
Superlinear Bounds For
Matrix Searching Problems

by

Maria M. Klawe

Technical Report 90-26
July, 1990

Department of Computer Science
University of British Columbia

6356 Agricultural Road
Vancouver, B.C. Canada V6T 1W5

e-mail: klawe@cs.ubc.ca

SUPERLINEAR BOUNDS FOR MATRJX SEARCHING PROBLEMS

Maria M. Klawe

Department of Computer Science, UBC

Vancouver, B.C., Canada V6T 1W5

Abstract

Matrix searching in classes of totally monotone partial matrices has many applications in computer science,

operations research, and other areas. This paper gives the first superlinear bound for matrix searching in

classes of totally monotone partial matrices, and also contains some new upper bounds for a class with

applications in computational geometry and dynamic programming.

The precise results of this paper are as follows. We show that any algorithm for finding row maxima or

minima in totally monotone partial 2n x n matrices with the property that the non-blank entries in each

column form a contiguous segment, can be forced to evaluate O(na(n)) entries of the matrix in order to find

the row maxima or minima, where a(n) denotes the very slowly growing inverse of Ackermann's function.

A similar result is obtained for n x 2n matrices with contiguous non-blank segments in each row. The lower

bounds are proved by introducing the concept of an independence set in a partial matrix and showing that

any matrix searching algorithm for these types of partial matrices can be forced to evaluate every element

in the independence set. A result involving lower bounds for Davenport-Schinzel sequences is then used to

construct an independence set of size O(na(n)) in the matrices of size 2n x n and n x 2n.

We also give two algorithms to find row maxima and minima in totally monotone partial n x m matrices

with the property that the non- blank entries in each column form a contiguous segment ending at the bottom

row. The first algorithm evaluates at most O(ma(n)+n) entries of the skyline matrix and performs at most

that many comparisons, but may have 0(ma(n) log log n + n) total running time. The second algorithm is

simpler and has 0(m log log n + n) total running time.

A preliminary version of this paper appeared in the Proceedings of the First ACM/SIAM Symposium

on Discrete Algorithms, 1990. The research in this paper was partially supported by an NSERC Operating

Grant.

1. Introduction

The technique of matrix searching in totally monotone matrices and their generalizations is steadily find

ing ever more applications in a wide variety of areas of computer science and operations research, especially

computational geometry and dynamic programming problems (see [AKMSW87), [AK90), [AP88), [AS87),

[AS89], [EGG88), [KK90), [LS90], and [W88) for example). Although an asymptotically optimal linear time

algorithm is known for the most basic problem of finding row minima and maxima in totally monotone

matrices [AKMSW87), for most of the generalizations of totally monotone matrices, only superlinear algo

rithms are known, though until now no superlinear lower bounds have been proved. This paper gives the first

superlinear bound for matrix searching in two types of totally monotone partial matrices. These types of

1

matrices, which we refer to as v-matrices and h-matrices, respectively, were introduced by Aggarwal and Suri

[AS89] who used them to find the farthest visible pair in a simple polygon. In addition, these matrix classes

are natural extensions of staircase matrices which have applications in computational geometry and dynamic

programming problems. We also give new upper bounds for matrix searching in a subclass of v-matrices,

which arises in problems in computational geometry and operations research.

A partial matrix is a matrix in which entries are either real numbers or are blank. A partial matrix

M = (Mi;) is called totally monotone if for every i < i', j < j' such that all entries of the 2 x 2 submatrix,

Mi;, Mw, Mi•;, and Mi'j', are non-blank, whenever Mi; $ Mw we have Mi'; $ Mi'j'. A totally monotone

matrix is a totally monotone partial matrix with no blank entries.

We will call a totally monotone partial matrix a v-matrix (vertical matrix) if the set of non-blank

entries in each column forms a contiguous interval. Similarly, an h-matrix (horizontal matrix) is a totally

monotone partial matrix such that the set of non-blank entries in each row forms a contiguous interval.

Finally, a skyline matrix is av-matrix such that every column's non-blank segment ends at the bottom row.

A partial matrix is a staircase matrix if it is both a v-matrix and an h-matrix (this definition is slightly

more general than the one given in [AK90] and [KK90], but the algorithms of those papers can be trivially

extended to handle this definition of staircase matrix). Examples of an h-matrix and skyline matrix are

shown in Figure 1, where the grey areas indicate the regions containing non-blank entries.

(a) h-matrix (b) skyline matrix

Figure I

Totally monotone matrices were introduced by Aggarwal, Klawe, Moran, Shor and Wilber in [AKMSW87],

who showed that several problems in computational geometry could be reduced to finding the maximum or

minimum value in each row of a totally monotone matrix. We will use the term matrix searching to refer to

the task offinding row minima or maxima in a matrix. Aggarwal et al gave an 0(m+n) time algorithm (which

we will refer to as the SMAWK algorithm) for matrix searching inn x m totally monotone matrices, yielding

faster algorithms for a broad collection of problems. Wilber [WBB] used the SMAWK algorithm to get a linear

time algorithm for a dynamic programming problem known as the concave least weight subsequence problem.

Aggarwal and Klawe [AK90] generalized totally monotone matrices to staircase matrices, and showed that

additional problems of computational geometry could be reduced to matrix searching in staircase matrices.

Aggarwal and Klawe [AK90] also gave an 0(m log log n) time algorithm for searching staircase matrices of size

n x m, again yielding faster algorithms for several problems in computational geometry. Klawe and Kleitman

[KK90] gave an O(mo(n) + n) time algorithm for matrix searching in staircase matrices, and extended this

algorithm to handle a class of dynamic programming problems satisfying convex quadrangle inequalities

which have many applications in molecular biology and other areas (see [EBB], [EGGBB], [EGGI90], [GG89],

2

[HL87], [LS90]). The function, a(n), denotes the very slowly growing inverse of Ackermann's function [T75];

we give the precise definition of a(n) in the third paragraph of section 3. In [AS89], Aggarwal and Suri

introduced v-matrices and h-matrices, and used matrix searching in these matrices to give a faster algorithm

for computing the farthest visible vertex pair in a simple polygon. Aggarwal and Park [AP90, section 3.1]

also use matrix searching in v-matrices to give faster algorithms for solving a common problem in inventory

control a.nd production planning, the economic lot-size problem, under certain assumptions.

This paper has two main contributions. The first is a superlinear lower bound for matrix searching in

v-matrices and h-matrices. This is the first superlinear lower bound for matrix searching in totally monotone

matrices. The problem of extending this lower bound to staircase matrices remains open, and requires at

least one more idea since we can show that our current techniques will not suffice. The second contribution

is the extension of the staircase matrix searching algorithms of [KK90] and [AK90] for totally monotone

staircase matrices to skyline matrices. The first yields an algorithm which evaluates at most 0(ma(n) + n)

entries of the skyline matrix. For the staircase algorithm in [KK90], Klawe and Kleitman show that it is

also possible to initialize and maintain all the necessary data-structures, resulting in a total running time of

at most 0(ma(n) + n). So far we have not been able to extend this result to skyline matrices, and the best

bound on total running time for a skyline algorithm we can give at this point is 0(m log log n + n) which

is achieved by extending the simpler staircase algorithm of [AK90]. Like the staircase algorithms [KK90,

section 4], the skyline algorithms can be modified so that they possess an evaluation ordering property. This

property is a type of 'on-line' condition which is essential for applications involving dynamic programming

such as the economic lot-size problem of [AP90]. The question of extending the skyline algorithms to obtain

a o(m log n + n) time matrix searching algorithm for either v-matrices or h-matrices remains open.

