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ABSTRACT 

This paper was presented to the Sixth Workshop on Mathematical Foundations of 
Programming Semantics held at Queen's University, May 15-19, 1990. 

Because of the increasing use of category theory in programming semantics, the 
formalization of the theory, that is the provision of an effective definition of what 
constitutes a derivation for category theory, takes on an increasing importance. 
Nevertheless, no suitable logic within which the theory can be formalized has been 
provided. The classical set theories of Zennelo-Fraenkel and Godel-Bernays, for 
example, are not suitable because of the use category theory makes of self-referencing 
abstractions, such as in the theorem that the set of categories forms a category. In this 
paper, a formalization of category theory and a proof of the cited theorem is provided 
within the logic and set theory NaDSet. NaDSet definitions for natural 
transformations and functor categories are given and an equivalence relation on 
categories is defined. Additional definitions and discussions on products, comma 
categories, universals limits and adjoints are presented. They provide evidence that 
any construct, not only in categories, but also in toposes, sheaves, triples and similar 
theories can be formalized within NaDSet. 

*Suppon of the Natural Science and Engineering Research Council of Canada is gratefully 
acknowledged. 
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1. INTRODUCTION 

Section Al of [Feferman84] reinforces the argument presented in [Feferman77] that category 

theory cannot by itself provide a foundation for mathematics since it makes use of prior notions 

of logic and set abstraction. At the same time the first paper provides motivation for constructing 

set theories other than the traditional Zermelo-Fraenkel and Godel-Bernays set theories. An 

example of a common argument in modem algebra is presented using structures <A, ®, = A> 

consisting of a set A, a commutative and associative binary operation ® and an identity relation 

= A over A. If B is the set of all such structures, PR is the Cartesian product on B and ISO 

isomorphism between the elements of B, then the structure <B, PR, ISO> is itself a member of 

B. However, a proof of this fact cannot be formalized within the traditional set theories because 

of the prohibition against self-membership or self-reference. 

In [Gilmore89] a natural deduction based set theory NaDSet was described and a proof that 

<B, PR, ISO> is a member of B was provided within NaDSet. This encouraged the conjecture 

that NaDSet could provide a logic within which category theory could be formalized. This paper 

substantiates this conjecture by providing a proof within NaDSet that the set of all categories is 

itself a category. The significant role that category theory currently plays in the study of 

programming semantics may be enhanced by such a formalization of the theory, since the 

provision of a proof theory makes the semantics accessible to mechanization. 

Category theory, of course, involves many more primitive concepts than the theory of 

B-structures. Section 3 presents a definition of a category within NaDSet that is more general in 

two respects than the definition given in [Barr&Wells85] or in [Mac Lane71]. First, a category is 

defined in terms of its arrows only with no reference to objects, as suggested in [Lawvere66]. 

Secondly, the identity relation of a category is an explicit part of its structure. While the first 

simplification is not fundamental, the second generalization has important repercussions. It 

allows each category to assume its own identity relation that generally may be different than the 

extensional identity implied by the traditional definitions. 

The definition of category theory in section 3 is typical for definitions of an axiomatic theory 

within NaDSet. The axioms of the theory are used only to define the set of structures satisfying 

the axioms, and in no way imply the existence of a structure satisfying the axioms. Therefore, 

the formalization of the theory within NaDSet has no existential implications for NaDSet. This 

fact may help to provide an answer to the question posed in [Blass84]: Does category theory 
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necessarily involve existential principles that go beyond those of other mathematical disciplines? 

When a traditional set theory is used as a foundation for category theory, it is necessary to 

distinguish between small and large categories [Mac Lane71]. That is not necessary when 

category theory is formalized within NaDSet Of course this does not provide an answer to the 

question: Does the proof of the existence of some categories involve existential principles that go 

beyond those of other mathematical disciplines? 

In section 4 the notion of a functor on categories is formalized. In section 5, which constitutes 

the main part of the paper, the necessary definitions for the category of categories and a proof of 

the theorem that this structure is a category itself, is provided in NaDSet. The proof of the 

theorem as well as of the lemmas of section 4 are long and tedious and they are only outlined in 

this paper; the complete proofs are provided in [Gilmore & Tsiknis 90a]. However, by 

examining the outlines of the derivations, readers may gain confidence in the principal result and 

in the capability of NadSet to provide logical foundations for category theory. 

The ubiquitous notions of natural transformations and functor categories are formalized in section 

6, while in section 7, definitions and theorems for a variety of basic constructions including 

comma categories, universals, limits and adjoints are provided. These two sections further 

demonstrate that NaDSet may be used as the logic for category theory and suggest that any 

construct in category theory, as well as in the theories of toposes, sheaves, triples etc. can be 

formalized within NaDSet in a similar way. Finally, possible directions for future work are 

discribed in section 8. 

2. NaDSet 

For space reasons, no description of NaDSet is given in this paper; readers are referred to 

[Gilmore89] or [Gilmore&Tsiknis90b]. Only an outline of the main differences between NaDSet 

and a conventional set theory, a short discussion on the meaning of definitions, and the rules of 

deduction for some defined bounded quantifiers will be given. 

