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Abstract 

The Bjorck-Pereyra algorithm for Va.ndermonde systems is known 
to produce extremely accurate results in some cases, even when the 
matrix is very ill-conditioned. Recently, Higham has produced an error 
analysis of the algorithm which identifies when this behaviour will take 
place. In this paper, we observe that this analysis also predicts the 
error behaviour very well in general, and illustrate this with a. series 
of extensive numerical tests. Moreover, we relate the computational 
error to that caused by perturbations in the matrix elements, and 
show that they are not always commensurate. We also discuss the 
relationship between these error and perturbation estimates with the 
"effective well-condition" of Chan and Foulser. 

1 Introduction 

The numerical solution of Vandermonde systems of equations, in primal form 
V x = b or dual form VT y = c, where 

V= 

•Computer Science Department, University of British Columbia, Vancouver, Canada. 
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is of special interest, because the systems arise frequently and because 
they can be very ill-conditioned. The algorithms of choice for these sys­
tems were derived by Bjorck and Pereyra [2), and can be described as a UL 
factorization of v-1 (see Golub and Van Loan [5) pg. 178) with 

(1) 

where 

1 
-0'.k 1 

-ak 1 

[ I, I . D;1 = O'.k+t -0'.1 

O'.n -0'.n-k 

and Uk= Lf(l). The primal system Vx =bis solved via 

(2) 

and the dual system vr y = c via y = LTUT c. We shall refer to both primal 
and dual algorithms as the BP algorithms. These BP algorithms are preferred 
over standard Gaussian elimination from the standpoint of computational 
effort since they require only O(n2

) operations. 
The accuracy of the BP algorithms has been a matter of some debate, 

with very high accuracy reported in some cases, even when the matrix V 
was ill-conditioned. Recently, in a series of papers, Higham [6), [7), [10) has 
shown that the error in the computed solution can be small (of the order of 
the machine precision) independent of the condition number of V, when the 
{ai}i are positive and increasing order. 

In this paper, we attempt to clarify and extend Higham's excellent work, 
for the special case of monomial, non-confluent Vandermondes. In particular, 
we try to examine the error behaviour as the data vector changes, to relate 
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the errors to changes in the solution caused by perturbations in the { a:i}, 
and to estimate the error when other orderings of the { a:i} a.re used. We 
also relate the error behaviour to that of Gaussian elimination, and to the 
"effective well-conditioning" of Chan and Foulser [4], and compare the errors 
obtained in primal and dual systems. We also report on a series of extensive 
numerical tests. 

2 Errors and Perturbations 

In his first paper [6], Higham treats the BP algorithms as vector recurrences, 
and uses an ingenious argument based on majorizing sequences to produce 
a bound for the accumulated roundoff error in the computed solution x or 
y, under the assumption that the O'.i are positive and in increasing order. 
A simpler argument, based on the matrix formulation, is given in [10] and 
extended to sys tems arising from polynomials with three term recurrence 
relations. 

Basically, the argument is as follows: for the primal system, 

x = ff(ULb) = OLb, 

where 
(; = U1D1 • • • Un-lDn-1, i., = i.,n-1, •, 1.,1 

and each t - Li + Ei, IEil S 77jLil (and similarly for Oi, b-;1 
). Here 77 

denotes the unit roundoff error. Thus 

where F consists of all the first order terms in 77 in the difference U 1., - UL. 
One finds that 

IF!sc(n,77)G 

with 
(4) 

In [10], c(n, 77) = 8n17 + 0(172
) but that analysis covers a more general case; 

in [6], the constant obtained in 5n17 + 0(772
) and it is easily seen that this 

constant applies here as well if one is considering only Vandermonde systems. 
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So far, the analysis makes no restrictions on the { o:i}. However, if O :5 
o:1 < o:2 < ... < o:n, the diagonal elements of Di are positive and U; and L; 
have checkerboard sign patterns, giving 

D = diag(-l, +l, -1, -1, ... ). This implies that 

G = IU1D1.;. Un-1Dn-1Ln-l • .. Lil= IUI ILi = 1v-11 
and hence that 

Ix - xi :5 c(n, 17 )IV-1 I lbl and second order terms. 