In the next section we prove the lower bound for v-matrices and h- matrices. Section 3 contains the

extension of the staircase algorithm of [KK90] to skyline matrices. Section 4 discusses the data-structures

needed by our skyline algorithm, and proves that the extension of the [AK90] algorithm has 0(m log log n+n)

total running time. Section 4 also defines the on-line version, and shows how the [AK90] extension can be

modified to satisfy the on-line condition. The final section describes remaining open problems.

2. The Lower Bound

We assume that an algorithm for matrix searching in a partial matrix is given as input the pattern of

non-blank entries in the matrix. For av-matrix this is simply the positions of the top and bottom non-blank

entry in each column. We will refer to this pattern matrix indicating the positions of non-blanks as the

structure matrix (or structure v-matrix or h-matrix as appropriate) of the partial matrix. The algorithm

may query the value of any entry in the matrix at any time, and at the end must report the position of the

maximum [minimum] value in each row. We will prove a lower bound on the number of entries that must

be evaluated in the worst-case.

Our strategy to prove the lower bound is as follows. Given a fixed structure matrix, we define the concept

3

of an independence set for that structure matrix. Next we show, using a result by Wiernik which gives an

O(na(n)) lower bound on the left envelope of n line segments in the plane [W86], that there is a structure

matrix of size 2n x n possessing the column interval property which has an independence set of size O(na(n)).

Transposing this matrix gives a structure h-matrix of size 2n x n with an independence set of size O(na(n)).

The final step is to exhibit an adversary which can respond to queries in such a way that that the matrix

created is totally monotone, and such that any element of the independence set which has not yet been

queried is still a candidate, but not a certainty, for the maximum in its row. In the remainder of this section

we give the definition of independence set and show how Wiernik's result gives a structure matrix with the

desired size of independence set. For the v-matrix case we construct the adversary directly from Wiernik's

result, but this does not seem to work for the h-matrix case.

Given a set of line segments Ii, ... ,In in the plane, we define their left envelope to be the set of points

{ z : z E Ii for some i, and z is the leftmost point in the intersection of u3=1 l; with the horizontal line through

z}. Figure 2(a) shows a set of line segments and their left envelope. It is easy to see that the left envelope

is always the union of a finite set of line segments. Both Wiernik's lower bound and a recent simplification

by Shor [S89] spring from the original lower bound on Davenport-Schinzel sequences of order 3 by Hart and

Sharir [HS86]. A Davenport-Schinzel sequence of order 3 is a sequence of letters s1, •.. , Sk from an alphabet

of size n such that no two consecutive letters in the sequence are the same, and such that for any pair of

distinct letters a, b there do not exist indices i1 < i 2 < i3 < i4 < i6 with i1 = i3 = is = a and i2 = i4 = b.

In [HS86] Hart and Sharir proved 0(na(n)) bounds for the length of Davenport-Schinzel sequences of order

3 on n letters. It is easy to see that sequence of lines appearing in top to bottom order in the left envelope

of a set of n line segments in the plane is a Davenport-Schinzel sequence of order 3 on n letters. Thus, by

[HS86], the left envelope is made up of at most O(na(n)) segments, and Wiernik's construction shows that

this upper bound is tight. It is possible to construct the desired independence set and the adversary for

the v-matrix case directly from a Davenport-Schinzel sequence of order 3 on n letters in a fashion entirely

analogous to what we will do with the left envelope, but since the construction seems somewhat easier to

follow using the left-envelope version, we use that instead.

Let A be an n x m structure matrix. A subset SC {1, .. . , n} x {1, . .. , m} is said to be an independence

set for A if

(i) for every (i,j) in S, the entry A;j is non-blank and there exists some j' =fi j such that (i,j') is also in S,

and

(ii) for every i < i' and j < j' such that both (i,j') and (i',j) are in S, we have that either Ai; is blank or

A;•;• is blank.

For any matrix M we will call the ordered pair (i, j) the index of the entry M;j. Intuitively, the elements

of an independence set of a structure matrix are the indices of entries which will be potential row-maxima

when we construct the adversary giving the lower bound.

Let 11, . .. , ln be line segments in the plane such that their left envelope has O(na(n)) segments. For

each i let (xL yt) and (:i:~, y~) be the top and bottom endpoints of Ii respectively, and let L; be the infinite

line extending I;. Suppose the line segments are ordered so that whenever i < j, as y goes to oo the line

4

Li is eventually to the left of L;. We use the Ii to define a 2n x n structure matrix, A, as follows. Let

{w1 , ... ,w2n} = {yj: j = 1, 2; i = 1, ... ,n} arranged in decreasing order. Without loss of generality we may

assume that the { wi} are all distinct. The i-th row of the structure matrix corresponds to wi and the j-th

column corresponds to the line segment I;. More precisely, the top non-blank entry in the j-th column of A

is in the row i such that Wi = y{ and the bottom non-blank entry is in the row i' - 1 where w,, = 7A. A is

obviously a structure v-matrix. We now show that A has an independence set of size f2(no(n)). Figure 2(b)

shows the structure v-matrix corresponding to the line segments in Figure 2(a).

We start with a set T that is almost an independence set. The only way in which it may fail is that there

may be some rows in which T only has one entry. Let T = {(i,j): there is some Yo with Wi:;:: Yo> w,+1 such

that the line segment forming the left envelope at y = Yo is I;}. It is easy to see that A must be non-blank

at every (i,j) in T. Suppose i < i' and j < j' such that both (i,j') and (i',j) are in T, and suppose both

(i,j) and (i',j') are non-blank in A. Let z be they-coordinate of the intersection of L; and L;,. Because

of the ordering of the line- segments and the fact that (i,j') ET, it is not hard to see that we must have

z > w,+i and hence z > w.,. Since (i',j') is non-blank, it is impossible that (i',j) ET since I;, lies to the

left of I; for the entire interval between w,, and w,,+l· Thus at least one of (i,j) and (i',j') must be blank.

Figure 2(c) shows the set T for the line segments in Figure 2(a).

14
----------- W1

W2

I
w 3

----------+--+----w 4

1
2
3
4
5
6
7
8

(b) structure v-matrix

(a) the left envelope

1
5 2

3
4
5
6

6 7
7 8

8
(c) the set T

Figure 2

We complete the construction of the independence set, S, by removing all points from T which are the

unique point in their row. We claim that S has size O(no(n)). Since we removed at most 2n points, it

suffices to show that the size of Tis O(no(n)). This follows immediately from the observation that in any

5

interval in which no line segment begins or ends, each l; can occur in the left envelope at most once.

We now turn to the problem of constructing an adversary which will force a row-maxima finding algorithm

to evaluate every entry whose index is in the independence set. We first define av-matrix, M, whose structure

matrix is A. We then prove that M is totally monotone. Next we will define a set of v-matrices MI, such

that each MI has structure matrix A and agrees with M on all entries outside the independence set. We then

prove that each MI is totally monotone. Finally we construct an adversary for the searching algorithm such

that the positions of the row-maxima cannot be known until each element whose index is in the independence

set has been queried, and such that the final matrix will be MI for some f.

