the entire process can be considered to model arc length evolution. 

3.4. Evolution and arc length evolution properties of planar 
curves 

This section contains a nwnber of important results on evolution and arc 
length evolution of planar curves as defined in sections 3.1 and 3.3. The proofs 
can be found in appendix A. 
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The first five theorems express a number of global properties of planar 
curves during evolution and arc length evolution. 

Theorem 3.4.1. Evolution and arc length evolution of a planar curve are invari
ant under the shape preserving transformations ( rotation, uniform scaling and 
translation) of the curve. 

Theorem 3.4.2. A closed planar curve remains closed during its evolution and 
arc length evolution. 

Theorem 3.4.3. A connected planar curve remains connected during its evolu
tion and a.re length evolution. 

Theorem 3.4.4. The center of mass of a planar curve does not move during evo
lution and arc length evolution of that curve. 

Theorem 3.4.5. Let r be a closed planar curve and let G be its convex hull. 
Every point on r remains in G during evolution and arc length evolution. 

Theorem 3.4.6 shows that the mapping from a planar curve to its curva
ture scale space image is an invertible one. 

Theorem 3.4.6. Let r be a planar curve in C1• The derivatives at a single point 
on one curvature zero-crossing contour in the regular, renormalized or resampled 
curvature scale space image of r determines r uniquely up to uniform scaling, 
rotation and translation ( except on a set of measure zero). 

Theorem 3.4. 7 states that under certain conditions, new curvature zero
crossing points are not created during evolution and arc length evolution of 
planar curves. 

Theorem 3.4. 7. Let r be a planar curve in C2• If all evolved and arc length 
evolved curves r u are in C2, then all extrema of contours in the regular, renor
malized and resampled curvature scale space images of rare maxima. 

Theorem 3.4.8 locally characterizes the behaviour of planar curves during 
evolution and arc length evolution just before the creation of a cusp point. 

Theorem 3.4.8. Let r = (x( u),y( u)) be a planar curve in C1 and let x( u) and 
y( u) be polynomial functions of u. Let rube an evolved or arc length evolved ver
sion of r with a cusp point at u0• There is a 8>0 such that r a-6 intersects itself in 
a neighborhood of point Uo· 

The following theorem holds only for arc length evolution. 
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Theorem 3.4.9. Simple curves remain simple during arc length evolution. 

Theorem 3.4.10 locally characterizes the behaviour of a planar curve dur
ing evolution and arc length evolution just after the creation of a cusp point. 

Theorem 3.4.10: Let r = (x( u), y( u)) be a planar curve in C1 and let x( u) and 
y( u) be polynomial functions of u. Let r IT be an evolved or arc length evolved ver
sion of r with a cusp point at 'Uo· There is a 6>0 such that r IT+6 has two new 
curvature zero-crossings in a neighborhood of 'Uo· 
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Chapter 4: 

A Theory of Multi-Scale 
Shape Representation for 
Space Curves 

Almost all work done in computer v1s1on on shape representation has 
focused either on planar curves and two-dimensional shapes, as shown in chapter 
2, or on three-dimensional objects and surfaces [Bentley 1975, Voelcker & 
Requicha 1977, O'Rourke '& Badler 1979, Jackins & Tanimoto 1980, Requicha 
1980, Faugeras & Ponce 1983, Brady et al. 1985, Weiss 1985]. This chapter 
addresses the problem of describing the shape of three-dimensional curves. A 
space curve may be directly computed from an image [Watson & Shapiro 1982, 
Barnard & Pentland 1983]. It may also represent a surface reconstructed using 
stereo [Woodham 1984, Grimson 1985], "shape from" techniques [Ikeuchi & Horn 
1981, Witkin 1981, Stevens 1982], or laser range finders [Faugeras et al. 1984], as 
described below. 

Why study the problem of representing the shape of space curves? Space 
curves are useful to study for the following reasons: 

a. Trajectories of objects in outer space and paths taken by atomic particles are 
space curves. Often, such an object or particle can be recognized by studying 
the shape of its path when subjected to specific forces. Trajectories of robot 
arms and robot vehicles are also space curves. 

b. Axes of generalized cones and cylinders [Agin & Binford 1973] are also space 
curves. A generalized cone or cylinder representation of a three-dimensional 
object can itself be efficiently represented by its axes. 
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c. Bounding contours of objects that consist of fl.at or nearly flat surfaces are rich 
in information and can be used to represent the object effectively and economi
cally. These bounding contours are space curves and can be extracted by thin
ning the object into lines and planes. An attempt to describe such objects 
using three-dimensional surfaces may not add much useful information but can 
significantly increase storage and processing requirements. 

This chapter proposes a multi-scale theory of shape representation for 
space curves. This theory is a generalization of the multi-scale theory of shape 
representation for planar curves which was proposed in chapter 3. Section 4.1 
develops the concept of curvature and torsion scale space representation for space 
curves. This representation was first proposed in (Mokhtarian 1988a]. Section 4.2 
introduces a modification of the representation proposed in section 4.1 referred to 
as the renormalized curvature and torsion scale space representation. Section 4.3 
proposes a significant further refinement of the earlier representations referred to 
as the resampled curvature and torsion scale space representations. Section 4.4 
presents a number of important theoretical results on the evolution properties of 
space curves. These results further understanding of the evolution process and 
constitute a sound theoretical foundation for the representation techniques pro
posed in this chapter. 

4.1. The curvature and torsion scale space images 

This section introduces the parametric representation of space curves and 
describes the Frenet Trihedron for space curves. Curvature and torsion of a space 
curve are then defined and geometrical interpretations given to them. Next, it is 
shown how to compute curvature and torsion on a space curve at varying levels 
of detail. A multi-scale representation for a space curve which combines informa
tion about the curvature and torsion of the curve at varying levels of detail is 
then proposed. 

i. The parametric representation of a space curve 

The set of points of a space curve are the values of a continuous vector
valued function (Goetz 1970]: 

r = r(u) = (x(u), y(u), z(u)) ( 4.1.1) 

where x( u), y( u) and z( u) are the components of r( u) and u is a function of arc
length s of the curve. s is also called the natural parameter. The function r( u) or 
the triple of functions (x( u), y( u), z( u)) is· called a parametric representation of 
the curve. 

ii. Frenet Trihedron and formulae for space curves 

Let Po be a common point of a space curve and a plane and let P be a 
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variable point of the curve. Let h denote the arc length between P0 and P and let 
dh denote the distance of P from the plane. The curve and the plane are said to 
have a contact of order at lea.,t n [Goetz 1970] at P0 if dh = O(h"). The plane 
with the highest possible order of contact with the curve at P0 is called the oscu
lating plane at P0• 

With every point P of a space curve of class C2 is associated an orthonor
mal triple of unit vectors: the tangent vector t, the principal normal vector n and 
the binormal vector b (Figure 4.1.1). The principal normal vector is the unit vec
tor normal to the curve at P which lies in the osculating plane. The binormal 
vector is the unit vector perpendicular to the osculating plane such that the three 
vectors t, n and b in that order form a positively oriented or a right-handed tri
ple. The plane containing -t and n is the osculating plane. The plane containing 
n and b is the normal plane and the one containing b and t is the rectifying 
plane. 

Principal 
normal 

Figure 4.1.1. The Frenet trihedron for a space curve 
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The derivatives oft, n and b with respect to the arc length parameter give us: 

dt dn db 
- = Kn, - = -Kt + rb, - = -rn. 
~ ~ ~ 

These formulae are called the Frenet or the Serret-Frenet formulae. The 
coefficients K and rare called the curvature and torsion of the curve respectively. 

Curvature is the instantaneous rate of change of the tangent vector to the 
curve with respect to the arc length parameter. Curvature of a space curve has 
no sign. Torsion is the instantaneous rate of change of the binormal vector with 
respect to the arc length parameter. A sign is assigned to the absolute measure of 
torsion as following: 

Let point P correspond to value s of the arc length parameter and let point Q 
correspond to value s+h. Let line l be the intersection of the osculating planes at 
P and Q. Note that l is parallel to the vector b( s) x b( s + h) since b( s) and 
b(s+h) are perpendicular to the osculating planes at points P and Q respectively. 
Let w be a vector on line l which points into the same half-space determined by 
the normal plane into which the vector t(s) is pointing. If b(s), b(s+h) and w 
form a positively oriented or a right-handed triple, then torsion at point P has 
positive sign, otherwise it has negative sign. 

A planar curve has zero torsion everywhere. The helix is a space curve 
with constant torsion. To see this, note that the parametric representation of the 
helix is given by: 

x( u) = acosu y( u) = asimt z( u) = bu. 

Therefore 

x( u) = -asinu y( u) = acosu z( u) = b 

i( u) = -acosu y( u) = -asinu z(u) = 0 

x' ( u) = a sin u 'ii( u) = -acosu 'i'(u) = 0 

A = absinu B = -abcosu C= a2 

and 

b 
r= 

a2 + b2. 

Since the curve is represented in parametric form, in order to compute cur
vature and torsion at each point on the curve, we need to express those quanti
ties in terms of the derivatives of its coordinate functions x(), y() and z(). Note 
that as in chapter 3, . represents the derivative. 
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iii. Curvature 

In case of an arc-length parametrization, we have: 

Given an arbitrary parametrization of the curve: 

-fuU~( u)/li-( u)I) 

Ir( u)I 
_ li-(u)x r(u)I 

li-(u)l3 

In coordinate form 

where 

iv. Torsion 

. 
A = y ~. 

y z 
B= Z X X y .. .. .. 

Z X X y 

We will first derive an expression for the torsion of a space curve with 
arc-length parametrization [Goetz 1970]. Multiplying both sides of the third 
Frenet formula by n results in 

r = -b,n = -(txn),n = -(t,xn)n - (txn,)n = tnn,. 

Note that tnn, is the mixed product of vectors t, n and ns and 1s equal to 
(txn)n8 • We now make use of 

to obtain 

- r(s) 
t = r( s), . n - I"' I , B:1 K, s "( ) n 8 = - 2 r s 

K, K, 

X y Z .. .... 
X y Z 

r(s) = r(s)r(s)r'(s) = r( s)r(s)r"(s) = _ _____ x_· _'ii_' _·z_· --

K(s)2 r(s)2 (x)2 + (y)2 + (z')2 . 
In case of an arbitrary parametrization, we make use of: 

and 

r(s) = r(u)~, 
ds 

"( ) "( )( dt )
2 

, ( ) J!,t r s = r u -d + r u -, 
s ds2 
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... ( ) ... ( )( dt )3 
3 •• ( )( dt) tPt .( ) d3t rs=ru- +ru--+ru-

~ ~ d; ~3 

r(u) = i-(u)r(u)r'(u) lr(u) l6 
_ 

lr(u)l6 
• (i-(u)xr(u)) 2 

i-( u) r( u) r· ( u) 
(i-(u)xr(u))2 . 

In coordinate form 

X y z .. .. .. 
X y z 
x· y· 1: 

r=------
A2 + B2 + c2 

where A, Band Care as before. 

v. Computing curvature and torsion at varying levels of detail 

In order to compute K and r at varying levels of detail of the curve r, 
functions x(u), y(u) and z(u) are convolved with a Gaussian kernel g(u,CT) of 
width CT: 

u2 

( ) 
1 - 20-2 

g u,CT = ~e 
CTV 271' 

The convolved functions together define the evolved curve r a-· The convolution of 
a function/( u) and the Gaussian kernel is defined as: 

00 

J 
- (u- v)2 

F( u, CT) = f( u)@ g( u,CT) = /( v) ~e 2o-2 dv. 
(J 271' 

--00 

Furthermore, it is known that 

F( u,CT) = 8F( u,CT) = f( u) © 8g( u,CT) 
Bu 8·u 

F(.. ) _ &F(u,CT) _ f( ) r.;:., &g(u,CJ) u,o- - _ _..__ ........ _ u ~ 
au2 8u2 

and 

F ... ( ) _ & F( u,o) _ !( ) ~ &3g( u,o-) 
u,o- - ------ - u ~ . 

8u3 8u3 

These properties of convolution can be used to compute curvature and torsion on 
evolved versions of a space curve. Let 

X(u,o-) = x(u) @g(u,CT) 
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Y(u,o-) = y(u) @g(u,o-) 

and 

Z( u,o-) = z( u) @g( u,o-). 

It follows that curvature on an evolved curve r u is given by 

where 

and 

D = Y.(u,o-) .?,(u,o-) 
Y( u,o-) Z( u,o-) 

E = ,?:( u,o-) ~( u,o-) 
Z(u,o-) X(u,o-) 

F = ~( u,o-) 
X( u,o-) 

Y.( u,o-) 
Y( u,o-) 

and torsion on evolved curve r u is given by 

~(u,o-) 
,&( u,o-) 
X{u,o-) 

Y.( u,o-) 
¥( u,o-) 
Y ( u,o-) T = ..;.... _________ ...;.. 

D2 + E2 + p2 

where D, E and Fare as before. 

vi. A multi-scale representation for space curves 

The curvature and torsion functions of a space curve specify that curve 
uniquely up to rotation and translation [Do Carmo 1976]. We therefore propose a 
representation for a space curve that consists of the curvature scale space and 
torsion scale space images of the curve. This representation is a generalization of 
the curvature scale space representation proposed for planar curves m 
[Mokhtarian & Mackworth 1986]. 

The function defined implicitly by the level-crossings 

~c u,o-) = C 

is the curvature scale space image of r and the function defined implicitly by 

r( u,o-) = 0 

is the torsion scale space image of r. 
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To compute the torsion scale space image of a space curve 
r = (x(u),y(u),z(u)), evolved curves ru are computed as u varies from a small to 
a large value. The torsion zero-crossing points of each r u are extracted and 
recorded in the u-u space. The smallest value of u used is slightly larger than 
zero and the largest value of u used in the smallest value of u that results in a r u 

with very few torsion zero-crossing points. 

The curvature scale space image of a space curve is constructed in a simi
lar fashion. The only difference is that level-crossings rather than zero-crossings 
are searched for. This is because the curvature of a space curve has only magni
tude and no sign. Some care should be given to choosing a suitable value for 
level c. If c is too large, the number of level-crossing points found on curves r u 

drops to zero quickly as CJ increases and the resulting curvature scale space image 
will not be very rich and therefore not suitable for matching. If c is too small, the 
resulting curvature scale space image will contain excessive detail. The actual 
value used for c is the average of curvature values of points of r ua where u0 E 

[O,uJ and CJt is the largest value of u used to compute the torsion scale space 
image of r. Using such a value ensures that the resulting curvature scale space 
image will be sufficiently rich for matching and will represent roughly the same 
range of values of u represented in the torsion scale space image of r. 

4.2. The renormalized curvature and torsion scale space . 
images 

Mackworth and Mokhtarian [1988] observed that although w is the nor
malized arc length parameter on the original curve r, the parameter u is not, in 
general, the normalized arc length parameter on the evolved curve r u· To correct 
this problem, we propose the renormalized curvature and torsion scale space 
images. 

Let 

and 

where 

Now define 

R(u,u) = (X(u,u), Y(u,O'),Z(u,u)) 

w = q> u( u) 

u 

JlRu(v u)ldv 
0 4>u(u) = _l ___ _ 

JlRvC v,u)ldv 
0 
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A -1 Y(w,o-) = Y(<pu (w),o-) ( 4.2.1) 

Z(w,o-) = Z(<p;1(w),o-). 

Functions .X( w,o-), Y( w,o-) and Z( w,o-) defined by equations ( 4.2.1) define the 
renormalized version of each r a-· That is, each evolved curve r a- is 
reparametrized by its normalized arc length parameter w. 

Notice that 

and 

Also 

<po-(0) = 0 

<pO'(l) = 1 

!Ru(u,o-)1 
----- >0 
1 

JIRv( v,o-)ldv 
0 

at non-singular points. 

<p 0( u) = u. 

<pa-Cu) deviates from the identity function <pa-Cu) = u only to the extent to which 
the scale-related statistics deviate from stationarity along the original curve. 

The function defined implicitly by 

,c( w,a) = c 

is the renormalized curvature scale space image of r and the function defined 
implicitly by 

r(w,a) = 0 

is the renormalized torsion scale space image of r. 

4.3. The resampled curvature and torsion scale space images 

Note that as a space curve evolves according to the process defined in sec
tion B, the parametrization of its coordinate functions x( u), y( u) and z( u) does 
not change. In other words, the function mapping values of the parameter u of 
the original coordinate functions x( u), y( u) and z( u) to the values of the parame
ter u of the smoothed coordinate functions X(u,a), Y(u,o-) and Z(u,a) is the iden
tity function. 

For both theoretical and practical reasons, it is interesting to generalize 
the definition of evolution so that the mapping function can be different from the 
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identity function. Again let r be defined by: 

r = {(x( w), y( w), z( w))lw E (0,1]}. 

The generalized evolution which maps r to r (J' is now defined by: 

r---+- r (J' = {(X( W,u), Y( W,u), Z( W,u))I WE (0,1)} 
where 

X( W,u) = x( W) @g( W,u) 

Y( W,u) = y( W) @g( W,u) 

and 

Z( W,u) = z( W) @g( W,u): 

Note that 

W= W(w,u) 

and 

W( w,cr0) 

where u0 is any value of u, is a continuous and monotonic function of w. This 
condition is necessary to ensure physical plausibility since Wis the parameter of 
the evolved curv r (J'' 

A specially interesting case is when W always remains the arc length 
parameter as the curve evolves. When this criterion is satisfied, the evolution of r 
is referred to as arc length evolution. An explicit formula for W can be derived 
[Gage & Hamilton 1986). 

Let 

R(W,u) = (X(W,u), Y(W,u),Z(W,cr)). 

The Frenet equations for a ·planar curve are given by 

8t aR 
au = I au jKn 

and 

8n aR aR - = -1-IKt + 1-lrb. au au 8u 

Let t = u2 /2. Observe that 

..£..c1 aR 12) = .£..c aR . 8R) = 2( 8R . &R ). 
8t au at au au au ou&t 

Note that 
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and 

8R 
- = K,ll 
8t 

since the Gaussian function satisfies the heat equation. It follows that 

..£..c10R 12)=2(1 oR It . ...£..(/'i,n))=2(1 oR It. ( OK, n-1 oR I /'i,2t+1 oR I /'i,Tb))=-21 oR 12 /'i,2. 
ot ou ou ou ou ou ou ou ou 

Therefore 

or 

..£.. I aR I = -I 8R I "'2. 
ot au au 

Let L denote the length of the curve. Now observe that 
L L I 

oL = f ..£..1 aR ldu = -fl aR 1"'2du = -JK,2dw. 
at 

0
at au 0 au o 

Since the value w0 of the normalized arc length parameter w at a point P meas
ures the length of the curve from the starting point to point P, it follows that 

w 
aaw = -Jl'i,2(w,t)dW 

t 0 

and therefore 
. tW 

W(w,t) = -ff"'2(W,t)dWdt + w. (4.3.1) 
0 0 

Note that 

W(w,O) = w. 

The function defined implicitly by 

/'i,(W,o-) = C 

is the resampled curvature scale space of r and the function defined implicitly by 

1\ W,o-) = 0 

is the resampled torsion scale space of r. 
Since the function "'( W, t) in ( 4.3.1) is unknown, W( w,t) can not be com

puted directly from (4.3.1). However, the resampled curvature and torsion scale 
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space images can be computed in a simple way: A Gaussian filter based on a 
small value of the standard deviation is computed. The curve r is parametrized 
by the normalized arc length parameter and convolved with the filter. The result
ing curve is reparametrized by the normalized arc length parameter and con
volved again with the same filter. This process is repeated until the curve has 
very few torsion zero-crossing points. The curvature level-crossings of each curve 
are marked in the resampled curvature scale space image and the torsion zero
crossings of each curve are marked in the resampled torsion scale space image. 

4.4. Evolution and arc length evolution properties of space 
curves 

This section contains a number of results on evolution and arc length evo
lution of space curves as defined in sections 4.1 and 4.3. The proofs can be found 
in appendix B. 

The first five theorems express a number of global properties of space 
curves during evolution and arc length evolution. 

Theorem 4.4.1. Evolution and arc length evolution of a space curve are invari
ant under rotation, uniform scaling and translation of the curve. 

Theorem 4.4.2. A closed space curve remains closed during evolution and arc 
length evolution. 

Theorem 4.4.3. A connected space curve remams connected during evolution 
and arc length evolution. 

Theorem 4.4.4. The center of mass of a space curve is invariant during evolu
tion and arc length evolution. 

Theorem 4.4.5. Let r be a closed space curve and let G be its convex hull. r 
remains inside G during evolution and arc lerigth evolution. 

The following theorem also appeared in Mokhtarian [1989). It concerns the 
uniqueness properties of the torsion scale space image. 

Theorem 4.4.6. Let r be a space curve in 03• Let r( u) and ,c( u) represent the 
torsion and curvature functions of r respectively. The derivatives at a single 
point on one torsion zero-crossing contour in the regular, resampled or renormal
ized torsion scale space image of r determines the function (3( u) = r( u)1t2( u) 
uniquely modulo a scale fa~tor ( except on a set of measure zero). 
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The following theorem makes explicit the conditions under which new torsion 
zero-crossings will not be observed at the higher scales of torsion scale space 
images. 

Theorem 4.4. 7. Let r be a space curve in C3• If all evolved and arc length 
evolved curves r tr are in C3 and torsion is bounded at every point of r during 
evolution, then all extrema of contours in the regular, renormalized and resam
pled torsion scale space images of r are maxima. 

Theorems 4.4.8 and 4.4.9 first appeared in [Mokhtarian 1988b]. They concern the 
local behaviour of space curves just before and just after the formation of cusp 
points during evolution. 

Theorem 4.4.8. Let r = (x( w),y( w),z( w)) be a space curve in C1 and let x( w), 
y( w) and z( w) be polynomial functions of w. Let r tr= (X( W,u), Y( W,u),Z( W,u)) 
be an evolved or arc length evolved version of r with a cusp point at W0. There 
is a 6>0 such that either r tr➔ intersects itself in a neighborhood of point W0 or 
two projections of r tr➔ intersect themselves in a neighborhood of point W0• 

Theorem 4.4.9: Let r = (x(w),y(w),z(w)) be a space curve in C1 and let x(w), 
y(_ w) and z( w) be polynomial functions of w. Let r tr = ( X( W, u), Y( W, u), Z( W, u)) 
be an evolved or arc length evolved version of r with a cusp point at W0, then 
either r tr+cS has two new torsion zero-crossings in a neighborhood of W0 or a tor
sion zero-crossing point exists at W0 on r tr-6 and r trH· 

The last theorem defines other conditions under which new torsion zero-crossings 
can appear on a space curve. 

