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Abstract 

This paper argues that generic descr iption is a powerful concept in the context 
of formal verification, in particular, the formal verification of digital hardware. The 
paper also describes a technique for creating generic specifications in any language with 
(at least) the expressive power of higher-order logic. This technique is based on the 
use of higher-order predicates parameterized by function variables and type variables. 
We believe that this technique is a very direct (if not the most direct) way t0 specify 
hardware generically. Two examples of generic specification are given in the paper: a. 
resettable counter and the programming level model of a very simple microprocessor. 

Introduction 

1 

Generic description is already established as a powerful concept in many hlgh-level pro
gra.mmi.ng languages. For instance, the 'generic mechanism' of Ada allows a subprogram or 
package to be parameterized by types and subprograms as well as values and objects. This 
feature supports modularity and abstraction and provides a convenient mechanism for the 
reliable re-use of software. 

This paper aTgues that generic descrjption is also a powerful concept in the context of 
formal ver.ifLcation. In addition to the well-known advantages of modularity, abstraction 
and re-usability, generic description can be used in a formal proof to filter out non-essential 
detail. The elimination of non-essential detail from a fmmal specification offers several 
potential benefits: 

• it sharpens the distinction between what has and what has not been formally consid
ered in a correctness proof. 

• it supports a truely hiera.rch.ical apprnach to the formal verification of digital circuits 
where each. level in a hierarchical specification is isolated from details only relevant to 
other levels. 

• it reduces the amount of special-purpose infrastructure needed to reason about par
ticular application areas, e.g., hardware-oriented data types. 

It may be thought that the thesis of this paper - that formal specifications and correct
ness statements should be as general as possible - is inconveTtible. But when one considers 
state-of-the-art examples such as the formal verifications of the Viper microprocessor [4, 5, 6] 
and the CLI 'verified stack' [1, 2, 15], it is easy to see that, jn actual practice, formal speci
:fications and co1Tectness statements are not as general as possible. Instead, many examples 
of haTd ware verification a.re encumbered with non-essential details. T.h.ese non-essential 
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details are likely to obscure correctness results, interfere with the advantages of a hierar
chical approach, and depend on the development of special-purpose infrastructure such as 
hardware-oriented data types. 

The formal verification of the 'major state machine' of the Viper microprocessor [4] is 
an example of when specifications and correctness statements are not as general as possible. 
The Viper specification uses a number of special-purpose data types ( e.g., : word 4, : word32) 
and constants (e.g., VAL4, W0RD32) for reasoning about hardware. However, the correctness 
results derived from these specifications are only concerned with the flow of control in the 
Viper machine state machine.1 Cohn [5] writes: 

There was no computation of values at the major state level - that is, additions, 
comparisons, shifts, and so on - so the essential correctness of Viper was not re
ally addressed; the proof did not require any analysis of the function representing 
the arithmetic-logic unit, at either level. 

The use of special-purpose hardware-oriented data types and constants in the Viper 
specification was consistent with earlier work on hardware verification at Cambridge [3, 9]. 
However, building non-essential details into a computational model such as the formal 
specification of the Viper major state machine risks the false impression that these details 
have been formally considered in the correctness proof. Furthermore, correctness results 
for the Viper major state machine are not directly re-usable when low-level details are 
varied, e.g., different machine word sizes. Finally, the effort of building up a computational 
model 'from scratch' for non-essential details, e.g., defining arithmetic operations on Viper 
machine words, is wasted in the case of correctness results that do not depend on these 
details. 

Another example of when specifications and correctness results are not as general as 
possible is the vertically verified computing system developed by Computation Logic Inc. 
(i.e., the CLI 'verified stack') [1, 2, 15]. For instance, Moore [15] observes that specifications 
and correctness results for the Piton assembler are "unnecessarily restricted" to a word size 
of 32 even though other word sizes are possible. It is also likely that the formal specification 
of the Piton assembler involves defined symbols whose actual definition is not needed to 
establish correctness results for the Piton assembler. 

There are at least several reasons why non-essential details are built into formal spec
ifications. One reason may simply be that this is common practice or at least common 
practice in software production. Another reason, suggested by Eveking [7], is the "the
more-detailed-the-better" attitude carried over from experience with multi-level simulation 
of digital hardware. Yet another reason is the absence of explicit mechanisms (analogous 
to the generic mechanism of Ada) in most hardware specification languages to support and 
encourage the creation of specifications which are as general as possible. 

To remedy the ill effects of building non-essential detail into formal specifications of dig
ital hardware, we advocate the use of generic specifications. We also propose a technique for 
expressing genericity in any language with (at least) the expressive power of higher-order 
logic in a manner that avoids introduction of new constructs to explicitly support generic 
specifications. This technique is based on the use of higher-order predicates parameterized 
by function variables and type variables. We believe that this technique is a very direct (if 
not the most direct) way to specify hard ware generically. Although the idea of parameteriz~ 
ing hardware specifications by functions variables has appeared previously [12, 16], singling 

1 While the first level of proof was only concerned with flow of control in the Viper major state machine, 
a second level of proof for the Viper microprocessor did take into account computational details [5]. 
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Figure 1: External View of the Resettable Counter 

out a special technique (in particul.a.r, the use of 'representation variables') for expressing 
genericity is, to the best of our knowledge, a novel contribution of the research described in 
this paper. 

We use the example of a resettable counter to describe a method for eliminating non
essential detail from a formal specification to eventually yield a generic specification. This 
e:xample was used by Mike Gordon in an early discussion of hardware verification [9). Al
though the resettable counter example is very simple, it is enough to illustrate the idea 
of using generic descriptions to formally specify digital hardware. Later in the paper, we 
give a more substantial example, namely, the generic specification of the programming level 
model of a simple microprocessor. 

The Resettable Counter Example 

The resettable counter is a sequential device which counts upwards until it is externally 
reset. Resetting the counter causes it to begin counting from zero. As shown in F'igure 1, 
this device has a single input (the reset signal) and a single output (the current state of the 
counter). 

Thls device can be implemented using a multiplexor, a register and an increment cir
cuit. Figure 2 shows interconnection of these three components to implement the resettable 
counter. 

Formal verification is a matter of showing that the interconnection of these three com~ 
pouents yields a correct _implementation of the resettable counter. This is not a guarantee 
of absolute correctness for a physical realization of the resettable counter. Formal verifica
tion only shows that models for the three components can be composed to yield a set of 
simultaneous constraints which satisfy the behavioural specification of the counter. 