Let M be the v-matrix with structure matrix A defined by Mi.; = the maximum number of lines lying to

the right of l; at any point strictly between Wi and Wi+l whenever Ai; is non-blank. Note that Mi; assumes

a maximal value in row i if and only if part of l; is in the left envelope between Wi a.nd Wi.+l . The next

lemma proves that M is totally monotone.

Lemma 2.1. Mis totally monotone.

Proof. Suppose i < i', j < j' such that all entries of the 2 x 2 submatrix, Mi;, Mw, Mi'i, and Mi'i', are

non-blank, and Mi; $ Mw . We must show that Mi'j $ M,,;,. Let z be the y-coordinate of the intersection

of L; and L;,. Since j < j' we know L; lies to the left of L;, as y goes to oo. Since Mi; $ Mw we must

have I; lying to the right of I;, at some point strictly between w, and Wi.+1. Thus we must have z > wi+l

and hence z > Wi' since w,+1 ~ w,,. This shows that l; is to the right of l;, at every point between Wi.' and

w,,+ 1 , and hence M,,; $ M,'j'• I

For each function f from S to the non-negative real numbers, we define Ml to be the v-matrix such that

M/; = M,; + f(i,j) for (i,j) ES and M/; = Mi.; otherwise. The next lemma shows that Ml is totally

monotone.

Lemma 2.2. For any function / from S to the non-negative real numbers, the v-matrix Ml is totally

monotone.

Proof. Suppose i < i',j < j' such that all entries of the 2 x 2 submatrix, M{;,M{;,,M/,;, and M/,i', a.re

non-blank, and M{; $ M{;,. We must show that M/,; $ M/,;i· If none of the indices are in S this follows

from Lemma 2.1, so we may assume that at least one of the indices is in S. Since S is an independence

set, we cannot have both (i,j') and (i',j) in S. Also M{; $ M/;, implies that if (i,j) is in S then (i,j')

is also. Moreover, if (i', j') is in S then either (i', j) is also, or M/,; $ M/,i'. Thus it suffices to consider

the cases (i,j') ES and (i',j) ES. Suppose we have (i,j') ES. This implies that M,; $ Mw, a.nd hence

Mi 1; < Mi'i' by Lemma 2.1. In addition, M/,; = Mi'j since (i',j) (/. S, and Mi'j' $ M/,;, since f only

assumes non-negative values. Combining this gives M/,; $ M/,j' as desired. Now suppose (i',j) ES. Let z

be the y-coordinate of the intersection of L; and L;,. Since (i', j) E S we must have Wi' > z, and hence l; lies

to left of Ii' at every point between w, and wi+ 1 , contradicting the assumption M/; $ M{;,, and completing

the proof. I

6

,,

We are now ready to define the behaviour of an adversary for any row-maxima finding algorithm on

v-matrices with structure matrix A. When the algorithm queries the entry with index (i,j), the adversary

will respond with Mii for (i,j) ,J. Sand M;i + k + 1 for (i,j) ES, where k is the number of entries with

indices in S that the algorithm has queried so far. By Lemma 2.2 the matrix produced by the adversary

is totally monotone. Moreover, if (i,j) is the last index in S to be queried by the algorithm, the adversary

could answer M;i instead of M;; + ISi and still produce a totally monotone matrix. Since S has at least two

indices in row i, the question of whether Mi; is a row-maxima cannot be answered without evaluating it.

This shows that the algorithm must evaluate ISi = O(no(n)) entries of the v-matrix in order to determine

the positions of the row-maxima.

We now turn to the proof of the lower bound for the h-matrix case. Let A, T be the transposed versions

of the structure matrix and "pre-independence set" from the proof for the v-matrix case. Clearly A is a

structure h-matrix. As before let S be the set obtained by deleting any element of T which is the unique

element of Tin its row. It is easy to check that Sis an independence set for A because property (ii) of the

the definition of independence set is invariant under transposition.

We first define Si = {j : (i,j) E S}. Similar to the proof in the v-matrix case we will construct an

h-matrix M with structure matrix A such that for each function / from S to the non-negative reals, the

matrix Ml defined by M/; = M;; for (i,j) ,J. S and M{; = ISil + /(i,j) is totally monotone. Given M,

the adversary which forces a row-maxima finding algorithm to evaluate each entry with an index in S is

completely analogous to the v-matrix case. The construction of M takes a bit more work in this case than

in the v-matrix case. For each i let Ai= {(i,j) : A;j is non-blank}. We begin by defining a partial order on

each A;.

Let j, j' E Ai. We define a relation oq on A; by j ex; j 1 if any of the following hold:

(i) (i,j) (j. Sand (i,j') ES.

(ii) Neither (i,j) nor (i,j') are in S, j < j' and for some h < i we have (h,j') ES and Ah; non-blank.

(iii) Neither (i,j) nor (i,j') are in S, j' < j and for some i' > i we have (i',j') ES and A;,i non-blank.

Let -<i be the transitive closure of ex;, i.e. j -<; j' if for any k ~ 1 there exist io,ii, ... ,jk E Ai with

j = io <Xi ii <Xi ... ex; j k = j'.

Remark 2.3. Whenever p, q EA; with p -<; q we have (i,p) (j. S.

Proof. This follows immediately from the observation that whenever p, q E A; with p ex; q we have

(i,p) (j. S. I

Lemma 2.4. Suppose A is a structure h-matrix. Then -<; is a partial order on A.

Proof. Since -<; is obviously transitive, it suffices to show that we cannot have j -<; j for any j in A;.

Suppose the contrary. Let k ~ 1 and io,ii, ... ,jk E Ai such that j = io ex; i1 ex; ... ex; ik = j, and suppose

that j and k are chosen so that k is minimal, i.e. whenever ib <Xi it <Xi ... <Xi ji, = ib we have k' ~ k. It is

easy to check from the definition of <Xi that we never have j' ex; j' for any j' E A;. It is also not hard to see

7

that we cannot have j CX:i j' CX:i j for any pair j,j' in Ai, To see this, suppose without loss of generality that

j < j 1
• Then in order to have j CX:i j' CX:i j, we must have some h < i such that (h,j') ES and Ah; non-blank,

and some i' > i such that (i',j) ES and Ai'j' non-blank. However, this contradicts the independence of S

since we have h < i',j < j' with both (h,j') and (i',j) in Sand both Ahj and Ai'j' non-blank. Thus we

may assume that k ~ 3, and that io < j, for 8 = 1, ... , k-1. Also, note that (i,j,) is not in S for O :5 s :5 k.

This is obvious for O :5 s :5 k - 1 by Remark 2.3, and also for s = k since j,: = jo. Thus whenever j, < i,+1

there is some h, < i such that (h,, i,+1) E S and Ah.;. is non-blank, and whenever j, > i,+1 there is some

i, > i such that (i., i,+d E S and Ai.;. is non-blank.