Theorem 4.4.10: New torsion zero-crossings can appear on a smooth space 
curve during evolution or arc length evolution in a neighborhood of a point of 
zero curvature. 
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Chapter 5: 

Algorithll1S and 
lrnplelllentation 

This chapter contains a number of key algorithms which have been used to 
implement the theories presented in chapters 3 and 4. Each algorithm is followed 
by a brief complexity analysis. It also contains a discussion of efficiency issues 
raised when implementing those theories. Chapter 5 ends by proposing a new 
scale space matching algorithm which has not been implemented yet. 

5.1. The convolution masks 

The convolution masks are approximations to the Gaussian function 
-tr 

its first derivative 

its second derivative 

and its third derivative 

1 2u2 
G( u,u) = u../2-i e 

-tr 
'U,2 _ (12 u2 

Guu(u,u) = ..f,i;" e 2 

as 21r 

The Gaussian function and its derivatives have infinite extent but in order 
to compute convolutions, they must be approximated by finite masks. For a 
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given value of er, the width of the Gaussian function, the size of the correspond
ing mask is set to 12er. As a result, the ratio of the height of the function at the 
cutoff point to its height at its center point is: 

- (60-)'l -36u'l 
e 2ul = e 2ul = cls 

which is a very small ratio and negligible. Furthermore, the size of the mask is 
always set to an odd number so that it will be symmetric. Integer values of u are 
used to compute the mask elements. The mask elements are stored in a double C 
array and all computations are carried out using double arithmetic. As a result, 
the mask elements add up to values very close to one and no adjustments to their 
values were considered necessary. In fact, for cr = 1.0, the sum of mask elements 
computed using algorithm MASK was equal to 1.000000. Our experience shows 
that computations which use the first two derivatives, such as computation of 
curvature, are stable for values of cr larger than 1.0 ( corresponding to a mask 
which covers 13 points on the sampled input curve) and computations which use 
the first three derivatives, such as computation of torsion, are stable for values of 
er higher than 2.0 ( corresponding to a mask which covers 25 points on the sam
pled input curve). The following is an algorithm for a function that computes a 
mask approximating the Gaussian function ( or one of its derivatives): 

Algorithm: MASK 

1. Let size= 12er 
2. If size is even then size = size + 1 
9. Let start = (1 - size) / 2 
4. Let finish = (size - 1) / 2 
5. For i = start to finish do. 

mask{ij = Gauss(i, er) 

End of Algorithm: MASK 

Note that algorithm MASK runs in time linearly proportional to er or in 
0( cr) time since the size of the computed mask is a linear function of the value of 
er. 

To convolve a mask with an array of data at element number k, the center 
element of the mask ( corresponding to u = O, where u is the first parameter in 
G( u,a)) is multiplied by array element k, the mask element corresponding to u.=l 
is multiplied by array element k+l, the mask element corresponding to u=-1 is 
multiplied by array element Arl, and so on. This process is repeated until there 
are no more mask elements left to multiply. H the first ·or last array element is 
reached and the input curve is closed, there will be a wrap around: the array ele
ment after the last element is the first element. H the first or last array element is 
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reached and the input curve is open, the first or last array element is repeated as 
many times as necessary (This is the method that was used in this thesis. Note 
that other methods such as the extrapolation . of the curve beyond the endpoint 
are also possible.) All products are then added up. The result is the value of con
volution at element number k. 

5.2. The sampling algorithm 

The input curve, whether two-dimensional or three-dimensional, is 
represented by a sequence of points. Consecutive points of that sequence a.re 
assumed to be connected by straight line segments. However, the lengths of these 
line segments a.re not necessarily equal. It is therefore necessary to sample the 
input curve at equal-length intervals so that its evolved versions or its multi-scale 
representations can be computed. The sampling function takes the number of 
points to be sampled as an input parameter, determines the size of the sampling 
interval, ~s, and returns a list of points such that each pair of consecutive points 
on that list have a distance equal to ~son the original curve. 

Let P1, P2, ... , Pm be the sequence of points representing the original 
curve and let Qi, Q2, .. • , Q n be the sequence of sampled points on that curve. 
Note that P1 = Q1. If the input curve is open, Pm= Qn. The following is an 
algorithm which describes how the sampling function generates its output. Note 
that function d returns the Euclidean distance between two points. 

Algorithm: SAMPLE 

1. Let Q1 = P1 
2. Let k = 2 
9. For i = 2 to n do 

9.1. Let old_k = k 
9.£. Let D = dq.,.

1
p

11 

9. 9. while ( D < ~ s ) do 
9.9.1. k = k+1 
9.9.2. D = D + dp,.P,._

1 

9.4. If ( k > old_k) then do 
9.4.1. w = ( D - ~ s J / dp,.P,._

1 

9.4.2. Qi = w pk-1 + {1-w) Pk 
el.,e do 
9.4.9. w = ( D - ~ s J / D 
9.4"4. Qi = w Q.-1 + (1-w} Pk 

End of Algorithm: SAMPLE 
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Note that algorithm SAMPLE runs in time linearly proportional to the 
larger of m and n. 

5.3. Algorithms for representations of planar curves 

This section contains algorithms for functions which compute the regular, 
renormalized and resampled curvature scale space images of planar curves. 

Note that an evolved version of a planar curve is computed by first sam
pling it according to algorithm SAMPLE and then convolving each of its z and y 
coordinate functions with a mask corresponding to the input value of u. 

The following is an algorithm to compute the curvature scale space image 
of a planar curve. Note that this image is stored in array C8s which is assumed to 
be initialized to zero. 

Algorithm: CURV ATURE_SCALE_SP ACE 

1. Read{input curve) 
2. Call SAMPLE--+ n {* no. of sampled pointJ *) 
9. Let c, = O"o {* u0 i8 relatively small; usually one *} 
4, Let p=l {* p holds the no. of cur'uature tero-crossings found *) 
5. While (p > 0) do 

5.1. Let p = 0 
5.2. Call MASK_1ST_DERIV(u) {* computes mask based on 1st deriv. of GaU8sian *) 
5.S. Call MASK_2ND_DERIV(u) {* computes mask based on 2nd deriv. of Gaussian *) 
5.4. Call CONVOLVE(xf },mask_lstf },1}-+ x'/1} 
5.5. Call CONVOL VE(yf j,mask_1stf },1) --+ y'/1} 
5.6. Call CONVOL VE(xf },mask_2ndf },1) --+ z"/1} 
5.1. Call CONVOL VE(yf },ma.Jk_2ndf },1}--+ y"/1/ 
5.8. Let ,c[l) = x'[l)y"[l) - x"[l]y'[l] 
5.9. For i = 2 to n do 

5.9.1. Call CONVOL VE(xf },ma:;k_1stf j,i)--+ z'fi/ 
5.9.2. Call CONVOLVE(yf j,mask_1stf J,i)--+ y'[ij 
5.9.9. Call CONVOL VE(x[ J,mask_2ndf J,i)--+ z"[i/ 
5.9.4, Call CONVOL VE(y[ },mask_2ndf j,i)--+ y"fij 
5.9.5. Let tc(,1 = x'(,]y"[,1 - x"(i1y'(i] 
5.9.6. If ((K,fi} > OJ and (,c{i-1} < OJ) or ((K{i} < OJ and (K[i-1} > OJ) then 

5.9.6.1. If ~K{i}I > IK(i-1}1) then c:;s{i-1,o} = 1 
else css{i,u J = 1 

5.9.6.2. p = p + 1 
5.9. 7. u = u + 6.u 

End of Algorithm: CURVATURE_SCALE_SPACE 



40 

Function CONVOLVE takes O(u) time to return a value. Therefore each 
row of the curvature scale space image takes 0( nn) time to compute. Since the 
number of rows of a curvature scale space image is linearly related to u, it takes 
0( nu2) to compute a curvature scale space image using algorithm 
CURV ATURE_SCALE_SP ACE. 

The algorithm to compute the renormalized curvature scale space image is 
similar to algorithm CURV A TURE_SCALE_SP A CE and therefore only the 
differences will be pointed out: 

Algorithm RENORMALIZED_CURVATURE_SCALE_SPACE has a few extra 
steps between steps 5.1 and 5.2 to compute the total length of the curve and the 
length up to each point of the curve as following: 

a.1. Let dist/1] = 0 {* array dist holds the distanceJ up to each point *} 
a.2. Let L = 0 {* L holdJ the total length of the Jampled curve *) 
a.9. Call MASK_GA USS(u) {* computeJ a mask baJed on the Gaussian fn *) 
a.4, Call CONVOL VE(xf J,mask_gauss{ j,1}--+ X/1} 
a.5. Call CONVOL VE(yf j,mask_gauJs{ j,1}--+ Y/1} 
a. 6. For i = 2 to n do 

a.6.1. Call CONVOL VE{x[ J,mask_gauss{ J,i)--+ X{ij 
a.6.2. Call CONVOL VE(y[ j,maJk_gauss{ j,_i)--+ Yfij 
a. 6. 9. L = L + d((Xf ,J, Y[,J),(Xf i-1], Y[t-1])) 
a.6.4. diJt[ij = L 

Step 5.9.6.1 in algorithm CURVATURE_SCALE_SPACE should also be 
modified as following: 

5.9.6.1. If {IK{i]I > IK{i-1/1} then cssf(distfi-1//L)n,uj = 1 
else css{{dist{ij/L}n,uj = 1 

Algorithm RENORMALIZED_CURV ATURE_SCALE_SP ACE also takes 
0( nn2) time to compute a curvature scale space image, however, in practice it 
takes longer than algorithm CURV ATURE_8CALE_8P ACE due to the extra 
time needed to compute the length of the evolved curve in each iteration. 

Note that an arc length evolved version of a planar curve is computed by 
first sampling it using function SAMPLE and then convolving its x and y coordi
nate Junctions with a mask corresponding to a small u. The output curve is sam
pled again using SAMPLE and its x and y coordinate functions are convolved 
again with the same mask. This process is repeated for as many iterations as 
necessary. 
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The third algorithm in this section computes the resampled curvature 
scale space image of a planar curve. Again only the differences between this algo
rithm and algorithm CURVATURE_SCALE_SPACE will be pointed out: 

Algorithm RESAMPLED_CURV ATURE_SCALE_SP ACE makes only one call to 
MASK_lST_DERIV and MASK_2ND_DERIV and therefore these two calls come 
just before step 5. Furthermore, step 2 should now be: 

2. Call SAMPLE ~ n0 

step 5.9. 7 should be changed to 

5.9. 7. Call SAMPLE~ n 

and step 5.9.6.1 should be modified as following: 

5.9.6.1. If (lx:(i]I > lx:[i-1]1) then css[((i-1)/n)n0,u] = 1 
else css[(i/n)n0,u] = 1 

Algorithm RESAMPLED_CURVATURE_SCALE_SPACE always uses 
masks of constant size and therefore takes 0( n) time to compute each row of a 
resampled curvature scale space image and O(rn) time to compute an entire 
image with r rows. 

5.4. Algorithms for representations of space curves 

This section contains algorithms for functions which compute the regular, 
renormalized and resampled torsion scale space images of space curves. 

Note that an evolved version of a space curve is computed by first sam
pling it according to algorithm SAMPLE and then convolving each of its x, y and 
z coordinate functions with. a mask corresponding to the input value of u. 

Our experience showed that choosing a threshold value to be used when 
computing the curvature scale space image of a space curve was not straightfor
ward and that variations in its magnitude significantly affected the structure of 
the curvature scale space image. Therefore the curvature scale space representa
tion of a space curve is not invariant with respect to scaling since scaling changes 
curvatw·e values on a space curve. Since the torsion scale space image of a space 
curve is in fact invariant with respect to scaling and is usually sufficient to distin
guish the curve from other curves it is being compared to, it was decided not to 
compute the curvature scale space image of the space curves shown in chapter 6. 
It is therefore not necessary to present an algorithm for this class of representa
tions. Note however, that the algorithm would be quite similar to algorithm 
CURV ATURE_SCALE_8P A CE in section 5.3. 

The following is an algorithm to compute the torsion scale space image of 
a space curve. Note that this image is stored in array tss which is assumed to be 
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initialized to zero. 

Algorithm: TORSION_SCALE_SP ACE 

1. Read(input curve) 
2. Call SAMPLE-+ n (* no. of Jampled point& *) 
9. Let u = u0 (* u0 iJ relatively Jmall; wually two *) 
4. Let p=l (* p holdJ the no. of torJion zero-croJJingJ found *) 
5. While (p > p0) do {* where Po iJ a Jmall number *) 

5.1. Letp = 0 
5.2. Call MASK_JST_DERIV(u) {* computeJ mask based on 1st deriv. of Gaussian *) 
5.3. Call MASK_2ND_DERIV{u) {* computes maJk based on 2nd deriv. of Gawsian *) 
5.4. Call MASK_9RD_DERIV(u) (* computes mask based on 9rd deriv. of Gaussian *} 
5.5. Call CONVOL VE{x[ },maak_1st[ },1)--+ x1[1} 
5.6. Call CONVOL VE(y[ j,mask_1st[ j,1)--+ y1[1} 
5. 7. Call CONVOL VE(z[ j,mask_1st[ j,1)--+ z1{1} 
5.8. Call CONVOL VE(x[ j,mask_2nd[ },1)-+ x"/1} 
5.9. Call CONVOL VE(y[ },mask_2nd{ },1)-+ y11{1} 
5.10. Call CONVOL VE(z[ j,mask_2nd{ },1)-+ z"/1} 
5.11. Call CONVOL VE(x[ J,mask_Srd{ j,1)-+ x111{1} 
5.12. Call CONVOL VE(y[ },mask_Srd{ },1)-+ y111{1} 
5.19. Call CONVOL VE(z[ j,mask_9rd{ j,1)--+ z111{1j 
5 14 L t [1] II/ I II Ill II I + Ill I II Ill I II + Ill I II /I/ I II .. er =zxy-zxy yzx-yxz xyz-xzy 
5.15. Fori = 2 to n do 

5.15.1. Call CONVOL VE(x[ j,mask_1st[ J,i)--+ x1{i} 
5.15.2. Call CONVOL VE(y[ j,mask_1st[ },i)--+ y1/ij 
5.15.9. Call CONVOL VE{z[ j,maak_1st[ J,i)-+ z1{ij 
5.15.4, Call CONVOL VE(x[ },mask_2nd[ },i)--+ x11[i} 
5.15.5. Call CONVOL VE(y[ },mask_2nd[ J,i)-+ y"[ij 
5.15.6. Call CONVOL VE(z[ j,mask_2nd[ j,i)--+ z11{i] 
5.15. 7. Call CONVOL VE(x[ },mask_Srd{ j,i)-+ x111[i] 
5.15.8. Call CONVOL VE(y[ },mask_Srdf j,i) --+ y11'/i] 
5.15.9. Call CONVOL VE(z[ },maak_Srd{ },i)--+ z111{i] 

5 15 1 0 L t [ •1 Ill I II Ill II I + Ill I II Ill I II + Ill I II Ill I II ... e ri = z xy - z x y y zx - y xz x yz - x zy 
5.15.11. If ((r[i} > 0) and (r[i-1} < 0)) or ((r[i} < 0) and (r[i-1} > 0)) then 

5.15.11.1. If {lr[i/1 > lr[i-1/1) then tss[i-1,uj = 1 
else tss[i,u j = 1 

5.15.11.2. p = p + 1 
5.15.12. u = u + Au 

End of Algorithm: TORSION_SCALE_SP ACE 
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The algorithm to compute the renormalized torsion scale space image is 
similar to algorithm TORSION_S.CALE_SPACE and therefore only the 
differences will be pointed out: 

Algorithm RENORMALIZED_TORSION_SCALE_SPACE has a few extra steps 
between steps 5.1 and 5.2 to compute the total length of the curve and the length 
up to ea.ch point of the curve as following: 

a.1. Let di.st{1} = 0 {* array dist holds the distances up to each point *) 
a.2. Let L = 0 (* L holds the total length of the .sampled curve *) 
a.9. Call MASK_GA USS(a) {* computes a ma3k ba3ed on the Gaussian fn *) 
a.4- Call CONVOL VE(x/ },mask_gausJJ/ },1)-+ X{l} 
a.5. Call CONVOL VE(y/ },mask_gauss{ },1)-+ Y{l} 
a.6. Call CONVOL VE(z{ },mask_gauss/ },1)-+ Z{1} 
a. 7. For i = £ to n do 

a.7.1. Call CONVOLVE(x{ },mask_gauss{ },i}-+ X[ij 
a. 7.2. Call CONVOL VE(y{ },mask_gauss{ J,i) -+ Y{ij 
a. 7.9. Call CONVOL VE(z{ j,ma3k_gauss{ },i}-+ Z{ij 
a. 7.4, L = L + d((X[1], Yf,],Z[,]),(X[i-1), Yfi-1),Z[;-.1])) 
a. 7.5. dist{i} = L 

Step 5.15.11.1 m algorithm TORSION_SCALE_SPACE should also be 
modified as following: 

5.15.11.1. lf(lr{i]I > lr{i-1/1) then tss{(dist(i-1//L)n,<Jj = 1 
else tss{( dist{i}/ L )n,a J = 1 

Note that an arc length evolved version of a space curve is computed by 
first sampling it using function SAMPLE and then convolving its x, y and z coor
dinate functions with a mask corresponding to a small u. The output curve is 
sampled again using SAMPLE and its x, y and z coordinate functions are con
volved again with the same mask. This process is repeated for as many iterations 
as necessary. 

The third algorithm in this section computes the resampled torsion scale 
space image of a space curve. Again only the differences between this algorithm 
and algorithm TORSION_SCALE_SP ACE will be pointed out: 

Algorithm RESAMPLED_TORSION_SCALE_SPACE makes only one call to 
MASK_lST_DERIV, MASK_2ND_DERIV and MASK_3RD_DERIV and there
fore these two cal.ls come just before step 5. Furthermore, step 2 should now be: , 



2. Call SAMPLE -+ n0 

step 5.15.12 should be changed to 

5.15.1£. Call SAMPLE-+ n 

44 

and step 5.15.11.1 should be modified as following: 

5.15.11.1. If (lr[i/1 > lr[i-1/1) then tss[((i-1}/n)no,u/ = 1 
else tss[{i/n}n0,uj = 1 

Similar analyses show that algorithms T0RSI0N_SCALE_SPACE and 
REN0RMALIZED_T0RSI0N_SCALE_SPACE take O(nu2) time to compute tor
sion scale space images and algorithm RESAMPLED_T0RSI0N_SCALE_SPACE 
takes 0( rn) time to compute a torsion scale space image. 

5.5. Efficiency issues 

Since the computation of curvature and torsion scale space images calls for 
the computation of a large number of convolutions, it is appropriate to investi
gate ways of rendering those computations more efficient: 

1. The computation of curvature and torsion scale space images can be made 
more efficient by tracking the zero-crossing points across scales. A small change 
in the value of u, the width of the Gaussian, will result in a small change in 
the location of a curvature or torsion zero-crossing point. It follows that if the 
location of curvature or torsion zero-crossing points of a curve are known at 
level u 0, then the location of those points at level u0+6.u can be determined 
by searching only a neighborhood of the zero-crossing points at level u0• This 
method is specially useful when it is known that no new zero-crossing points 
will be encountered at the higher levels of the scale space image, for example 
when computing the resampled curvature scale space image of a simple curve. 
This method was used to speed up the computation of several curvature scale 
space images shown in chapter 6. 

Let n and c be the number of sampled points and the number of curva
ture zero-crossings on the input curve respectively. It follows that the curva
ture scale space image can be computed in 0( cu2) time. Note, however, that in 
general after a small number of iterations, the number of zero-crossings drops 
to a small number. ff it is assumed that after a constant number of iterations, 
the number of zero-crossings drops below a constant, then it follows that the 
curvature scale space image can be computed in 0( n) + 0( u) time. 
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2. Fast Fourier transforms can also be used to speed up the computation of cur
vature and torsion scale space images when u becomes large. This method is 
an alternative to tracking when there is reason to believe that new curvature 
or torsion zero-crossing points will be encountered at the higher scales of the 
curvature or torsion scale space image. 

Since using the FFT method, it takes O(nlogn) time to compute each 
row [Aho et al. 1974), computation of the entire curvature scale space image 
takes O(unlogn) time. 

3. The computation of curvature and torsion scale space images can also be made 
more efficient by using an incremental method. Note that algorithm 
CURV ATURE_SCALE_SP ACE in section 5.3 uses the original data in each 
iteration and a larger value of u to compute the next higher level of descrip
tion of the input curve. This can lead to quite large values of u and a long 
computation time. The computation time can be significantly reduced by using 
the data obtained at the last scale level to compute the next level of descrip
tion. To see why this is possible, note that if /(x) is a continuous function and 
91(x) and 92(x) are Gaussian functions with widths u 1 and <72, then 

(/091) 092 = (/092) 091 = f 093 

where 93 is another Gaussian function with width <73 and 

0'32 = ui2 + ul. 
The computation of the curvature scale space image again takes 0( n<7

2) time, 
however, this technique results in much smaller values of u used to compute 
the curvature or torsion scale space image. This method was used to speed up 
the computations of the torsion scale space images shown in chapter 6. 

4. Another way to speed up the computation of curvature and torsion scale space 
images is to use parallelism and specialized hardware such as convolution 
chips. This method can also be combined with methods 1,2 and 3 for max
imum efficiency. For example, suppose we wish to compute the curvature scale 
space image of a planar curve, and that n processors are available for parallel 
use. The curvature scale space image can be divided into n segments using 
lines perpendicular to the u-axis or lines perpendicular to the u-axis and each 
processor given the job of computing the curvature scale space image of the 
segment assigned to it. If segmentation is done along the u-axis, fast Fourier 
transforms can be used to compute the evolved curve at the starting scale level 
of each segment and the incremental method or the tracking method can be 
used to compute the rest of the segment. 

If it is assumed that enough processors are available such that each pro
cessor computes a constant number of rows of the curvature or torsion· scale 
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space image, then the entire curvature or torsion scale space image can be 
computed in 0( nlogn) time. 

Note that almost all the curvature and torsion scale space images shown in 
chapter 6 have been computed at high resolution so that small details as well as 
the basic structure of the scale space images can be recognized. In practice, one 
may wish to compute the curvature or torsion scale space image at a considerably 
lower resolution by increasing the length of the sampling interval and the magni
tude of the step size in u. The low-resolution scale space image will be consider
ably faster to compute and should be adequate for most recognition tasks. For 
example if the length of the sampling interval is doubled, the number of sampled 
points and the largest value of u used will be reduced by a factor of two. It fol
lows that the required computation time using algorithm 
CURV ATURE_SCALE_8PACE or algorithm TORSION_SCALE_SPACE will be 
reduced by a factor of eight. 