The logic differs from a conventional presentation of set theory in four respects: 

(1) To provide a transparent formalization of the traditional reductionist semantics of [Tarski36], 

NaDSet is formalized as a natural deduction based set theory. Since in a reductionist 

semantics the meaning of a complex formula is reduced to that of simpler formulas, the 

meaning given to the irreducible atomic formulas is critical. 
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(2) A nominalist interpretation of atomic formulas is used: Only the name of a set, not the set 

itself, can be a member of another set To avoid confusions of use and mention, it is 

necessary that NaDSet be a second order logic, but no higher order form of NaDSet is 

necessary or consistent. 

3 

(3) Although NaDSet is second order, both first and second order quantification is expressed by 

the same quantifier. It is only necessary that N aDSet have two distinct kinds of parameters 

(free variables) one first order and the other second order. 

(4) A generalized set abstraction term {talF} is admitted in which ta may be a term, not just a 

single variable, and F may be any formula. 

These features of NaDSet, elaborated upon in [Gilrnore89] and [Gilrnore&Tsiknis90a], are 

essential for the formalization of category theory. In [Gilmore86], an earlier version of the logic 

is described and motivated and the consistency of the logic proved. There is not (yet) a 

consistency proof for the current NaDSet. 

Essential to an understanding of this paper is the proper interpretation of definitions such as 

Cat for { <Ar, =a• Sr, Tg, Cp> I Category[Ar, =a, Sr, Tg, Cp] } 

Category[Ar, =a• Sr, Tg, Cp] for axioms 

In the first of these definitions, 'Cat' is provided as an abbreviation for the abstraction term 

{ <Ar, =a• Sr, Tg, Cp> I Category[Ar, =a, Sr, Tg, Cp] } 

This means that any term or formula in which 'Cat' is used as a term, should be understood as the 

term or formula in which 'Cat' is replaced by the abstraction term. 

The second of these definitions is a definition scheme of individual definitions of the first kind. 

In the second definition, Ar, =a• Sr, Tg and Cp are used as metavariables ranging over the 

terms of NaDSet. When they are replaced with particular terms, as they are in the formula 

Category[Ar, =a• Sr, Tg, Cp] 

by variables 'Ar', '=a'• 'Sr', 'Tg' and 'Cp', the resulting formula 

Category[Ar, =a• Sr, Tg, Cp] 

is an abbreviation for the conjunction of all the axioms for categories, described in the next 

section, in which the terms Ar, =a• Sr, Tg and Cp are replaced by the variables 'Ar', '=a', 'Sr' , 
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'Tg' and 'Cp'. 

Bounded quantifiers are used extensively in this paper. It is important that they be properly 

understood. A formula 

['vx:{talF}]G 

is to be understood as an abbreviation for 

('v.Y.]([y/.u]ta:{talF} => [ [y/.u]ta/x]G) 

4 

where ll is a sequence of the distinct variables with free occurrences in ta, y is a sequence of the 

same length of distinct variables free to replace x in G and without free occurrences in { talF}, 

and ['v.Y.] is a sequence of quantifiers one for each variable of y. 

Consider, for example, axiom (c2) from section 3: 

['vf,g:Ar]( f=8 g => g=8 f) 

in which terms Ar and =a are assumed given, with the usual infix notation for identity, f=8 g 

being written instead of <f,g>:=8 . The interpretation of the bounded quantifer depends upon the 

term Ar. For example, in section 5 the category of categories is defined as the tuple 

< A.Jr, =a, Sr, 'lI'g, Cp > of defined terms Ju, =a• Sr, 'lI'g and Cp, where in particular Ju is 

defined to be Fune, the set of functors defined in section 4. To prove that this tuple is a category, 

it is necessary to show that it satisfies all of the axioms of a category, and in particular that the 

following formula is derivable: 

['vf,g:Func ]A, 

where A is the formula ( f =a g => g =a f). In keeping with common practice, this formula is an 

abbreviation for 

(fl) ['vf:Func ][v'g:Func ]A. 

Now to understand the quantifiers, it is necessary to know the definition of Fune, which is 

Fune for { < F, <Arc, =ac• Src, Tgc, Cpc>, <Aro, =an, Sro, Tgo, Cpo> > I G} 

where G is a given formula. 

The term 

(tm) < F, <Arc, =ao Src, Tgc, Cpc>, <Ar0 , =an, sr0 , Tg0 , Cp0 > > 

is formed from 11 variables 10 of which occur in two quintuples. The variable 'f in the first 

quantifier of (fl) is assumed to have the form of the term (tm). That is, (fl) must be understood to 

be an abbreviation for 
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['v'F]['v'Arc]['v'=acJ['v'SrcJ[v'TgcJ['v'CpcJ['v'Afn]['v'=an]['v'SroU'v'Tgnl['v'CpnJ< 

< F, <Arc, =ac, Src, Tgc, Cpc>, <Aro, =an, Sro, Tgn, Cpo> >:Fune 

5 

=> [< F,<Arc,=ac,Src,Tgc,Cpc>,<Aro,=an,Sro,Tgo,CpD>>/fJ['v'g:Func]A 

where each of the variables F, Arc, =ac, Src, Tgc, Cp~, Afn, =an, Sro, Tgo and Cpn is 

assumed to be free to replace the variable fin ['v'g:Func]A. Thus, when the quantifier ['v'g:Func] 

is also interpreted, the formula (fl) must be understood as an abbreviation for a formula in which 

22 variables are quantified. 