Th.is paper focuses on writing formal specifications as a :first step towards proving the 
correctness of a design. For the resettable counter, formal speci:ficatioILS need to be written 
for each of the three components together with a structural specification of the counter 
implementation, and finally, a behavioural specification of the counter. 



4 Generic Specification of Digital Hardware 

reset 

l 1 pi 

MUX 

lp2 INC 

REG 

I 
t 

out 

Figure 2: Internal View of the Resettable Counter 

Basic Data Types and Primitive Operations 

Translating an informal description into a formal specification is often the most interesting 
and creative aspect of using formal methods to verify hardware. A preliminary step is to 
decide upon a set of basic data types and a. set of primitive operations involving these data. 
types. For instance, in the formal specification of a. microprocessor, this set of basic data. 
types would probably include representations for bits, bytes and words. The corresponding 
set of primitive operations would probably include operations such as addition, subtraction, 
shift-left, and so on. 

For the counter example, we need to decide upon basic data types for the reset signal 
and the internal state (which is also the output signal). We also need to decide upon a. 
set of primitive operations to describe the functions performed by the multiplexor and the 
increment circuit. 

It is reasonably easy to decide on a representation for values of the reset signal, namely, 
Boolean values, T and F. However, it is more difficult to decide upon a representation for 
the internal state of the counter. 

A first attempt at a representation for the internal state of the counter is given in the 
next section: this is a very simple representation where the internal state of the counter 
is represented by a natural number. After identifying a problem with the accuracy of this 
simple ( and idealized) representation - and how adding more detail is not an ideal solution -
we describe several revisions to the counter specification which eventually lead to a. generic 
specification of the resettable counter. 
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A First Attempt 

In this first version of the counter specification, natural numbers are used to represent the 
internal state of the counter. The operation performed by the increment circuit is described 
in terms of natural number arithmetic, in particular, the 'plus one' function. Using the 
HOL formulation of higher-order logic [11], this version of the counter specification is given 
by the following set of predicate definitions. 

rde/ MUX (reset,i,out) = Vt. out t = (reset t => 0 I (it)) 

rde/ REG (i,out) =Vt.out (t+1) =it 

rde/ INC (i,out) =Vt.out t =((it)+ 1) 

rde/ COUNT_IMP (reset,out) = 
3p1 p2. 

MUX (reset,p1,p2) A 
REG (p2,out) A 
INC (out,p1) 

rdef COUNT (reset,out) = 
Vt. out (t+1) = (reset t => 0 I ((out t) + 1)) 

We digress briefly to describe how the above predicate definitions are used to formally 
describe hardware behaviour and structure. 

Hardware is described either behaviourally or structurally by constraints on a set of 
signals. These signals represent the externally visible behaviour of the device. Because the 
resettable counter is a sequential device, signals are described by a sequence of values. It is 
convenient to represent this sequence of values by a function which maps discrete time (i.e. 
positions in the sequence) to signal values. For instance, the reset signal, 

reset:time-bool 

is modelled by a function which maps discrete time to Boolean values. Discrete time is a 
set of values denoted by the type : time which is isomorphic to the natural numbers. 

Behavioural models for the three components of the implementation are formally speci
fied by the definitions of MUX, REG and INC. For instance, the predicate INC specifies that, at 
all times, the current output of the increment circuit is the result of adding one to its current 
input value. The definition of MUX uses a conditional expression of the form b =} ti I t2 
("if b then ti else t2") to select between the two data inputs. The predicate REG uses the 
curren t input and current output value to determine the next output value. 

The predicate COUNT_IMP is a structural specification of the counter implementation. 
Interconnections are specified by common names, e.g., p2 is an internal connection between 
the multiplexor and the register. Logical conjunction is used to compose terms correspond
ing to each component of the implementation. Existential quantification is used to 'hide' 
the internal signals, namely, p1 and p2. 

Finally, the predicate COUNT is a behavioural specification for the resettable counter. It 
is significant, in this particular example, that the 'plus one' function used in the definition 
of INC to denote the operation performed by increment circuit re-appears in the definition 
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of COUNT when specifying the behaviour of the counter. (As we will see, this makes the 
resettable counter example a good candidate for generic specification.) 

This style of using higher-order logic to specify the structure and behaviour of hardware 
is described more fully in a report by Gordon [10]. 

The essence of the verification problem, in this case, is to show that behavioural models 
of the three components of the counter implementation can be composed to satisfy the 
behavioural specification of the counter. From the above set of specifications, the following 
correctness result can be formally derived as a theorem of higher-order logic. This theorem 
states that the constraints imposed by COUNT_IMP ( defined in terms of MUX, REG and INC) 
satisfy the constraints expressed by COUNT. 

1--thm COUNT_IMP (reset,out) ~ COUNT (reset,out) 

Representing the internal state of the counter as a natural number is a very simple 
approach. But this approach has the disadvantage of being an idealized model of physically
realizable hardware. This idealized model of a counter will count continuously upwards until 
it is reset. However, in reality, the internal state of the counter will have a finite number of 
bits and therefore, it will eventually overflow unless it is reset at some point. 

The next section of this paper considers the approach of adding more detail into the 
formal specification of the resettable counter to correct the problem of modelling overflow. 
However, we will eventually reject this approach in favour of the very opposite approach of 
eliminating non-essential detail. 

The More Detailed, The Better ? 

The following is a revised set of specifications for the resettable counter which uses modular 
arithmetic to model the finite limitations of physically-realizable hardware. 

I-def MUX (n) (reset,i,out) = 'vt. out t = (reset t => o I (it)) 

I-def REG (n) (i,out) = 'vt. out (t+1) = i t 

I-def INC (n) (i,out) = Vt. out t = (((it)+ 1) MOD 2n) 

I-def COUNT_IMP (n) (reset,out) = 
:3p1 p2. 

MUX (n) (reset,p1,p2) I\ 
REG (n) (p2,out) I\ 
INC (n) (out,p1) 

r-def COUNT (n) (reset,out) = 
Vt. out (t+1) = (reset t => 0 I (((out t) + 1) MOD 2n)) 

This revised set of specifications is a simple example of parameterized hard ware de
scription. Each predicate definition is parameterized by an additional variable, n, giving 
the number of bits used to represent the internal state of the counter. For reasons of (per
sonal) style, this additional parameter is separated from the list of parameters representing 
the input and output signals of the counter. However, this separation has no logical signif
icance. Technically speaking, this is an instance of a 'curried' function, that is, a function 
which can evaluate its arguments "one at a time". 
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Modular arithmetic models the fact that the counter will overflow when counting past the 
highest representable value, na.mely, 2n - 1. Undoubtedly, this revised set of sp cification 
is a more accurate model of physical hardware. One might think that a more accurate 
model entails a more comprehensive proof of correctness. But this is not necessarily true. 
In this case, proving a correctness result of the form, 

rthm COUNT_IMP (n) (reset.out)==> COUNT (n) (reset,out) 

does not involve any properties of either + or MOD. In fact, the above correctness result 
can be established even if+ and MOD were replaced by undefmed symbols in the formal 
specifications. Hence, + and MOD are no more than place-holders in this particular proof of 
correctness. 