Converting this to norms gives 

llx - xlloo 
llxlloo :5 c(n,ry)O(x) 

where 
ll( ) = II 1v-11 lbl lloo 
u x - llxlloo · 

A similar bound holds for the dual system VT y = c. 
As x (orb) varies, the error bound O(x) varies significantly: in fact, 

(5) 

The maximum value (11: 8 (V) = Skeel condition number of V) is attained for 
x = e = ( 1, 1, ... , 1 l and the minimum value 0 = l is attained when ever 
lbl = Db (that is, when the components of b alternate in sign). 

Although 0(x) was derived as an error bound, it has been our experience 
that 0(x) also estimates the actual error incurred by BP algorithm very well. 
This is demonstrated in our numerical results in Section 5. Moreover, O(x) 
can be efficiently estimated in practice using condjtion number estimators 
( see Higham {8]). 

Clearly, fJ(x) can be thought of as a measure of conditioning for the 
BP algorithms; the corresponding measure for Gaussian elimination without 
pivoting for Vandermonde systems is 

(V ) _ 11 1v-11 IVI lxl lloo 
"-11 'X - llxlloo . 
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We can use 11:.,(V, x) here in place of the usual ( and larger) 11:(V) since V is 
totally nonnegative, and thus its computed LU factorization (without piv­
oting) has a small component-wise relative backward error, which implies 
a forward error involving 11:.,(V, x) not 11:(V). See Higham [10] and Arioli, 
Demmel, and Duff [l]. 

Since O(x) ~ 11:.,(V, x) ~ ,c.,(V), we can expect the BP algorithm to be 
more accurate than Gau,ssian elimination in general, and again this is demon­
strated by our numerical results (with a few notable exceptions). 

In [10], Higham also shows that the computed solution x satisfies a back­
ward error result - that is, xis the exact solution of a system (V + E)x = b. 
However this new system is no longer Vandermonde, and the question still 
remains of whether the BP algorithm produces a computed solution x which 
is the exact solution of a nearby Vandermonde system - if so, then the BP 
algorithm would be strongly stable in the sense of Bunch [3). 

In one sense this question is easily answered in the affirmative, as was 
pointed out by Higham [6], if one allows perturbations in the data vector b. 
Changes of order c in b lead to changes in x of order O(x) •c (whether primal 
or dual), and hence the computational error is equivalent to the error caused 
by perturbations in b of no more than 5nr,. Notice that this is the same kind 
of relationship as holds for perturbations and error in general linear systems 
when Gaussian elimination is used. 

It is still of interest to consider as well the effect of perturbations in the 
matrix elements. Take the perturbed primal Vandermonde system 

Vx= b 

with V having coefficients a, = a,(1 + c,). Then, as shown in Higham [6], the 
corresponding change ( 110;~~00

) has as an attainable bound for its first order 
term in c, 

( ) - II 1v-1 HVI lxl lloo 
'PP x - llxlloo · (6) 

Here H = diag (0, 1, ... , n-1). 
Now the relationship between perturbation and error is not nearly as 

simple: although the functions cp p( x) and 0( x) are often comparable, they 
are not in all cases. In particular, since cpp( x) is maximized for x = e, 

(7) 
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and although 

c.p'pa.x can be much smaller than K,(V) - see Example 2 of Section 5. Even 
when these bounds are comparable, c.pp(x) can be much smaller than O(x). 
Take the case of a unit vector x = e<k) : 

In Example 1 of Section 5, c.pp(x) < < O(x) for several unit vectors x = e(k). 

For the dual problem, the corresponding first order perturbation term is 

(8) 

This function is much more similar to O(x) for the dual problem (aside from 
the degenerate case x = e<1l); in fact, replacing H by I gives O(x). We have 
not observed any significant differences in practice betwen O(x) and 'PD(x); 
for all our dual problems, the actual error was comparable to the perturbation 
caused by an O(TJ) perturbation in the {ai}. 