Choose r such that !Jr - ir+i I is maximal. Without loss of generality we assume that Jr < ir+l (the proof

for the other case is symmetric). Let t such that it > j, for s -:/= t. It is not hard to prove that for any q

with io < q :5 j,, there is some s and some s' such that j, < q :5 j,+1 and j,,+1 < q :5 j,,. For example,

taking s to be maximal such that iw < q for each w :5 s, and s1 to be minimal such that ix < q for each

x > s' will do. Thus there is some y such that J11+1 < Jr+l :5 J11 • Now since lir - Jr+i I is maximal, we must

have Jr :5 i11 +1• We have hr< i < i11 and both (hr,ir+1) and (i11 ,J11+1) in Sand both Ah.;. and A;,;, are

non-blank. Moreover, since A has the row interval property and Jr :5 J11 +1 < Jr+l :5 j 11 , we must have that

Ah.i,+i and A;,;.+1 are non-blank. Now this contradicts the independence of S, completing the proof. I

lffor i = 1, ... , n we have a linear order <ion each Ai, we define the canonical partial matrix generated

by the { <i} to be the matrix M with Mi; = the position of j in the <i ordering of A, if A,; is non-blank,

and blank otherwise. We will say that a set {--<, :--<, is a partial order on A,} is consistent if whenever

j, j 1 E A; with J < j' and J --<; j', for every i' with i < i' and j, j' E A;, we have j --<;, j'.

Remark 2.5. If the linear orderings { <,} are consistent then the canonical partial matrix generated by

the { <,} is totally monotone.

Proof. This follows immediately from the definition of total monotonicity. I

Suppose --<; is a partial order on A; and j, j' are incomparable elements of A; with j < J'. We define

the partial order --<t (j, j') on A, to be the extension of --<, obtained by adding the relation j --<t j', and

similarly define the partial order --<i" (j, j') on A; to be the extension of--<; obtained by adding the relation

j' --<i" j. If P = {--<,: s = l, ... ,n} we use P/(i,j') and p,-(j,j') to denote the sets obtained by replacing

--<; in P by --<t (j, j') and --<i" (j, j') respectively.

Lemma 2.6. If P = {--<,: s = 1, ... , n} is consistent and j, j' are incomparable elements of A; with j < j',

then at least one of P/(j,j') and p,-(j,j') must be consistent.

Proof. Suppose not. Since P/(j,j') is not consistent, there is some i' > i with j,j' E A,, and j' --<,, j.

Similarly, since J>.-(j, j') is not consistent, there is some h < i with j, j' E Ah and j --<h j', but this contradicts

the consistency of P ·I

Corollary 2.7. If P = {--<,: s = 1, ... , n} is consistent then there is a consistent set P' of linear orderings

extending P.

8

Proof. This follows immediately from Lemma 2.6. I

Lemma 2.8. Suppose A is a structure h-matrix, and Ji, ... ,he E A, with ii ex, ... ex, j/c, Then if

(j, -J,-i)(jA:-}A:-i) < 0 for each s = 2, ... , k-1, then J1c cannot lie between J,-1 and j, for s = 2, ... , k-1.

Proof. First suppose j/c < JA:-i• This implies that J,-i < j, for each s = 2, ... , k - 1. Thus it suffices to

show j1c < J,-i for each s = 2, ... , k. The proof is by backwards induction on s. This holds for s = k since

we assumed j/c < JA:-i, so suppose 3 $ s $ k and j/c < J,-i. Since J,-2 ex, J,-1 there is some h < i such

that J,-2,J,-i E Ah and (h,J,-i) ES. Similarly as }A:-i ex; j1c there is some i' > i such that }A:-i,J1c EA;,

and (i' ,j1c) E S. If j1c 2: J,-2 then J1c E Ah because A has the row interval property and J,-2 $ j/c < J,-1,

This contradicts the independence of S. The argument for the case j/c > J1c-i is symmetric. I

Lemma 2.9. Suppose A is a structure h-matrix, and j 1, ... ,j/c E Ai with J1 ex; ... ex; i1c, where k 2:: 2.

Let p be minimal such that (j, - J,-d(j1c - J1c-i) > 0 for all s with p $ s $ k. Then j, lies between }p-i

and }p for s = 1, ... ,p.

Proof. The proof is by induction on k. It is obviously true for k = 2 so assume k > 2 and that the

hypothesis holds for k-1. Let q be minimal such that (j, -J,-i)U1c-i -i1c- 2) > 0 for alls with q $ s $ k-1.

Without loss of generality suppose i1c < i1c-i- If p $ k-1 it is easy to see that statement holds since clearly

p = q. Thus suppose p = k. This implies that (j, - J,-i)(jk - J1c-d < 0 for s = q, ... , k - l. Now by

Lemma 2.8, we have that j/c < J,-i for s = q, ... , k and the interval [.ik, ik-d contains the interval [j,-1, j,]

for s = q, ... , k - 1. This completes the proof as the interval [j q- i , j q] contains all the j, for s = 1, ... , q by

the induction hypothesis.,

Corollary 2.10. Suppose A is a structure h-matrix, Ji, ... ,jk E Ai with Ji ex:; ••• ex; j1r,, where k 2:: 2.

Then }k is either the maximum or minimum of {j, : 1 $ s $ k}.

Proof. Let p be as in Lemma 2.9. Without loss of generality suppose Jp < Jp+l < ... < }k-1 < }1.: , If p = 1

we are done so assume p > 1. Then }p < }p-l so by Lemma 2.9 it suffices to show that }p-1 < j1r,. If j1r, < }p-i

then Jp+i lies between }p and }p-i but this is impossible by Lemma 2.8 since (jp - }p-i)(Jp+l - }p) < 0.1

Lemma 2.11. Suppose x,y 2:: 2,a1 < .. ,a:,;,b11 < ... < bi,a1 < b11 and a:,;< b1 • Then there exist u,v with

2 $ u $.:z:,2 $ v $ y such that Ou-1 $ b~ <au$ bv-1•

Proof. Choose u, v 2:: 2 such that bv < au and such that au - bv is minimal. It is always possible to do

this since b11 < a:,; and x,y 2:: 2, and clearly by the minimality of au - bv we have au-l $ bv <au$ bv-l•I

Theorem 2.12. Suppose A is a structure h-matrix. Then the set { ~i} is consistent.

Proof. Suppose there exist i < i', j < j' such that j, j' E A; n A;, and j ~i j', j' ~i' j. Then there exist

k,k',i1, .. ,,j1c,jL ... ,j:.,, such that j = ii <Xi ... ex; ik = j' and j' = it ex;, ... cx:i, J:.,, = j. Moreover,

since j < j' by Corollary 2.10 we have j' > j, for s = 1, ... , k - 1 and j < j~ for s = 2, ... , k'. Let p be

minimal such that (j, - j,_i)(j1r, - J1c-i) > 0 for all s with p $ s $ k, and let p' be minimal such that

u; - J;_1)Ut, - jk,-1) > 0 for all s with p' $ s $ k'. By Lemma 2.9 we have Jp-1 $ j, Jp-1 < }p <

9

' < < . < . ., ., < ., d ' ., ., < < ., < ., N b L Jp+l ". Jk-1 Jk = J' J - Jp'-1 an J = 3kt < 31:'-l ". Jp, Jp'-1' OW y emma
2.11 there exist u, v ~ 2 such that iu-1 $ j~ < iu $ i~-l. Now since iu-1 < iu and iu-1 CX:i iu, there

is some h < i such that iu-l , iu E Ah and (h, iu) E S. Moreover, as A is a structure h-matrix, j~ must

be in Ah also. Likewise, as i~-l > j~ and j~-l CX:i' j~, there is some r > i' such that j~-l, j~ E Ar and

(r,j~) E S. Finally, as A is a structure h-matrix, iu must be in Ar also. Combining all this we have

h < i < i' < r, j~ < iu, (h,ju) ES, (r,j~) ES and both (h,j~) and (r,ju) non-blank, contradicting

the independence of S ·I

By Corollary 2.7, there is a consistent set, { <i}, of linear orderings which extend the set {-<i} of partial

orders. Let M = (Mi;) be the canonical partial matrix generated by the {<i}, By Remark 2.5, Mis a

totally monotone. Thus M is an h-matrix with A as its structure matrix. Recall that for any function f
from S to the positive reals, we define the matrix Ml by M/; = Mij for (i,j) ft.Sand M{; = ISil + f(i,j).