The fact than + and MOD are just place-holders underlines the difference between formal 
verification and conventional simulation. In the case of conventional simulation, + and 
MOD would have to be defined symbols to use this specification as input to a conventional 
simulator. But in the case of formal verification, a meaningful correctness result can be 
obtained without necessarily having to develop a full-scale model of the computation. 

Eliminating Non-essential Detail 

Because building more detail into the counter specification, in particular, the use of mod
ular arithmetic, may give the false impression that a particular correctness result is more 
comprehensive than it really is, we argue in a favor of the very opposite approach. Instead 
of building more detail into the specification to remedy the inaccurate modelling of over
flow in the original specification of the counter, we filter out details about the computation 
performed by the counter. Very importantly, this can be done without changing the essence 
of the verification problem. 

The next few sections of this paper illustrate a method for eliminating non-essential 
detail by describing a series of incremental revisions to the original specification of the re
settable counter. The first step involves parameterizing the formal specification by function 
variables. The second step involves parameterizing the formal specification by type vari
ables. The third and final step is to 'package' function variables into a single 'representation 
variable'. 

Parameterizing with Function Variables 

The following set of specifications is obtained by replacing the 'plus one' operation in the 
original speciiication of the resettable counter by a function variable inc. Each of the 
specifications is param terized by this function variable ( and hence, they are higher-order 
predicates). For the sake of uniformity, the predicates MUX and REG are parameterized by 
inc even though they do not make use of this function. 
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I-def MUX (inc) (reset,i,out) = Vt. out t = (reset t ⇒ o I (i t)) 

I-def REG (inc) (i,out) = Vt. out (t+1) = i t 

I-def INC (inc) (i,out) = Vt. out t = inc (it) 

I-def COUNT_IMP (inc) (reset,out) = 
3p1 p2. 

MUX (inc) (reset,p1,p2) I\ 
REG (inc) (p2,out) /\ 
INC (inc) (out,p1) 

I-de/ COUNT (inc) (reset,out) = 
Vt. out (t+1) = (reset t ⇒ 0 I (inc (out t))) 

The parameterization of the above specifications by the function variable inc eliminates 
detail about the operation performed by the increment circuit which is not relevant to 
the verification problem. For this revised set of specifications, this verification problem is 
expressed by the following correctness result: 

~thm COUNT_IMP (inc) (reset,out) ==> COUNT (inc) (reset,out) 

Parameterizing with Type Variables 

The next step is to revise the above specifications by using a type variable, namely, : *Word, 
to represent the internal state of the counter. (In the HOL formulation of higher-order logic, 
a type variable always begins with an asterisk.) 

In the previous set of specifications, the type associated with the function variable inc 
was a function from natural numbers to natural numbers. But now, the type of inc is a 
function from : *word to : *word. 

Since we are now using the type variable : *word to replace natural numbers, we must 
also introduce a variable called zero to replace the natrual number constant 0. This variable 
stands for a value of type : *Word (it is a function variable for a 0-place function). Each of the 
predicates in the revised specification of the counter, as shown below, will be parameterized 
by both inc and zero in addition to the input and output variables of the counter. 

I-def MUX (inc.zero) (reset,i,out) = Vt. out t = (reset t ⇒ zero I (it)) 

I-def REG (inc,zero) (i,out) = Vt. out (t+1) = i t 

I-def INC (inc,zero) (i,out) = Vt. out t = inc (it) 

I-def COUNT_IMP (inc,zero) (reset,out) = 
3p1 p2. 

MUX (inc,zero) (reset,p1,p2) I\ 
REG (inc,zero) (p2,out) /\ 
INC (inc,zero) (out,p1) 

I-def COUNT (inc,zero) (reset,out) = 
Vt. out (t+1) = (reset t ⇒ zero I (inc (out t))) 
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These changes do not significantly alter the proof of correctness; likewise, the revised 
correctness result is not significantly different than before. 

~thm COUNT_IMP (inc,zero) (reset,out) ===> COUNT (inc,zero) (reset,out) 

Representation Variables 

Our approach to generic specification is based on the parameterization of formal specifi
cations by function variables and type variables. Scaling this approach upwards for more 
complex specifications (with more function variables) could result in the unwieldy param
eterization of predicates. However, this can be avoided by 'packaging' functions variables 
into. a single representation variable. 

rdef inc rep= FST rep 

rdej zero rep= SND rep 

rdej MUX (rep) (reset,i,out) = Vt. out t = (reset t =} (zero rep) I (it)) 

rdej REG (rep) (i,out) = Vt. out (t+1) = i t 

rdej IHC (rep) (i,out) = Vt. out t = (inc rep) (it) 

rde/ COUNT_IMP (rep) (reset,out) = 
3p1 p2. 

MUX (rep) (reset,p1,p2) I\ 
REG (rep) (p2,out) /\ 
INC (rep) (out,p1) 

rdef COUNT (rep) (reset,out) = 
Vt. out (t+1) = (reset t =} (zero rep) I ((inc rep) (out t))) 

The above specifications are parameterized by a single representation variable called 
rep. This variable, 

rep: ((*word-t*word) X *word) 

is a pair of values. The first element of this pair represents the function performed by the 
increment circuit. The second element of this pair is the representation of zero. 

In this version of the counter specification, inc and zero are defined as 'selector func
tions' which extract the first and second elements of a representation. These two selectors 
functions are meaningful synonyms for the pre-defined selectors functions FST and SND. 

That is: 

(inc rep) 
(zero rep) 

- "the increment operation" 
- "the representation of zero" 

Once again, the essence of the verification problem is unchanged from before. The 
following correctness result shows that behavioural models of the three components used to 
implement the resettable counter can be composed to satisfy the behavioural specification 
of the counter. 

~thm COUNT_IMP (rep) (reset,out) ===> COUNT (rep) (reset,out) 
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Re-usable Correctness Results 

Eliminating detail from a specification does not result in a less comprehensive correctness 
proof. In fact, the opposite situation is true: a generic specification yields a correctness 
result which covers a wider range of possible implementation. The above correctness result 
(for the generic specification of the resettable counter) can be instantiated for various im
plementations, e.g., a 2-bit counter, an 8-bit counter, a 16-bit counter, etc. The correctness 
result is instantiated by assigning a particular representation to the representation variable 
rep. 