3. CATEGORIES 

In this section, a Nan Set definition of the set of categories will be given analogous to the definition 

of the structure B in section 8 of [Gilmore 89]. The tenninology provided in the introduction of 

[Barr&Wells85] will be used with one exception: Instead of using objects and arrows in defining 

a category, by following Lawvere's definition [Lawvere66], objects can be dispensed with 

altogether, and only arrows used. Nevertheless, for the readers who are accustomed to the more 

traditonal definition of categories, a definition of the objects for a category in terms of its arrows is 

provided. 

The formalization of category theory within NaDSet is typical of the formalization of any axiomatic 

theory within the logic: The set of structures satisfying the axioms of category theory is defined. 

The theorems of category theory are then the formulas that can be proven to be true in any member 

of the set of categories. 

Throughout the paper, conventional algebraic notations are used as abstraction variables and as 

parameters. These notations will be explained as they are introduced. Additionally, metavariables 

ranging over terms of NaDSet that are intended to represent algebraic concepts, are used. They will 

always be printed in bold type. For example, the variables of this kind used in this section, together 

with their intended interpretation are: 

Ar the set of arrows or morphisms 

=a identity of arrows 

Sr a binary term with first argument an arrow and second argument its source object 

Tg a binary term with first argument an arrow and second argument its target object 

Cp a ternary term the third argument of which is the composite of the arrows that are its 

first two terms. 
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The first use of these metavariables is in the following definition: 

Category[Ar, =a• Sr, Tg, Cp] for axioms 
"axioms" is the conjunction of the formulas listed below. In these axioms, the usual infix notation 

for =a is used instead of the postfix notation of NaDSet: 

Identity Axioms 

[v'f:Ar] f=3 f 

[v'f,g:Ar]( f=3 g::, g=3 f) 

[v'f,g,h:Ar]( f=3 g A g=3 h::, f=3 h) 

[v'f,g,a:Ar]( f=3 g A <f,a>:Sr::, <g,a>:Sr) 

[v'f,a,b:Ar]( a=3 b /\ <f,a>:Sr::, <f,b>:Sr) 

[v'f,g,a:Ar]( f=3 g A <f,a>:Tg::, <g,a>:Tg) 

[v'f,a,b:Ar]( a=ab /\ <f,a>:Tg::, <f,b>:Tg) 

[v'f,g,h,k:Ar]( f=3 k A <f,g,h>:Cp::, <k,g,h>:Cp) 

[v'f,g,h,k:Ar]( g=3 k A <f,g,h>:Cp::, <f,k,h>:Cp) 

[v'f,g,h,k:ArJ( h=3 k /\ <f,g,h>:Cp::, <f,g,k>:Cp) 

Sr, T~ and Cp are functions 

[v'f:Ar][ 3a:Ar] <f,a>:Sr 

[v'f,a,b:Ar]( <f,a>:Sr A <f,b>:Sr :::> a=3 b) 

[v'f:Ar][ 3a:Ar] <f,a>:Tg 

[v'f,a,b:Ar]( <f,a>:Tg /\ <f,b>:Tg::, a=8 b) 

[v'f,g,b:Ar]( <f,b>:Tg /\ <g,b>:Sr => [ 3h:Ar]<f,g,h>:Cp) 

[v'f,g,h,a,b,c:Ar]( <f,g,h>:Cp::, (( <f,a>:Sr => <h,a>:Sr) /\ 

(<g,b>:Tg => <h,b>:Tg) /\ (<f,c>:Tg = <g,c>:Sr ))) 

[v'f,g,h,k:Ar]( <f,g,h>:Cp A <f,g,k>:Cp => h=3k) 

(cl) 

(c2) 

(c3) 

(c4) 

(c5) 

(c6) 

(c7) 

(c8) 

(c9) 

(clO) 

(ell) 

(cl2) 

(c13) 

(c14) 

(c15) 

(c16) 

(cl7) 

Note that compositions are written in the order of the arrows from left to right. Therefore, 

<f,g,h>:Cp if and only if h is the morphism composition of g with h. 
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Identity Arrows Exist 

['v'f,a:Ar]( <f,a>:Sr ::::> <a,a>:Sr" <a,a>:Tg" <a,f,f>:Cp) 

['v'f,a:Ar]( <f,a>:Tg ::::> <a,a>:Sr" <a,a>:Tg" <f,a,f>:Cp ) 

Composition is Associative 

[v'f,g,h,fg,gh,fglh,flgh:Ar]( <f,g,fg>:Cp" <g,h,gh>:Cp" 

<fg,h,fglh>:Cp" <f,gh,flgh>:Cp ::::> fglh=8flgh) 

The set of categories is now defined: 

Cat for { <.Ar, =a, Sr, Tg, Cp> I Category[Ar, =a• Sr, Tg, Cp]} 

(c18) 

(c19) 

(c20) 

where Ar, =a, Cp, Sr and Tg are all used as variables that are bound in the abstraction term. 

Finally, the projections on a tuple that represents a category can be given by the following 

definitions. 