Theorem 2.13. The partial matrix Ml is totally monotone.

Proof. Suppose i < i',j < j' such that all entries of the 2 x 2 submatrix, M/;,M/;,,M{,j, and M/,j',
are non-blank, and M/; $ M{;,. We must show that M/,; $ M/,;,, There is nothing to prove if none of

the indices are in S since M is totally monotone. Also note that if exactly one of indices in a row is in S

then the relationship between the two entries in that row is the same in M and in MI. It is not hard to

see that this implies we may restrict our attention to the two cases {i,j),(i,j') ES and (i',j),(i',i') ¢ S;
and {i,j),(i,j') ¢Sand (i',j),(i',j') ES. Suppose (i,j),(i,j') ES and (i',j),(i',j') ¢ S. Then by the

definition of Oi' we have jai,j' and hence Mi'j < Mi'j'· The argument for the other case is analogous. I

As we noted at the beginning of the proof for the h-matrix lower bound, given Theorem 2.13 the remainder

- of the proof of the lower bound for h-matrices can now be completed along entirely analogous lines as the

proof for the v-matrix case.

3. The Matrix Searching Algorithm for Skyline Matrices

In this section we extend the almost linear time row-minima finding algorithm of [KK90] to skyline

matrices. The algorithm can trivially be converted to a row-maxima finding algorithm for skyline matrices.

In the case that a row has more than one entry with the minimum value, we follow the usual matrix searching

convention of using the term row-minimum to mean the leftmost entry with the minimum value.

Recall that a skyline matrix is av-matrix in which every non-blank column segment ends at the bottom

row. The extension of the staircase algorithm follows from the following observation. Suppose that, given

some particular type of partial totally monotone matrix, we choose a parameter t and let qe(t, n, m) denote

the worst-case number of comparisions between matrix entries needed to find the row- minima of any of this

type of partial matrix with at most n rows, m columns, and parameter value at most t. Then if this function

qc(t, n, m) satisfies the three key propositions in [KK90], namely Lemma 2.1, Corollary 2.4 and Theorem

2.6, it will also satisfy Theorem 2.9, i.e. qc(n, n, m) = O(ma(n) + n). Moreover, if as in [KK90] each of the

10

propositions is proved by means of an algorithm, these algorithms can be combined as in [KK90] to provide

a row-minima finding algorithm using O(ma(n) + n) comparisons.

For simplicity and completeness we restate the three key propositions from [KK90]. As in [KK90] we

define the functions L;(n) for i = -1,0,1,2, ... recursively as follows. L-1(n) = n/2, and for i 2 0,

L;(n) = min,{L[_ 1(n) $ 1}. Thus L0 (n) = nognl,L1(n) is essentially log•(n),L2(n) is essentially log .. (n)

etc. We now define a(n) = min{s: L,(n) $ s}.

Proposition 3.1 (Lemma 2.1 in [KK90]). For any positive integer a we have

qe(n, n, m) $ qe(n/a, n, m) + O(am + n).

Proposition 3.2 (Corollary 2.4 in [KK90]). For any positive integer a we have

qc(n, n, m) $ qc(n/a, n/a, m) + O(am + n).

Proposition 3.3 (Theorem 2.6 in [KK90]). There is a constant c1 such that for s 2 0 we have qc(n, n, m) $

c1(m + nL,(n)) + maxn=~=l qc(ndL,-1(n;), n;, m;): E~=l n; $ nL,(n) and E~=l m; $ m + nL,(n)}.

For M a skyline matrix, we will say that row i is a top row if it is the top row of some column's non-blank

segment. A skyline matrix Mis said to be of shape (t, n, m) if it has at most t top rows, at most n rows and

at most m columns. We will denote the worst case number of comparisons between matrix entries needed

to find the row-minima of a skyline matrix of this shape by qc(t, n, m). Proving that the three propositions

above hold for this definition of the function qc, provides an 0(ma(n) + n) on the number of comparisons

needed to find row-minima in skyline matrices. The proofs of Propositions 3.1 and 3.3 are very similar

to those in [KK90] for staircase matrices, but the proof of 3.2 is a bit more subtle than the proof of the

_ corresponding result for staircase matrices. Thus we sketch the proof of 3.1 to indicate how the arguments

must be modified for skyline matrices, give a complete proof of 3.2, and omit the proof of 3.3.

In order to translate the proofs for staircase matrices to skyline matrices we need to give the appropriate

definitions of various terms in this setting.

For each column j of M let t(j) be the top row of the non-blank segment For each i, the i-th slice of M

is the set of columns {j : t(j) = i}. in column j. For i $ k and j $ I, we will use the notation M[i, k; j, ~

to denote the skyline matrix obtained by taking the intersection of rows i, ... , k of M with columns j, ... , I

of M. For any positive integer a, we define the stepsize a approximation of M to be the submatrix of

M obtained by, for each j with t(j) $ aln/aJ, truncating the non-blank entries in column j so that the

non-blank segment begins at row art(j)/al, and for each j with t(j) > aln/aJ replacing all the entries in

column j with blanks. We denote the stepsize a approximation of M by Ma, An example is illustrated in

Figure 3. Clearly Ma is a skyline matrix of shape (ln/aJ, n, m). We define the a-border matrices of M,

which we denote by M(a, i) for i = 1, ... , rn/al, by M(a, i) is the skyline matrix with at most a - 1 rows

whose non-blank entries are the non-blank entries of Min rows (i - l)a + 1, ... ,min(ia - 1, n) which are

blank in Ma, An example of a-border matrices is also illustrated in Figure 3. We will denote the set of a

border matrices of M by r(M, a). It is easy to see that the skyline matrices Ma, M(a, 1), ... , M(a, r n/a l)
disjointly cover the non-blank entries of M.

11

M

Stepsize a approximation M a

a

2

3

4

Figure 3

M(a,l)
___ ,.__

M(a,2) ..,. __________ .,_

M(a,3)

M(a,4)
-1-----L----IIII-IIL.f-..__ _________ _. M(a,5)

a-border matrices

Given these definitions, the proof of the first proposition is identical to the proof of Lemma 2.1 in [KK90].

Proposition 3.1. For any positive integer a we have

qc(n, n, m) :5 qc(n/a, n, m) + O(am + n).