For example, the original specification of the counter is described by the representation,2 

REP_num = (Ax. x + 1, 0) 

where the 'plus one' function is used to represent the operation performed by the increment 
circuit and the natural number constant O is the representation of zero. Instantiating the 
generic correctness result for this particular value of the representation variable, 

~thm COUNT_IMP (REP_num) (reset,out) ==} COUNT (REP_num) (reset,out) 

yields a correctness result which is logically equivalent to the first correctness result given 
for the counter specification. 

Another example is based on the built-in HOL data types for bit strings and machine 
words used, for instance, in the formal verification of the Viper microprocessor. An 8-bit 
version of the resettable counter is described by the representation, 

REPS= (Ax. WORDS ((VALS x) + 1), WORDS 0) 

where WORDS is a pre-defined function for converting a natural number into a 8-bit word 
and VALS is a pre-defined function for converting a 8-bit word into a natural number. The 
corresponding correctness result is an instance of the generic correctness result: 

~thm COUNT_IMP (REPS) (reset,out) ==> COUNT (REPS) (reset,out) 

Hierarchical Verification 

Correctness proofs for digital hardware are typically organized into several levels. For in
stance, another level of verification could be used to verify that each of the three components 
used in the counter implementation is correctly implemented by logic gates. An even lower 
level of proof would establish that logic gates are correctly implemented by networks of 
transistors. 

To sharpen the distinction between what has and what has not been considered at each 
level, we believe that a truely hierarchical approach to formal verification depends on the 
use of generic specifications to eliminate non-essential detail from each proof level. In other 
words, each level is a highly localized concern which should be isolated as much as possible 
from details relevant only to other levels. This is achieved by using generic specifications 
at higher levels parameterized by data types and functions which only need to be ":fleshed 
out" at lower levels in the proof hierarchy. This contrasts with a 'closed-world approach' to 
formal verification where every data type and every operator is completely defined at each 
level. Eveking [7] elaborates on the distinction between an open ( or interpreted) approach 
and a closed-world approach. 

2 The term AX. x + 1 is a lambda-expression which denotes the 'plus one' function. 
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Generic Specification of a Microprocessor 

We have used the techniques described in this paper to write generic specifications for a 
very simple microprocessor called TAMARACK-3 (14). A design for the register-transfer 
level implementation of this microprocessor has been proven correct with respect to a pro
gramming level model of its operation. These correctness results can be re-used for various 
realizations of the microprocessor, e.g., an 8-bit version, a 16-bit version, etc. Moreover, 
the generic specification of this microprocessor does not depend on any special-purpose 
infrastructure for reasoning about hardware, e.g., data types for bit strings or machine 
words. This should make it much easier to re-produce this correctness result in a variety of 
verification systems ( as long as these systems support higher-order predicates). 

To give the reader an impression of how the generic specification techniques described in 
this paper can be applied to a more substantial example, this section of the paper presents 
the generic specification of the TAMARACK-3 programming level model. 

The TAMARACK-3 microprocessor was designed as a verification example and is not 
seriously intended for practical applications.3 It has just eight different programming level 
instructions and only one addressing mode. The only kind of hardware exception is a single 
level, non-vectored hardware interrupt. The microprocessor can be interfaced to external 
memory ( or some other perpherial device) to operate in one of three possible modes: fully 
synchronous, fully asynchronous, and extended cycle mode. All I/O is memory-mapped. 
Figure 3 shows a functional diagram for the externally visible signals of TAMARACK-3. 

The programming level model, or external architecture, of TAMARACK-3 is a descrip
tion of its operation as seen by a programmer. This model hides all aspects of the internal 
architecture which the programmer does not need to know about when writing programs 
for this microprocessor. The programming level model can be viewed as an interpreter 
for manipulating a set of variables which corresponds to the externally visible state of the 
microprocessor. It consists of five main parts: 

• Basic data types and primitive operations. 

• Variables manipulated by the interpreter. 

• Format of instructions. 

• Instruction semantics. 

• Instruction Cycle. 

Basic Data Types and Primitive Operations 

A total of seven different data types are used to specify the programming level model 
of TAMARACK-3. The data type :bool is used to represent voltage values or logical 
conditions. The data type : num is used when some lower level form of data is interpreted as 
the representation of a natural number. The remaining five data types are used to represent 
machine words (three different sizes), a particular field of bits within a machine word, and 
memory states. 

3 Although TAMARACK-3 is a very simple microprocessor, some aspects of its operation (support for 
interrupts and asynchronous interaction with external memory using handshaking signals) are more complex 
behaviours than found in the formal specification of the Viper microprocessor. 
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Figure 3: Functional View of the TAMARACK-3 Microprocessor 
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- Boolean values {T,F} 
- natural numbers {0,1,2, ... } 
- full-size machine words 
- instruction opcodes 
- 4-bit words 
- memory addresses 
- memory states 

A conventional description of a microprocessor would typically be very specific about 
details such as the number of bits in a machine word and the size of memory. However, 
we avoid specifying these details by regarding : *wordn, : *word3, : *word 4, : *address and 
: *memory as uninterpreted types. The actual representation of these basic data types may 
be thought of as implementation dependent details. The prefix * indicates our intention to 
use type variables for these data types. 

Functional elements such as the ALU (Arithmetic Logic Unit) at the lowest level of ar
chitectural description perform various operations on data. These operations are regarded 
as tin interpreted primitives. The TAMARACK-3 programming level model is formally spec
ified in terms of thirte~..n different primitives operations. Employing the generic specification 
technique outlined earlier in this paper, these thirteen different operations will be packaged 
into a single representation variable, rep. Each primitive will be selected (or extracted) from 
the representation variable by a unique selector function. These thirteen selector functions 
are listed below. Although the operations selected by these selectors are formally regarded 
as uninterpreted primitives, the following list also gives a suggested interpretation for each 
primitive operation. 