5.6. Matching scale space images 

The scale space matching algorithm in (Mokhtarian & Mackworth 1986] 
makes assumptions about curvature scale space representations which are not 
always true. For example, it assumes that CSS representations always have a 
hierarchical structure, i.e., curvature zero-crossing contours never intersect and 
that two curves which are close in shape always have the same hierarchical struc
ture. The following is a scale space matching algorithm which should run consid
erably faster than the algorithm in Mokhtarian & Mackworth [1986]. It also does 
not make possibly incorrect assumptions about the structure of a scale space 
representation. This algorithm has not been implemented yet. 

Note that the extrema of the curvature or torsion zero-crossing contours in 
a curvature or torsion scale space representation are important and distinguish
able points. They occur at different scales and provide us with an abundance of 
features to be used for the matching process. They can be located easily and they 
are the natural candidate points to use in order to determine the correspondence 
between the scale space images to be matched since, unlike other zero-crossings, 
each extremum is isolated in a region which contains it. We therefore proceed by 
extracting all extrema of the zero-crossing contours from both scale space 
representations R1 and R2 to be matched. Let Bi and E2 be the set of points thus 
obtained. Let P1, P2, • • • , Pn be the extrema in E1 ordered by height and let 
Q1, Q2, · · · , Qn be the extrema in E2 also ordered by height. The problem now 
is to assign each point of E1 to a distinct point of E2 which will minimize the 
total matching cost. The cost of assigning a point Pi to point Qi is equal to the 
Euclidean distance between those two points multiplied by the height of those 
points since matches at higher scales are considered more important. The actual 
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algorithm then is as follows: 

Algorithm: SCALE_SP ACE_MATCHER 

1. Create n nodes corresponding to the possible match of P1 and each of the 
extrema in E2• Assign a cost of O to each node. 

£. For each node (Pi, Qd, compute the scale space transformation parameters 
which will transform the scale space coordinates of Qi to the scale space coordi
nates of P1• If the node (Pi, Qi} repreJent.9 a correct match, then these 
transformation parameters will cau.s e the remaining extrema of E1 to overlap 
with the remaining extrema of E2 in a one-to-one fashion. 

9. For each node, apply the transformation parameters to the coordinates of Q; 
(15:j5:n} to compute their new coordinates for that node. 

4, Expand each node one step: for each node find the closest una.,signed extremum 
in E2 to P2 and a.,sign them to each other. Note that the two extrema that are 
assigned to each other should be of the same type: minima or maxima. Compute 
the cost of that assignment and add it to the node cost. 

5. Find the lowest cost node and expand it one step: assign the next unassigned 
extremum in E1 to its closest unassigned extremum in E2 and add the a.,sign
ment cost to the node cost. 

6. If there are no more unassigned extrema from either E1 or E2 in the lowest cost 
node, then STOP: the lowest cost match has been found. Otherwise, go to step 
5. 

End of Algorithm: SCALE_SP ACE_MATCHER 

Note that in general, if representation R1 is a good match for representa
tion R2, then point P1 will usually match point Q1, P2 will match Q2, etc. and 
the algorithm will terminate quickly. However, the algorithm above has been 
designed to have the capability to handle situations in which two or more of the 
highest extrema of R1 or R2 have roughly the same height. 
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Chapter 6: 

Experiinental Results 
and Evaluation 

This chapter shows a number of planar and space curves which were used 
as input data to the programs described in chapter 5 along with the output 
obtained from those programs. It also describes a number of experiments which 
were carried out on the representations. The chapter also contains a discussion of 
the significance of the theorems of chapters 3 and 4. It ends with an evaluation of 
the curvature and torsion scale space representations proposed in chapters 3 and 
4 according to the criteria proposed in chapter 1. 

6.1. Planar Curves 

Algorithm CURVATURE_SCALE_SPACE in section 5.3 was used to com
pute the curvature scale space image of three different planar curves. Figure 6.1.1 
shows the coastline of Africa. This curve was used as the first input curve. Fig
ure 6.1.2 shows several evolved version of the coastline of Africa for increasing 
values of u, the width of the Gaussian filter. It can be observed that as u 
increases, the small-scale features on the curve disappear. Larger values of u per
form a very good job of filtering out the detail on the curve and bringing out its 
basic structure. A very large value of sigma filters out nearly all of the structure 
and the curve tends to a circle. Figure 6.1.3 shows the curvature scale space 
image of Africa. Horizontal lines have been drawn across that image to indicate 
the values of u which were used to compute the evolved curves of figure 6.1.2. It 
can be observed that the smaller features show up as contours which are confined 
to the fine scales of the curvature scale space image whereas the basic features 
result in contours which last until the larger scales. 
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Figure 6.1.1. Coastline of Africa 
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(a) u = 2 (b} u = 4 

(c) u = 8 (d} u= 16 

(e) u = 32 (f) (T = 64 

Figure 6. 1.2. Africa during evolution 
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Figure 6.1.3. The curvature scale space image of Africa 
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The second input curve is shown in figure 6.1.4. This is Koch's snowflake 
curve. Several evolved versions of that curve are shown in figure 6.1.5 and the 
curvature scale space image of the curve is shown in figure 6.1.6. Horizontal lines 
have been drawn across that image to indicate the values of u which were used to 
compute the curves of figure 6.1.5. Note that Koch's snowflake curve is a fractal 
curve and its curvature scale space image also has a fractal property. 

The third input curve is the curve of figure 6.1.7. This curve is the outline 
of a design taken from a Persian carpet. Figure 6.1.8 shows the carpet design dur
ing evolution and figure 6.1.9 shows the curvature scale space image of the carpet 
design. Horizontal lines have been drawn across that image to indicate the 
values of u which were used to compute the curves of figure 6.1.8. Note that 
since the carpet design is a symmetric curve, its curvature scale space image is 
also symmetric. 

We then carried out a number of experiments to test the suitability of the 
representations under various conditions. The purpose of the first experiment was 
to test the behaviour of the curvature scale space image when a considerable 
amount of noise corrupts the shape of the input curve. Figure 6.1.10 shows the 
coastline of Africa with a significant amount of random and uniform noise added 
to it. The noise at each point of the curve is added along the direction of the vec
tor normal to the curve at that point. Note that the curve can intersect itself. It 
follows from theorems 3.4.3 and 3.4.5 that new curvature zero-crossings can 
appear during its evolution. Figure 6.1.11 shows the curvature scale space image 
of the curve of figure 6.1.10 superimposed on the curvature scale space image of 
the original Africa figure. As expected, the images shown in figure 6.1.11 show 
differences in detail. However, a remarkable similarity in the basic structures of 
the two images can be observed. This experiment shows that the curvature scale 
space image is very stable and reliable even when a significant amount of uniform 
noise corrupts the shape of the input curve. 

The next experiment tested the behaviour of the curvature scale space 
image under severe noise conditions. Figure 6.1.12 shows the coastline of Africa 
with severe, uniform noise added to it. Figure 6.1.13 shows the curvature scale 
space image of the curve of figure 6.1.12 superimposed on the curvature scale 
space image of the original Africa figure. Even with the presence of severe noise, a 
very close similarity can be. observed between the two images. 

The next experiment examined the behaviour of the proposed representa
tions when non-uniform noise corrupts the shape of the input curve. Figure 6.1.14 
shows the coastline of Africa with random, non-uniform noise added to its lower 
half. Note that the curve remains simple after the addition of noise. Figure 
6.1.15 shows the curvature scale space image of Africa with non-uniform noise. 
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Figure 6.1.4. Koch's snowflake curve 
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(a) (1 = 2 (b) u = 5 

( c) (1 = 10 (d) u = 20 

Figure 6.1.5, Snowflake curve during evolution 
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Figure 6.1.6. The curvature scale space image of the snowflake 
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Figure 6.1.7. Design from a Persian carpet 
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(a) <r = 5 (b) u = 10 

(c) <r = 20 (d) u = 50 

Figure 6.1.8. Carpet design during evolution 
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Figure 6.1.9. The curvature scale space image of the carpet design 
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Figure 6.1.10. Coastline of Africa with uniform, random noise 



60 

Figure 6.1.11. The CSS image of Africa with uniform noise superimposed 
on the CSS image of Africa 
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Figure 6.1.12. Coastline of Africa with severe, uniform noise 
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Figure 6.1.13. The CSS image of Africa with severe noise superimposed 
on the CSS image of Africa 
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Figure 6.1.14. Coastline of Africa with non-uniform, random noise 
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Figure 6.1.15. The curvature scale space image of Africa with non-uniform noise 
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When compared to the curvature scale space image of Africa shown in 
figure 6.1.3, it is clear that there does not exist a good overall match of the two 
images. Figure 6.1.16 shows the renormalized curvature scale space image of 
Africa and figure 6.1.17 shows the renormalized curvature scale space image of 
Africa with non-uniform noise. Figure 6.1.18 shows the superposition of the 
images shown in figures 6.1.16 and 6.1.17. It can be seen that the degree of 
match shown in figure 6.1.18 is much better than the degree of match of figure 
6.1.3 to figure 6.1.15. As expected, the degree of match is much better at higher 
scales. Finally, figure 6.1.19 shows the resampled curvature scale space image of 
Africa and figure 6.1.20 shows the resampled curvature scale space image of 
Africa with non-uniform noise. Figure 6.1.21 shows the superposition of the 
images shown in figures 6.1.19 and 6.1.20. Note that a very close match exists 
between those two images .. 

Three different multi-scale representation techniques for planar curves 
were described in this thesis. These three are: the regular curvature scale space 
image, the renormalized curvature scale space image and the resampled curvature 
scale space image. Each representation technique is suitable for a class of specific 
applications. When low to moderate, uniform noise exists on the curve, the regu
lar curvature scale space image can be used. However, when there is non-uniform 
or severe noise on the curve or when there are local shape differences between the 
model curves and the image curves, either the renormalized or the resampled cur
vature scale space images should be used. Note that the renormalized curvature 
scale space image is the most computationally intensive. Observations indicate 
that when there are local shape differences, the resampled curvature scale space 
images show the best overall match whereas the renormalized curvature scale 
space images match well at high scales but a.re more influenced by the shape 
differences at lower scales. Therefore the choice of the representation technique 
should depend on the scale level of the curve features that one wishes to 
emphasize. Table 6.1.1 summarizes the advantages and disadvantages of each 
representation technique. 

This concludes the experiments which were carried out on planar curves. 
The following is a discussion of the practical significance of the theorems of 
chapter 3. 

Theorem 3.4.1 showed that evolution and arc length evolution of a planar 
curve are invariant under rotation, uniform scaling and translation of the curve. 
This shows that the regular, renormalized and resampled curvature scale space 
images of a planar curve have the invariance property [Mokhtarian & Mackworth 
1986]. The invariance property is essential since it makes it possible to match a 
planar curve to another of similar shape which has undergone a transformation 
consisting of arbitrary amounts of rotation, uniform scaling and translation. 
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Figure 6.1.16. The renormalized curvature scale space image of Africa 
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Figure 6.1.17. The renormalized curvature scale space image of Africa 
with non-uniform noise 
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Figure 6.1.18. The Renormalized CSS image of Africa with non-uniform 
noise superimposed on the Renormalized CSS image of Africa 
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Figure 6.1.19. The Resampled curvature scale space image of Africa 
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Figure 6.1.20. The Resampled curvature scale space image of Africa 
with non-uniform noise 
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Figure 6.1.21. The Resampled CSS image of Africa with non-uniform 
noise superimposed on the Resampled CSS image of Africa 
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Theorems 3.4.2 and 3.4.3 showed that connectedness and closedness of a 
planar curve are preserved during evolution and arc length evolution. These 
theorems demonstrate that evolution and arc length evolution of a planar curve 
do not change the physical interpretation of that curve as the boundary of a 
two-dimensional object. 

Representation technique Advanta,e;es Disadvanta,e;es 

The Regular Curvature • Suitable for transformations • Non-uniform noise or 
Scale Space Image consisting of uniform scaling, local difference in shape 

rotation and translation. can cause problems. 
• Suitable when uniform, 
low-intensity noise has 
corrupted the curve. 

The Renormalized Curvature • More suitable when there • Most computationally 
Scale Space Image is non-uniform noise on the intensive. 

curve or local shape 
differences exist. 

The Resampled Curvature • Most suitable when there • De-emphasizes shape 
Scale Space Image is high-intensity, non-uniform differences at fine 

noise or local shape scales. 
differences exist. 

Table 6.1.1. Comparison of Regular, Renormalized 
and Resampled Curvature Scale Space Images. 

Theorem 3.4.4 showed that the center of mass of a planar curve does not 
move as the curve evolves and theorem 3.4.5 showed that a planar curve remains 
inside its convex hull during evolution and arc length evolution. Together, 
theorems 3.4.4 and 3.4.5 impose constraints on the physical location of a planar 
curve as it evolves. These constraints become useful whenever the physical loca
tion of curves in an image or their locations with respect to each other is impor
tant. A possible application area is stereo matching in which it is advantageous 
to carry out matching at coarser levels of detail first and then match at fine 
detail levels to increase accuracy. 

Theorem 3.4.6 showed that the curvature scale space images of a planar 
curve determines that curve uniquely modulo uniform scaling, rotation and trans
lation. This shows that the curvature scale space images satisfy the uniqueness 
property (Mokhtarian & Mackworth 1986). This property ensures that curves of 
different shapes do not have the same representation. 
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Theorems 3.4.8 and 3.4.10 together locally characterize the behaviour of a 
planar curve just before and just after the forniation of a cusp point during evolu
tion and arc length evolution. This behaviour can be used to detect any cusp 
points that form during evolution or arc length evolution of a planar curve. Such 
cusp points can then be used effectively to facilitate matching since they provide 
us with a set of distinctive and easily recognizable features. These theorems also 
show that self-intersecting curves are described in a natural way by our represen
tation technique. The self-intersection loop gradually grows smaller until it turns 
into a cusp point and vanishes. In contrast, Asada and Brady's method (1986] 
enlarges the smaller loop until it becomes as large as the larger loop. Figure 
6.1.22 shows a self-intersecting curve during evolution. The self-intersection is 
resolved through the formation of a cusp point after which the curve becomes 
simple. Figure 6.1.23 shows the curvature scale space image of the curve of figure 
6.1.22. Horizontal lines have been drawn across that image to indicate the values 
of (1 which were used to compute the curves of figure 6.1.22. Figure 6.1.24 shows 
a convex, self-crossing curve during evolution and figure 6.1.25 shows the curva
ture scale space image of the curve of figure 6.1.24. Horizontal lines have again 
been drawn across that image to indicate the values of (1 which were used to 
compute the curves of figure 6.1.24. 

Theorem 3.4. 7 showed that if a planar curve remains smooth during evolu
tion or arc length evolution, then no new curvature zero-crossings will be 
observed in its curvature scale space images. Theorem 3.4.8 showed that every 
planar curve intersects itself during evolution or arc length evolution just before 
the formation of a cusp point and theorem 3.4.9 showed that simple curves 
remain simple during arc length evolution. Combining theorems 3.4. 7, 3.4.8 and 
3.4.9, we conclude that no new curvature zero-crossing points are created during 
arc length evolution of simple curves. This is an important result since it indi
cates that new "structure" is not created in the curvature scale space representa
tions of simple curves (Marr & Nishihara 1978]. Note that a subclass of self
crossing curves also shares this property. 

The result stated by theorem 3.4.9 is also very important. Simple planar 
curves usually represent the boundaries of two-dimensional objects. Arc length 
evolved versions of those curves can only have physical interpretation as boun
daries of two-dimensional objects if they are also simple. Theorem 3.4.9 shows 
that this is in fact the case. Figure 6.1.26 shows a simple curve and its evolved 
versions. It can be seen that the curve inters~cts itself during evolution. Figure 
6.1.27 shows the same curve and its arc length evolved versions. As expected, 
the curve remains simple dµring arc length evolution. 
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(a) Original curve (b) u = 16 

(c) u = 28 (d) u = 40 

Figure 6.1.22. A self-crossing curve during evolution 
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u=28 

u= 16 
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Figure 6.1.23. The CSS image of the curve of figure 6.1.22 
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(a) Original curve (b) u = 20 

(c) u = 32 (d)u=40 

Figure 6.1.24. A self-crossing curve during evolution 
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u=32 

e1= 20 

Figure 6.1.25. The CSS image of the curve of figure 6.1.24 
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(a) A simple curve (h)<T=4 

~ ~ -=-==== _::::::---

(c) <T = 16 (d) <T = 25 

(e) <T= 32 (f) <T = 48 

Figure 6.1.26. A simple curve during (regular) evolution 
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(a) A simple curve (b) After 3 iterations 

( c) After 6 iterations ( d) After 10 iterations 

(e) After 30 iterations (f) After 50 iterations 

Figure 6.1.27. Curve of figure 6.1.26 during arc length evolution 
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6.2. Space Curves 

We used algorithm TORSION_SCALE_SPACE given in section 5.4 to 
compute the torsion scale space images of several input space curves. Figure 6.2.1 
shows a space curve depicting a fork. Figure 6.2.2 shows several evolved versions 
of the fork and figure 6.2.3 shows the torsion scale space image of the fork. Hor
izontal lines have been drawn across that image to indicate the values of u which 
were used to compute the curves of figure 6.2.2. Again note that as u, the width 
of the Gaussian function, increases, small-scale features on the curve disappear 
but the more basic features are preserved. Figure 6.2.4 shows a space curve dep
icting a bottle-opener. Several evolved versions of the bottle-opener are shown in 
figure 6.2.5 and its torsion scale space image is shown in figure 6.2.6. Horizontal 
lines have been drawn across that image to indicate the values of u which were 
used to compute the curves of figure 6.2.5. 

The third example is the curve shown iri figure 6.2.7. This curve depicts an 
armchair. Figure 6.2.8 shows several evolved versions of the armchair and figure 
6.2.9 shows the torsion scale space image of the armchair. Horizontal lines have 
been drawn across that image to indicate the values of u which were used to 
compute the curves of figure 6.2.8. Note that since the fork, the bottle-opener 
and the armchair are all depicted by symmetric curves, their torsion scale space 
images are all symmetric as well. 

Experiments were also carried out to examine the behaviour of the pro
posed torsion scale space representations when input curves are corrupted by 
noise. Figure 6.2.10 shows the armchair with a significant amount of noise added 
to it. The direction as well as the magnitude of the noise is random. Figure 6.2.11 
shows the torsion scale space image of armchair with noise and figure 6.2.12 
shows the renormalized torsion scale space image of armchair with noise. It can 
be observed that despite the addition of a considerable amount of noise, the tor
sion scale space image retains its basic structure very well. Figure 6.2.13 shows 
the superposition of the image of figure 6.2.11 and the image of figure 6.2.9. A 
very close match can be observed between the two images. Figure 6.2.14 shows 
the armchair corrupted with severe random noise. The torsion scale space image 
of armchair with severe noise, shown in figure 6.2.15, no longer matches well with 
the torsion scale space image of the original armchair shown in figure 6.2.9. How
ever, the resampled torsion scale space image of the armchair, shown in figure 
6.2.16, and the resampled torsion scale space image of the armchair with severe 
noise, shown in figure 6.2.17, show a very close match. Figure 6.2.18 shows the 
superposition of the images shown in figures 6.2.16 and 6.2.17. 
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Figure 6.2.1. Two views of a space curve depicting a fork 
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(a) u = 2 
(b) u = 5 

(c)u=lO 
(d) u = 20 

Figure 6.2.2. The fork during evolution 
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Figure 6.2.3. The torsion scale space image of the fork 
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Figure 6.2.4. Two views of a space curve depicting a bottle opener 
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(a) <r = 1 (b) <r = 2 

(c)<r=4 (d) <r = 10 

Figure 6.2.5. The bottle opener during evolution 
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v= i7 

v=60 

v= 10 

Figure 6.2.6. The torsion scale space image of the bottle-opener 
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Figure 6.2.7. A space curve depicting an armchair 
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(a) <T = 10 (b) <T = 20 

(c) <T = 30 (d) <T = 50 

Figure 6.2.8. The armchair during evolution 
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Figure 6.2.9. The torsion scale space image of the armchair 
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Figure 6.2.10. The armchair with random noise 
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Figure 6.2.11. The torsion scale space image of the armchair with noise 
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Figure 6.2.12. The Renormalized TSS image of armchair with noise 
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Figure 6.2.13. The TSS image of armchair with noise superimposed 
on the TSS image of armchair 



94 

Figure 6.2.14. The armchair with severe random noise 
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Figure 6.2.15. The torsion scale space image of armchair with severe noise 



96 

I l 
~ ! I 

,,·· .... , 
IJ 1, 

-' '\ I 
.I \ / \ \ ) \ 

/ / 
~ 
I 
II 

II \ ! J 
i 
I 

/ 
I \ 

I \ I \ 
(' \ ,··· 

\ \ I' \ 
\ 

\/ / l I 

\ 
I~ 

', ,,.., 
(\ l I 

\ /l 
I l \ ('\ 

'i r- I I /' i 

J ( I 

/ 

Figure 6,2.16. The Resampled torsion scale space image of the armchair 
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Figure 6.2.17. The Resampled TSS image of armchair with severe noise 
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Figure 6.2.18. The Resampled TSS image of armchair with severe noise 
superimposed on the Resampled TSS image of armchair 
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For a comparison of regular, renormalized and resampled torsion scale 
space images and the advantages and disadvantages of each see the discussion of 
section 6.1 on the regular, renormalized and resampled curvature scale space 
images and table 6.1.1 on their advantages and disadvantages. The same argu
ments apply fully to torsion scale space representations. 

This concludes the experiments which were carried out on space curves. 
The following is a discussion of the practical significance of the theorems of 
chapter 4. 

Theorem 4.4.1 showed that evolution and arc length evolution of a space 
curve are invariant under rotation, uniform scaling and translation of the curve. 
This shows that the regular, renormalized and resampled torsion scale space 
images of a space curve have the invariance property. The invariance property is 
essential since it makes it possible to match a space curve to another of similar 
shape which has undergone a transformation consisting of arbitrary amounts of 
rotation, uniform scaling and translation. 

Theorems 4.4.2 and 4.4.3 showed that closedness and connectedness of a 
space curve are preserved during evolution and arc length evolution. These 
theorems demonstrate that evolution and arc length evolution of a space curve do 
not change the physical interpretation of that curve as the boundary of a three
dimensional object. 

Theorem 4.4.4 showed that the center of mass of a space curve does not 
move as the curve evolves and theorem 4.4.5 showed that a space curve remains 
inside its convex hull during evolution and arc length evolution. Together, 
theorems 4.4.4 and 4.4.5 impose constraints on the physical location of a space 
curve as it evolves. These constraints become useful whenever the physical loca
tion of curves in a scene or their -locations with respect to each other is important 
for example when two or more space curves are used to represent a three
dimensional object. 

Theorem 4.4.6 showed that the torsion scale space images of a space curve 
determine that curve modulo the class defined by the function /3( u) = ,c

2
( u) r( u) 

where ic( u) and r( u) are the curvature and torsion functions of that curve respec
tively. This shows that the torsion scale space images are often sufficient to dis
tinguish a space curve from other space curves it is being compared to. In such 
cases, the torsion scale space can be said to satisfy the uniqueness property. This 
property ensures that curves of different shapes do not have the same representa
tion. 