3 Relationship with Effective Well-Conditioning 

In [4), Chan and Foulser point out for general linear systems Ax = b that the 
sensitivity of the solution x to perturbations in b does depend on b, and in 
particular that even when A is very ill-conditioned, for those b primarily in 
the span of the smaller singular vectors of A, the sensitivity of x to changes 
in bis far less than what is predicted from the condition number of A. 

In fact, if Ax = b and A( x + 8x) = b + 8b, they show 

(9) 

where 
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Here { ui} are the singular values of A in decreasing order, k is any value 
between 1 and n, and Pkb denotes the projection of b into the span of the 
smallest k left singular vectors of A, u(n-k+i), ... , u(n). 

Clearly there should be some connection between this result and the per­
turbation results used here for Vandermonde matrices - in particular between 
,k ( x) and 8( x), since 0( x) bounds the first order perturbation in x under per­
turbations in b. And indeed, for b = u<n>,,1(x) = O(x) =I.Similarly, for 
b = u(n-x),,>:+1 = u;:~ ~ 8(x). However, for other data vectors b, O(x) 
gives a much better indication of "effective well-conditioning": for example 
O(x) = 1 for b = e(j) (i.e. when bis any unit vector). Yet all of the {,k(x)} 
may be much larger - in Example 1 of Section 5, ,k(x) > 107 for all k when 
b = e(1). 

Note: These perturbation results involving O(x) and ,k(x) hold for general 
systems, and hence a careful comparison of them is appropriate for general 
systems as well. 

In addition to the perturbation result (9), Chan and Foulser also consider 
perturbations to the matrix elements which can lead to perturbations in 
the solution that are smaller than predicted by the usual condition number 
estimate. In particular, they show that a result similar to (9) holds when A is 
perturbed to A having a singular value decomposition close to A. They then 
conclude that an algorithm, whose error behaviour is equivalent to this kind 
of perturbation, can give results which exhibit this kind of reduced error. 

Of course, this analysis is not needed for the BP algorithms because of the 
direct forward error result (5). However it is still of interest to ask whether 
nearby Vandermonde matrices V have singular value decompositions close to 
that of V. Unfortunately this is not the case, as can be easily seen in a 2 x 
2 case. Consider 

V=(i I~o) 
as our Vandermonde. This has singular values 

0'1=2+~+8(82
) 

0'2 = ~ + 8(82
). 

2 
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Now take 

V = ( i (1 + a)\1 + c) ) · 

If V's singular value decomposition were close to V's, then 

lu;; Ui I = 0(c) for i = 1, 2. 

However it is easy to see that 

o+c 
o-2 = -

2
- + 0(82

) + 0(co). 

Thus for 8 small, we get a relative change in o-2 of 0(c/8) not 0(c). 
Hence the phenomenon of a perturbed matrix having a close singular 

value decomposition appears to be a fairly rare occurrence. One example is 
scaled diagonally dominant matrices; see Barlow and Demmel [l). 

4 Different Orderings of the { ai} 
If the { ai} are not in increasing order, the differences ( a i - a,) for j > i are 
not all of one sign, thus rendering the {Dk} of (1) non-positive. This in turn 
means that the error matrix of (2.2), 

G = IU1I ID1I •" IUn-11 IDn-11 ILn-11 · · -IL1I 
does not simplify to 1v-1 I• In ( 4.8) of [10), Higham defines the ratio of 
the norms of these matrices as a measure of the extra sensitivity of the 
factorization. 

It appears as though the matrix G could be substantially larger than 1v-11 
for an arbitrary ordering of the {a,}. However our numerical experience does 
not reflect this; typically the additional error with an arbitrary ordering is 
only 10-20%. We provide results for random ordering in our examples in the 
next section. 