Ar[<Ar, =a• Sr, Tg, Cp>] for { u I u:Ar} 

=a[<Ar, =a• Sr, Tg, Cp>] for { <u,v> I <u,v>: =a } 

Sr[<Ar, =a, Sr, Tg, Cp>] for { <u,v> I <u,v>: Sr } 

Tg[<Ar, =a• Sr, Tg, Cp>] for { <u,v> I <u,v>: Tg } 

Cp[<Ar, =a, Sr, Tg, Cp>] for { <u,v,w> I <u,v,w>: Cp } 

3.1 Objects, Hom-Sets and Commutative Diagrams 
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The axiomatization of category theory presented here does not require the specification of a set of 

objects, since the objects of a category correspond exactly to its identity arrows. Therefore the set 

of objects Ob[<Ar, =a• Sr, Tg, Cp>] of a category <Ar, =a• Sr, Tg, Cp> may be defined to 

be any one of the following extensionally identical terms. 

(i) { x I x:Ar " < x, x >:Sr " < x, x >:Tg } 

(ii) { x I x:Ar" ([3f:Ar]<f, x >:Sr v [3f:Ar]<f, x >:Tg) } 

(iii) { x I x:Ar" ['v'f,g:Ar](<f, x, g>:Cp ::::> f=8 g) 

"['v'f,g:Ar](< x, f, g>:Cp ::::> f=3 g) } 
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The horn-set for objects obl and ob2 can be defined: 

Hom[obl,ob2] for { x I x:Ar A< x,obl>:Sr A< x,ob2>:Tg} 

Finally, that the diagram 
\ 

·~Jg 
C 

commutes means 

<f,a>:Sr A <f,b>:Tg A <g,b>:Sr " <g,c>:Tg " <f,g,h>:Cp, 

while that the diagram 
f 
► b a 

kJ Jg 
d ► C m 

commutes means 

<f,a>:Sr A <f,b>:Tg " <g,b>:Sr " <g,c>:Tg" <k,a>:Sr A <k,d>:Tg A 

<m,d>:Sr" <m,c>:Tg /\ [:lh:Ar]( <f,g,h>:Cp /\ <k,m,h>:Cp ), 

that is, that both the following diagrams commute: 

a a f ► b 

kJ~ ~Jg 
d ► C C m 

4. FUNCTORS 

8 

To define the category of categories the notion of functor from one category to another is 

needed. Its definition is given in the typical NaDSet style with the symbols F, Arc, =ac, Src, 

Tgc, Cpc, Aro, =aD• Sro, Tgo and Cpo used as metavariables ranging over second 

order terms. 

Functor[F,<Arc, =ac, Src,Tgc, Cpc>,<Aro, =ao, Sro,Tgo, Cpo>] 

for axioms 
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where "axioms" consists of the conjunction of the following formulas: 

Eis a map for cate~ories 

< Arc, =ac, Src, Tgc, Cpc >:Cat 

< Aro, =ao• Sro, Tgo, Cpo >:Cat 

F maps arrows to arrows, preserving arrow identity 

(fl) 

(f2) 

['v'fc:Arc][ 3fd:Aro] <fc,fd>:F (f3) 

['v'fc,gc:Arc]['v'fd,gd:Aro]( fc =ac gc /\ <fc,fd>:F /\ <gc,gd>:F ::::> fd =an gd) (f4) 

['v'fc,gc:Arc][Vfd:Aro]( fc =ac gc /\ <fc,fd>:F ::::> <gc,fd>:F) (f5) 

['v'fc:Arc]['v'fd,gd:Aro]( fd =ao gd /\ <fc,fd>:F ::::> <fc,gd>:F) (f6) 

F preserves source. target and composition 

['v'fc,c:Arc]['v'fd,d:Aro] ( <fc,c>:Src /\ <fc,fd>:F /\ <c,d>:F ::::> <fd,d>:Sro ) (f7) 

['v'fc,c:Arc][Vfd,d:Aro] ( <fc,c>: Tgc /\ <fc,fd>:F /\ <c,d>:F => <fd,d>: Tgo ) (f8) 

['v'fcl,fc2,fc3:Arc] ['v'fdl,fd2,fd3:Aro](< fcl,fc2,fc3>:Cpc /\ 

<fcl,fdl>:F /\ <fc2,fd2>:F /\ <fc3,fd3>:F => < fdl,fd2,fd3>:Cpn) (f9) 

Functors, following a suggestion of [Lawvere66], are defined as triples that include the source 

and target categories. The set of functors is defined: 

Fune for { < F, <Arc, =ac• Src, Tgc, Cpc>, <Aro, =an, Sro, Tgo, Cpo> > I 

Functor[F,<Arc, =ac, Src,Tgc, Cpc>,<Aro, =an, Sro,Tgo, Cpo>]} 

The set of functors from a category <Arc, =ac, Src, Tgc, Cpc> to a category 

<Aro, =an• Sro, Tgo, Cpo> is defined as 

Func[<Arc, =ac, Src, Tgc, Cpc>, <Aro, =ao, Sro, Tgo, Cpo>] 

for 

9 
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In [Mac Lane71] and [Barr&Wells85] an additional axiom is included in the definition of functors; 

the axiom states that a functor must map identity arrows to identity arrows. But that axiom is not 

independent of the seven axioms given here. Since the identity arrows of a category are its 

objects, they can be defined by one of the three equivalent definitions given in section 3.1. The 

following lemma, whose proof can be found in [Gilmore & Tsiknis 90a] expresses that the 

additional axiom is entailed by the preceding functor definition. 