Theorems 4.4.8 and 4.4.9 together locally characterize the behaviour of a 
space curve just before and just after the formation of a cusp point during evolu
tion and arc length evolution. This behaviour can be used to detect any cusp 
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points that form during evolution or arc length evolution of a space curve. Such 
cusp points can then be used effectively to facilitate matching since they provide 
us with a set of distinctive and easily recognizable features. 

Theorem 4.4. 7 showed that if a space curve remains smooth during evolu
tion or arc length evolution and torsion remains bounded at every point of that 
curve, then no new torsion zero-crossings will be observed in its torsion scale 
space images and theorem 4.4.10 showed that new torsion zero-crossings can 
indeed occur on a space curve that remains smooth during evolution at points of 
zero curvature. Together, theorems 4.4.9 and 4.4.10 describe all situations that 
can lead to creation of new torsion zero-crossings on a space curve during evolu
tion. This enables one to make inferences about a space curve when new torsion 
zero-crossings are observed in its torsion scale space image. 

6.3. Evaluation of the Representations 

The following is an evaluation of the curvature and torsion scale space 
representations according to the criteria proposed in chapter 1. 

Criterion: Invariance 

Recall that by invariance, we meant that the representation for the shape 
of a curve should not change when shape-preserving transformations (rotation, 
uniform scaling and translation) are applied to that curve. 

Translation of the curve causes no change in the curvature and torsion 
scale space representations proposed here. Uniform scaling causes the curvature 
and torsion scale space representations to undergo uniform scaling as well. If the 
represented curves are closed, then their curvature and torsion scale space 
representations can be normalized and invariance with respect to uniform scaling 
will also be achieved. If the represented curves are open, changes due to uniform 
scaling can be handled by a matching algorithm such as 
SCALE_SP ACE_MATCHER in chapter 5. 

Rotation causes only a horizontal shift in the curvature and torsion scale 
space representations. However, due to the multi-scale nature of those representa
tions, an algoritnm such as SCALE_8P ACE_MATCHER can determine the shift 
difference between two matching CSS or TSS representations. 

Criterion: Uniqueness 

The uniqueness criterion required that two curves with different shapes be 
mapped to different representations. This is necessary in order to be able to 
recognize two or more curves with the sarrie shape by observing that their 
representations are the same. 
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As argued earlier, theorem 3.4.6 shows that a planar curve can be recon
structed from any of its curvature scale space representations and therefore the 
curvature scale space representations satisfy the uniqueness criterion. Theorem 
4.4.6 shows that a space curve can be constructed modulo an equivalence class 
from any of its torsion scale space representations therefore the torsion scale 
space representations satisfy the uniqueness criterion with respect to the class of 
curves defined by theorem 4.4.6. Nevertheless, since torsion scale space represen
tations are very rich representations, it is believed that in practical shape 
representation and matching tasks, they will be more than enough to distinguish 
space curves of different shapes from each other. 

The only arbitrary choice to be made when computing the curvature and 
torsion scale space representations is the starting point for parametrization on a 
closed curve. This only causes a horizontal shift in the curvature and torsion scale 
space representations but it causes no structural change. 

Criterion: Stability 

The stability criterion requires that s small change in the shape of a curve 
lead to a small change in its representation and vice versa. Theorems 3.4.3 and 
4.4.3 show that planar and space curves respectively remain connected during 
evolution and arc length evolution and therefore their curvature and torsion scale 
space representations can always be constructed. Furthermore, while a planar or 
space curve evolves, a small change in the standard deviation of the Gaussian 
filter always results in a small change in the locations of the curvature or torsion 
zero-crossings on that curve. The experiments of chapter 6 also show that the 
curvature and torsion scale space representations are stable with respect to 
significant uniform and non-uniform noise on the curves they represent and there
fore satisfy the stability criterion. 

Since the representation methods proposed in this thesis involve 
identification of curvature zero-crossing points on planar curves, it may be con
jectured that they are not suitable for application to curves with straight seg
ments on them. However, it should be noted that while the presence of straight 
line segments on a curve might introduce instabilities at the finest scale levels, 
after a small number of iterations the originally straight segments will have non
zero curvature and the computations will stabilize. Figure 6.3.1 shows a planar 
curve made up of straight line segments and figure 6.3.2 shows the curve of figure 
6.3.1 with added random noise. Figure 6.3.3 shows the curvature scale space 
representation of the curve of figure 6.3.1 and figure 6.3.4 shows the curvature 
scale space representation of the curve of figure 6.3.2. Figure 6.3.5 shows the 
superposition of the images shown in figures 6.3.3 and 6.3.4. It can be seen that 
while there is disagreement between the two representations at the finest scale 
levels, a very close match exists at the higher levels of the representations. 
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Figure 6.3.1. A planar curve made up of straight line segments 
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Figure 6.3.2. The curve of figure 6.3.1 with added random noise 
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Figure 6.3.3. The curvature scale space image of the curve of figure 6.3.1 
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Figure 6.3.4. The curvature scale space image of the curve of figure 6.3.2 
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Figure 6.3.5. The CSS image shown in figure 6.3.3 superimposed 
on the CSS image s~own in figure 6.3.4 
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The error present on a space curve may be non-isotropic since most sen
sors provide 3D data that is much more accurate in the x and y directions than in 
the z direction. This type of error can be handled by applying more smoothing to 
the :-coordinate than to the x- and y-coordinates. The amonnt of smoothing for 
each coordinate can be determined by the variance of the error present on each of 
the :c-, y- and :-coordinates. 

Criterion: Efficiency 

The computation of the representations proposed here calls for evaluation 
of a large number of convolutions. As discussed in chapter 5, this process can be 
rendered efficient using one or more of the following techniques: 

i. Fast Fourier transforms 
ii. Parallelism 
iii. Expression of convolutions involving Gaussians of large widths in terms of 

convolutions involving Gaussians of small widths only 
iv. Tracking the curvature and torsion zero-crossing points across multiple scales: 

when it is known that new curvature zero-crossings will not be created at 
higher scales, convolutions can be carried out only in a small neighborhood of 
the existing zero-crossings in order to find the zero-crossings at the next 
higher level. 

Furthermore, curvature and torsion scale space representations can be 
stored very efficiently as encoded binary images. An alternative is to store only a 
selected subset of points from those scale space representations which will be used 
for matching. In general, all algorithms proposed are efficient in that their com
plexities are low order polynomials in the size of the input. 

Criterion: Ease of implementation 

Specific algorithms for computing the representations discussed in this 
thesis were given in chapter 5. The procedures needed to compute the curvature 
and torsion scale space images are not difficult to implement. Convolutions with 
Gaussian filters are at th~ heart of the computations. These are standard and 
well-understood procedures in the computational vision area. It follows that this 
criterion is also satisfied. 

Criterion: Computation of shape properties 

The curvature and torsion scale space representations of symmetric shapes 
are also symmetric since two symmetric shapes have curvature or torsion zero
crossings at the same locations across scales. Therefore the symmetry criterion is 
satisfied. Furthermore, curvature and torsion scale space computations are carried 
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out using finite Gaussian filters and making use of finite-sized neighborhoods. 
Therefore a curvature or torsion scale space representation can also be computed 
for an open curve and, except near the endpoints of the curve, will resemble the 
corresponding representation for a closed curve of which it is a part. It is there
fore believed that the representations also satisfy the part/whole criterion. 

Finally note that Volumetric diffusion [Koenderink & van Doorn 1986] and 
Reactive and diffusive deformations of shape [Kimia et al. 1989] are shape 
representation techniques which are the most similar to ours since they also com
pute deformations of shapes of two-dimensional and three-dimensional curves. It 
may therefore be suggested that an alternative way to compute the curvature 
and torsion scale space representations is to use one of the above techniques to 
compute deformations of the curves to be represented and then locate curvature 
and torsion zero-crossing points on each deformed curve and map them to the 
appropriate representations. However, as noted in chapter 2, the application of 
each of the techniques mentioned above might result in disconnected curves. In 
such cases, it will no longer be possible to construct the curvature or torsion scale 
space representations. Furthermore, our technique combines the curve deforma
tion and the computation of curvature or torsion into one step and is therefore 
more numerically accurate than the aforementioned techniques which separate 
the processes of curve deformation and computation of curvature or torsion. 

It follows that the curvature and torsion scale space representations satisfy 
nearly all the criteria for general-purpose shape representation methods proposed 
in chapter 1. 
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Chapter 7: 

Sununary, Conclusions 
and Future Directions 

This chapter contains a summary and the conclusions of this thesis and a 
discussion of directions for further research. 

7.1. Summary 

This thesis dealt with the area of shape representation and recognition 
which is an important area of research within computer vision. The problem of 
shape representation was considered here for two-dimensional and three
dimensional curves. Two-dimensional curves are boundaries of two-dimensional 
objects and three-dimensional curves can be considered to be abstract representa
tions of some three-dimensional objects as argu~d in chapter 4. 

Chapter 1 proposed a number of criteria considered necessary or useful for 
any shape representation · technique in computer vision. Chapter 2 reviewed 
several previously proposed shape representation methods for planar curves and 
discussed ways of generalizing those methods to compute representations of space 
curves. Each method was also evaluated according to the criteria proposed m 
chapter 1. Each method fails to satisfy one or more of those criteria. 

Chapter 3 proposed a novel theory of multi-scale shape representation for 
planar curves. A path-based parametric representation of the curve was com
puted and convolved with a Gaussian function of varying width to obtain 
descriptions of the curve at multiple levels of detail. The curvature zero-crossing 
points on each curve were identified and mapped to the 'llrU space where u is the 
parameter along the the curve and u is the width of the Gaussian function. 
Chapter 3 proposed three different versions of the representation, each suitable 
for particular applications and developed a theory for the proposed 
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representations which provides a sound, theoretical foundation for those represen
tations. The proofs of the theorems of chapter 3 are given in appendix A. 

Chapter 4 generalized the theory of chapter 3 to propose a theory of 
multi-scale shape representation for space curves. Multiple descriptions of the 
curve at varying levels of scale were computed in a similar manner and torsion 
zero-crossing and curvature level-crossing points on each curve were located and 
again mapped to u-u spaces. Chapter 4 proposed three different versions of the 
representation as well and .developed a parallel theory for the proposed represen
tations which again provides a sound, theoretical foundation for those representa
tions. The proofs of the theorems of chapter 4 are given in appendix B. 

Chapter 5 discussed the implementation issues associated with the task of 
implementing the shape representation theories proposed in chapters 3 and 4. 
Procedures to sample the input curves and to compute the Gaussian masks for 
convolution were described and algorithms for computing the regular, renormal
ized and resampled curvature and torsion scale space images were given. Com
plexity analyses for those algorithms were also presented. 

Finally, chapter 6 presented a number of examples of planar and space 
curves used as input to the programs and the curvature and torsion scale space 
representations of those curves. Experiments were carried out to study the 
behaviour of the representations when considerable noise was added to the input 
curves and to illustrate the particular applications for which each representation 
is useful. The significance of the theoretical results of chapters 3 and 4 were also 
demonstrated. Chapter 6 ended with an evaluation of the curvature and torsion 
scale space representations proposed in this thesis according to the criteria pro
posed in chapter 1. It was shown that the proposed representations satisfy nearly 
all of the criteria. 

7.2. Conclusions 

The contribution of this thesis is to present a theory of shape representa
tion for planar and space curves. The representations are referred to as the curva
ture and torsion scale space images and are general-purpose because they satisfy 
a number of criteria that are considered useful for general-purpose shape 
representations. They are nearly invariant with respect to the shape-preserving 
transformations of the curves since they make use of invariant geometric proper
ties of the curves and experiments indicate that they are stable with respect to 
even severe uniform or non-uniform random noise on the curves because they 
combine information about the curves at a continuum of scales. Furthermore, 
they represent curves uniquely since it is possible in theory to reconstruct those 
curves using their representations (modulo uniform scaling and a rigid motion in 
case of planar curves and modulo a larger class in case of space curves). These 
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properties make the representations very useful for shape recognition tasks. A 
new and efficient scale space matching algorithm was also presented. 

The theoretical results of this thesis significantly contribute to a proper 
understanding of the proposed representations. These results define the properties 
of both the representations and the underlying processes of evolution and arc 
length evolution. It follows from theorems 3.4.1 and 4.4.1 that the representa
tions are in fact invariant with respect to shape preserving transformations of the 
curves they represent. Theorems 3.4.2 and 4.4.2 show that (arc length) evolution 
preserves closedness of planar and space curves and therefore does not change the 
physical interpretation of those curves as boundaries of objects. Theorems 3.4.3 
and 4.4.3 are very important since they show that connectedness of planar and 
space curves is preserved by (arc length) evolution. As a result, it is always possi
ble to construct the curvature and torsion scale space representations. Theorems 
3.4.4, 3.4.5, 4.4.4 and 4.4.5 impose strong constraints on the location of planar 
and space curves during (arc length) evolution. These constraints are useful for 
matching of image curves at multiple scales. Theorems 3.4.6 and 4.4.6 show that 
the curvature and torsion scale space images in fact uniquely represent the curves 
they are computed from. This property is crucial for matching and distinguishing 
shapes from each other. Theorems 3.4.7 and 4.4.7 make explicit the conditions 
under which new curvature or torsion zero-crossings will not be created in scale 
space representations. They can be used to speed up the computation of those 
representations by tracking the zero-crossings across scales. Theorem 3.4.9 shows 
that arc length evolution has further physical plausibility since it preserves the 
simplicity of planar curves. Theorems 3.4.8, 3.4.10, 4.4.8 and 4.4.9 together 
locally characterize the behaviour of planar and space curves just before and after 
the creation of cusp points during ( arc length) evolution. Theorems 3.4. 7, 3.4.8 
and 3.4.9 also combine to conclude that no new curvature zero-crossings are 
created during arc length evolution of simple curves. Finally, theorem 4.4.10 
shows that new torsion zero-crossings can form on smooth space curves during 
(arc length) evolution. Together with theorem 4.4.9, they describe all conditions 
under which new torsion zere>-crossings can appear on space curves during ( arc 
length) evolution. This information can also be used to speed up the compution 
of the torsion scale space representation by tracking of torsion zero-crossings 
whenever possible. 

7.3. Directions for future research 

The following are a number of possible areas of research t~at are related to 
the curvature and torsion scale space representations for planar and space curves 
proposed in this thesis. 

• In order to complete the theoretical results which form a sound foundation for 
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the representations, it would be useful to show that the curvature and torsion 
scale space representations proposed here have desirable convergence proper
ties. Observations show that a planar curve eventually becomes simple and 
convex after undergoing a process of evolution or arc length evolution and that 
once such a curve becomes simple and convex, it will always remain simple 
and convex. This implies that the search for curvature zero-crossing points can 
stop as soon as the curve becomes simple and convex. Gage and Hamilton 
[1986] have shown that simple and convex planar curves remain simple and 
convex during arc length evolution. Other properties remain to be shown for
mally. Similarly, observations show that a space curve eventually enters a 
state in which each of the two-dimensional curves obtained by disregarding 
one of its coordinate functions, is simple and convex and in which it has few 
torsion zero-crossing points after undergoing a process of evolution or arc 
length evolution. Observations further show that once such a curve enters that 
state, it will always remain in that state. Again, this implies that the search 
for torsion zero-crossing points can stop as soon as that state is reached. These 
properties also remain to be shown formally. 

• For both theoretical and practical reasons, it would be interesting to fully gen
eralize the shape representation theory proposed in this thesis and apply it to 
three-dimensional surfaces. In such an approach, the surface would be 
parametrized in an appropriate way and convolved with a two-dimensional 
Gaussian function to obtain descriptions of the surface at multiple levels of 
detail. Contours of zero curvature can then be identified on each surface and 
mapped to a suitable generalized scale space. The result would be a multi
scale, geometric-based representation of the shape of that surface. Results 
about the local, global and convergence properties of the surface during evolu
tion as well as the uniqueness properties of its representation would constitute 
a sound theoretical foundation for such a representation. A matching algo
rithm to find good matches of two such representations would also be useful. 

• The aim of this thesis has been to solve the curve representation problem but 
not the segmentation problem. In other words, it is assumed that the curves to 
be represented have been satisfactorily segmented beforehand. However, the 
tools developed in this thesis can also be used to tackle the segmentation prob
lem. For example, Lowe [1988] computed curvature on Gaussian smoothed 
image curves and segmented those curves at points where the rate of change of 
curvature was high. More work should be done towards the application of the 
tools developed in this thesis to the segmentation problem. 

• Theorem 3.4.6 states that the derivatives at a single point on a curvature zero
crossing contour in the curvature scale space image of a planar curve 
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determine that curve uniquely up to uniform scaling and a rigid motion. The 
proof of that theorem provides us with a constructive algorithm. It would be 
interesting to actually attempt such a reconstruction and determine the condi
tions under which it can be made stable with respect to noise. A similar argu
ment applies to theorem 4.4.6. 

• The curve description and recognition methods developed in this thesis should 
be further applied to practical vision problems. Recognition of characters, 
shorelines in aerial images [Mokhtarian & Mackworth 1986] and organisms in 
microscopic images as well as handwriting analysis are examples of problems 
which can be attacked using the tools developed here. Stereo matching should 
also be easier by first using an edge detector to extract image edges at a fine 
level of detail and then using our method to describe the candidate curves at 
coarse levels of scale where unnecessary detail has been removed and matching 
is more efficient and more reliable. This method would have clear advantages 
over blurring the image since image-blurring followed by edge detection totally 
removes many of the candidate curves and results in the joining of curves from 
unrelated parts of the image which complicates the matching problem. 

It would also be advantageous to develop a new matching algorithm to 
match curvature and torsion scale space images since the matching algorithm 
in [Mokhtarian & Mackworth 1986] makes assumptions about curvature scale 
space representations which are not always true as pointed out in chapter 5. 
The matching algorithm in [Witkin et al. 1987] provides an example of a 
multi-scale signal matching algorithm. It may be possible to generalize some of 
the concepts employed in that algorithm to the matching of curves. The 
matching algorithm in [Kishon & Wolfson 1987] provides an example of a 
curve matching algorithm but it can have problems when scale changes exist 
between an observed curve and a model curve and when noise exists on the 
observed curve. Algorithm SCALE_SP ACE_MATCHER proposed in chapter 
5 should run considerably faster than the algorithm in Mokhtarian and Mack
worth [1986]. It also does not make possibly incorrect assumptions about the 
structure of a scale space representation. 

In summary, this thesis proposes multi-scale, geometric-based, shape 
representations for planar and space curves. A number of important theoretical 
issues about those representations have been investigated and as a result, their 
properties are well-understood. A number of experiments have also been carried 
out on them in order to illustrate their practical utility under various noise condi
tions. It has also been shown that the proposed representations satisfy a number 
of criteria considered useful for shape recognition tasks. Finally, several directions 
for future research have been outlined. 
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Appendix A: 

Proofs of Results on 
Planar Curves 

This appendix contains the proofs of the theorems of chapter 3. The 
proofs of the theorems 3.4.1 - 3.4.5 have been given for arc length evolution only 
since the proofs for regular evolution are similar and simpler. Theorems 3.4.6 and 
3.4.7 have been shown to hold for regular, renormalized and resampled curvature 
scale space images. Furthermore, theorems 3.4.8 and 3.4.10 have been shown to 
hold for both regular and arc length evolution. 

Proof of theorem 3.4.1: It will be shown that arc length evolution is invariant 
under a general affine transform. Let r u = (X( W,u), Y( W,u)) be an arc length 
evolved version of r = (x( w),y( w)). If r u is transformed according to an affine 
transform, then at its new coordinates, X1 and Y1, are given by 

X1( W,u) = aX( W,u) + b Y( W,u) + c 

Y1( W,u) = dX( W,u) + e Y( W,u) + f. 
Now suppose r is transformed according to an affine transform and then evolved. 
The coordinates X 2 and Y2 of the new curve are 

X2(W,u) = (ax(W) + by(W) + c)@g(W,u) 

Yi( W,u) = ( d x( W) + e y( W) + I) 0 g( W,u). 

Since the convolution operator is distributive [Kees 1982], it follows that 

X2( W,u) = X1( W,u) 

Y2(W,u) = Y1(W,u) 
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and the theorem follows. D 

Proof of theorem 3.4.2: Let r = (:z:( w),y( w)) be a closed curve and let 
r tr= (X( W,u), Y( W,u) be an arc length evolved version of r. On r: 

(x(O),y(O)) = (x(l),y(l)). 

(X(O,u), Y(O,u)) = (X(l,u), Y(l,u)). 

It follows that r tr is closed. D 

Proof of theorem 3.4.3: Let r = (x( w),y( w)) be a connected planar curve and 
r tr = ( X( W,a ), Y( W,a)) be an arc length evolved version of that curve. Since r is 
connected, x( w) and y( w) are continuous functions and therefore X( W,u) and 
Y( W,u) are also continuous. Let W0 be any value of parameter W and let x0 and 
Yo be the values of X( W,u) and Y( W,a) at W0 respectively. If W goes through 
an infinitesimal change, then X( W,a) and Y( W,u) will also go through 
infinitesimal changes: 

Y( Wo,u) --+ Yo + e. 
As a result, point P( Xo,Yo) on r tr goes to point P'( Xo + 8, Yo+ e). Let the distance 
between P and P' be D. Then 

D = J 82 + e2 ~ 8..fi 

assuming 181 is the larger of 181 and lel. It follows that an infinitesimal change in 
parameter W also results in an infinitesimal change in the value of the vector
valued function r tr· Therefore r tr is a connected curve. D 

Proof of theorem 3.4.4: Let M be the center of mass of r = (x(w),y(w)) with 
coordinates (xM,YM). Then 

1 

fx(w)dw 1 

xM = -0- 1-- = fx(w)dw 
0 

fdw 
0 
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1 

Jy(w)dw 1 

YM = -0 - 1-- = fy(w)dw. 
0 

fdw 
0 

Let r u = (X( W,u), Y( W,u)) be an arc length evolved vers10n of r with 
N = (XN, Y N) as its center of mass. Observe that 

1 loo oo 1 

XN = f X( W,u)dW =ff g( v,u)x( W-v)dvdW = f g( v,u)(jx( W-v)dW)dv 
0 0-oo -oo 0 

W covers r u exactly once. Therefore 
1 

So 

Similarly 

fx( W-v)dW = xM. 
0 

YN = YM. 