Proof. Let M be a skyline matrix of shape (n, n, m). Since the stepsize a approximation Ma is of shape

(n/a, n, m), it can be processed in qc(n/a, n, m) time. Since the total number of non-blank entries in the

a-border matrices M(a, i) for i = 1, ... , Ln/aJ, is less than am we can process these border matrices in O(am)

time. Finally in O(n) comparisons we can compare the row-minima found in Ma with the row-minima found

in the a-border matrices, and hence determine the row-minima of M. •

The proof of the second proposition requires a little more care than the corresponding proposition for

staircase matrices.

Proposition 3.2. For any positive integer a we have

qc(n, n, m) :5 qc(n/a, n/a, m) + O(am + n).

Proof. Let N be a skyline matrix of shape (n, n, m). By the proof of Proposition 1 it suffices to show that

finding the row- minima of the stepsize approximation matrix, Na, can be reduced to finding the row-minima

of a skyline matrix of shape (n/a, n/a, m) in O(m + n) time. Let M = Na, and for each j let t(j) be the

row such that the non-blank segment of column j of M begins at row t(j). Let S be the Ln/aJ x m skyline

matrix where Si,j = Mai,j if t(j) :5 (i - l)a and is blank otherwise. Let s(i) be the column containing the

minimum value in row i of S, and let d(i) such that Mai,d(i) is minimal among the Mai,j such that t(j) = ai.

12

Finally let j(i) be the column containing the minimum value in row ai of N. Note that j(i) must be either

s(i) or d(i). Note that Sis a. skyline matrix of shape (n/a, n/a, m). Thus it suffices to show that given the

{s(i)}, the row minima of the rows of Ma can be found in O(m + n) time.

We first note that we can find the d(i) in at most 0(m) time since we only need to look at one entry

in each column, Let r = Ln/aJ. For each i = 1, ... , r + 1 let J(i) be the set of columns {j : s(i) ::5 j ::5
j(i - 1),t(j) :5 a(i - 1), and j ::5 s(k) for each k < i such that t(j) :5 a(k - 1)}, where we adopt the

convention that j(0) = m and s(r + 1) = 1. Let A(i) be the matrix consisting of the intersection of rows

a(i - 1) + 1, ... , min(n, ai - 1) of M with the columns in J (i). An example is shown in Figure 4.

A(2) I
A(3) ~

A(4) I
A(S) I
A(6) ~

a

5

d(S) j(S)=s(S)

Figure 4. The matrices in the proof of 3.2
Border
matrices

We claim that each A(i) is a totally monotone matrix containing all the row minima in rows a(i -

1) + 1, ... ,min(n,ai - 1) of M, and'[:~;: IJ(i)I ::5 m + r + 1. We now prove this claim. It is easy

to see that each A(i) is a totally monotone matrix since j in J(i) implies that column j has no blank

entries in rows a(i - 1) + 1, ... , min(n, ai - 1). We now show that A(i) contains all the row minima in rows

a(i-1)+1, ... , min(n, ai-1) of M. In other words, for each j not in J(i), and a(i-1)+1 ::5 h ::5 min(n, ai-1),

we must show that Mh,j is not a row minima. If t(j) > a(i - 1) then t(j) ~ ai so MhJ is blank, and hence

not a row minima. Thus we may assume t(j) :5 a(i - 1). Now by total monotonicity, if j < s(i) then we

must have Mh,j > Mh,,(i) and if j > j(i -1) then we must have Mh,j(i-l) :5 Mh,j, so in either case Mh,; is

not a (leftmost) row minima. Finally suppose j > s(k) for some k < i such that t(j) :5 a(k - 1). Again by

total monotonicity we have Mh,; ~ Mh,,(k) so again MhJ is not a row minima.

We now show that '[:~; { I J (i) I :5 m + r + 1. It suffices to show that for i < i', the sets J (i) \ { s (i)} and

13

J(i') are disjoint. Suppose j belongs to both J(i) and J(i'). Then since i < i' and t(j) :5 a(i- I) because j

is in J(i), we must have j :5 s(i) because j is in J(i'). However j in J(i) implies j 2: s(i) and hence j = s(i).

The proof is completed by observing that applying the linear time SMAWK algorithm of [AKMSW90] to

find the row minima of the A(i) requires at most O(n + E~:!'t IJ(i)I) = O(m + n) time. I

4. Data-Structures and the On-line Version

As in [KK90] the proofs of the three propositions in the preceding section actually provide a row-minima

finding algorithm for skyline matrices which uses O(mo(n) + n) comparisons between matrix entries. How

ever, in order to bound the total running time of this algorithm, we need to consider the time needed by the

algorithm to initialize and maintain appropriate data-structures. In [KK90] it is shown that for staircase

matrices this can be done in time linear in the number of comparisions, thus yielding an 0(mo(n) + n) bound

on the total running time. Unfortunately the situation for skyline matrices seems to be more complicated,

and so far the best bound on total running time that we have been able to achieve is 0(m log log n + n)

using a simpler row-minima finding algorithm for which the bound on the number of comparisions is also

O(mloglogn + n). We now sketch how this bound is obtained, beginning with a description of the data

structures used. At the end of this section we sketch how to modify this simpler row-minima finding algorithm

so that it satisfies the on-line constraint needed for dynamic programming applications, while retaining the

0(m log log n + n) bound on the total running time. By modifying the more complicated algorithm, one

can obtain an on-line algorithm using O(mo(n) + n) comparisons, but the best total running time we can

achieve for that algorithm at this point is only 0(mo(n) log log n + n).

The data-structures used are fairly similar to those described in [KK90] for staircase matrices. We

represent each skyline matrix as a sub-skyline matrix of some large totally monotone matrix U, using the

following set of data-structures.

Integer variables #ROWM and #COLM containing the number ofrows and columns respectively.

An array, RM, of length #ROW M where RM [i] contains the number of the row of U which contains the

i-th row of M, and a flag indicating whether or not the i-th row of M is a top row of M.

An array CM of length #COLM which contains the column information for M. More precisely, the i-th

item in CM contains the number of the column of U which is the i-th column of M and the number t(i) of

its top-row. For simplicity we will abuse our notation and use CM[i] to denote the number of the column

of U which is the i-th column of M. We will always have CM[l] < ... < CM[m], where mis the number of

columns of M.

A set of doubly-linked lists linking together, in left-to-right order, the columns with the same top-row.

We will refer to the linked list of columns with t(i) = j as the j-th top-row list.

A pointer array TM of length #ROWM with TM[j] containing a pointer to the first item in the j-th

top-row list if j is a top-row , and null otherwise.

14

The output information will be stored in a pointer array oflength #R0WM named MINM, For each i,

the entry MIN M [i] will contain a pointer to the j(i)-th item of CM, where the j(i)-th column of M contains

the minimum value of the i-th row of M.

The main problems which arise in trying to maintain the data-structures during the operation of the

algorithm are as follows. First, when we form border matrices, we can use the top-row lists to determine

which columns are in each border matrix, but we will need to resort the sets of columns in each border

matrix to obtain the correct ordering for the column array. This can be done in time linear in the number of

rows and columns if we first determine to which border matrix of each column will belong, and then bucket

sort the columns (taken in their left to right order) into buckets according to border matrix. For on-line

variants it may or may not be possible to do this, depending on whether the structure of the matrix (i.e.

the values of top-rows) is specified as part of the initial input. For the case of the algorithm below, we use

a multi-radix sort since we will be able to assume that the number of columns in each border matrix is

bounded by a polynomial in its number of rows. A similar problem arises in constructing the top-row lists

for stepsize approximation matrices, but can be handled in the same manner.