4.1 Lemma The sequent 

➔ ['v'x,y:Cat]['v'f:Func[x,y]['v'c:Ar[x]]['v'd:Ar[y]]( c:Id[x] "<c,d>:f :::> d:Id[y]) 

is derivable. 

5. THE CATEGORY OF CATEGORIES 

5.1 Definitions and Preliminaries 

The category of categories is defined as the tuple <.Ar, =a, Sr, Tg, Cp> of the second order terms 

Ar, =a, Sr, Tg, Cp whose definitions are given in this section. Because of the great number of 

variables used in this section, some abbreviations similar to those used in the derivation of lemma 1, 

are again used here, and later: The capital letters A, B, C, D, E with or without subscripts, are used 

to abbreviate the tuples <Ar A• =aA• Sr A• TgA, Cp A> , ... , 

<Ar£, =aE• Sr£, TgE, CpE> of the terms Ar A• =aA• Sr A• TgA and Cp A, ... , ArE, =aE, SrE, 

TgE and ~ respectively. At different occasions these terms can be second order parameters, 

abstraction variables or metavariables that range over the second order terms. However, what the 

terms are to be in a particular context will be described prior to their use. 

In the following definitions, the letters C and D, with or without subscripts, are abbreviations for 

the previously mentioned tuples of abstraction variables, while the letters F, G, H possibly 

subscripted, are regular abstraction variables. 

A definition of the set Ju of arrows for the category of categories will be provided first; it is just 

the set of functors, as defined in section 4: 

ArforFunc 
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The identity =a for members of Ar is defined in terms of extensional identity. 

=a for {<<Fl, Cl, Dl>, < F2, C2, D2> > I Cl =e C2AD1 =e D2 A Fl =e F2 } 

In this definition =e is the coordinate-wise extensional identity among tuples of terms defined by 

=e for { <<Arl, =al• Srl, Tgl, Cpl>, <Ar2, =a2; Sr2, Tg2, Cp2>> I 

Arl=e Ar2 A =at =e =a2 A Srl=e Sr2 

A Tgl=e Tg2 A Cpl=e Cp2 } 

where Art, ... , Cp2 are all being used as abstraction variables. The definition of extensional 

identity =e depends upon the context: 

Arl=e Ar2 for 

=at =e =a2 for 

Srl=e Sr2 for 

[v'f:Arl] f:Ar2 A [v'f:Ar2] f:Arl 

[v'f,g:Arl](f =a1 g => f =a2 g)" [v'f,g:Ar2](f =a2 g => f =al g) 

[v'f,g:Arl]( <f, g>:Srl => <f, g>:Sr2)" 

[v'f,g:Ar2]( <f, g>:Sr2 => <f, g>:Srl) 

Tgl=e Tg2 for [v'f,g:Arl]( <f, g>:Tgl => <f, g>:Tg2)" 

[v'f,g:Ar2](<f, g>:Tg2 => <f, g>:Tgl) 

Cpl=e Cp2 for [v'f,g,h:Arl](<f, g,h>:Cpl:::, <f, g,h>:Cp2)" 

[v'f,g,h:Ar2](<f, g,h>:Cp2 => <f, g,h>:Cpl) 

Fl =e F2 for [v'f:Arc1U'v'g:ArD1H <f,g>:Fl => <f,g>:F2) A 

[v'f:Arc2J[v'g:ArD2]( <f,g>:F2 => <f,g>:Fl ) 

Clearly, the source and target of an arrow has to coincide with the identity functor of the source 

and target category, respectively. Their definitions follow, in a style similar to that of A.Jr. 

Sr for {<<Fl, Cl, DI>, <F2, C2, D2> > I 

C2 =e Cl /\ D2 =e Cl /\ [v'f,g:Arc1J( <f,g>:F2 = f =acl g ) } 

Similarly, 

1rg for {<<Fl, Cl, DI>, <F2, C2, D2> > I 

C2 =e DI AD2 =e DI A [v'f,g:ArD1l( <f,g>:F2 = f =a01 g) } 
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The final definition needed is of Cp, composition of the arrows for the category of categories. 

Cp for {<<Fl, Cl, Dl>, <F2, C2, D2>, <F3, C3, D3> > I 

Cl =e C3 ADI =e C2 "D2 =e D3" 

[Vf:Arc1][Vg:Aro2l(<f,g>:F3 - [ 3h:Arn1l(<f,h>:Fl "<h,g>:F2)) } . 

The main goal of this section is to show that the set Cat with the defined constructs is itself a 

category. The existence of identity and composition functors must be shown first. The following 

notation will be used: 

Xd[C] for =ac 

The next lemma insures that for any category (i.e., an element of Cat) there exists an identity 

functor from the category to itself. 

s.2 Lemma 
The sequent 

➔ [Vx:Cat] <lcll[x], x, x>:Ar 

is derivable. 