It follows that Mand N are the same point. □ 

Proof of theorem 3.4.5: Since G is simple and convex, every line L tangent to 
G contains that curve in the left ( or right) half-plane it creates. Since r is inside 
G, r is also contained in the same half-plane. Now rotate L and r so that L 
becomes parallel to the y axis. Lis now described by the equation x = c. Since L 
does not intersect r, it follows that x( w0 ) ~ c for every point w0 on r. Let r a- be an 
arc length evolved version of r. Every point of r u is a weighted average of all 
the points of r. Therefore X( W0 ,u)~c for every point W0 on r u and r u is also 
contained in the same half-plane. This result holds for every line tangent to G 
therefore r u is contained inside the intersection of all the left ( or right) half
planes created by the tangent lines of G. It follows that r u is also inside G. □ 

Proof of theorem 3.4.6: The proof will first be given for the regular curvature 
scale space of r, then the modifications needed to apply the same proof to the 
resampled and renormalized curvature scale space images will be explained. The 
proof of this theorem for the regular curvature scale space image only was first 
given in [Mokhtarian 1989]. 

Section i shows that the derivatives at a point on a curvature zero
crossing contour provide homogeneous equations in the moments of the Fourier 
transforms of the coordinate functions of the curve. Section ii shows that the 
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moments are related to the coefficients of expansion of the coordinate functions of 
the curve in functions related to the Hermite polynomials. Section iii shows that 
the moments at one curvature zero-crossing point can be related to the moments 
at other curvature zero-crossing points. Section iv shows that the quadratic 
equations obtained in section i can be converted into a homogeneous linear sys
tem of equations which can be solved uniquely for the curvature function of the 
curve. 

i. Constraints from the curvature zero-crossing contours 

Let r = ( z( u), y( u)) be the arc-length parametrization of the curve with 
Fourier transform f' = (x(w),y(w)). The Fourier transform of the Gaussian filter 

G( u, t) = ~e- t?/4t is G(w) = e-w
2
t. 

v2t 

Let r fo = ( z( u, to), y( u, to)) be a curve obtained by convolving z( u) and y( u) 
with G( u, f.o). Assume that r to is in C00 • Such a t0 exists since r is in C1. The 

curvature zero-crossings in a neighborhood of t0 are given by solutions of 
a( u, t) = 0 where 

a( u, t) = x( u, t)y( u, t) - y( u, t)x( u, t) 

where . represents derivative with respect to u. Using the convolution theorem, 
the terms in o:( u, t) can be expressed as following: 

x(u, t) = J e-, .. heiwu(i.w)x(w)dw 

y( u, t) = J e-w
2
teiwu( i.w)y(w)dw 

x(u,t) = J e-w2teiwu(-w2)x(w)dw. 

The Implicit Function Theorem guarantees that the contours u( t) are C00 

in a neighborhood of t0• Let e be a parameter of the curvature zero-crossing con
tour. Then 

dk 
On the curvature zero-crossing contour, a = 0 and --;; a = 0 for all integers k. 

d(. 
Furthermore, since the curvature zero-crossing contour is known, all the deriva-
tives of u and t with respect toe are known as well. 
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We can now compute the derivatives of o: with respect to eat ( u0, t0). The 
first derivative is given by: 

(A.1) 

-J e4 t,er..Juw4i(w)dw J e-w'lteiwu( iw)y(w)dw) . 

Note that the moment of order k of function f(w) = e-"i2ter..Ju(iw)x(w) is defined 
by: 

00 

-00 

and the moment of order k of function f'(w) = e4 teiwu(iw)y(w) is defined by: 
00 

--00 

As a result, equation (A.1) can be re-written as: 

-¾ o:( Uo, to) = ~ (M~Mo - M2M~) 

+ : (M2M{ + M~M0 - M~M1 - M3M~). 

Furthermore, the second derivative is given by: 

d2 d2u , , 
dl.2 a( u0, f.o) = dl.2 ( M 2M0 - M2M 0) 

(A.2) 

(A.3) 
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+ d
2
: (M2M~ + M3M0 - M~M1 - M3M0) a,e 

+ (~) \MiMo + M1M2 - M3Mo - MiM2) 

+ 2 ~ ; (M4M0 - M4Mo) 

+ (:) \M4M1 + 2MaM2 + MsMo - M~M1 - 2M3M2 - MsMo)· 

Since the parametric derivatives along the curvature zero-crossing contours are 
zero, equations (A.2) a.nd (A.3) are equal to zero. Note that equation (A.2) is a 
quadratic equation in the first four moments of functions /(w) and /'(w) and 
equation (A.3) is a quadratic equation in the first six moments of those functions. 

In general, the k+lst equation, d: o:(u, t) = 0 is a quadratic equation in the first 
a,e 

2k+2 moments of each of the functions /(w) and f'(w) or a total of 4k+4 
moments. Our axes are chosen such that u0 = 0. The next section shows that 
the moments of f(w) and /'(w) are the coefficients ak and bk in the expression of 
functions x( u) and y( u) in functions related to the Hermite polynomials. There
fore, having computed the first n derivatives of a at ( Uo, t0), we have n+l homo
geneous equations in the first 4n+4 coefficients ak and bk. To determine the ak 

and bk, we need 3n+3 adrutional and independent equations which can be pro
vided by considering three neighboring curvature zero-crossing contours at 
(u1,t0), (~1 f.o), and (u3,t0). 

ii. The moments and the coefficients of expansion of x( u) and y( u) 

This section shows that the moments and the moment-pairs in equations 

d: a( u, t) are related respectively to the coefficients of the expression of the func-
d{ 

tions x( u), y( u) and the curvature function of r, K( u), in functions related to the 
Hermite polynomials. Expand function 

x( u) = .Lx( u) 
du 

in terms of the functions <h( u, u) related to the Hermite polynomials H k( u) by 

uk- 1 u 

<h(u,u) = (-l)k (v"i)"+l.J;Hi uV2) 
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x(u) = ~ aiu)<h(u,u). 

The coefficients ak( u) of the expansion are given by 

. aiu) = <wiu,u),x(u)> 

where <, > denotes inner product in L2 and { wk( u, u)} is the set of functions 
biorthogonal to { <l>kC u, u)}. The { </>kC u, u)} are given explicitly by 

.; .; 
2k-1 - dk --<Pi u, O') = O' e 2u2 - e 20-2 

kt.J,i;' duk 

and the w,l u, u) by 

Since 

the ak are given by 
.; 

1 J dk -- . aiu) = rn-(-ll <-k e 2u2, eK<lu> (iw)i(w) dw. 
v 271" du 

The inner product is just the inverse Fourier transform of w,l u,u). Therefore 

-w2u2 

aiu) = j(iwle-2-(iw)i(w) dw 

2 
which is equal to Mk modulus a factor ei:.lu, since t = !!,_. 

2 

Similarly, the function 

y( u) = :u y( u) 

can be expanded in terms of the functions <f>k( u, u) by 

ii( u) =~bin) <l>i u,a) 

and it again follows that 
-{.,i0'2 

bla) = f (iwle_2_(11.1J) iJ(w) dw 

which is equal to Mi modulus a factor eiwu. 
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Furthermore, ak(u) and bi:(u), the coefficients of expansion of functions 
x( u) and i,i( u) in terms of the functions <Pk( u a-), can be seen to be related to ak(o-) 
and bio-) according to the following relationships: 

ak-1 = ak(o-) 

bj._1 = bJ.(o-). 

Therefore K( u), the curvature function of r can be expressed as: 

K( u) = :z:( u)y( u) - y( u)x( u) 

= :E aio-)</>iu,u) :E bf.(o-)</>J.(u,o-) - :E bio-)</>iu,o-) :E af.(u)</>iu,u) 

= :E :E a1( C1) bi.( C1 )</>1( u, o-)<Pk( u, a-) - :E :E b;( C1 )ai( a)</>1( u, u )</>k( u, a-) 

= EE ( aj( C1)bk+i( u) - bj(o-)ak+l( a-)) </>j( u, a)<h( u, a-). 

It follows that if the pairs a
1
(a)biu), j,k=O, · · · ,2n+l, are all known, the curva

ture function of r can be reconstructed. 

iii. Combining information from more than one contours 

To solve the system· of equations obtained in section i, we need to obtain 
additional equations from other points of the curvature scale space image and 
relate them to the equations obtained from the first point. Suppose additional 
equations are obtained in the moments of functions e--w

2
teiw11'(iw)i(w) and 

e--w2teiw
111(iw)y(w) at point ( u', f.o). We have 

x( u+u') = J ek,)Ueiwu'( iw)x(w)dw = E ck</>i u) 

and 

Now observe that 

and 

:E dk</>i u) = :E bk<Pk( u+u'). 

That is, </>i u+u') can be expressed as a linear combination of </>,( u) with j5_ k as 
has been shown in [Yuille and Poggio 1983]. 
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iv. Reconstructing the curvature function 

It was shown in section I that four points from four curvature scale space 
contours give us 4n+4 equations in the first 2n+2 moments of each of the func
tions f(w) and f'(w). The first n+l equations form a system of homogeneous qua
dratic equations in the unknowns: M0( u), · · · , M2n+l( u) and 
M0(u), · · · ,M2n+1(u). The other points, u+uk, l:s;k:::;3, provide additional 
equations in the unknowns: M0(u+uk), · · · ,M2n+l(u+uk) and 
M0( u+uk), · · · , Mzn+i( u+uk). As shown in section iii, the moments at u+uk can 
be expressed as a linear combination of the moments at u. Therefore it is possible 
to express all the equations in terms of the moments at u. The result is a system 
of 4n+4 homogeneous quadratic equations in 4n+4 unknowns. That system has 
at least one solution since the moments of order higher than 2n+ 1 of /( w) and 
J'(w) are assumed to be zero. However, the solution obtained from a quadratic 
system of equations is in general not unique. 

Equations (A.2) and (A.3) can be converted into homogeneous linear equa:.. 
tions by assuming that each moment-pair appearing in those equations is a new 
variable. Table (A.l) shows the moment-pairs in equations (A.2) and (A.3). The 
+ signs designate the moment-pairs in equation (A.2) and the + and x signs 
together designate the moment-pairs in equation (A.3). 

M~ M~ M~ M(i M~ Mr, 

Mo + + X X 

M1 + X 

M2 + + X 

Ma + X 

M4 X X 

Ms X 

Table A.1. Moment-pairs in equations (A.2) and (A.3) 

Note that all other moment-pairs in table (A.l) can be computed from the exist
ing ones using the following relationships: 

M-M'. 
I J 

M._1M1. MiMf+l 

M.,..1M,H-1 
Mi+lMi. MiMf+-1 

Mi+lMj+l 

MiMf-1 . M...iMJ 

M.,..1Mj--1 

MiM;._1 . Mi+lMi 

Mi+1Mi--1 

As before, we proceed to compute the first n derivatives at point ( Uo, t0 ) on 
one of the curvature zero-crossing contours. We now obtain n+l homogeneous 
linear equations in some of the moment-pairs MiMj by assuming that each 
moment-pair is a new variable. 
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Since this system is in terms of the first 2n+2 moments of functions f(w) 
and f' ( w), it will contain 0( n2

) moment-pairs. Therefore additional equations are 
required to constrain the system. To obtain t)l.ose equations, we proceed as fol
lows: 

Assume that moments of order higher than 2n+ 2 are zero. Compute derivatives 
of order higher than n at ( Uo, t0) but set moments of order higher than 2n+ 2 to 
zero in the resulting equations. If a sufficient number of derivatives are computed 
at ( u0, t0), the number of equations obtained will be equal to the number of 
moment-pairs and our linear system will be constrained. 

It follows from an assumption of generality that the system will have a 
unique zero eigenvector and therefore a unique solution modulus scaling. Once 
the moment-pairs in the system are known, all other moment-pairs can be com
puted from the known ones using the relationships given above. Since all the 
moment-pairs MiMi together determine the curvature function of the curve, it 
follows that the curve can be determined modulus a rigid motion and constant 
scaling. 

Yuille and Poggio [1983) have shown that a 1-D signal can be recon
structed using two points from its scale space image. Note that our result implies 
that only one point is sufficient for the reconstruction of tha~ i.gnal. 

The theorem has now been proven for the regular curvature scale space 
image. To prove the same result about the resampled curvature scale space, 
recall that derivatives at one point (at any scale) on any curvature zero-crossing 
contour in the curvature scale space of r were computed and it was shown that 
the resulting equations can be solved for the coefficients of expansion of the cur
vature function of r in functions related to the Hermite polynomials. 

As before, we choose a point on a zero-crossing contour at any scale of the 
resampled curvature scale space image of r and compute the necessary deriva
tives. The value of u in the resulting equations is then set to zero. Consequently, 
the arc length evolved curve r ,,, where a corresponds to the scale at which the 
derivatives were computed, is reconstructed modulus uniform scaling, rotation 
and translation. 

The next step is to recover the original curve r. This is done by applying 
reverse arc length evolution to r 0 .. Let the arc length evolved curve r a be defined 
by: 

r u = {(X( W,a), Y( W,a)),I WE [0,11} . 

A reverse arc length evolved curve r is defined by: 

r = {(x( w),y( w))lw E [0,1]} 
where 
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x(w) = X(w,a) ©DJ/..w,a) 

y(w) = Y(w,a) ©DJ/..w,u) 

where DN is a deblurring operator defined in [Hummel et al. 1987) and 
(I w 

w( W,O') = f J 1e
2

( w,O')dwdn. 
0 0 

As a result, r is recovered modulo uniform scaling, rotation and translation. 

To prove the same result about the renormalized curvature scale space 
image, evolved curve r t1 is again reconstructed. Then each of its coordinate func
tions is deblurred by convolving it with the deblurring operator DN. Once again r 
is recovered modulo uniform scaling, rotation and translation. D 

Proof of theorem 3.4. 7: Since by assumption all evolved and arc length 
evolved curves r (1' are in C2, the conditions of the implicit function theorem are 
satisfied on contours ,c(u,a), ,c(w,u) and ,c(W,a) = 0 in the regular, renormalized 
and resampled curvature scale space images of r. Since the proofs are identical, 
the theorem will be proven here for the regular curvature scale space image. 

On any contour in the curvature scale space image 

;.;(u,a) = 0. 

Since all r o- are in C2 this is equivalent to: . .. .. . 
X(u,O')Y(u,a)-X(u,a)Y(u,a) = 0. 

To exploit the properties of the heat equation (Hummel et al, 1987), it is con
venient to change variables and let 

1 t = -0'2. 
2 

So we define 

x( u,t) = X( u,O') 

y(_ u,t) = Y( u,a) 

(A.4) 

The functions x( u,t) and y( u,t) are obtained by convolving ~e-{l/4t)u2 
V 41rt 

with the original curve coordinates x( u) and y( u) respectively, and so they satisfy 
the heat equation: 
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YuuCu,t) = y/._u,t). 

On contours a ( u, t) = 0: 

t = t( u) 

· dt - 0 u 
t(u) = - = -. 

du a, 

(A.5) 

(A.6) 

. The theore!? will be proven if we can show that for all points such that 
t(u) = 0 we have t (u) < 0. Now, 

t( u) = 0 

if and only if 

au(u,t) = O. 

At an extremum where (A. 7) holds, we have 

t(u) =~(-Ou) = ..£..(- fru) + .£.(- fru ).!!!. = _-a_uu 
du at 8u at 8t at du at 

So we must show that if 

a(u,t) = au(u,t) = 0 

then 

(A.7) 

a 
We shall show that these conditions require _,!!! = 1 which proves the theorem. 

frt 

From (A.4), (A.5) and (A.6) we have 

But using (A.5) 

Similarly 

0 uu = (XuYtt - XttYu) + (XtYut - XutYt)· 

If a = au= 0 then using (A.4) and (A.8) 

(A.8) 
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so 

We also have 

so 

and hence a uu = at as claimed. 

Notice, incidentally, that a( u,t) satisfies the diffusion equation at the max
ima of the contours and that all such contours have a curvature of -1 at their 
maxima in ( u, t) curvature scale space. D 

Proof of theorem 3.4.8: It will be shown that this theorem holds for an arbi
trary parametrization of r tr' Therefore it must also be true of arc length 
parametrization or close approximations. 

Let ( X( u, a), Y( u, a)) be an arbitrary parametrization of r tr· Since the 
class of polynomial functions is closed under convolution with a Gaussian [Hum
mel et al., 1987], it follows that X(u,a) and Y(u,a) are also polynomial functions: 

X(u,a) = a0 + a1u+ a2u2 + a3u3 + 
. 2 3 

Y(u,u) = b0 + b1u + b2u + b3u + 
Suppose that r tr goes through the origin of the coordinate system at u=O. It fol
lows that a0=bo=0. Assume further that there is a singularity on r tr at u=O. We 
have: 

Yu( u, u) = b1 + 2b2u + 3b3u2 + 4b4u3 + 
Since Xu(u,a) and Yu(u,u) are zero at a singular point, it also follows that 
a1=b1=0. 

We will now perform a case analysis of the singular point at u = 0 to 
determine when it corresponds to a cusp point. Since we will examine a small 
neighborhood of point u = O, we will approximate the curve using the lowest 
degree terms in X( u, u) and Y( u, u): 

rtr=(um,u"). 

Assume w.l.o.g. that n > m. From above we know that m > 1. 
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Using 

r (•• u) (X (" u) Yu(••,u)) = (m·•m-1, n•·n-1) U"'I = U"'I I "" u, "' 

it follows that 

and 

ru(-e,u) = (m(-e)m-1, n(-e)"-1). 

We can now analyze the singular point in each of the four possible cases: 

1. m and n are both even numbers. 

m-1 and n-1 are both odd numbers. Therefore 

r u(-e,u) = (-mem-l, -ne"-1) = -em-1( m, nen-m). 

A comparison of ru(e,o-) and ru(-e,o-) shows that an infinitesimal change in the 
parameter u results in a large change in the direction of the tangent vector. 
Therefore the singular point iJ also a cusp point in this case. 

2. m and n are both odd. 

m-1 and n-1 are both even. Hence 

ru(-e, o-) = ( mem-1, nen-l) = em-1( m, nen-m). 

Comparing r u( e, o-) to r u( - e, o-) now shows that the tangent directi9n does not 
change with u in a small neighborhood of the singular point. Therefore this singu
lar point is not a cusp point. 

3. mis odd and n is even. 

m-1 is even and n,-l is odd. Hence 

ru(-e,o-) = (mem-1, -nen-1) = em-1(m, -nen-m). 

An infinitesimal change in u also results in an infinitesimal change in the tangent 
direction. Again, this singular point is not a cusp point. 

4. m is even and n is odd. 

m-1 is odd and n-1 is even. So 

ru(-e,o-) . (-me11r1, nen-1) = e11r1(-m, nen-m). 

An infinitesimal change in u now results in a large change in the tangent direc
tion. Therefore this singular point is a cusp point. 

It follows from the case analysis above that only the singular points in 
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cases 1 and 4 are cusp points. We will now derive analytical expressions for the 
curve r <T~ so that it can be analyzed in a small neighborhood of the cusp point. 

To deblur function /( u) = uk, we convolve a rescaled version of that func

tion with the function .};-e-i2(1-x2), an approximation to the deblurring opera-

tor derived in (Hummel et al., 1987) good for small amounts of deblurring , as 
follows: 

00 

( Dtf)(y) = f J;-e-i2(I-x2)f(y+ 2xvt)dx 
-oo 

or 
00 

(Dtf)(y) = .};-f e-i2(1-x2)(y+2xvttdx 
--00 

where t is the scale factor and controls the amount of deblurring. Solving the 
integral above yields 

(Dtf)(y) = t 1.3.5 ... (p-1) (2t)•I' k(!,...l~i .. (k-p+l) (1-p)y>--•. (A.9) 

p=O 
(p even) 

The following are four functions of the form/( u) = uk and their deblurred 
versions: 

a. f(u) = u2 

b. f(u) = u3 

c. f(u) = u4 

d. f(u) = u5 

(Dtf)(u) = u2 - 2t 
(Dtf)(u) = u3 

- 6tu 
(Dd)( u) = u4 

- 12tu2 
- 36t2 

(Dtf)( u) = u5 - 20tu3 - I80t2u . 

We can now analyze the cusp points identified in cases 1 and 4 above. In 
case 1, the curve r <T is approximated by ( um, u") where m and n are both even 
numbers. We now deblur the curve to obtain: 

m--2 m 

(Dtx)(u) = um - c1tum--2 - c2t2um-4_ · · · -c m--2 t 
2 u2 - cm t 2 

2 2 

n---2 n 

(Dty)(u) = u"- c\tun---2 - c'2t2un---4_ · • • -c'n---2 t 2 u2 - c' nt 2 . -2 2 

Note that all powers of u are even and the constants c; and c'; are all positive as 
follows from an examination of (A.9). It follows that 
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m-2 

- 2c m--2 t 
2 u 

2 

rr-2 

( Dt y)( u) = nun-1 - ( n-2)c'1 tun-3 - • • • - 2c' n-2 t-
2-u 

2 

contain only odd powers of u and (Dti-)(e.) = - (D1r)(-e.). Hence there is also a 
cusp point on the curve r u- 6 at u0 = 0. In fact, the cusp point must also exist on 
r itself. This is a contradiction of the assumption that r is in C2• It follows that 
r" can not have a cusp point of this kind at u0• 

We shall now tum to the cusp points encountered in case 4. Recall that, 
in that case, the curve r u is approximated, in a small neighborhood of the cusp 
point, by ( um, un) where m is even and n is odd. Again we de blur the curve to 
obtain: 

m--2 m 

(Dtx)( u) = um - c1tum-2 - c2t2um-4 - · · · - c m--2 t 
2 u2 - cm t 2 

2 2 

rr-1 

(Dty)( u) = un - c'1turr-2 - c'2t2un-4 - · · · - c' n-l t 2 u. 
2 

Again note that constants c; and c'; are all positive. 

The deblurred curve intersects itself if there are two values of u, u1 and 1½, 
such that 

x( u1) = x( 1½) 

y( u1) = y( 1½), 

(A.10) 

(A.11) 

Since (Dtx)( u) contains even powers of u only, it follows from (A.10) that 
u1 = -Ui, Since (Dty)(u) contains odd powers of u only, substituting u1 = -1½ in 
(A.11) and simplifying yields: 

n I t n-2 I ~2 n-4 
Ut - C 1 Ut - C 2 V Ut -

n--1 

- c' n--1 t 2 
U1 = Q. 