(iszero rep) 
(inc rep) 
(add rep) 
(sub rep) 
(wordn rep) 
(valn rep) 
(opcode rep) 
(va13 rep) 
(address rep) 
(fetch rep) 
(store rep) 
(word4 rep) 
(val4 rep) 

- "test if zero" 
- "increment" 
- "addition" 
- "subtraction" 
- "full-size word representation of a number" 
- "value of a full-size word" 
- "extract opcode field" 
- "value of an opcode" 
- "extract address field" 
- "read memory" 
- "write memory" 
- "4-bit word representation of a number" 
- "value of a 4-bit word" 

Like every term in higher-order logic, the variable rep has a type. The type of rep is 
denoted by the following type abbreviation. 4 

4The built-in HOL system utility for creating type abbreviations does not allow this particular abbrevi
ation since it contains type variables. However, there is an alternative way to intxoduce names to stand for 
fully expanded type expressions (using ML variables and ML antiquota.tion.) - but tl1ese details a.re beyond 
the scope of this paper. 
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rep_ty = 
: (•wordn-►bool) x 
(*wordn-►*wordn)x 

(•wordnx•wordn-►•wordn)x 

(*wordnX*wordn-►•wordn)x 
(num-►*wordn) x 
( •wordn-►nwn) x 
(•wordn-►•word3)x 

( •word3-►nwn) x 
(*wordn-►*address)x 
(*memoryx*address-•wordn)x 
(•memoryx•addressX*wordn-►*memory)x 

(num-►•word4)x 

( •word4-►num) 

Generic Specification of Digital Hardware 

¼ iszero ¼ 
¼inc¼ 
¼add¼ 
¼ sub ¼ 
¼ wordn ¼ 
¼ valn ¼ 
¼opcode¼ 
¼ val3 ¼ 
¼address¼ 
¼'!etch¼ 
¼store¼ 
¼ word4 ¼ 
¼ val4 ¼ 

The selector functions are defined in the formal specification by composing various 
sequences of the two primitive selectors FST and SND. For instance, the first three selectors, 
iszero, inc, and add, have the following definitions. 

rde/ iszero (rep:rep_ty) = FST rep 

rde/ inc (rep:rep_ty) = FST(SND rep) 

rde/ add (rep:rep_ty) = FST(SND(SND rep)) 

The rest of the selectors are defined in a similar manner such that the following theorem 
is true: 

rthm rep = 
((iszero rep), 
(inc rep), 
(add rep), 
(sub rep), 
(wordn rep), 
(valn rep), 
(opcode rep), 
(val3 rep), 
(address rep), 
(fetch rep), 
(store rep), 
(word4 rep), 
(val4 rep)) 

Externally Visible State 

The set of variables manipulated by the programming level model corresponds to the ex
ternally visible state of the microprocessor. In TAMARACK-3, these variables are: 
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I Instruction I Opcode Value I Effect 

JZR 
JMP 
ADD 
SUB 
LDA 
STA 
RFI 
NOP 

0 jump if zero 
1 jump 
2 add accumulator 
3 subtract accumulator 
4 load accumulator 
5 store accumulator 
6 return from interrupt 
7 no operation 

Table 1: TAMARACK-3 Instruction Set 

mem - memory 
pc - program counter 
ace - accumulator 
rtn - return address register 
iack - interrupt acknowledge flag 
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The memmy stores memory states, represented by the data type : *memory. Each of 
the registers stores full-size memory words, represented by the data type : *wordn. The 
fa.terrupt acknowledge flag is stored internally by a flipflop whose value belongs to the data 
type :bool. 

Instruction Word Format 

Instructions are exactly one full-size machine word. Although specific details about word 
size and instruction word format are not given in this description, we can assume that the 
instruction word consists of a 3-bit opcode (since there are eight different instructions) with 
the remaining bits used as an operand address. The operand address is the absolute address 
of a, memory word which may be 11;sed as the address of either data or an instruction. 

3-bit opcode operand address 

Opcodes and operand addresses are represented by the un.interpreted types : *word3 and 
: *address. They are extracted from an instruction word by th unin.terpreted primitives 
opcode and address. 

Instruction Set Semantics 

The eight TAMARACK-3 program.ming level instructions a.Te in Table 1. Their opcode 
values and a brief explanation of each instruction are also given in the table. The opcode 
is extracted from the current instruction word by opcode and its numerical value is then 
obtained by applying val3 to the extracted opcode. 

Formally, the semantics of each instruction is given individually by the definition of a 
function which returns the next ( externally visible) state of the microprocessor, i.e., the 
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next values of the memory state mem, program counter pc, accumulator ace, return address 
register rtn and interrupt acknowledge flag iack. The following definitions specify how 
these values are computed from the current state of the microprocessor. In addition to a 
formal definition, the informal notation, 

<destination> - <expression> 

is used to denote when a value computed from the current machine state is loaded into a 
register, flipflop or memory to form a component of the next machine state. 

JZR - jump if zero 

pc - if (iszero rep) ace then inst else (inc pc) 

rde/ JZR_SEM (rep:rep_ty) 
(mem:•memory,pc:•wordn,acc:•wordn,rtn:•wordn,iack:bool) = 
let inst= (fetch rep) (mem,(address rep) pc) in 
let nextpc = ((iszero rep) ace) ⇒ inst I ((inc rep) pc) in 

(mem,nextpc,acc,rtn,iack) 

If the result of applying iszero to the current contents of the accumulator ace is T, 
then the current instruction word is loaded into the program counter pc. Otherwise, the 
instruction is completed by incrementing the program counter pc.5 

JMP - jump 

pc - inst 

rdeJ JMP_SEM (rep:rep_ty) 
(rnem:•memory,pc:•wordn,acc:•wordn,rtn:•wordn,iack:bool) = 
let inst= (fetch rep) (mem,(address rep) pc) in 

(mem,inst,acc,rtn,iack) 

The current instruction word is unconditionally loaded into the program counter pc. 

ADD - add accumulator 

ace - (add rep) (acc,operand) 
pc - (inc rep) pc 

rde/ ADD_SEM (rep:rep_ty) 
(rnem:*mernory,pc:•wordn,acc:*wordn,rtn:•wordn,iack :bool) = 
let inst= (fetch rep) (mem,(address rep) pc) in 
let operand= (fetch rep) (mem,(address rep) inst) in 

(mem,(inc rep) pc,(add rep) (acc,operand),rtn,iack) 

5 Here we ha.ve rela.xed our presenta.tion style by referring to a.n uninterpreted primitive, namely, inc, in 
terms of its suggested interpretation. 
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The add operation is applied to the current contents of U e accumulator ace and the 
memory word addressed by the operand address field of the current instruction. The result 
is loaded into the accumulator acc. The instruction is completed by incrementing the 
program counter pc. 