5 Numerical Results 

In this section we give a fairly comprehensive set of results for some rep­
resentative Vandermonde systems. The standard mode of computation was 
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double precision on an Amdahl mainframe, with T/ = 16-13 £::! 2.2 x 10-16• To 
check the accuracy, double precision iterative refinement (IR) was used, iter­
ating until convergence had taken place in all digits. This forced a limitation 
on the cases we could consider: the IR iteration had to converge. Although 
one would expect that this would limit the cases to those where the effective 
condition number was iess than 1/TJ, in practice IR converged for a much 
wider class of problems. 

The first example is the original one used by Bjorck and Pereyra [2], with 
ai = n -

1i+3 , i = l, ... n. They produced an exact solution pair (x, b) which 
can be generalized as follows: define 

Since p(l) = p
1

(l) = ... = p(n)(l) = 0, we have 

f (-1)1 ( n ~ 1 
) / = 0 fork= 0, 1, ... , n . 

3=0 J 

In particular, for arbitrary a and /3, 

(Note: (a+ f3j)k could in fact be any polynomial in j of degree nor less.) 
Now replace k by ( n - k) and move the first term to the other side: 

or , 

~ [( '1)i-l ( n + 1 ) (1 + /3 ')n] 1 -k k 0 ~ - · -J ( f3 ')k = a , = , ... , n. 
J=l J a a+ J 

This is the Vandermonde system V x = b with a i = a~/3i , bk = a-k, and 
x; in square brackets . Then t aking a = 2, /3 = 1, and rearranging the a' s 
in increasing order gives the example. Others can be obtained using other 
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values for o: and /3, and another set with integer o:' .s by not replacing k by 
(n - k) in (10): 

~ [ ( -1 JH ( n T1 ) ] { o + /Jj)' = o', k = 0, ... , n. 

We first present, in Tables 1 (primal) and 2 (dual), results for a wide 
variety of b's for n = 10. For each b, we give llxlloo, then the error llil~ll~°" 
from the BP algorithm normalized by the limit roundoff 1J, first for increasmg 
{ O:i} and then for random { O:i}, followed by the error estimate 0( x). Then 
in column 6 we give the same normalized perturbation in x caused by a 
perturbation in o: of order 1} and in column 7 the corresponding estimate cp(x ). 
Finally in columns 8 and 9 we give the normalized Gaussian elimination error 
(without pivoting) and condition estimate K: 8 (x). For this example, results 
were much the same when partial pivoting was used, because the actual 
pivoting involved was trivial. The b's used are the singular vectors { u(k)} 

of V, the columns {a(k)}, of V, and finally the vector used in [2) (and in 
Higham (6] as Example 1). 

As can be seen from Tables 1 and 2, the BP algorithm is much preferred 
whenever b reflects the ill-condition of V, or equivalently when b has signifi­
cant components in the direction of the smaller singular vectors of V. When 
this is not the case, then BP performs much like Gaussian elimination. There 
are even examples ( e.g. b = a(9) in primal case) where the BP error is worse. 
Similar results occur for other values of n. 

Finally, it is of interest to compare the performance of the primal and 
dual algorithms. Although the errors are larger in the dual case, this is due 
to the worse conditioning of the problem, not to any intrinsic shortcoming 
with the dual algorithm. For cases where O(x) is close to 1, the dual algo­
rithm produces the same excellent results as the primal algorithm. For the 
particular b of (2], where both (2) and [6] report worse errors in the dual case, 
the reason is clear: the vector b in the dual case is much more ill-conditioned. 
Indeed, the primal b has O(x)=650, the dual b has 0(x) > 1010• Moreover, the 
vectors b for the remaining primal examples of [6) are perfectly conditioned 
(0(x) = 1) for all n, whereas those for the dual problems get more badly 
conditioned as n increases. 