2 

Since r u-6 is of interest to us, we let t = 8. We now obtain 

n-1 
n I J: n-2 I 1:2 f't--4 I l: 2 0 

U1 - C 1uU1 - C 2u U1 - ' ' ' - C n-1 u U1 = . 
2 

(A.12) 

u1 = 0 is one of the roots of this equation. For very small values of u1, the LHS of 
(A.12) is negative since the first term will be smaller than each of the other terms 
(which are negative). As u1 grows larger, the first term becomes larger than the 
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swn of all other terms and therefore the LHS of (A.12) becomes positive. It fol
lows that there exists a positive value of u1 at which (A.12) is satisfied. Therefore 
r a--6 is self-intersecting in a· small neighborhood of the cusp point of r a· □ 

Proof of theorem 3.4.9: Assume by contradiction that r is a simple curve 
which intersects itself during arc length evolution. r must touch itself at point P 
before self-intersection. Let r ao be such a curve. There are two distinct neighbor-

hoods of r ao which contain point P. Let these neighborhoods be S1 and S2• Note 

that S1 and S2 have colinear tangents at P. Let L be the line of those tangents. 
The tangents exist since it follows from theorem 3.4.8 that P can not be a cusp 
point because r a does not self-intersect for u S u0• 

Recall that the infinitesimal movement of each point of S1 and S2 is deter
mined by the equation: 

8R - = Kll. at 
Therefore 'tluring arc length evolution every point will move in the direction of 
the normal vector by an amount equal to the curvature at that point. Similarly, 
during reverse arc length evolution, every point will move in the opposite direc
tion of the normal vector by an amount equal to the curvature at that point. 

It follows that if S1 and S2 are on opposite sides of L, after an infinitesimal 
amount of reverse arc length evolution, they will intersect. This is a contradiction 
of the assumption that r was simple before touching itself. Assume then that S1 
and S2 are on the same side of L. Note that S1 and S2 can not be overlapping 
since they would still be overlapping after an inifinitesimal amount of reverse arc 
length evolution which is also a contradiction of the assumption that r was sim
ple before touching itself. Let S1 be the segment inside S2, i.e., the tangent to S2 

always has S1 to the same side. It can be seen that S1 has a larger curvature at P 
than S2. It follows that after an infinitesimal amount of reverse arc length evolu
tion, S1 and S2 will intersect which is again a contradiction. It follows that r 
remains simple during arc length evolution. 0 

Proof of theorem 3.4.10: It will be shown that this theorem holds for an arbi
trary parametrization of r a· Therefore it must also be true of arc length 
parametrization or close approximations. 

Let (x(u),y(u)) be an arbitrary parametrization of ra with a cusp point at 
Uo· Using a case analysis ·similar to the one in the proof of theorem 3.4.8 to 
characterize all possible kinds of singularities of r a at u0, we can again conclude 
that only the singular points in cases 1 and 4 are cusp points. In case 1, the 
curve is approximated by ( um, un) in a neighborhood of Uo where m and n are 
both even. This type of cusp point can not arise on r a if r is in C1• We now 
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turn to the cusp points of case 4. Recall that in case 4, the curve I' tr is approxi
mated, in a neighborhood of '11.o, by ( um, un) where m is even and n is odd. 
Observe that 

x( u) = mum-1 

x( u) = m( m-1) um-2 

y( u) = nun-1 

y( u) = n( n-1) un-2 

and 

11:(u) = :i:(u)y(u) - y( ·u)x(u) = mn(n- l)um+n-3 - m(m-l)num+n-3 

( :i:( u)2 + iJ( u)2)3/2 ( m2u2m-2 + n2u2n-2)3/2 

Since n>m, 11:( u) is always positive on either side of the cusp point in a neighbor
hood of 'I.to· Therefore no curvature zero-crossings exist in that neighborhood on 

I' tr· 

We now derive analytical expressions for I' 11+c5 so that it can be analyzed 
in a neighborhood of u0• To blur function f( u) = uk, we convolve a rescaled ver-

sion of that function with the function J;-e-i\ the deblurring operator, as fol

lows: 
00 

F(u) = J J;-e-:r2ft._u+2xvt)dx 
-00 

or 
00 

·-oo 

where t is the scale factor and controls the amount of blurring. Solving the 
integral above yields 

" 
F(u) = ~ (2t)Pl2k(k-1) · · · (k-p+l) k-1.3.5 ' ' ' (p--1) I U P. 

p. 
p=O 

(p even) 

The following are four functions of the form f( u) = uk and their blurred versions: 

a. f( u) = u2 

b. f( u) = u3 

c.J(u) = u4 

F( u) = u2 + 2t 
.F(u) = u3 + 6tu 
F( u) = u4 + l2tu2 + 12t2 
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Ft u) = u5 + 20tu3 + 60t2u. 

An expression for r a-+6 in a neighborhood of the cusp point can be 
obtained by by blurring each of its coordinate functions: 

m-2 m 

X( u) = um + c1 tum-2 + c2t2um-4 + · · · + c ,,._2 t 
2 u2 + cm t 2 

2 

n---1 
Y(u) = u" + c\tun---2 + c'2t2un-4 + · · · + c' n--l t 2 u. 

2 

2 

Note that all constants are positive, all powers of u in X( u) are even and all 
powers of u in Y( u) are odd. It follows that all powers of u in 

are odd, all powers of u in 

are even, all powers of u in 

are even and all powers of u in 

Y(u) = n(n-l)un---2 + (n-2)(n-3)c\t~n--4 + 

are odd. 

m-2 

+ 2c ,,._2 t 
2 u 

2 

m-2 

+ 2c ,,._2 t 2 

2 

n-1 

+ c' n-1 t 2 

2 

n-3 
I t 2 + C n-3 

2 

The curvature of r u+cS in a neighborhood of tto is given by 
. .. . .. 

11:( u) = X( ~) Y( u) - _Y( u)X( u) . 
(X( u) 2 + Y( u)2) 3

/
2 

Since the denominator of 11:( u) never goes to zero in a neighborhood of u0 , the 
zero-crossings of 11:( u) are the same as those of 

11:'(u) = X(u)Y(u)- Y(u)X(u). 

Observe that the term with the highest powe! of~ in .X( u) Y( u) is mn( n-l)um+n-3 

and the t~rm ~ith the hi_ghes~ power of u in Y(u)X(u) is m(m-l)num+n-3 and that 
in both X( u) Y( u) and Y( u)X( u), all powers of u are even and all constants are 
positive. Furthermore, note that at u=O, X( u) Y( u) is zero and Y( u)X( u) > O. 
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~her~fore at u . 0, ~ < 0. As u grows larger in absolute value, the terms in 
X( u) Y( u) and Y( u)X( u) with highest powers of u become dominant (all other 
terms have positive powers of t=8 in them). Since the dominant terms have equal 
powers of u, the one with th~ la.i:ger coefficient becomes the larger term. Since 
71: > 7?'!', the largest term in X( u) Y( u) becomes larger than the largest term in 
Y( u)X( u). Therefore as u grows in absolute value, K becomes positive. It follows 
that there are two curvature zero-crossings in the neighborhood of 'Uo on r u+o· 
These zero-crossings are new since it was shown that no zero-crossings exist in 
the neighborhood of Uo on r u· □ 
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Appendix B: 

Proofs of Results on 
Space Curves 

This appendix contains the proofs of the theorems of chapter 4. The proofs 
of theorems 4.4.1 - 4.4.5 have been given for arc length evolution only since the 
proofs for regular evolution are similar and simpler. Theorems 4.4.6 and 4.4.7 
have been shown to hold for regular, renormalized and resampled torsion scale 
space images. Furthermore, theorems 4.4.8, 4.4.9 and 4.4.10 have been shown to 
hold for both regular and arc length evolution. 

Proof of theorem 4.4.1: It will be shown that arc length evolution is invariant 
under a general affine transform. Let r u = (X( W,o-), Y( W,o-),Z( W,a)) be an arc 
length evolved version of r = (x( w),y( w),z( w)). If r u is transformed according to 
an affine transform, then its new coordinates, X 1, Y1 and Z1 are given by 

X1( W,u) = aX( W,o-) + b Y( W,u) + cZ( W,u) + d 

Y1 ( W,u) = e X( W,u) + f Y( W,u) + g Z( W,u) + h 

Z1(W,o-) = iX(W,u) + jY(W,a) + kZ(W,a) + l. 
Now suppose r is transformed according to an affine transform and then evolved. 
The coordinates X 2, Y2 and Z2 of the new curve are 

Xi( W,o-) = (ax( W) + b y( W) + c z( W) + d) @g( W,a) 

Y2( W,a) = (ex( W) + fy( W) + gz( W) + h) @g( W,a) 

Zi( W,o-) = (ix( W) + jy( W) + kz( W) + Q @g( W,a). 

Since the convolution operator is distributive (Kees 1982], it follows that 
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Xi W,u) = X1( W,u) 

YiW,o-) = Y1(W,u) 

Z2( W,u) = Z1( W,u) 

D 

Proof of theorem 4,4.2: Let r = (x( w),y( w),z( w)) be a closed curve and let 
r o- == (X( W,u), Y( W,u),Z( W,u)) be an arc length evolved version of r. On r: 

( x(O), y(O), z(O)) = ( x(l ), y(l ), z(l)). 

On r o-: 

(X(O,o-), Y(O,u),Z(O,u)) = (X(l,u), Y(l,o-),Z(l,u)). 

It follows that r u is closed. D 

Proof of theorem 4.4.3: Let r = (x( w),y( w),z( w)) be a connected planar curve 
and r" = (X( W,u), Y( W,u),Z( W,u)) be an arc length evolved version of that 
curve. Since r is connected, x( w), y( w) and z( w) are continuous functions and 
therefore X( W,u), Y( W,u) and Z( W,u) are also continuous. Let W0 be any value 
of parameter W and let x0, Yo and z0 be the values of X( W,o-), Y( W,u) and 
Z( W,u) at W0 respectively. If W goes through an infinitesimal change, then 
X( W,u), Y( W,u) and Z( W,u) will also go through infinitesimal changes: 

X( W0 ,o-) --+ x0 + 6 

Y( Wo,u) --+ Yo + e 
Z( W0 ,u) --+ z0 + e. 

As a result, point P(x0,y0 ) on r" goes to point P'(x0 +8,y0 +e,z0 +e). Let the dis
tance between P and P' be D. Then 

n = ✓ s2 + e + E2 ~ s-12 
assuming 181 is the largest of 181, 1e1 and le!. It follows that an infinitesimal 
change in parameter W also results in an infinitesimal change in the value of the 
vector-valued function r a· Therefore r" is a connected curve. D 

Proof of theorem 4.4.4: Let M be the center of mass of r = (x(w),y(w),z(w)) 
with coordinates (xM,YM,zM)· Then 
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1 

Jx(w)dw 1 

xM = -
0
- 1-- = f x( w)dw. 

0 
fdw 
0 

Let r a-= (X( W,a), Y( W,a),Z( W,u)) be an arc length evolved version of r with 
N = (XN, Y N,ZN) as its center of mass. Observe that 

l loo oo 1 

XN = f X( W,u)dW =ff g( v,u)x( W-v)dvdW = f g( v,a)(fx( W-v)dW)dv. 
o o~ ~ o 

W covers r a- exactly once. Therefore 
l 

So 

Similarly 

and 

fx(W-v)dW = xM. 
0 

ZN= ZM. 

It follows that Mand N are the same point. □ 

Proof of theorem 4.4.5: Since G is simple and convex, every plane P tangent 
to G contains that curve in the left ( or right) half-space it creates. Since r is 
inside G, r is also contained in the same half-space. Now rotate P and r so that 
P becomes parallel to the YZ-plane. P is now described by the equation x = c. 
Since P does not in terse ct r, it follows that x( w0) ~ c for every point w0 on r. Let 
r a- be an arc length evolved version of r. Every point of r a- is a weighted average 
of all the points of r. Therefore X( Wo,a) ~ C for every point Wo on r (T and r (T is 
also contained in the same 'half-space. This result holds for every plane tangent to 
G therefore r a- is contained inside the intersection of all the left ( or right) half
spaces created by the tangent planes of G. It follows that r a- is also inside G. □ 

Proof of theorem 4.4.6: The proof will first be given for the regular torsion 
scale space of r, then the modifications needed to apply the same proof to the 
resampled and renormalized torsion scale space images of r will be explained. 

Section i shows that the derivatives at a point on a torsion zero-crossing 
contour provide homogeneous equations in the moments of the coordinate 
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functions of the curve. Section ii shows that the moments are related to the 
coefficients of expansion of the coordinate functions of the curve in functions 
related to the Hermite polynomials. Section iii shows that the moments at one 
torsion zer~crossing point can be related to the moments at other torsion zero
crossing points. Section iv shows that the cubic equations obtained in section i 
can be converted into a homogeneous linear system of equations which can be 
solved uniquely for function 7\ u) K

2( u). 

i. Constraints from the torsion zero-crossing contours 

Let r = (:z(u),y(u),z(u)) be the arc-length parametrization of the curve 
with Fourier transform I' = ( x( w), y( w), z( w)). The Fourier transform of the Gaus-

sian filter G( u, t) = ~e- u2/4t is G(w) = e4 '. 
v2t 

Let r to = ( x( u, t0), y( u, t0 ), z( u, t0)) be a curve obtained by convolving x( u), 

y( u) and z( u) with G( u, t0). Assume that r to is in C00 • Such a ~ exists since r is 
in C1. Assume that K( u, t) F 0 on the torsion zero-crossing contours in a neigh
borhood of ~. It follows that the torsion zero-crossings are given by solutions of 
/3( u, t) = 0 where [Goetz 1970] 

f3(u, t) = x(y·z· - 'ii z) - iJ(x·z· - x· z) + z(:i 'ii - x' ii) (B.1) 

where . represents derivative with respect to u. Note that on r ( t= 0), /3( u, t) is 
given by 

/3( U, t) = r( u, t) K
2( u, t). (B.2) 

Using the convolution theorem, x( u, t), y( u, t) and i( u, t) can be expressed 
as following: 

and therefore 

i(u,t) = J e4 te....,"(iw)x(w)dw 

y(u,t) = J e-w
2
te....,"(iw)y(w)dw 

i( u, t) = J e-w
2
t e;..,"( iw) i(w) dw 

x( u, t) = J e4 te....,"(-w2) x(w) dw 

y( u, t) = J e4 t eiw"(-w2) fKw) dw 
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z( u, t) = J e--w2t eiwu(-w2) z(w) dw 

x'(u,t) = J e-w2teiwu(-iui)x(w)dw 

y'(u,t) = J e-w2teiwu(-iui)y(w)dw 

'z' ( u, t) = J e--w2t ei.Ju(-iw3) z(w) dw. 

Note that the moment of order k of the function f(w)= e--w2teiwu(iw)i(w) 1s 
defined by: 

00 

-00 

the moment of order k of the function /'( w) = e-w
2
t eiwu ( iw) iJ( w) is defined by: 

00 

-00 

and the moment of order k'of the function f"(w) = e--w2tei.Ju(i.w)z(w) is defined by: 

00 

-«) 

Therefore equation (B.2) can be written as: 

The Implicit Function Theorem guarantees that the contours u( t) are C00 in a 
neighborhood of t0• Let e be a parameter of the torsion zero-crossing contour. 
Then 

_l:__ _ du _E_ + J:!..£.. 
~ - ~ 8u ~ &t · 

dk 
On the torsion zero-crossing contour, /3 = 0 and --;;/3 = 0 for all integers k. 

de, 
Furthermore, since the torsion zero-crossing contour is known, all the derivatives 
of u and t with respect to e are known as well. We now compute the derivatives 
of /3 with respect to e at ( Uo, t0). The first derivative is given by: 
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(B.3) 

where 

and 

and the second derivative is given by: 

ff'-(3 = d
2
u 8(3 + d

2
t 8(3 + (du) 

2 
ff'-(3 + 2 du .i:!, ff'-(3 + (.!!.) 2 

ff'-(3 (B.4) 
fJf..2 de2 au de2 8t de 8u2 de de 8u8t de 8t2 

where 

a2(3 M"M M' M'M"M M'M M" M"M'M M"M'M JI M"M' - = 4 Q 1 + 2 3 0 - 4 0 1 - 2 3 Q - 4 Q 1 - .LV.Lz 3 0 
8u2 

a2(3 M"M M' JI M"M' M'M M" JI' M'M" M"M'M M'M"M Bu8t = s o 1 + .1v.1z a 1 - s o 1 - .1v.1z a 1 - s o 1 - 2 3 1 

and 

~: = M;,M0M2 + 2M4M3M0 + M6M0M1 + M2M4M1 - M~'M0M2 - 2M~MiM0 

Since the parametric derivatives along the torsion zero-crossing contours are zero, 
equation (B.3) is equal to zero. Note that equation (B.3) is in the first five 
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moments of functions f(w), f'(w) and f"(w) and equation (B.4) is in the first seven 

moments of those functions. In general, the k+lst equation, d: f3( u, t) = 0 is a 
d1. 

cubic equation in the first 2k+3 moments of each of the functions J(w), f'(w) and 
f"(w). 

It follows that the first n+ 1 equations at ( Uo, t0) are in a total of 
3(2n+3) = 6n+9 moments. Our axes are again chosen such that Uo = 0. The next 
section shows that the moments of f(w), /'(w) and f"(w) are the coefficients ak, bk 
and ck in the expression of functions x(u), y(u) and i(u) in functions ¢k(u,u) 
related to Hermite polynomials. Therefore we have n+l equations in the first 
6n+9 coefficients ak, bk and ck. To determine the ak, bk and ck, we need 5n+8 
additional and independent equations which can be provided by considering six 
neighboring torsion zero-crossing contours at ( u1, t0), ( 'I½, io), ( ¾, t0 ), ( u4, t0 ), 

( u5, t0) and ( ¾, t0 ). 

ii. The moments and the coefficients of expansion of x( u), y( u) and i( u) 

This section shows that the moments and the moment-triples in equations 

dkk /3( u, t) are related respectively to the coefficients of the expression of the func
d~ 

tions x( u), y( u) and i( u) and function /3( u) in functions related to the Hermite 
polynomials. 

Expand function 

x( u) = -!;;x( u) 

in terms of the functions </Jiu, u) related to the Hermite polynomials HkC u) by 

crk- l U 

</Jiu,u) = (-l)k (,fi)k+l..J;"Hk( crv12) 

dk 
Hk( u) = (-1 )k eu2-k e- u2 

du 

:i:( u) = :E aiu)¢k( u,u) 

The coefficients ak( u) of the expansion are given by 

aiu) = <wk(u,u),x(u)> 

where < , > denotes inner product in L2 and { wi u, u)} is the set of functions 
biorthogonal to { <Pi u, u)}. The { <Pi u, u)} are given explicitly by 
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Since 

the ak are given by 
.; 

1 J dk -- · aio-) = ~(-lt <-re 20'2,e"-'u> (iw)x(w)dw 
v 271' du 

The inner product is just the inverse Fourier transform of wi u,u). Therefore 
40'2 

ak(u) = j(iwle-2-(iw) x(w) dw 

which is equal to Mk modulo a factor eiwu, since t = o-2 /2. 

Similarly, the functions 

y( u) = ddu y( u) 

i(u) = :u z(u) 

can be expanded in terms of the functions </>i u, <1) by 

y( u) = ~ biu) </>l u,u) 

.i( u) = ~ cio-) </>i u,o-) 

and it again follows that 
--W2<1'2 

biu) = j(iw)ke-2-(iw) y(w) dw 

4<1'2. 

ck~o-) = j(iwle-2-(iw) i(w) dw 

which are equal to Mi and M;: respectively modulo a factor eiwu. 

Furthermore, a;:(a), bi(a) and c;:(a), the coefficients of expansion of func
tions x( u)' y( u) and :z·c u) in <Pk( u, O') respectively I can be seen to be related to 
ala), bk(a) and cio-) according to the following relationships: 
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ai-1(0-) = aiu) 

bi-1(0-) = b1,;(o-) 

ci-1(0-) = cict) 

(B.5) 

and af:(o-), bi:(o-) and ci:(o-), the coefficients of expansion of functions x'( u), 1i( u) 
and 'i'(u) in <Pl,;(u,o-) respectively, can be seen to be related to aio-), bio-) and 
ci o-) by the following relationships: 

a;:_2(o-) = a,.(u) 

b;:_2(u) = biu) 

c;:_io-) = c,.(o-). 

Now observe that the function -r( u) K2( u) can be expressed as: 

1\U)K2(u) = x(u)(y(u)'z'(u) - ~i(u)z(u)) 

- y(u)(x(u)'i' (u) - x'(u)z'(u)) 

+ i( u)(x( u)'ii( u) - x'( u)y( u)) 

= x( u)y( u)'i'( u) - x( u)'ii( u)z( u) - y( u)x( u)'i'( u) 

+ y( u)x' ( u)z( u) + i( u)x( u)1i' ( u) - i( u)x' ( u)y( u) 

= :E alu)</>;(u,u):E b;(u)</J;(u,u):E c;'(u)<p.(u,u) 

- :E alo-)</Jlu,o-):E b;'(o-)</J;(u,o-):E c;(o-)</>lu,o-) 

- :E blu)</J;(u,u):E a,tu)</Jlu,o-):E c;'(u)cp;(u,u) 

+ :E b;(u)</>.{u,u):E a;'(u),p;(u,u):E c:(u)</>;(u,u) 

+ :E c,(u)</>;(u,u):E a;(u)</>;(u,o-):E b;'(u),p.(u,u) 

- :E c;( o-)¢.( u, u) :E a;'( o- )</>;( u, u) :E b;( u )</>l u, o-) 

= b b b a.(o-)b;{u)c'/.(u)</>l u,u)</>1{ u,u)<f>i u,u) 

- :E:E:E a;(o-)b1'(0-)ci(o-)¢>lu,o-)1,(u,u)<p/,;(u,u) 

- :E :E :E b.(_u) a;( o-) c',.( o- )<P;( u, o-)</>,( u, o-)</>i u, o-) 

(B.6) 



149 

+EE E b,{u)a;'(u)ck(u)</>l u,u)</>,{ u,CT)<h( u, CT) 

+EE E ciCCT)a;{ CT)b',;(CT)</>;( u,CT)</>,{ u, CT)</>k( u, CT) 

-EE E cl CT) a}( u )bi( CT)¢;( u, CT)¢,( u, CT )</>k( u, a) 

=EE E (a;(a)b;{a)c',;(CT) + b;(CT)a11(CT)ci(CT) + ciCCT)a;{CT)bj:(CT) 

-a.{a)b11(CT)ci(CT) - b,{CT)a;{CT)cj:(a) - c,{a)a1'(a)bi(CT)) 

</>,{ u, CT)</>,{ u, CT)<f>k( u, CT). 