Proof Outline: If C is any tuple <Arc, =ac, Src, Tgc, Cpc> of second order parameters, the 

lemma is obtained by an application of ➔V to the sequent 

C:Cat ➔ <lcll[C], C, C>:Air 

whose derivation is obtained as following. 

Let Ax[G,A,B] be the result of replacing F by G, <Arc, =ac, Src, Tgc,CPc> by A, and 

<Aro, =ao, Sro, Tgo,CPo> by B in an axiom of (fl) to (f9). From the definition of Ar, it is 

obvious that a proof of the last sequent follows from a derivation of the sequent 

C:Cat ➔ Functor[ lid[ CJ, C, C ] 

by a single application of ➔{}. The latter derivation can in turn be obtained if a derivation for the 

sequent 

C:Cat ➔ Ax[ Xcll[C], C, C] (Ll) 

is provided, when Ax[-,-,-] is in turn each of the axioms (fl) to (f9). Derivations of the sequents 

(Ll) are lengthy and for space reason they are omitted. The interested reader can find the more 
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difficult ones in the proof of lemma 5.2.1 in [Gilmore & Tsiknis 90a]. 

End of proof 

For the next lemma, the following definition of the composition of two functors is required: 

FC[Fl,Cl,Dl,F2,C2,D2] for 

{ < f,g> I [ 3h:Aro1](< f,h>:Fl" <h, g >:F2) } 

The lemma states that if two functors are composable, their composite is also a functor. 

5.3 Lemma 
The sequent 

➔ ['v'f,g:Func]['v'b,c,d,e:Cat]( <f,b,c>:Air" <g,d,e>:Ar" c=ed 

=> < lFC[ f,b,c,g,d,e ], b, e >:Ar) 

is derivable. 

13 

Proof Outline: If Fl, F2 are second order parameters and Cl, Dl, Cl, D1 are the usual tuples 

of second order parameters, the lemma can be obtained from the sequent 

<Fl,Cl,Dl>:Alr, <F2,C2,D2>:Ar, Dl=eC2 

➔ < lPC[Fl,Cl,Dl,F2,C2,D2], Cl, D2 >:Alr 

by successive applications of the -+'v' rule. The last sequent can be derived from the sequent 

Functor[Fl,Cl,D1], Functor[F2,C2,D2] Dl=eC2 

➔ Functor[ 1FC[Fl,Cl,Dl,F2,C2,D2], Cl, D21 

by two applications of { } ➔ and one of ➔ { } . 

From the definition of functor, a derivation of the latter sequent can be obtained if a derivation for 

the sequent 

Ax[Fl,Cl,D1], Ax[F2,C2,D2] Dl=eC2 

➔ Ax[ 1FC[Fl,Cl,Dl,F2,C2,D2], Cl, D2] (L2) 

is provided for each of the axioms (fl) to (f9), where Ax[-,-,-] has the same meaning as in the 

proof of lemma 5.2. The more difficult derivations are provided in the proof of lemma 5.3.1 of 

[Gilmore&Tsiknis 90a]. 

End of proof 

The main theorem of the paper together with an outline of its proof is presented next. 
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5.4 Theorem 
The sequent 

➔ < Ar, =a, Sr, 'fg, Cp>:Cat 

is derivable within NaDSet. 

Proof Outline: A derivation of ➔ <Ar,=a,Si','fg,Cp>:Cat can be obtained from a derivation 

of ➔ Category[Ar,=a,Sr,'fg,Q>] by one application of ➔ { } rule and the definition of Cat. To 

derive the latter sequent it is necessary to provide a derivation of each sequent of the form 

14 

➔ Ax[ Ar, =2 , Sr, 'f g, CJP ] (Tl) 

where Ax[-,-,-,-,-] is one of the axioms cl to c20. 

Lemma 5.2 provides a term for the existential quantifier in (cl 1) and (c13) while (c15) uses lemma 

5.3. The derivations of the remaining sequents (Tl) are lengthy, tedious applications of the 

definitions and the properties of the extensional identity and are omitted for space reasons. The 

interested reader is refered to the proof of theorem 5.4.1 of [Gilmore & Tsiknis 90] for a detailed 

proof of the theorem. 

End of proof 

6. NATURAL TRANSFORMATIONS and FUNCTOR CATEGORIES 

As Eilenberg and Mac Lane obseived [MacLane71], "category" has been defined in order to define 

"functor", and "functor" has been defined in order to define "natural transformation". This notion 

induces an equivalence relation between categories that allows the comparison of categories that are 

"alike" but of different "sizes". Moreover, natural transformation is the basic ingredient in the 

ubiquitous construction of functor categories. 

6.1 Natural Transformations 

We now proceed with a NaDSet definition of a natural transfonnation from one functor to another. 

In this, T, F, G, ArB, =aB• SrB, TgB, CpB, Arc, =ac• Src, Tgc, Cpc, Aro, =ao, 

Sro, Tgo, Cpo are used as metavariables ranging over second order terms, while B, C, D are 

used as abbreviations of the tuples < ArB, =aB• SrB, TgB, CpB >, <Arc, =ac• Src, Tgc, 



A Formalization of Category Theory, August 17, 1990 

Cpc> and <Aro, =ao• Sro, Tgo, Cpo> respectively. 