Another reason for the apparent poor showing of the dual algorithm in [6) 
is the more stringent component-wise relative error measure used there: 



b llxll I BP err I BP(r) err I O(x) pert I cp(x) I GE err I te 11 (x) 
ullJ 1 .76E 9 .59E8 .54E10 
uC2J 2.8 .27E8 .27E9 .46E10 
ul3J 28 .63E9 .58E8 .35E10 
ul4J 540 .68E8 .52E8 .80E9 
ul5J .88E4 .37E7 .21E8 .15E9 
ul6J .24E6 .12E6 .59E6 .11E8 
uC7J .86E7 .62E4 .52E5 .41E6 
ulBJ .39E9 .27E3 .15E3 .93E4 
ull:IJ .29Ell 29 27 .12E3 
ullOJ .50E13 4.0 3.3 1.0 
all) 1.0 .14E6 .74E5 .62E7 
al2) 1.0 .11E5 .15E6 .83E7 
al3J 1.0 .33E5 .23F6 .12E8 
al4J 1.0 .17E6 .16E6 .17E8 
alaJ 1.0 .16E6 .43E4 .28E8 
al6J 1.0 .62E6 .26E7 .48E8 
al7) 1.0 .20E7 .20E7 .98E8 
alB) 1.0 .99E7 .13E7 .24E9 
al9J 1.0 .70E8 .14E8 .79E9 
allO) 1.0 .21E9 .31E9 .42E10 

j [2] I .91E8 j 51 6.1 I 650 

Table 1: Oj --:- (n-~+ar n = 10, primalcase, 
K = .13E14, K 11 = .5 ElO, cp'jJo.x = ,84E6 

11 

.38E6 .84E6 .13E10 .54E10 

.18E6 .83E6 .29E10 .47E10 

.21E6 .83E6 .13E10 .50E10 

.30E6 .31E6 .llElO .24E10 

.10E6 .12E6 .30E9 .16E10 

.71E4 .25E5 .87E8 .72E9 

.14E3 .42E4 .42E8 .35E9 

.16E3 .68E3 .15E8 .19E9 
48 .13E3 .18E7 .11E9 
6.4 42 .30E6 .64E8 

45 49 .14E6 .62E7 
15 19 .44E5 .83E7 
7.9 9 .42E5 .12E8 
3.9 10 .12E7 .17E8 
10 15 .43E5 .28E8 
9.2 23 .26E7 .48E8 
55 77 .23E7 .98E8 

.41E3 .58E3 .85E7 .24E9 

.55E4 .11E5 .56E5 .79E9 

.76E5 .83E6 .45E9 .42E10 

8.2 46 .20E6 .67E8 



b llxll I BP err I BP(r) err I O(x) pert cp(x) I GE err I 1e.(x) 
ul1J .31 .12E9 .llE lO .13E14 .15E12 .23E12 .35E10 .13E14 
ul2J 3.5 .55E10 .60Ell .77E12 .59E12 .15E13 .25Ell .36E13 
uFlJ 37 .llElO .56E10 .49Ell .12E12 .36E12 .85E10 .14E13 
u(4) .46E3 .24E9 .14E10 .46E10 .llEll .41Ell .62E9 .56E12 
ul5J .10E5 .87E7 .92E8 .30E7 .22E9 .22E10 .12E10 .15E12 
ul6J .26E6 .97E6 .58E7 .12E8 .93E6 .11E9 .36E9 .38Ell 
ul7J .85E7 .12E5 .16E6 .39E6 .79E6 .50E7 .10E9 .lOEll 
ulBJ .37E9 .13E3 .43E4 .95E4 .42E5 .14E6 .31E8 .25E10 
ul9J .31Ell 28 .11E3 .15E3 .95E3 .31E4 .75E7 .46E9 
ullU) .58E13 3 3.6 LO 14 38 .12E7 .63E8 
all> LO 0.0 0.0 12E14 0.0 0.0 0.0 .12E14 
al2J LO 0.0 .31E-5 .13E13 .33E12 .13E13 .35Ell .13E13 
al<lJ LO .73E9 .16E12 .15E12 .91Ell .30E12 .64E10 .15E12 
al4J LO .23E8 .29Ell .17Ell .80E10 .51Ell .86E9 .17Ell 
alb) LO .70E8 .23E10 .20E10 .37E9 .79E10 .57E8 .20E10 
al6J 1.0 .32E7 .17E10 .24E9 .55E9 .12E10 .53E8 .24E9 
al7J LO .22E6 .33E9 .29E8 .36E8 .17E9 .62E7 .29E8 
al8) LO .14E6 .19E9 .37E7 .18E8 .26E8 .87E6 .37E7 
all:IJ 1.0 .16E5 .83E8 .49E6 .28E7 .40E7 .16E6 .49E6 
allO) LO .63E4 .20E8 .69E5 .10E6 .62E6 .17E5 .69E5 