A more serious problem involves how to determine the sets of columns, J(i), needed in the algorithm

specified in the proof of Proposition 3.2. The best approach we know of involves the use of priority

queues, and would require 0(m log log n + n) time to obtain the J (i), resulting in a total running time

of 0(ma(n) log log n + n). In order get rid of the a(n) factor in the bound on the running time, we revert to

a simpler algorithm with a bound of 0(m log log n + n) on the number of comparisons made, and show that

for this algorithm the time needed to initialize and maintain the data-structures is of the same order as the

number of comparisons made. The algorithm we use is essentially the skyline variant of the O(mlog log n+n)

algorithm for staircase matrices given in [AK90], in the same sense as the algorithm discussed in section

• 3 is the skyline variant of the staircase algorithm in [KK90]. The algorithm is obtained by applying the

algorithm in the proof of the following proposition recursively. Let q(n, n, m) denote the total time needed

to find the row-minima of a skyline matrix of shape (n, n, m).

Proposition 4.1. We have q(n, n, m) $ O(m+ n) + I:19~-rn+2 q(y'n, y'n, m,) where I:1~•~./n+2 m, $ m.

Proof. Let N be a skyline matrix of shape (n, n, m). We first note that if m ~ n2 then we easily can

find the row minima of N in O(m + n) time. This is done by partitioning the columns of N according to

their top-row, yielding at most n rectangular matrices. Now we apply SMAWK to each of these rectangular

matrices to find their row-minima and finally obtain the row-minima of N by comparing the row-minima

from the rectangular sub-matrices. Since the columns in the sub-matrices are disjoint the total time is

0(n2 + m) = O(m).

Thus we may assume m $ n2• For this case the algorithm is basically similar to that in the proof

of Proposition 3.2. Let a = L vnJ. Given the row-minima of the a-border matrices and of the stepsize

approximation matrix, Na, in 0(n) time we can determine the row-minima of N. It is straightforward

to create the data-structures for the a-border matrices in 0(m + n) time from the data-structures of N

except for the problem noted above of obtaining the left-to-right order of the columns in each border matrix.

However since m $ n2 we can use an 0(y'n) time multi-radix sorting algorithm to sort the columns of each

15

border matrix according to their position in N. Similarly the data-structures of Na can be created from the

data-structures for N in 0(m + n) time, using a multi-radix sort to obtain the top-row lists.

Since each a-border matrix is of shape (../n, ../n, mi), since there are at most ../n + 2 of them, and since

their columns are disjoint, it suffices to show that the total time needed to find the row-minima of Na is

0(m + n). Let M, t(j), S, s(i), j(i), J(i), and A(i) be as in the proof of 3.2. As we noted in proving 3.2,

given the s(i) the total additional time needed to find the j(i) is 0(m + n). Moreover, given A(i) and the

appropriate data- structures we can use SMAWK to find the row-minima of the A(i) and hence of M in

0(m + n) time. As described in [AK90], the necessary data-structure for applying SMAWK to each A(i) is

a doubly-linked list of the columns of A(i) in left-to-right order. Since we can also use a multi-radix sort to

get the left-to-right order of the columns of the A(i), it suffices to show how to obtain the sets of columns,

namely the J(i). Thus we must show how to find the s(i) in 0(m + n) time, and given the s(i) and j(i),

how to obtain the J(i) in 0(m + n) time.

It is trivial to construct the data-structures for S from the data,. structures for M = Na in 0(m + n)

time. Moreover, finding the s(i) is easy since like the case where m ~ n2 we can partition S into 0(../n)

column-disjoint totally monotone matrices (i.e. according to their top-row) and apply SMAWK to each of

these matrices. Now for each row of S we compare the 0(../n) possible candidates for row- minima to find

the minimum value. Since S has 0(../n) rows the total time used is 0(n + m).

Thus we have reduced the problem to the final task of producing the J(i) given the datar-structures for

Mand pointers to the s(i) and the j(i) for each i. Recall that J(i) = {j : s(i) ::5 j ::5 j(i -1), t(j) ::5 a(i -1),

and j ::5 s(k) for each k < i such that t(j) ::5 a(k -1)}, and let TR(k) = {j: t(j) = a(k - 1)}. Thus T(k) is

the set of columns with top-row equal to kin S. Let J(i)k = J(i) n TR(k). We have J(i) = n29s, J(i)k,

and we obtain J(i) in increasing order of i by examining the top-row lists of S to find the members of each

J(i)k for 2 ::5 k ::5 i. In order to do this efficiently we keep track of the variable s•(i) = min{s(j) : 1 ::5 j < i}

and maintain a pointer into each of the top-row lists of S to the largest numbered (i.e. rightmost) column

in each top-row list which is smaller than (i.e. to the left of) s*(i). In order to find the columns in J(i)k
we begin at the column pointed to in the k-th top-row list and walk back, inserting columns into J(i)k until

we encounter a column with a smaller index than s(i). We then reset the pointer to that column. This

procedure may take 0(..,/n + m) time for the cases i = 1, 2 because of the need to set the pointers into the

top-row lists, but for each i > 2 it is easy to see that the time used to create J(i) is 0(..,/n + IJ(i)I, Since

Ei IJ(i)I = 0(m + n) as proved in 3.2, the total time is thus 0(m + n) as desired.a

We now turn to defining an on-line version of matrix searching for skyline matrices that is needed for

dynamic programming applications [AP90].

For each j with 1 ::5 j ::5 m let b(j) = max{O,t(i): 1 ::5 i ::5 n,t(i) < t(j)}. We will call row b(j) the

foundation row for column j . . Note that ifwe adopt the convention that the 0-th row is a top row which

contains only blanks, then the foundation row for a column is the highest numbered top row with which the

column's intersection is blank. Recall that the i-th slice is the set of columns {j : t(j) = i}. Note that the

i-th slice is non-empty if and only if row i is a top row. We will call a row-minima finding algorithm for

skyline matrices on-line if it satisfies the following constraint:

For each j with b(j) > 0, the algorithm always determines the minima of rows 1, ... , b(j) before querying

16

values of the non-blank entries in column j.

In general we assume that an on-line algorithm does have the information specifying the structure matrix

at the beginning of the computation, and so the only restriction is on the order of evaluation of entries

in the skyline matrix. This assumption is consistent with the requirements of the applications to dynamic

programming.

In [KK90) it was shown how the O(mo(n)+n) algorithm could be modified to satisfy the on-line constraint

above, but in order to make the modification work it was necessary to prove the algorithm satisfied an

additional constraint. Klawe and Kleitman referred to an on-line row-minima finding algorithm for skyline

matrices as ordered if it also satisfied the constraint that it used no information about the columns in the

i-th slice until after the minimum in row i - 1 had been found. Thus when an ordered algorithm begins

processing the staircase matrix M, the only initial information it has is the set of rows of M (i.e. the

information in RM), and the column information for the first slice. The techniques from [KK90) can be

used to modify the skyline algorithm discussed in section 3 to obtain an ordered skyline algorithm using

0(ma(n) + n) comparisons, but since the bound on total running time for this algorithm is worse, we

concentrate on showing how to modify the simpler algorithm of this section to obtain an on-line algorithm

with O(mloglogn + n) total running time. Since the ideas are also largely based on [KK90), we merely

provide a sketch, emphasizing the points where the skyline case needs more care.