SUB - subtract accumulator 

ace +- (sub rep) (acc,operand) 
pc +- (inc rep) pc 

f-- def SUB_SEM (rep: rep_ ty) 
(mem:*memory,pc:.-Wordn,acc:•wordn,rtn:*wordn,iack:bool) = 
let inst= (£etch rep) (mem,(address rep) pc) in 
let operand= (£etch rep) (mem,(address rep) inst) in 

(mem,(inc rep) pc,(sub rep) (acc,operand),rtn,iack) 

The sub operation is applied to the current contents of the accumulator ace and the 
memory word addressed by the operand address field of the current instruction. The result 
is loaded into the accumulator acc. The instruction is completed by incrementing the 
program counter pc. 

LDA - load accumulator 

ace - operand 
pc +- (inc rep) pc 

f--de/ LDA_SEM (rep:rep_ty) 
(mem:•memory,pc:•wordn,acc:•wordn,rtn:•wordn,iack:bool) = 
let inst= (£etch rep) (mem,(address rep) pc) in 
let operand= (£etch rep) (mem,(address rep) inst) in 

(mem,(inc rep) pc,operand,rtn,iack) 

The memory word addressed by the operand address field of the current instruction is 
loaded into the accumulator acc. The instruction is completed by incrementing the program 
counter pc. 

STA - store accumulator 

mem +- (store rep) (mem, (address rep) inst, ace) 
pc +- (inc rep) pc 

f--de/ STA_SEM (rep:rep_ty) 
( mem·: •memory, pc: •wordn, ace: •wordn, rtn: •wordn, iack: bool) = 
let inst= (£etch rep) (mem,(address rep) pc) in 
let newmem = (store rep) (mem,(address rep) inst,acc) in 

(newmem,(inc rep) pc,acc,rtn,iack) 

The current contents of the accumulator ace are stored in external memory at the 
location specified by the operand address field of the current instruction. The instruction 
is completed by incrementing the program counter pc. 
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RFI - return from interrupt 

pc+- rtn 
iack +- F 

Generic Specification of Digital Hardware 

rde/ RFI_SEM (rep:rep_ty) 
(mem:•memory,pc:•wordn,acc:•wordn,rtn:*wordn,iack:bool) = 
(mem,rtn,acc,rtn,F) 

The current contents of the return address register rtn are loaded into the program 
counter pc and the interrupt acknowledge flag iack is reset to F. This instruction does not 
check whether the interrupt acknowledge flag iack is currently set. 

NOP - no operation 

pc +- (inc rep) pc 

rde/ NOP_SEM (rep:rep_ty) 
(mem:*memory,pc:•wordn,acc:•wordn,rtn:*wordn,iack:bool) = 
(mem,(inc rep) pc,acc,rtn,iack) 

Hardware Interrupts 

The processing of a hardware interrupt is described in a similar way by the definition of a 
function which computes the next state of the microprocessor from its current state. 

pc+- (wordn rep) 0 

rtn +- pc 
iack +- T 

rde/ IRQ_SEM (rep:rep_ty) 
(mem:*memory,pc:•wordn,acc:•wordn,rtn:•wordn,iack:bool) = 
(mem,((wordn rep) O),acc,pc,T) 

An interrupt is processed by loading the hard-wired address of the interrupt routine 
(location 0) into the program counter, saving the current contents of the program counter 
in the return address register, and setting the interrupt acknowledge flag iack to T. 

Instruction Cycle 

The opcode of the current instruction word determines which instruction is executed during 
a particular instruction cycle. The following set of definitions specify the opcode value for 
each instruction. 
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f--de/ JZR_OPC = 0 
f--de/ JMP_OPC = 1 
f--def ADD_OPC = 2 

f--deJ SUB_OPC = 3 
f--deJ LDA_OPC = 4 

f--deJ STA_OPC = 6 
f--deJ RFI_OPC = 6 

f--def NOP_OPC = 7 

The opcode value of the current instruction is obtained by fetching the memory word 
addressed by the program counter, extracting the value of its opcode field and interpreting 
the opcode as a number between O and 7. This procedure is specified in the definition of 
OpcVal 

f--de/ OpcVal (rep:rep_ty) (mem,pc) = 
(val3 rep) ((opcode rep) ((fetch rep) (mem,(address rep) pc))) 

Every instruction cycle results in the execution of a programming level instruction unless 
a hardware interrupt is detected at the beginning of this cycle. The following definition of 
NextState specifies the overall control mechan.ism for determining what happens during a 
particular instruction cycle. 

~de/ NextState (rep:rep_ty) (ireq,mem,pc,acc,rtn,iack) = 
let opcval = DpcVal rep (mem,pc) in 

((ireq A ~iack) => IRQ_SEM rep (mem,pc,acc,rtn,iack) I 
(opcval = JZR_OPC) ⇒ JZR_SEM rep (mem,pc,acc,rtn,iack) I 
(opcval = JMP_OPC) => JMP_SEM rep (mem,pc,acc,rtn,iack) I 
(opcval = ADD_OPC) => ADD_SEM rep (mem,pc,acc,rtn,iack) I 
(opcval = SUB_OPC) => SUB_$EM rep (mem,pc,acc, rtn,iack) I 
(opcval = LDA_OPC) => LDA_SEM rep (mem,pc,acc,rtn,iack) I 
(opcval = STA_OPC) => STA_SEM rep (mem,pc,acc,rtn,iack) I 
(opcval = RFI_OPC) => RFI_SEM rep (mem,pc,acc,rtn,iack) I 

NOP_SEM rep (mem,pc,acc,rtn,iack)) 

Finally, we use the function NextState to define the predicate TamaxackBeh which 
specifies the intended behaviour of the microprocessor as a relation on the time-dependent 
signals mem, pc, ace, rtn and iack. 

f--de/ TamarackBeh (rep:rep_ty) (ireq,mem,pc,acc,rtn,iack) = 
Vu:time. 

(mem (u+1),pc (u+1),acc (u+1),rtn (u+1),iack (u+1)) = 
NextState rep (ireq u,mem u,pc u,acc u,rtn u,iack u) 

The programming level model not only hides structural details of the internal archi
tecture but also timing details about the number of microinstructions executed for each 
instruction. To be more precise, the programming level model describes the o.Peration of 
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the microprocessor in terms of an abstract time scale where each instruction is uniformly 
executed in a single unit of time. This abstract time scale is different than the time scale 
used to specify the behaviour of register-transfer level components where a single unit of 
time corresponds to a single clock cycle. To emphasize this difference, we have used the 
explicit time variable u instead of t in the above definition of TamarackBeh (but there 
is no logical distinction between these two variable names). A major part of the task of 
formally verifying TAMARACK-3 is to establish a formal relationship between these two 
granularities of discrete time. 