Using (B.5) and (B.6) we obtain 

r(u)x:2(u) = :EEE (a;(CT)bj+i(CT)ck+2(CT) + b;(CT)ai+i(CT)ck+i(CT) + c;(CT)aj+1(a)bk+iCT) 

- a,{CT)bj+2(a)ck+i(CT) - blCT)a;+1(CT)ck+i(CT) - c.{CT)aj+2(a)bk+1(a)) 

<p;( u, CT )</>3{ u, (1 )'Pk( u, CT), 

It follows that if the triples a;(CT)b,{CT)ck(CT) in the equation above are all known, 
the function /3( u) = T( u) 1e2( u) can be reconstructed. 

iii. Combining information from more than one contours 

To solve the system of equations obtained in section i, we need to obtain 
additional equations from other points of the torsion scale space image and relate 
them to the equations obtained from the first point. Suppose additional equations 
are obtained in the moments of functions e-w2teiwu'(i.w)x(w), e .... ,,,2teiwu'(i.w)y(w) and 
e-wlteiwu'(i.w)z(w) at point (-it', t0). We have 

x( u+u') = J eiwueiwu'c i.w)x(w)dw = E dk</>i u) 

y( u+u') = J eiwueiwu'c i.w)y(w)dw = E ek</>i u) 

and 

Now observe that 

and 

E dk<f>i u) = E ak<f>i u+u') 

:E ek¢,.( u) = E bk<Pi u+u') 
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:E A</>i u) = :E ck<Pk 

That is, </>iu+u') can be expressed as a linear combination of ¢>,(u) with j~ k as 
has been shown in [Y uille and Poggio 1983). 

iv. Reconstructing the function r( u) K2( u) 

It was shown in section i that seven points from seven torsion scale space 
contours give us 6n+9 cubic equations in the first 2n+3 moments of each of the 
functions /(w), J'(w) and f"(w). Section iii showed that the moments of order k of 
any function at u+u' can be expressed as a linear combination of the moments of 
order less than or equal to k of that function at u. Therefore we obtain a system 
of homogeneous cubic equations in the first 6n+9 coefficients of functions x( u), 
y( u) and i( u) using seven points from the torsion scale space image of r (Note 
that only three equations from the seventh point need be used). That system has 
at least one solution since the moments of order higher than 2n+2 of f(w), J'(w) 
and f 11( w) are asswned to be zero. However, the solution obtained from a cubic 
system of equations is in general not unique. 

Equations (B.3) and (B.4) can be converted into homogeneous linear equa
tions by asswning that each moment-triple appearing in those equations is a new 
variable. Tables B.1-B.7 show the moment-triples in equations (B.3) and (B.4). 
The + signs designate the moment-triples in equation (B.3) and the + and the x 
signs together designate the moment-triples in equation (B.4). Each table shows 
those moment-triples which share the same M;:, 0 :$ k ~6. 

M~ M~ M~ M~ M~ M~ M~ M~ M{ M~ M~ M' 4 M~ M~ 

Mo Mo + + X X 

M1 + + X X M1 
Mz + X M2 X X 

M3 + + X M3 + X 

M4 + X M4 + X 

Ms X X Ms X 

M6 X Me.. X 

Table B.l. Moment-triples with M0 Table B.2. Moment-triples with M{' 
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Mo M1 M2 M3 M4 Ms Mei Mo M' 1 M' 2 M' 3 M' 4 M~ M~ 

Mo + X Mo + + X 

M1 X X M1 + X 

M2 M2 + X 

Ma + X Ma 
M4 X M4 X 

Ms X Ms 
M5 M5 

Table B.3. Moment-triples with M2 Table B.4. Moment-triples with M3' 

Mo M' 1 M2 M3 M4 M~ M6 Mo M~ M2 M3 M4 Ms Mei 

Mo + X Mo X X 

M1 + X M1 X 

M2 X M2 X 

Ma X Ma 
M4 M4 
Ms Ms 
M5 M5 

Table B.5. Moment-triples with M; Table B.6. Moment-triples with M; 

Mo M1 M2 M3 M4 M~ M6 

Mo X 

M1 X 

M2 
Ma 
M4 
Ms 
Mp. 

Table B.7. Moment-triples with M6 

Note that all other moment-triples in tables B.1-B.7 can be computed from 
the existing ones using the following relationsh~ps: 

MiMj--1M;:. M .... 1MjMk 

Mi-1 M;_.1 M;; 
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M.-1M~'1c, MiMj+1Mk Mi+ 1M1Mi:. MiMJ+iMf: 
-

M.-1Mj,-1Mk 
-

Mi+1MJ+1 Mk 

MiMJ-1M;:. MiM]MfL1 MiMJ+1M;:. MiM';Mk-1 
-

MiMf-1Mi:-1 
-

MiMJ+1Mi:_1 

MiMJ-1M;:. MiMJMi:+1 MiM1Mi:+1 .MiMi+1Mi: 
-

MiMj-1Mk+1 
-

MiMi+1Mi:+1 

MiMJM;:_1. M._1MiMf: Mi-lM;M;:. MiMjMk+l 
-

Mt-1M1Mi:-i 
-

M.._1MJMi:+1 

MiMjMk+1. Mi+1M1Mf: Mi+iMJMi:, MiMJM;:_1 -
Mi+1MJMi:+1 

-
Mi+IM1M;:_1 

Again we proceed to compute the first n derivatives at point ( 'I.to, t0) on one 
of the torsion zero-crossing contours. We now obtain n+ 1 homogeneous linear 
equations in some of the moment-triples MiMJMi: by assuming that each 
moment-triple is a new variable. 

Since this system is in terms of the first 2n+3 moments of functions J(w), 
f' ( w) and J"( w ), it will contain 0( n3) moment-triples. Therefore additional equa
tions are required to constrain the system. To obtain those equations, we proceed 
as follows: 

Assume that moments of order higher than 2n+ 2 are zero. Compute derivatives 
of order higher than n at ( 'I.to, t0 ) but set moments of order higher than 2n + 2 to 
zero in the resulting equations. If a sufficient number of derivatives are computed 
at ( u0, t0), the number of equations obtained will be equal to the number of 
moment-triples and our linear system will be constrained. 

It follows from an assumption of generality that the system will have a 
unique zero eigenvector and therefore a unique solution modulo scaling. Once the 
moment-triples in the system are known, all other moment-triples can be com
puted from the known ones using the relationships given above. Since all the 
moment-triples M,MJM;: together determine function of /3( u), it follows that func
tion /3( u) can be determined modulo constant scaling. 

Yuille and Poggio [1983] have shown that a 1-D signal can be recon
structed using two points from its scale space image. Note that our result implies 
that only one point is sufficient for the reconstruction of that signal. 

The theorem has now been proven for the regular torsion scale space 
image. To prove the same result about the resampled torsion scale space image, 
recall that derivatives at one point ( at any scale) on any torsion zero-crossing 
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contour in the torsion scale space of r were computed and it was shown that the 
resulting equations can be solved for the coefficients of expansion of the function 
/3( u) in functions related to the Hermite polynomials. 

As before, we choose a point on a zero-crossing contour at any scale of the 
resampled curvature scale space image of r and compute the necessary deriva
tives. The value of u in the resulting equations is then set to zero. Consequently, 
the arc length evolved curve r rr, where u corresponds to the scale at which the 
derivatives were computed, is reconstructed modulus uniform scaling, rotation 
and translation. 

The next step is to recover the original curve r modulo function /3( u). This 
is done by applying rever3e arc length evolution to r "" Let the arc length evolved 
curve r rr be defined by: 

r rr = {(X( W,u), Y( W,a), Z( W,o-)1 WE [0,1]} 

A reverse arc length evolved curve r is defined by: 

r = {(x( w), y( w), z( w))lw E [0,1]} 
where 

x(w) = X(w,o-)@DJw,o-) 

y( w) = Y( w,o-) ®DJ w,o-) 

and 

z( w) = Z( w,o-) @DJ w,o-) 

where DN is a deblurring operator defined in [Hu:rrunel et al. 1987] and 
t w 

w( W,t) = J J K2
( w,t)dw dt. 

0 0 

where t=o-2/2. As a result, r is recovered modulo function f3(u). 

To prove the same result about the renormalized torsion scale space 
image, evolved curve r u is again reconstructed, then each of its coordinate func
tions is deblurred by convolving it with the deblurring operator DN. Once again, 
r is recovered modulo function /3( u). 0 

Proof of theorem 4.4. 7: Since by assumption all evolved and arc length 
evolved curves r u are in C3 , the conditions of the implicit function theorem are 
satisfied on contours r( u,cr), r( w,o-) and r( W,cr) = 0 in the regular, renormalized 
and resampled torsion scale space images of r. Since the proofs are identical, the 
theorem will be proven here for the regular torsion scale space image. 

The torsion of each evolved curve ru = (x(u,a),y(u,a),z(u,a)) is given by: 
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where . represents derivative with respect to u. On any contour in the torsion 
scale space image of r: 

'T\ u,u) = 0. 

It follows from the assumption that all r tr are in C3 that: 

/3( u, t) = 'i' x ii - 'i' iJ ii + 'ii z ii - 'ii i 'i + x' ii 'i - x· z y 

where again . represents derivative with respect to u and t = o-2 /2. The functions 
x( u,t), y( u,t) and z( u,t) satisfy the heat equation: 

xuuC u,t) = xi... u,t) 

YuuC u,t) = yt( u,t) 

Zuu(u,t) = zt(u,t). 

Since evolved curves r tr are all in C3, the conditions of the implicit function 
theorem are satisfied on contours /3( u, t) = 0: 

t = t( u) 

· dt -f3u 
t(u) = - = -. 

du f3t 
. . 

The theorem will be proven if it _i_s shown that if t( u) = 0 at any point. on a tor-
sion zero-crossing contour, then t( u) < 0 at that point .. Observe that t( u) = 0 if 
and only if /3u( u,t) = 0. It follows that at a point where t( u) = 0: 

Therefore it must be shown that if f3(u,t) = f3u(u,t) = 0 then f3uulf3t > 0. 

We will now derive explicit expressions for f3uu and f3t• Differentiating the 
expression for /3( u, t) with respect to u and simplifying yields: 

f3u( u,t) = ZtiXuYt - ZttYuXt + YttzuXt - YtiXuZt + XttYuZt - XttZuYt· 

Differentiating the expression for f3u with respect to u and simplifying yields: 

f3uu = W1 + W2 

where 
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and 

'112 = YtuZtiXu - XtuZttYu + XtuYttZu - ZtuYtfXu + ZtuXttYu - YtuXttzu· 

Differentiating the expression for (3( u,t) with respect to t and simplifying yields: 

fit= W1 - W2, 

Let P be a point on an evolved curve r 11 where (3( u,t) = (3u( u,t) = 0. The 
coordinate functions of r 11 can be locally approximated at P using polynomial 
functions. Furthermore, assume that u=O at point P. It follows that ( um,u",uP) is 
a local approximation to r 11 around P where m, n and p are the lowest non-zero 
powers of the polynomials approximating functions x( u,t), y( u,t) and z( u,t) 
respectively. Also assume without loss of generality that p> n> m. Observe that 

and that 

and that 

Xu= mum-l 

xt = m(m-l)um-2 

Xtu = m(m-l)(m-2)um-3 

xu = m( m-1 )( m-2)( m-3) um-4 

Xttu = m( m-1)( m-2)( m-3)( m-4) um-5 

Yu= nun-1 

Yt = n( n-1) un-2 

Ytu = n(n-l)(n-2) un-3 

Ytt = n( n-1)( n-2)( n-3) un--4 

Yttu = n(n-l)(n-2)(n-3)(n-4)un-5 

Zt = p(p-1) uP--2 

Ztu = p(p-l)(p-2) u.P--3 

Ztt = p(p-l)(p-2)(p--3) up--4 
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Zttu = p(p-1 )(p--2)(p-3)(p-4) uP--5 . 

It now follows that at point P: 

f3uu -= ~,m+n+p--8 + '= um+n+p--8 ...... 1 .., --2 
7f; = _2_1_U_m_+-n+_p--_8 ___ 3_2 u_m_+_n-+p---8 - _3_1 __ -=-... 2-

where 

3 1 = (p--l)(p-2)(p-3)(p--4)( n-1) - (p--l)(p--2)(p--3)(p-4)( m-1) 

+ ( n-1 )( n-2)( n-3)( n-4)( m-1) - ( n-1)( n-2)( n-3)( n-4)(p--1) 

+ ( m-1)( m-2)( m-3)( m-4)(p--l) - ( m-1)( m-2)( m-3)(m-4)( n-1) 

and 

2 2 = (p--1 )(p-2)(p-3)( n-1 )( n-2) - (p-1 )(p-2)(p-3)( m-1 )( m-2) 

+ ( n-1 )( n-2)( n-3)( m-1 )( m-2) - ( n-1 )( n-2)( n-3)(p-l )(p-2) 

+ ( m-1)( m-2)( m-3)(p--l)(p-2) - ( m-1)( m-2)( m-3)( n-1)( n-2). 

It can be shown that: 

3 1 = (p--n)(p-m)( n-m)(p2 + ( n+m-lO)p + n2 + m2 + mn - 10n - 10m + 35) 

and that: 

3 2 = (p-n)(p--m)(n-m)(p(n+m) - 3(n+m) - 3p + mn + 7). 

It can now be concluded that to prove the theorem, it must be shown that : 

or 

where 

and 

6 2 = np+mp+mn-3p--3n-3m+ 7. 

We shall now use a case analysis to prove that the inequality above holds for all 
valid triples of values of m, n and p. The analysis below shows that only triples of 
values which satisfy the inequality: 

p > m+n 

are valid: 
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Recall that (um,u",uP) was used to approximate the curve around point P. It fol
lows that in a neighborhood of P, torsion is given by: 

_x u.P+n+m-6 
r(u) - ------------

- Ai u2(.P+n--3) + .X2 u2(.P+m-3) + A3 u2(m+n--3) 

where .X, .X1, .X2 and .X3 are constants. The expression above is ambiguous at u=O. 
To resolve the ambiguity, l'Hopital's rule can be applied repeatedly. Since both 
the numerator and the denominator are polynomials, to have r( u) = 0 at u=O, 
repeated application of l'Hopital's rule should result in: 

. t/;ui 
hm r( u) = t f( ) u-o I,, + 1J. 

where t/; and e are constants, i>O and /(u)=O at u=O. This can only happen 
when one of the following three conditions are met: 

a. p+n+m-6 > 2(p+n-3) 

. b. p+n+m-6 > 2(p+m-3) 

c. p+n+m-6 > 2( m+n-3). 

Conditions a and b are not possible since they violate the assumption that 
p> n> m. However, condition c is possible. It follows from this condition that: 

p > m+n. 

We can now proceed with the case analysis. All triples of values for m, n 
and p in which m is even correspond to cusp points which are excluded by the 
assumption that all evolved curves r (1 arc~ in C3• Therefore we will consider only 
odd values of m. 

Case 1. Suppose m ~ 7. Recall that p>n>m. It is easily seen that both .6.1 and 
.6.2 are positive. So the absolute value signs can be dropped and the ine
quality: 

.6.1 ~ .6.2 

can be simplified. As a result, we must now show that the following ine
quality holds: 

p2+n2+m2 ~ 7p+7n+7m-28. 

Note that m2~7m, n2>7n ruid p2>7p. It follows that the inequality does 
hold. 

Case 2. Suppose m= 5. Again, it can be seen that both .6.1 and .6.2 are positive. 
We must again show that: 
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p2+n2+m2 2'.: 7p+7n+7m-28. 

Substitute m = 5 in the above inequality. We now have: 

p2+n2 2'.: 7p+7n-18. 

Since n2'.:6, n22'.:7n-18 and since p>ll, p2>7p. Hence the inequality 
again holds. 

Case 3. Suppose m=3. Substitute this value for m m A 1. As a result, A 1 
simplifies to: 

p2+n2+np-7p-7n+14. 

Note that n2'.:4 and p28, So p2>7p. Hence to show that A 1 is positive, it 
is sufficient to show that: 

n2+np-7n+l4 > 0. 

Since p2'.:8, np2'.:8n. Therefore: 

n2+np-7n+l4 2'.: n2+8n-7n+14 = n2+n+l4 > 0. 

Now substitute m= 3 in A 2• As a result A 2 simplifies to: 

np+3p+3n-3p-3n-9+ 7=np-2 

which is always positive. Therefore we must again show that: 

p2+n2+m2 2'.: 7p+7n+7m-28. 

Substituting m= 3 in the above inequality yields: 

p2+n2 2 7p+ 7n-16. 

Since p2'.:8, p2>7p and it is sufficient to show that: 

n2 2 7n-16. 

It is easily seen that this inequality is satisfied for n24. 

Case 4. Suppose m= 1. Substituting this value in A1 simplifies it to: 

p2+n2+np-9p-9n+26. 

Since p2'.:4, p2-9p 2'.:-20. Hence to show that A 1 1s non-negative, it 1s 
sufficient to show that: 

Again since p24: 

n2+np-9n+6 2n2+4n-9n+6 = n2-5n+6 

which is non-negative for n2'.:2, Now substitute for m= 1 m A2 to 
obtain: 
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pn-2p-2n+4 = p( n-2)-2n+4. 

Since p~4 

p( n-2)-2n+4 ~ 4( n-2)-2n+4 = 4n-8-2n+4 = 2n-4 

which is non-negative since n~2. So A2 is also non-negative. Therefore 
we must again show that: 

p2+n2+m2 ~ 7p+7n+7m-28 

Substitute for m= 1 in the above expression to obtain: 

p2+n2 ~ 7p+7n-22 

which is equivalent to: 

(p2-7p) + ( n2-7n)+22 ~ 0. 

If n=2, then n2-7n = -10 and p~4. It follows from p~4 that 
p2-7p ~ -12. As a result, the inequality above is satisfied. If n>2, then 
n2-7n ~ -12 and p~5. It follows from p~5 that p2- 7p ~ -10. There
fore, the inequality above is again satisfied. 

This completes the case analysis. We have shown that the inequality: 

and therefore the inequality: 

!Sil~ IS2I 
is satisfied for all valid triples of values of m, n and p. Therefore f3uul f3t is always 
positive. Hence all extrema of contours in all torsion scale space images of r are 
maxima. □ 

Proof of theorem 4.4.8: It will be shown that this theorem holds for an arbi
trary parametrization of r ,,. Therefore it must also be true of arc length 
parametrization or close approximations. 

Let ( X( u, o-), Y( u, o-), Z( u, o-)) be an arbitrary parametrization of r with a 
cusp point at Uo· It has been shown by [Hummel et al. 1987] that the class of 
polynomial functions is closed under convolution with a Gaussian. Therefore 
X(u,o-), Y(u,o-) and Z(u,o-) are also polynomial functions: 

X( u,u) = a0 + a1u + aiu2 + a3u3 + 

Y(u,o-) = b0 + b1u + b2u
2 + b3u3 + 

Z(u,o-) = c0 + c1u + c2u2 + c3u3 + 
Let r" go through the origin of the coordinate system at Uo=O. It follows that 
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a0=bo=co=0. Every cusp point is also a singular point of the curve. Therefore r rr 
hM a singularity at Uo· Now observe that 

Xu( u,<7) = a1 + 2a.iu + 3a3u2 + 4a4u3 + 

Yu( u, <7) = b1 + 2b2u + 3b3u2 + 4b4u3 + 

Zu(u,<7) = c1 + 2c2u + 3c3u2 + 4c4u3 + 
Xu( u, <7), Yu( u, o-) and Zu( u,<7) are zero at a singular point. It follows that 
a1=b1=c1=0. As a result, all powers of u in X(u,o-), Y(u,o-) and Z(u,o-) are larger 
than one. 

The following case analysis identifies the cases in which the singular point 
at Uo is also a cusp point. Since r rr is examined in a small neighborhood of point 
u.o=O, it can be approximated using the lowest degree terms in X(u,o-), Y(u,<7) 
and Z( u, o-): 

rrr = (um,un,uP) 

Assume without loss of generality that p>n>m. Observe that 

ru(u,o-) = (Xu(u,<7), Yu(u,<7),Zu(u,<7)) = (mum-1,nun-1,puP-1) 

Therefore 

and 

r u(-e, <7) = ( m(-e)m-l, n(-e)n-1, p(-e)P-1) 

Since m, n and p can be odd or even, the singular point at u0 must be analyzed in 
each of eight possible cases: 

1. m, n and p are even. 

m-1, n-1 and p-1 are odd. So 

ru(-e,<7) = (-mem-1,-nen-1,-p1oP-l) = -€m-l(m,nfn-m,p1oP-m) 

Comparing r u( e, o-) to r u(-1o, <7) shows that an infinitesimal change in parameter u 
in a neighborhood of the singular point results in a large change in the direction 
of the tangent vector. Therefore this singularity is a cusp point. 

2. m and n are even, p is odd. 

m-1 and n-1 are odd and p-1 is even. Therefore 

ru(-e,<7) = (-mfm-1,-nfn-1,p€P-1) = €m-l(-m,-nen-m,p€P-m) 

A comparison of r u( 1o, o-) and r u(-E, <7) again shows that an infinitesimal change in 
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u causes a large change in the tangent direction. Hence this singular point is also 
a cusp point. 

3. m is even, n is odd and p is even. 

m-1 is odd, n-1 is even and p-1 is odd. Hence 

ru(-f,u) = (-mfm--l, nfn-1,-pEP--1) = fm--1(-m, nfn-m,-pEP--m) 

An infinitesimal change in u again results in a large change in the tangent direc
tion. This singularity is a cusp point as well. 

4. mis even, n and pare odd. 

m-1 is odd, n-1 and p-1 are even. So 

ru(-E,u) = (-mfm-1,nen-1,peP--1) = fm-1(-m,nen-m,peP--m) 

A large change in the tangent direction is caused by an infinitesimal change in u. 
Therefore this singularity also corresponds to a cusp point. 

5. m is odd, n and p are even. 

m-1 is even, n-1 and p-1 are odd. Therefore 

ru(-E,u) = (mem-1,-nEn-1,-peP--1) = em-1(m,-nen-m,-pEP--m) 

A comparison of ru(E,u) and ru(-E,u) now shows that an infinitesimal change in u 
in the neighborhood of the singular point also results in an infinitesimal change in 
the tangent direction. Hence, this singular point is not a cusp point. 

6. m is odd, n is even, p is odd. 

m-1 is even, n-1 is odd and p-1 is even. So 

r u(-e, u) = ( m fm-1,-nfn-l, p fP--1) = fm-l( m,-nfn-m,P fp--m) 

The tangent direction changes only infinitesimally in the neighborhood of the 
singular point. Therefore this singularity is not a cusp point either. 

7. m and n are odd, pis even. 

m-1 and n-1 are even and p-1 is odd. Hence 

ru(-E,u) = (mfm-1,nfn-1,-pEP--1) = fm-l(m,nfn-m,-peP-m) 

This singularity is again not a cusp point since the tangent direction changes only 
infinitesimally in its neighborhood. 

8. m, n and p are odd. 
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m-1, n-1 and p--1 are even. Therefore 

ru(-e,cr) = (mem-1,nen---1,peP--1) = em-l(m,nen---m,peP--m) 

The last singular point is not a cusp point either since the changes in the tangent 
direction are again infinitesimal. 

It follows from the case analysis above that only the singular points in 
cases 1-4 are cusp points. We next derive analytical expressions for the curve 
r <1-.i so that it can be analyzed in a small neighborhood of the cusp point. 