I [2] I 580 I .24E8 I .13E9 I .18Ell I .27E10 I .llEll I .lOElO I .25Ell I 

Table 2: ai =;= (n-~+ 3), n = 10, dual case, K = .93E14, 
K 8 = .14E14, 'PDax = .17 E13 

12 



b llxll I BP err I BP(r) err I O(x) pert I cp(x) I GEPP I K.,(x) 
ullJ .12 .54E7 .34E8 .31E10 .23E4 .30E4 
u(2J .31 .20E7 .59E8 .16E10 .83E3 .29E4 
ul.lJ .97 .94E7 .14E8 .29E9 .17E4 .29E4 
u<4J 6.9 .65E5 .17E7 .61E8 .13E4 .16E4 
ul5J 53 .11E6 .39E6 .84E7 .22E3 .11E4 
uloJ .60E3 .64E4 .22E5 .73E6 .18E3 .64E3 
ul7J .93E4 .13E4 .29E4 .53E5 .27E3 .35E3 
u(B) .23E6 .16E3 19 .25E4 27 .17E3 
ul~J .86E7 18 14 72 11 90 

ulIUJ .75E9 4.0 16 1.0 17 42 

Table 3: a:i = o,9i-1 , n = 10, primal case, ,c = .80E10, 
IC 8 = .41E10, <ppax = .30E4 

.47E8 .31E10 

.54E8 .23E10 

.13E7 .33E10 

.21E8 .24E10 

.64E8 .22E10 

.10E9 .19E10 

.45E8 .16E10 

.33E8 .12E10 

.26E8 .83E9 

.63E8 .50E9 

maxi(lxi - xil/lxd) rather than llx - xlloo/llxlloo• For Example 6.2 of [6], 
the solution components are the coefficients of a Chebyshev polynomial, for 
which alternate coefficients are zero. The relative errors in these components 
are thus very large, which explains why the errors reported in Table 6.2 of (6] 
are large even for small n. 

Our second example is the symmetric Vandermonde with O::i = wi-l. In 
Table 3 we give results for b = u(k), the singular vectors of V, for n=IO and 
w=0.9. 

Results were again similar for other n; here the error using Gaussian 
elimination with pivoting was a factor of 10 better than that without pivoting, 
and hence we have given the former results. Notice that because the {oi} 
are decreasing, not increasing, V is not totally non-negative, and thus the 
remarks in Section 2 on accuracy for Gaussian elimination without pivoting 
do not apply: 

Our last example is the integer matrix with Oi = i, used in Higham (8] 
as an example where Gaussian elimination without pivoting produces better 
results than with pivoting. Notice that in this case the matrix has some 
elements much larger than one so that the larger singular values are also 
much larger than one. In Tables 4 and 5 we give the results for n = 10 using 
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b llxll I BP err I BP(r) err I O(x) pert I cp(x) I GE err I K.(x) I 
u(lJ .85E-9 .78E6 .17E7 .19E8 .26E3 .33E3 .26E7 
ul~J .12E-6 .33E6 .38E5 .50E7 .10E3 .23E3 .10E7 
ul3J .85E-5 .15E6 .27E5 .11E7 7.5 .13E3 .24E6 
ul4J .336-3 .72E4 .20E5 .23E6 35 81 .26E5 
u(SJ .75E-2 .71E3 .12E4 .47E5 15 54 .34E3 
u<6J .089 .18E3 .41E3 .98E4 16 50 .13E3 
ul7J .57 27 .17E3 .15E4 16 49 .65E3 
ul8J 1.9 34 59 .39E3 39 60 34 
ul~J 25 5.1 12 38 4.9 39 23 
ulWJ .11E4 4.3 4.3 1.0 6.2 23 41 