Minimal Assumptions about Uninterpreted Primitives 

Formal verification of the register-transfer level implementation of TAMARACK-3 is not 
a trivial problem. For instance, this level of verification includes a rigorous analysis of 
how TAMARACK-3 interacts asynchronously with external memory using a handshaking 
protocol. However, these correctness results depend very little on computational aspects of 
the machine's operation. 

In place of a full-scale computational model, the generic specification of TAMARACK-3 
is supplemented by a minimal set of assumptions necessary to prove that the register
transfer level implementations is correct with respect to the programming level model. Just 
two assumptions are needed: 

Vw. ((va13 rep) w) < 8 

Vn. n < 16 =⇒ (((va14 rep) ((word4 rep) n)) = n) 

The first assumption states that the value of any 3-bit word, when interpreted as the 
representation of a natural number, is less than eight. The second assumption states that 
the functions selected by va14 and word4 from the representation variable are inverses 
for numbers less than sixteen. These two assumptions appear explicitly in the correctness 
results for the register-transfer level implementation of TAMARACK-3. 

What is Proved ? 

The formal verification of TAMARACK-3 at the register-transfer level is mostly concerned 
with three main issues: 

• showing that the right actions occur at the right time, e.g, for an ADD instruction, 
that the ALU operation for addition is applied to the accumulator currents and the 
operand (fetched from memory) and that the result is stored in the accumulator. 

• demonstrating that the microprocessor satisfies the handshaking protocol used for 
asynchronous interaction with external memory. 

• establishing that a precisely defined timing relationship holds between the program
ming level model time scale and the register-transfer level time scale. 

With the exception of the two assumptions mentioned above, these correctness results 
do not depend on any computational details about the functional units used in the register
transfer level implementation of TAMARACK-3. Functional units such as the ALU are 
specified generically with the same selector functions used to specify the TAMARACK-3 
programming model. For instance, the four selectors inc, add, sub and wordn are used to 
generically specify the four primitive operations performed by the ALU. 
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rdef ALU (rep:rep_ty) (f0,f1,inp1,inp2,out) = 
r/t:time. 

out t = 
(((f0 t,f1 t) = (T,T)) -+ ((inc rep) (inp2 
((f0 t,f1 t) = (T,F)) -+ ((add rep) (inp1 
((f0 t,f1 t) = (F,T)) -+ ((sub rep) (inp1 

((wordn rep) 0)) 
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t)) I 
t,inp2 t)) 
t,i:np2 t)) 

Therefore, it should be clear that correctness results for TAMARACK-3 at the register
transfer level are not concerned with the implementation of functional units, for instance, 
whether the addition operation has been correctly implemented in the ALU. Using uninter
preted primitives instead of defined operations sharpens the distinction between what has 
and what has not been formally considered at this level of proof. 

Creating Instances of a Generic Specification 

The representation variable rep which appears as an extra parameter in definitions through
out the formal specification of TAMARACK-3 is effectively a parameterization of the formal 
theory. It provides a means of relating this theory to both lower and higher level models of 
computation. 

For example, by assigning an appropriate value to the representation variable rep, the 
formal specification of the TAMARACK-3 programming level model can be made to stack 
upon a lower level theory about the implementation of register-transfer level devices. This 
lowel level theory might also, in turn, be a generic specification parameterized by its own 
representation variable and stacked upon an even lower level of representation at the tran
sistor level. 

To illustrate this idea with a simple example, the constant REP16 is defined as a value 
for rep based on the built-in HOL data types described in (4, 5, 9J. In this case, we have 
created data types for a 16-bit version of TAMARACK-3. 

rdef ISZER016 w = ((VAL16 w) = 0) 

rde/ INC16 w = WORD16 ((VAL16 w) + 1) 

rdef ADD16 (w1,w2) = WORD16 ((VAL16 wl) + (VAL16 w2)) 

rdef SUB16 (w1,w2) = WORD16 ((VAL16 w1) - (VAL16 w2)) 

rdef OPCODE w = WORD3 (V (SEG (0,2) (BITS16 w))) 

rdef ADDRESS w = WORD13 (V (SEG (3,16) (BITS16 w))) 
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r def REP16 = 
ISZERO16, 
INC16, 
ADD16, 
SUB16, 
WORD16, 
VAL16, 
OPCODE, 
VAL3, 
ADDRESS, 
(A(x,y). FETCH13 x y), 
(A(x,y,z). STORE13 y z x), 
WORD4, 
VAL4 

Generic Specification of Digital Hardware 

¼ iszero ¼ 
¼inc¼ 
¼add¼ 
¼sub¼ 
¼ wordn ¼ 
¼ valn ¼ 
¼opcode¼ 
¼ val3 ¼ 
¼address¼ 
¼:fetch¼ 
¼store¼ 
¼ word4 ¼ 
¼ val4 ¼ 

There are two main reasons for stacking correctness results upon lower level correctness 
results. One reason is to discharge assumptions introduced at one level by establishing them 
as theorems at lower levels. For instance, the two assumptions, 

Vw. ((val3 rep) w) < 8 

Vn. n < 16 ~ (((val4 rep) ((word4 rep) n)) = n) 

needed to obtain correctness results at the register-transfer level could be established as 
theorems when the representation variable rep is instantiated to be REP16:6 

Vw. (VAL3 w) < 8 

Vn. n < 16 =⇒ ((VAL4 (WORD4 n)) = n) 

The other main reason for stacking correctness results is to link correctness results at 
one level together with correctness results at lower levels to obtain a single correctness re
sult spanning multiple levels of a hierarchical specification. This hierarchy can even extend 
upwards above the level of digital hardware. For instance, correctness results for a formally 
verified compiler [13] can be stacked upon correctness results for the TAMARACK-3 mi
croprocessor to formally relate the semantics of a programming language to the execution 
of a compiled program by digital hardware. In this manner, a hierarchy of widely separated 
concerns can be treated in a truely hierarchical fashion - each level isolated from details 
only relevant to other levels. 

Summary 

This paper has argued that generic specification is a powerful concept in the context of 
formally verifying digital hardware. In addition to the well-known advantages of mod
ularity, abstraction and reliable re-usability, the use of generic specification to eliminate 
non-essential detail from a formal specification sharpens the distinction between what has 
and what has not been formally considered. In a hierarchical proof effort, the elimination 

6 The current version of the built-in HOL data types (as given by the eva.l library in the HOL88 system) 
is not fully axiomatized or secure, but with a complete axiomatization it would be possible to derive these 
two assumptions as theorems. 
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of non-essential detail isolates each level from details only relevant to other levels. Finally, 
there is the practical benefit of reducing the need for special-purpose proof infrastructure, 
e.g., hardware-oriented data types. 