As with categories and functors, the set of natural transformations is defined in two steps: 

NatTransform[ T, F, G, C, D] for axioms 
where "axioms" consist of the conjunction of the following formulas: 

I is a map for functors 

< F, C, D >:Fune 

< G, C, D >:Fune 

I is a function from oQjects in C to arrows in D 

[Vc:Ob[C]] [3tc:Aro] <c,tc>:T 

[Vc:Ob[C]] [Vtc:Ar0 ](<c,tc>:T => [3fc,gc:Ar0 ]( 

<c,fc>:F /\ <c,gc>:G /\ <tc,fc>:Sr0 /\ <te,gc>:Tg0 ) ) 

[Vcl,c2 Ob[C]] ['v'tcl,tc2:Aro]( 

cl =ac c2 /\ <cl,tcl>:T /\ <c2,tc2>:T => tel =ao tc2) 

[Vcl,c2:0b[C]] [Vtc:Aro]( cl =ac c2 /\ <cl,tc>:T => <c2,tc>:T) 

['v'c:Ob[C]] [Vtcl,tc2:Aro]( tel =an te2 /\ <c,tcl>:T => <e,te2>:T) 

Tel 
cl Fcl ► Gel 

For every arrow hi of C, the diagram Fhi fh 
c2 Fc2 ► Gc2 

Tc2 

[Vcl,c2 Ob[C]] ['v'h:Arc] ['v'tcl,tc2,fh,gh:Aro]( 

commutes 

<h,cl>:Src /\ <h,c2>:Tgc /\ <cl,tcl>:T" <c2,tc2>:T" <h,fh>:F /\ <h,gh>:G 

=> [3k:Aro]( <tel,gh,k>:Cpo /\ <fb,te2,k>:Cpo)) 

The set of natural transformations is defined: 

NatTrans for { <t,f,g,c,d>I NatTransfonn[ t,f,g,c,d] } 

(tl) 

(t2) 

(t3) 

(t4) 

(t5) 

(t6) 

(t7) 

(t8) 

15 
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Given the functors F, G: C➔ D, the sets of natural transformations from F to G can now be 

defined: 

NatTrans[F, G, C, D] for {t I <t, F, G, C, D >:NatTrans} 

6.2 Natural Equivalence 

16 

A natural transformation is a na.tural isomorphism (or a na.twal equivalence) if each component of 

it is an isomorphism in the target category: 

Natlsomorphism [ F, G, C, D] for 

{ t I t:NatTrans[F, G, C, D] 

"[Vc:Ob[C]] ['v'tc,dl,d.2:Aro] (<c,tc>:t" <tc,dl>:Sro" <tc,d.2>:Tgn 

=> [3h:Aro]( <tc,h,dl>:Cpn" <h,tc,d2>:Cpn ) ) } 

Given two categories C and D, the equivalence relation among functors from C to Dis given by: 

NatEq[ C, D] for { <f,g> I [3t:NatTrans[ f, g, C, D] t:Natlsomorphism[ f, g, C, D ] } 

An equivalence relation= between categories that meets the requirements mentioned at the beginning 

of the section, can be given by the following definition in which C, D are used as tuples of 

abstraction variables. 

= for { <C,D> I [3F:Func[C,D]] [3G:Func[D,C]] ( 

< lFC[F,C,.D,G,D,.C], lid[C] >: NatEq[ C, C] 

" < lFC[G,D .. C..F,C .. D], lid[D] >: NatEq[ D, D] ) } 

where lidL] and lFC(_,_,_,_,_,_] are the terms defined prior to lemmas 5.2 and 5.3 respectively. 

6.3 Functor Cateeories 

If C and D are caregories, the category of functors -functor category -- from C to D, denoted by 

nC or FunCat[C,D], is defined as the tuple 

nC for <A.r[C,D], =a[C,DJ, Sr[C,D], Tg[C,DJ, Cp[C,D]> 

of the parameterized terms Ar[C,D], =a[C,D], Sr[C,D], Tg[C,D], Cp[C,D] whose definitions 

follow. 

Obviously, the arrows of this category are the natural transformations among functors from C to D. 
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The reader should note that the objects of this category are the functors themselves. Thus we define 

Ar [C,D] for { <T,F,G> I NatTransform[ T, F, G, C, D] } 

The identity among the members of Ar [C,D] is defined in terms of the extensional identity. 

=a [C,D] for { <<Tl,Fl,Gl>, <T2,F2,G2>> I 

Fl=eF2 A Gl=eG2 A Tl=eT2 }. 

The identity =e for the terms that represent functors (Fs and G's) was defined in section 5; it only 

remains to give its definition for the terms representing natural transformations: 

Tl =e T2 for [Vc:Ob[CJ] [Vd:Aro]( <c,d>:Tl e <c,d>:T2 ) . 

The source and the target of an arrow coincides with the source and the target functors of the 

transformation which are viewed as identity natural transformations. Consequently we define 

Sr [C,D] for {<<Tl,Fl,Gl>, <T2,F2,G2>> I 

T2=eF1 /\ F2=eF1 A G2=eF1 } 

and 

Tg [C,D] for {<<Tl,Fl,Gl>, <T2,F2,G2>> I 

T2=eG1 A F2=eG1 A G2=eG1 } . 