Table 4: ai = i, n = 10,primal case, K = .28E13, K 8 = .33E8, 
<ppax = .33E3 

again b = u(k). 

.19E8 

.21E8 

.16E8 

.12E8 

.81E7 

.54E7 

.27E7 

.42E7 

.43E7 

.35E7 

For this example, the behaviour of Gaussian elimination is much more in­
teresting, and we therefore expand on the results. As we mentioned earlier, 
since the matrix is totally nonnegative, Gaussian elimination without piv­
oting produces nonnegative L and U factors, and hence a guaranteed small 
component-wise relative backward error w = O(rJ). This can be translated 
into a forward error bound using the perturbation analysis of Skeel [11): 

llx - x!l oo WKa(V, x) ---<---- . 
JJ xJJoo - 1 - WKa(V) 

(11) 

Notice however in Tables 4 and 5, the actual error observed using Gaussian 
elimination without pivoting is much smaller than that predicted by (11), 
and indeed is comparable to the BP error in many (but not all) cases. 

When Gaussian elimination with partial pivoting is used, there is an im­
mediate row interchange because of the large o's, and the total nonnegativity 
of the matrix is destroyed. This means that a small relative backward error w 
cannot be guaranteed. In Table 6, we give the observed errors in the primal 
case for GE, GEPP, and after one step of (single precision) iterative refine­
ment. Skeel [12] and Higham [9] have shown that under certain conditions 
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b llx ll I BP err I BP(r) err I O(x) pert cp(x) I GE err I 1e.,(x) 
u{lJ .91E-9 .26E9 .14E12 .59Ell .15E12 .53El2 
ul2J .18E-6 .96E8 .36E10 .19E10 .20E10 .lOEll 
ul;:sJ .13E-4 .39E6 .12E9 .62E8 .30E8 .24E9 
ul4J .47E-3 .11E5 .13E8 .23E7 .21E7 .10E8 
ul5J .79E-2 .16E3 .17E6 .13E6 .37E6 .83E6 
ul6J .086 16 .39E4 .89E4 .61E4 .76E5 
uUJ .44 45 .49E4 .13E4 .37E4 .12E5 
ul8J 2.0 30 82 .35E3 .34E3 .37E4 
ulllJ 26 3.7 34 36 .18E3 .46E3 
ulIOJ .13E4 4.7 3.2 1.0 7.8 19 

Table 5: Oi = i, n = 10, dual case, K = .26E13, Ks= .67Ell, 
cp73ax = .59E12 

.19Ell .59Ell 
.32E9 .14Ell 
.10E8 .36E10 
.71E4 .llEl0 
.21E5 .43E9 
.33E5 .15E9 
.52E4 .60E8 
.13E4 .40E8 
.10E4 .17E8 

58 .35E7 

GEPP with one step of single precision interative refinement will produce a 
result with a small backward error w, and this is demonstrated in Table 6. 
We also give the error bound (7.4) of Higham [ s): 

llx - xlloo < H(x) = II 1v-11 (lrl + rn+I (lb l +/VI/xi)) !loo ' 
llxlloo - ll xll oo 

applied to the GEPP result (x) and the refined result (xrn), 
Again, the errors have been normalized by dividing by T/· One step of IR 

reduced the error in GEPP considerably, but notice that GE (with no pivot­
ing) can be even better. Incidentally, applying one step of single precision IR 
to the GE result is detrimental: the results are comparable to GEPP + IR. 
Notice also that the dominant term in H(xrn) is the one involving K.,(V, x). 
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