AJ; mentioned earlier in the introduction of this paper, most of the languages used for 
hard ware specification do not provide explicit mechanisms for supporting and encouraging 
generjc specifications. Some of the few exceptions include EHDM [17] and OBJ [8]. However, 
this paper shows that it is unnecessary to have explicit mechanisms for generic specification 
in the case of languages with ( at least) the expressive power of higher-order logic. We have 
described a technique for expressing genericity based on the use of higher-order predicates 
pammeterized by function variables and type variables. We believe that the use of higher
order predicates in this manner thi,s is a very direct (if not the most direct) way to specify 
hard ware generically. Therefore, we claim that the ability to express genericity is a very 
strong a1·gument for why it is necessary, for all practical purposes, to use a formalism with 
(at least) the expressive power of higher-order logic. 

I 

Acknowledgments 

The ideas presented in this paper are based on my Ph.D. research while a member of the 
Hardware Verification Group at Camb1·idge University. I am particularly indebted to my 
supervisor, Mike Gordon, who helped to refine and clarify many of these idPa~. Tam also 
grateful to a number of p ople who commented on drafts of my Ph.D. dissertation especially 
John Herbert and John Van Tassel. Pioneering work on microprocessor verification by Avra 
Cohn and Warren Hunt provided a very good starting point for this resear h. The idea o{ 
generic specifi_cation was prompted by discussions with John Rllshby and his colleagues at 
SRI International. This research is currently supported by a.n NSERC (Natutal Sciences 
and Engineering Research Council) Operating Grant. 

References 

[1] William R. Bevier, Warren A. Hunt, Jr. 1 and William D. Young, in: Towards Verified 
Execution Environments, in: Proceedings of the 1987 IEEE Symposium on Security 
and Privacy, 2?-29 April 1987, Oakland, California Computer Society Press, Washing
ton, D.C., 1987 pp. 106-115. Also Report No. 5, Computational Logic, Inc., Austin, 
Texas, February 1987. 

(2) W. Bevier, W. Hunt, .T Moore, and W. Young, An Approach to Systems Verification, 
Journal of Automated Reasoning, Vol. 5, No. 4, November 1989. Also Report No. 41, 
Computational Logic, Inc., Austin, Texas, April 1989. 

(3) Avra Cohn and Mike Gordon, A Mechanized Proof of Correctness of a Simple Counter, 
Report No. 94, Computer Laboratory, Cambridge University, July 1986. 

(4) Avra Cohn, A Proof of Correctness of the Viper Microprocessor: The First Level, 
in: G. Birtwistle and P. Subrahmanyam, eds., VLSI Specification, Verification and 
Synthesis, Kluwer Academic Publishers, Boston, 1988, pp. 27-71. Also Report No. 
104, Computer Laboratory, Cambridge University, January 1987. 

[5) A vra Cohn, Correctness Properties of the Viper Block Model: The Second Level, in: 
G. Birtwistle and P. Subrahmanyam, eds., Current Trends in Hardware Verification 



24 Generic Specification of Digital Hardware 

and Automated Theorem Proving, Springer-Verlag, 1989, pp. 1-91. Also Report No. 
134, Computer Laboratory, Cambridge University, May 1988. 

[6] Avra Cohn, The Notion of Proof in Hardware Verification, Journal of Automated 
Reasoning, Vol. 5, May 1989, pp. 127-139. 

[7] H. Eveking, How to Design Correct Hardware and Know It. G. Milne, ed., The Fusion 
of Hardware Design and Verification, Proceedings of the IFIP WG 10.2 International 
Working Conference, Glasgow, Scotland, 3-6 July 1988, North-Holland, 1988, pp. 
250-262. 

[8] Joseph A. Goguen, OBJ as a Theorem Prover with Applications to Hardware Veri
fication, in: G. Birtwistle and P. Subrahmanyam, eds., Current Trends in Hardware 
Verification and Automated Theorem Proving, Springer-Verlag, 1989, pp. 219-267. 
Also Report No. SRI-CSL-4R2, Computer Science Laboratory, SRI International, 
Menlo Park, August 1988. 

[9] M. Gordon, LCF -1SM, Report No. 41, Computer Laboratory, Cambridge University, 
1983. 

[10] M. J. C. Gordon, Why Higher-Order Logic is a Good Formalism for Specifying and 
Verifying Hardware, in: G. Milne and P. Subrahmanyam, eds., Formal Aspects of 
VLSI Design, Proceedings of the 1985 Edinburgh Conference on VLSI, North-Holland, 
1986, pp. 153-177. 

[11] Michael J. C. Gordon et al., The HOL System Description, Cambridge Research 
Centre, SRI futernational, Suite 23, Miller's Yard, Cambridge CB2 lRQ, England. 

[12} Jeffrey J. Joyce, Generic Structures in the Formal Specification and Verification of 
Digital Circuits, in: G. Milne, ed., Proceedings of the IFIP WG 10.2 Working Con
ference on The Fusion of Hardware Design and Verification, 4-6 July 1988, Glasgow, 
Scotland, pp. 51-75. 

[13] Jeffrey J. Joyce, Totally Verified Systems: Linking Verified Software to Verified Hard
ware, in: M. Leeser and G. Brown, eds., Specification, Verification and Synthesis: 
Mathematical Aspects, Proceedings of a Workshop, 5-7 July 1989, Ithaca, N.Y., 
Springer-Verlag, 1989. Also Report No. 178, Computer Laboratory, Cambridge Uni
versity, September 1989. 

[14) Jeffrey J. Joyce, Multi-Level Verification of Microprocessor-Based Systems, Ph.D. 
Thesis, Computer Laboratory, Cambridge University, December 1989. Report No. 
195, Computer Laboratory, Cambridge University, May 1990. 

[15] J Strother Moore, Piton: A Verified Assembly Level Language, Report No. 22, Com
putational Logic Inc., Austin, Texas, September 1988. 

[16] W. Luk and G. Jones, From Specifications to Parmeterised Architectures, in: G. 
Milne, ed., Proceedings of the IFIP WG 10.2 Working Conference on The Fusion of 
Hardware Design and Verification, 4-6 July 1988, Glasgow, Scotland, pp. 267-288. 

[17} F. W. von Henke, J. S. Crow, R. Lee, J.M. Rushby and R. A. Whitehurst, The EHDM 
Verification Environment: An Overview, Proceedings of the 11th National Computer 
Security Conference, Baltimore, October 1988, pp. 147-155. 