To de blur function f( u) = uk, a rescaled version of that function is con

volved with the function J;e-"\1-u2). This function is an approximation to the 

deblurring operator derived in [Hummel et al. 1987] and is good for small 
amounts of deblurring. The convolution can be expressed as 

00 

(Dtf)( u) = f J;-e-ir(l-v2 )f( u+ 2vvt)dv 
-00 

or 
00 

--00 

where t is the scale factor and controls the amount of deblurring. Solving the 
integral above yields 

(Dtf)(u) = E 1.3.5 ... (p-1) (2t)P/2 k(k-1)!· .. (k-p+l) (1-p)uk-p (B.7) 
p=O p 

(p even) 

r u-6 can now be analyzed in each of the cases 1-4: 

Case 1: r u is approximated by ( um, u", uP) where m, n and pare even. 

To obtain analytical expressions for r u-.i, we deblur each of its coordinate 
functions: 

m-2 m 

(Dtx)(u) = um - c1tum-2 - · · • - cm--2 t 2 u2 - c mt 2 

-- -2 2 

n---2 n - -
(Dty)(u) = u"- c1tun---2 - · • • - c'n_2 t 2 u2 - c'nt 2 

- -2 2 
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p-2 J!.. 
- c ,, 2 t 2 u2 - c ,, t 2 

1!;_ E. 
2 2 

Note that all powers of u are even and all constants are positive. It follows that 
m-2 

(Dtx)(u) = mum-1 - (m-2)c1tum-3 - · · · - 2c m--2 t 
2 u 

2 

n-2 

(Dti1)(u) = nun-1 -(n-2)c1tun-3 _ • • • - 2c'n-2 t 2 u 
2 

p-2 

(Dti)(u) = puP-1 - (p-2)cftuP-3 - · · • - 2c '~2 t 
2 u 

2 

contain only odd powers of u and (Dtr)(E) = -(Dir)(-€). Hence there is also a 
cusp point on r u---6 at u0• Since that cusp point is of the same kind as the cusp 
point on r u, it follows that a cusp point must also exist on r. This is a contradic
tion of the assumption that r is in C1. Therefore r u can not have a cusp point of 
this kind at u0• 

Case 2: r u is approximated by ( um, un, uP) where m and n are even and pis odd. 

r u-6 is obtained by deblurring each of its coordinate functions: 
m-2 m 

- C m-2 t 2 '1.£2 - C m t 2 - -2 2 

n-2 n 

- C I 2 t-2- U2 - C I t 2 
n-- n - -2 2 

22 
(Dtz)(u) = uP- c'1tuP-2 - · • • - c"P-1 t 

2 u 
2 

Note that {Dtz) and (Dty) contain even powers of u only, (Dtz) contains odd 
powers of u only and all constants are positive. 

The deblurred curve intersects itself if there are two values of u, u1 and ~, 
such that 

x(u1) = x(~) 

y(u1) = y(~) 
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z( u1) = z( u-i) 

It follows from the first two constraints above that u1 = -u2. Substituting for u.-i 
in the third constraint and simplifying yields: 

Now let t = 8 to obtain 

. Jr} 

- C 
1
~1 t 2 

Ul = 0 
2 

p-1 
II ~-2- 0 

- C p-1 u Ul = 
2 

(B.8) 

The LHS of (B.8) is negative for very small values of u1 since the first term will 
be smaller than all other terms, which are negative. As u1 grows, the first term 
becomes larger than the sum of all other terms and the LHS of (B.8) becomes 
positive. Therefore there is a positive value of u1 at which (B.8) is satisfied. 
Hence r <T-o intersects itself in a neighborhood of u0• 

Case 3: r (I is approximated by ( um, un, un) where m 1s even, n is odd and p is 
even. 

As in the previous case, we obtain analytical expressions for r (l-0: 

m-2 m 

(Dtx)(u)=um-c1tum-2 - ... -cm-2 t 2 u2 -cmt 2 

2 2 

n--1 

(D,y)(u)=un-c~tun--2 - ••• -c'n-1 t 2 u 
2 

Jr-2 p 
II t-2- 2 II t2 

- C Jr-2 U - C J!.. 
2 2 

In this case, (Dtx) and (D,z) contain only even powers of u and (Dty) contains 
only odd powers of u. Again, r (l-0 can be shown to intersect itself if there are two 
values of u, u1 and Uz, such that 

x(u1) = x( u-i) 

Y( u1) = y( Uz) 

z( u1) = z( u-i) 

It now follows from the first and third constraints above that u1 = -Ui· Substitut
ing for Uz in the second constraint, letting t = 8 and simplifying yields 
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n-1 

ui" - Ci 6u1 n-2 - . • . - C 'n-1 6 2 
U1 = 0 (B.9) 

2 

An argument similar to the one used in the previous case shows that there exists 
a positive value of u1 at which (B.9) is satisfied. Therefore r u-6 again intersects 
itself in a neighborhood of 'Uo· 

Case 4: r u is approximated by ( um, u", uP) where m is even and n and p are odd. 

An analytical expression for r u-6 in a neighborhood of u0 is given by 
nr-2 m 

(Dtx)(u)=um-c1tunr-2 - ··· -cm-2t 2 u2-cmt 2 

2 2 

n-1 

(Dty)( u) = u" - c{tun-2 
- • • • - c 'n-1 t 2 u 

2 

p--1 

(Dtz)(u) = uP - c'1tuP--2 - · · · - c'~1 t-
2-u 

2 

All powers of u in (Dtx) are even and all powers of u in (Dty) and (Dtz) are odd. 
As before, r u-6 intersects itself if the three constraints 

x( u1) = x( ~) 

y( u1) = y( ~) 

z( u1) = z( ~) 

are satisfied simultaneously. It follows from the first constraint that u1 = --ui, 
Now substitute for ~ in the second and third constraints, let t= 6 and simplify: 

n-1 

U n C , c:U n-2 . . . C , c: 2 U - 0 1 - 1 V 1 - - n-1 V 1 - (B.10) 
2 

.tl 
u/ - C 'i6u1P--2 - . • . - C ''.e::J.. 6 2 U1 = 0 (B.11) 

2 

Each of the equations (B.10) and (B.11) is satisfied at a positive value of u1 but, 
in general, the same value of u1 will not satisfy both. It follows that, in this case, 
r u-6 does not intersect itself. However, an argument similar to the ones in the 
previous two cases shows that the planar curves defined by (Dtx) and (Dty) and 
by (Dtx) and (Dtz), that is, the projections of r u-6 ori the XY and XZ planes 
respectively, do intersect themselves in a neighborhood of u0• 
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This completes the proof of theorem 4.4.8. □ 

Proof of theorem 4.4.9: It will be shown that this theorem holds for an arbi
trary parametrization of r tr' Therefore it must also be true of arc length 
parametrization or close approximations. 

Let (:z:(u),y(u),z(u)) be an arbitrary parametrization of rtr with a cusp point at 
Uo· Using a case analysis similar to the one in the proof of theorem 4.4.8 to 
characterize all the possible singularities of r <T at u0 , we again conclude that only 
the singular points in cases 1-4 are cusp points. 

We now derive analytical expressions for r tr+tS so that it can be analyzed 
in a neighborhood of 'Uo· To blur function /( u) = uk, we convolve a rescaled ver-

sion of that function with the function *e-ir, the blurring operator, as follows: 

00 

F(u) = J J;-e-v2Jtu+2vvt)dv 
-00 

or 
00 

-00 

where t is the scale factor and controls the amount of blurring. Solving the 
integral above yields 

F(u) = t 1.3.5 ... (J>-1) (2t)Pl2k(k-1); .. (k-p+l) uk-p 

p=O p. 
(p even) 

(B.12) 

An expression for r tr+tS in a neighborhood of the cusp point can be obtained by 
blurring each of its coordinate functions. Furthermore, expressions for r tr-tS in a 
neighborhood of the cusp point can be obtained by deblurring each of its coordi
nate functions according to (B. 7). 

Each of the cases 1-4 can now be analyzed in turn: 

Case 1: r tr is approximated by ( um, u", uP) where m, n and pare even. 

An argument similat to the one used in case 1 of theorem 4.4.8 shows 
that this kind of cusp point can not arise during evolution of r. 

Case 2: r tr is approximated by ( um, u", uP) where m and n are even and pis odd. 

0 bserve that 
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:i:(u) = mum-I ii(u) = m(m-l)um-2 

y(u) = nun--1 y(u) = n(n-l)un--2 

z( u) = puP--1 z( u) = p(p--l)uP--2 

Torsion on r u is given by: 

x'( u) = m(m-l)(m-2)um-3 

'ii ( u) = n( n-1 )( n-2)un--3 

'z'( u) = p(p--l)(p--2)uP--3 

mnp K uP+n+m-6 

1\ u) = ------A+ B + C 

A= ((np(p--1) - pn(n-l))uP+n--3 )2 

B = ((pm(m-1) - mp(p-l))uP+m-3)2 

C = ((mn(n-1) - nm(m-l))um+n--3)
2 

and 

K = (p--l)(p--2)(n-m) + (n-l)(n-2)(m-p) + (m-l)(m-2)(p--n). 

(B.13) 

At u = 0 ( cusp point), T is undefined. When u is positive or negative, the sign of 
r( u) depends on the sign of K. Observe that 

K = (p-l)(p--2)(n-m) + (n-l)(n-2)(m-p) + (m-l)(m-2)(p--n) 

= (p2-3p+2)(n-m) + (n2-3n+2)(m-p) + (m2-3m+2)(p--n) 

= np2 - mp2 - 3pn + 3pm + 2n - 2m + mn2 - 3mn + 2m - pn2 

+ 3pn - 2p + pm2 - 3pm + 2p - nm2 + 3mn - 2n 

= (n-m)p2 + (m2-n2)p + mn2 - nm2 

= (n-m)p2 + (m+n)(m-n)p + mn(n-m) 

= (n-m)(p2 
- (m+n)p + mn) 

= ( n-m) (p-m) (p--n) 

which is positive because of the assumption that p > n > m. Since p+n+m-6, the 
power of u in the numerator, is odd, it follows that r( u) is positive for positive u 
and negative for negative u. 
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We now investigate r( u) on r u+o· It follows from (B.12) that r o-+6 is given 
by: 

m--2 m 

X( u) = um + c1 tum-2 + · · · + c m--2 t 2 u2 + cm t 2 

2 2 

n--2 n 

Y( u) = un + c~tun--2 + · · · + c 'n-2 t 
2 u2 + c 'n t 2 

- -2 2 

p-1 

Z( u) = uP + c 'i tuP-2 + · · · + c '~1 t 
2 u 

2 

where all constants are positive, all powers of u in X( u) and Y( u) are even, all 
powers of u in Z( u) are odd and t equals 8, a small constant. Note also that the 
last terms in X( u) and Y( u) do not contain any positive powers of u b~~ all t~rms 
in Z( u) contain positive powers of u. It follows that the last terms in X( u), Y( u), 
~( u) an9- z' ( u)._ do not c~ntain positive powers of u whereas all terms in .X( u), 
~ ( u), Y:(:u), Y ( '½) and -?.( u) con_t_a.in positive powers of u. Therefore, at u = 0, 
~( u) .. X ( u) .. :- Y( u) = ~.( u) = .. ~( u) . 0 ~d r = O .... As u grows, the terms in 
X(u), X(u), X(u), Y(u), Y(u), Y(u) , Z(u), Z(u) and Z(u) with the largest power 
of u ( which are also the only terms without 8) become dominant and torsion is 
again given by (B.13). It follows that r( u) is positive for positive u and negative 
for negative u on r u+o· Since r is zero at u = 0, r u+o has a torsion zero-crossing 
point at u = 0. 

We next investigate r( u) on r u-c5· From (B.7) it follows that r u-o is given 
by: 

m--2 m 

(Dtx)(u)=um-d1tum-2_ · · · - dm--2t 2 u2 -dmt 2 

2 2 

n--2 n 

(Dty)(u)= un-d1tun-2 _ · · · - d'n--2 t 2 u2 -d'nt 2 

-2- 2 

tl 
(Dtz)(u) = uP- d'{tuP-2 - · · · - d".E:l_t 2 u 

2 

where all constants are positive, all powers of u in Dtx and DtY are even, all 
powers of u in Dtz are odd and t equals 8, a small constant. It again follows that 
r = 0 at u = O, r is positive for positive u and negative for negative u. Therefore 
there is also a torsion zero-crossing point at u = 0 on r u--6· It follows that there is 
a torsion zero-crossing point at 11.o on r u-c5 before the formation of the cusp point 
and on r u+c5 after the form~tion of the cusp point. 
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Case 3: r <T is approximated by ( um, un, uP) where m is even, n is odd and p is 
even. 

The proof is analogous to that of case 2, and the same result follows. 

Case 4: r <T is approximated by ( um, un, uP) where m is even, and n and p are odd. 

At u = 0, the cusp point, r is undefined. At all other points, 1\ u) is given 
by (B.13). Since the coefficient of the numerator of (B.13) is positive (as shown in 
the proof of case 2) and p+n+m-6, the power of u in the numerator, is even, r( u) 
is positive for positive and negative values of u in the neighborhood of u0 on r <T' 

Therefore there are no torsion zero-crossing points in the neighborhood of u0 on 

r (T' 

We now investigate r( u) on r a-+6. It follows from (B.12) that r <T+6 is given 
by: 

m--2 m 

X( u) = um + c1 tum-2 + · · · + c m--2 t 2 u2 + cm t 2 

2 

n-1 

Y(u) =_un+ c{tun-2 + · · · + c'n-1 t 2 u 
2 

p--1 

Z( u) = uP + c '{ tuP--2 + · · · + c '~1 t 
2 u 

2 

2 

where all constants are positive, all powers of u in X( u) are even, all powers of u 
in Y( u) and Z( u) are odd and t equals h, a small constant. Furthermore, note 
that the last term in X( u) does not contain a positive power of u but all ten~~s in 
Y( u) and Z( u) contain positive powers of u. Therefore the last terms in X( u), 
Y( u)., Y ( u).~ Z( u) .~d z' ( u) ~o not contain positive powers of u whereas all terms 

i1?, X( u), ... X ( u), .Y( u) ~~ Z( u) contain positive powers of u. Hence at u= 0, 
X(u) = X(u) = Y(u) = Z(u) = 0 and 

1\U) = Y(u)Z(u)X(u)- Z
0

(u)Y(u)X(u) 
(Z( u)X( u))2 + ( Y( u)X( u)) 2 

-

X(u)(Y(u)Z(u) - z'(u)Y(u)) 
( Z( u)X('u) )2 + ( Y( u)X( u) )2 

Since the denominator is positive and X( u) is positive, to determine the sign of 
1\ u), we must determine the sign of the expression: y (~)Z( u) - z' ( u) Y( u). At 
u=0, using (B.12) we conclude that the non-zero term of Y(u) is: 

.. 
' 
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n-1 
n-1 n-1 n-1 

I -2- _ • • • (2t) 2 n! - -
c n-l t - 1.3.5 ( n-2) ( )' = 1.3.5 · · · n 2 2 t 2 

-
2
- n- 1 . 

Similarly, at u=O, the non-zero term of Z(u) is: 
p-1 p-1 p-1 

C 
1
~1 t 2 = 1.3.5 ' . · p 2 2 t 2 

2 

Using (B.12), it follows that at u=O, the non-zero term of Y(u) is: 
n-3 

n-3 2 I n-3 n-3 
- (2t) 11. - -

6c'n-3 t 
2 = 6(1.3.5 · · · (n-4)) 

6
(n-

3
)!,. = (1.3.5 · · · n)(n-1)2 2 t 2 

2 

Similarly, at u= O, the non-zero term of Z ( u) is: 

Therefore 

p-3 

6 II t 2 
C p-3 

2 

p-3 p-3 

= (1.3.5 · · · p)(p-1)2 2 t 2 

n-3 n-3 p-1 p-1 

Y(u)Z(u) - Z(u)Y(u) = (1.3.5 · · · n)(n-1)2_2_t_2 (1.3.5 · · · p)2-2 t-2 

n-1 n-1 p-3 p-3 

- (1.3.5 · · · n)2 2 t 2 (1.3.5 · · · p)(p--1)2 2 t 2 

P+n--4 

= (2t) 2 (1.3.5 · · · n)(l.3.5 · · · p)(n-p) 

and it follows that Y ( u)Z( u) - z' ( u) Y( u) < 0 since. n< p. __ Ther~fore r(:u) is ~~ga
t!.Ye at _u= 0 .~m r u+6 . • ~s u grows the terms in X( u), X( u), X ( u), Y( u), Y( u), 
Y(u), Z(u), Z(u) and Z(u) with the largest power of u (which are also the only 
terms without h) become dominant and r(u) is again given by (B.13). Since 
p+n+m-6, the power of u in the numerator, in now even, r'( u) becomes positive 
as u grows in absolute value. Therefore there exist two new torsion zero-crossings 
in a neighborhood of Uo on .r u+6· 

This completes the proof of theorem 4.4.9. □ 

Proof of theorem 4.4.10: It will be shown that this theorem holds for an arbi
trary parametrization of r u· Therefore it must also be true of arc length 
parametrization or close approximations. 

Let r = (x(u),y(u),z(u)) be a space curve and let x(u), y(u) and z(u) be 
polynomial functions of u. Let r u = ( X( u,o-), Y( u,o-), Z( u,o-)) be an evolved version 
of r with a point of zero curvature at 'Uo· Assume without loss of generality that 
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1"o = 0 and that at 1"o r" goes through the origin of the coordinate system. It fol
lows that r" can be approximated in a neighborhood of 1"o by: 

r" = ( um, u", uP) (B.14) 

where um, u" and uP a.re the lowest degree terms in X( u,u), Y( u,u) and Z( u,u) 
respectively. Assume without loss of generality that p>n>m. 

Since m, n and p can be odd or even, point 1"o must be analyzed in each of 
eight possible cases. The analysis in the proof of theorem 4.4.8 showed that when 
m is even, a cusp point exists on r <1 at u0• We will therefore look at the remain
ing four cases in which m is odd: 

Case 1. m is odd and n and p are even. 

Torsion on r a is given by equation (B.13). Since p+n+m-6 is odd, torsion 
is positive for positive u and negative for negative u in a neighborhood of u0• We 
now investigate torsion on r cr+.5 where his a small, positive number. Expressions 
for X(u,o-), Y(u,o-) and Z(u,u) can be obtained using equation (B.12). Note that 
all powers of u in X( u,o-) are odd and ap pow:~rs of .'If in Y( u,';') and Z( u,o-) are 
even. It follows th~_t all J?ower~ .. of u i_n X( u), ~- ( u), Y( u) and Z( u) are even and 
all powers of u in X( u), Y( u), Y ( u), Z( ·u) and Z ( u) are odd. Note also that those 
terms in which all powers of u a.re odd, are equal to zero at Uo· Therefore torsion 
is zero at u0 on r aH· As u grows, um, u" and uP, that is the terms in 
X( u,o-), Y( u,o-) and Z( u,o-) with the largest powers of u, become dominant and 
torsion is again given by equation (B.13). It follows that torsion is positive for 
positive u and negative for negative u on r a+5 in a neighborhood of Uo· Hence no 
new torsion zero-crossings have been created. 

Case 2. mis odd, n is even and pis odd. 

Torsion on r a is again given by (B.13). Since p+n+m-6 is even, torsion is 
positive for positive and negative u on r a· We now investigate torsion on r cr+6. 

Note that all powers of u in X( u,o-) are odd, all powers of u in Y( u,u) are even 
~d all .. powe~s of u i~ .. Z( u,o-) are odd. It follows that all P.Ower~ of ·u Jn X( u), 
~ ( u), Y( u), Z( u) and Z ( u) are even and all powers of u in X( u) , Y( u), Y ( u) and 
Z( u) are odd. Note also that those terms in which all powers of u are odd, are 
equal to zero at Uo· It follows that torsion on r <1+c5 at u0 is given by: 

z xi -x· Zi Y( z x -x' i) 
T(u)= ·· ·2 ···2 = ···2 ···2· 

(ZY) + (XY) (ZY) + (XY) 
Since the denominator of the expression above is positive and Y is positive, the 
sign of ,-( u) is the same as the sign of the expression: z X - x· z. At Uo, using 
(B.12) it can be shown that: 
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p+m-4 

z'x - x·z = (2t) 2 (1.3.5 · · · p)(l.3.5 · · · m)(p--m) 

which is positive at u0• As u grows larger, torsion is again given by (B.13) in a 
neighborhood of Uo and is therefore positive in that neighborhood. Again no new 
torsion zero-crossings have been created. 

Case 3. m and n are odd and pis even. 

Torsion is again given by (B.13) on r 0 .. Since p+n+m-6 is even, torsion is 
positive for positive and negative u on r 0 • We now investigate torsion on r 0 +6• 

Note that all powers of u in X( u,u) and Y( u,u) are odd and all powers of u in 
Z(u,u) are even. Hence all po.':"ers ~~ u in.X(u), x'('!f), Y(u), Y(u) and Z(u) are 
even and all powers of u in X( u), Y( u), Z( u) and Z ( u) are odd. Note also that 
those terms in which all powers of u are odd, are equal to zero at Uo· Therefore 
torsion on r 0 +6 at Uo is given by: 

.f irz - ¥ x z zc x· Y - ¥ zj 
r( u) = · .. 2 · .. 2 = · .. 2 · .. 2 · 

( YZ) + (XZ) ( YZ) + (XZ) 

Since the denominator of the expression above is positiv.E?. ~nd -~ ~s positive, the 
sign of r( u) is the same as the sign of the expression: X Y - Y X. At u0 , using 
(B.12) it can be shown that: 

n+m-4 

x· Y - f x = (2t) 2 (1.3.5 · · · n)(i.3.5 · · · m)( m-n) 

which is negative since n>m. Therefore torsion is negative at Uo on r 0 +6• As u 
grows larger, torsion is again given by (B.13) in a neighborhood of Uo and is 
therefore positive for positive and negative u. It follows that there are two new 
torsion zero-crossings in a neighborhood of Uo on r 0 +6• 

Case 4. m, n and p are odd. 

Torsion on r" is again given by equation (B.13). Since p+n+m-6 is odd, 
torsion is positive for positive u and negative for negative u on r 0 • We now inves
tigate torsion on r 0 +6• Note that all powers of u in X( u,u), Y( u,u) and Z( u,o') 
are odd. Hence all powers of-~ in i.(u), Y(u).t Z(u), x·(u), Y(u) and z'(u) are 
even and all powers of u in X( u), Y( u) and Z( u) are odd. Note also that those 
terms in which all powers of u are odd, are equal to zero at Uo· It follows that 
torsion is unbounded at Uo on r 0+6• As u grows larger, torsion is again given by 
(B.13) in a neighborhood of Uo and is therefore positive for positive u and nega
tive for negative u. Hence there are no new torsion zero-crossings in a neighbor
h~ ~ Uo ~ r~ D 