Let us call the algorithm obtained by recursively applying the procedure described in the proof of 4.1 the

AK algorithm. In order to make the AK algorithm an on-line algorithm we must change the structure of

its recursive calls. Let us refer to the finding of the row-minima of a skyline matrix as the processing of

that skyline matrix. In order to convert the AK algorithm into an on-line algorithm we must interleave the

processing of S (i.e. finding the s(i) and the (j(i)) with the recursive calls to process the border matrices,

and the processing of the A(i) by the SMAWK algorithm. It is fairly straightforward to see how to do this,

but it may be helpful to examine the example shown in Figure 4 while following the discussion below.

We begin by running the on-line version of the AK-algorithm on the top border matrix. After this has

finished we examine the appropriate entries in row a of N to find d(l) = j(l). We can do this since at

this point we have found all the row minima for rows less than a. We next start processing S to find s(2).

Specifically we run SMAWK on the rectangular matrix consisting of the columns in S which have 2a as

their top row. Since each of these has its top row in N less than or equal to a, its foundation row is less

than a and hence we may evaluate any entry in this rectangular matrix at this time. After finding s(2), we

can obtain the set J(2), and hence the matrix A(2). Since each column in J(2) has its foundation row less

than a we can evaluate any entry in A(2) at this point, and hence can use SMAWK to find its row minima.

Next we process the border matrix which is second from the top using a slight modification of the on-line

version of the AK-algorithm. The modification is that whenever we have computed the minimum value of a

row in this second border matrix, we immediately compare it with the corresponding minimum for A(2) to

determine the minimum value for that row in N. We are now ready to determine d(2) and hence j(2), then

continue processing S to find s(3), then A(3), then the third border matrix, etc. We continue in this way

until we have determined all the row-minima of N.

17

5. Open Problems

There are many interesting problems in matrix searching which remain open (see [AP88] for example).

In this section we restrict ourselves to problems related to upper and lower bounds for matrix searching in

partial matrices. The first obvious group of problems concerns closing the gap between the current upper and

lower bounds for the partial ma.trices discussed in this pa.per. Specifically for staircase and skyline matrices

we have O(ma(n) + n) upper bounds ([KK90] and this paper respectively) for the number of evaluations

made in searching matrices of size n x m but only linear lower bounds. For skyline matrices, it would be

interesting to find an algorithm with an O(ma(n) + n) bound on the total running time (as instead of on

the number of comparisons). For v-ma.trices and h- matrices there are fairly straightforward 0(m log n + n)

upper bounds [AS89] and lower bounds of O(na(n)) (this paper). It would be interesting to improve these

lower bounds to O(ma(n)) for the case m > n. Another problem which seems to be difficult is to find a

better upper bound for horizontal skyline matrices, i.e. h- matrices in which each row's non-blank segment

starts in the first column.

A completely different direction involves Monge matrices [AP88]. These are matrices which satisfy the

condition, for every i < i', j < j' such that all entries of the 2 x 2 submatrix, M;;, Mw, M;,;, and M,,;,, are

non-blank, we have M;J + M;'J' ~ Mw + M;,;. It is easy to see that Monge implies totally monotone but

the reverse is not true. In most applications of totally monotone matrices, the matrix in question is actually

Monge, so it would be worthwhile to get a superlinear lower bound for matrix searching of Monge matrices.

Finally, there are a number of open problems concerning the techniques used to prove the lower bound

for h-matrices. First, is it possible to find a simpler construction of the matrix M directly from the line

segments and their left envelope as was done in the v-matrix case? Next, for any structure matrix A with an

independence set S, one can define the relations {oc:;} as was done in section 2. It is easy to find structure

matrices in which some of the { ~i} are not partial orders. It seems natural to try to characterize the family

of structure matrices for which { ~i} is a consistent set of partial orders. This paper proves that structure

h-matrices have this property, and we believe that a similar proof can be given for structure v-matrices

though it seems to be slightly more difficult. We conjecture that in fact this will hold for any structure

matrix in which for every non-blank entry, the set of non-blank entries in either its row or column form a

contiguous segment.

References

[AKMSW87] A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. Wilber, Geometric applications of a

matrix searching algorithm, Algorithmica 2(1987), pp. 195-208.

[AK90] A. Aggarwal and M. Klawe, Applications of generalized matrix searching to geometric algorithms,

Discrete Applied Math 27(1990), pp.3-23.

[AP88] A. Aggarwal and J. Park, Notes on searching in multidimensional arrays, Proc. 29th Ann. IEEE

Symposium on Found. Comp. Sci. (1988), pp.497-512.

18

[AP90] A. Aggarwal and J. Park, Improved Algorithms for Economic Lot- Size Problems, submitted to

the Journal of Operations Research.

[AS87] A. Aggarwal and S. Suri, Fast algorithms for computing the largest empty rectangle, Proc. 3rd

Ann. Symp. Comp. Geom.(1987) , pp .278-290.

[AS89] A. Aggarwal and S. Suri, Computing the farthest visible pair in a simple polygon, preprint.

[E88] D. Eppstein, Sequence comparison with mixed convex and concave costs, to appear in J. Algorithms.

[EGG88] D. Eppstein, Z. Galil and R. Giancarlo, Speeding up dynamic programming, Proc. 29th Ann.

IEEE Symposium on Found. Comp. Sci. (1988), pp.488-496.

[EGGI90] D. Eppstein, Z. Galil, R. Giancarlo and G. Italiano, Sparse dynamic programming, Proceedings

of the First ACM/SIAM Symposium on Discrete Algorithms, 1990, pp. 513-522.

[GG89] Z. Galil and R. Giancarlo, Speeding up dynamic programming with applications to molecular

biology, Theor. Comp. Sci. 64 (1989), pp. 107- 118.

[GP90] Z. Galil and K. Park, A linear time algorithm for concave one- dimensional programming, to

appear in IPL.

[HS86] S.Hart and M.Sharir, Nonlinearity of Davenport-Schinzel sequences and of generalized path com

pression schemes, Combinatorica 6 (1986), pp. 151-177.

[HL87] D.S. Hirschberg and L.L. Larmore, The least weight subsequence problem,SIAM J. Computing

16, (1987), pp. 628-638.

[KK90] M. Klawe and D.J. Kleitman, An almost linear time algorithm for generalized matrix searching,

SIAM J . Discrete Math., Vol. 3, No. 1(1990) pp. 81-97.

[LS90] L. Larmore and B. Schieber, On-line dynamic programming with applications to the prediction of

RNA secondary structure, Proceedings of the First ACM/SIAM Symposium on Discrete Algorithms, 1990,

pp. 503- 512.

[S89] P. Shor, Geometric Realizations of Superlinear Davenport-Schinzel Sequences, preprint 1989.

[T75] R.E. Tarjan, Efficiency of a good but not linear set union algorithm, JACM 22 (1975), pp. 215-225.

[W86] A. Wiernik, Planar realizations of nonlinear Davenport-Schinzel sequences by segments, Proc. 27th

Ann. IEEE Symposium on Found. Comp. Sci. (1986) , pp. 97-106.

[W88] R. Wilber, The concave least weight subsequence revisited, J . Algorithms 9 (1988), pp.418-425.

19