Finally, the composition of 

Cp [C,D] for { <<Tl,Fl,Gl>, <T2,F2,G2>, <T3,F3,G3>> I 

Fl=eF3 A G=eF2 A G2=eG3 

A [Vc:Ob[C]] [Vd:Aro]( <c,d>:T3 

= [3dl,d2:Aro](<c,dl>:Tl "<c,d2>:T2" <dl,d2,d>Cpo)) } . 

The sequent of the following theorem states that for any categories C, D, the set of functors from C 

to Dis itself a category. 

6.3.1 Theorem 

The sequence 

➔ [Vx,y:Cat] <Ar [x,y], =a [x,y], Sr [x,y], Tg [x,y], Cp [x,y]>:Cat 
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is derivable within NaDSet. 

A derivation of the theorem can be obtained if a derivation is provided for each sequence of the 

form 

Ax[Arc, =ac• Src, Tgc, Cpc], Ax[ Afn, =an, Sro, Tgo, CpD ] 

➔ Ax[ Ar [C,D], =a [C,D], Sr [C,D], Tg [C,D], Cp [C,D] ] 

where Arc, =ac, Src, Tgc, Cpc, Aro, =an, SI)), Tgo, CpD are second order parameters, C 

and D are the tuples <Arc, =ac, Src, Tgc, Cpc>, <Aro, =an, SI)), Tgo, Cpo> and 

Ax[-,-,-,-,-] is one of the axioms (cl) to (c20). The latter derivations are similar (in structure as well 

as in length) to those in the proof of theorem 5.4 and are omitted for space reasons. 

7. OTHER CONSTRUCTIONS 

7.1 Opposites 

To each category C, we assosiate the opposite category, c 0P, defined to be the term 

<Arc, =c, sr0 P[C], Tg0 P[C], Cp0 P[C]> with components: 

Sr0 P[C] for { <u,v> I <u,v>:Tgc ) 

Tg0 P[C] for { <u,v> I <u,v>:Src } 

ep0P[C] for { <u,v,g> I <u,v,g>:Cpc) 

7.1.1 Lemma 
The sequents 

➔ ['vx:Cat] x0P:Cat 

➔ ['vx:Cat] (x0 P)0 P =e x 

are derivable. 

7.2. Product Catei:ories 

Given two categories B and C, the product of them, BxC, is defined to be the term 

<AfX[B,C], :X[B,C), SrX[B,C), Tgx[B,C), epx[B,C)> with components: 

ArX[B,C] for { <u,v> I u:Are A v:Arc } 
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:'C[B,C] for { <<u,v>,<f,g>> I <u,f>: =aB A <v,g>: =ac} 

Sr"[B,C] for { <<u,v>,<f,g>> I <u,f>:SrB A <v,g>:Src } 

Tgx[B,C] for { <<u,v>,<f,g>> I <u,f>:TgB A <v,g>:Tgc } 

epx[B,C] for { <<ul,vl>,<u2,v2>,<f,g>> I <ul,u2,f>:CpB A <vl,v2,g>:Cpc }. 

Given two functors F and G their product, FxG is given by: 

FxG for { <<u,v>,<f,g>> I <u,f>:F A <v,g>:G } . 

1.2.1. Lemma 
The sequents 

➔ ['v'w,z:Cat] wxz:Cat 

➔ ['v'w 1, w2,z 1,z2:Cat]['v'f:Func[ w 1,z 1 ]] ['v' g:Func[ w2,z2]J 

fxg:Func[wlxw2, zlxz2J 

are derivable. 

7.3. Comma Cate2ories 

19 

If B,C and D are categories and F:C➔B, G:D➔B functors, the comma category (F,G) is defined 

to be the term 
t t I t I 

<.Ar [F,G,B,C,D], = [F,G,B,C,D], Sr [F,G,B,C,D], Tg [F,G,B,C,D], Cp [F,G,B,C,D] > 

with components: 
I 

Ar [F,G,B,C,D] for { <u,v,w,x> I u:Arc /\ v:Aro A w:Are /\ x:Arn 

A [3f,g,h:ArB]( <u,f>:F A <v,g>:G A <f,w,h>:Cpn /\ <x,g,h>:Cpn )} 
I 

= [F,G,n,C,D] for { <<ul,vl,wl,xl>,<u2,v2,w2,x2>> I 

<ul,u2>: =ac /\ <vl,v2>: =ao A <wl,w2>: =an A <xl,x2>: =an } 
I 

Sr [F,G,n,C,DJ for { <<ul,vl,wl,xl>,<u2,v2,w2,x2>> I 

<ul,u2>:Src /\ <vl,v2>:Sro A <wl,w2>: =an A <wl,x2>: =an } 
I 

Tg [F,G,n,C,DJ for { <<ul,vl,wl,xl>,<u2,v2,w2,x2>> I 

<ul,u2>:Tgc /\ <vl,v2>:Tgo A <xl,w2>; =an A <xl,x2>: =an } 
I 

Cp [F,G,n,C,D] for { <<ul,vl,wl,xl>,<u2,v2,w2,x2>, <u3,v3,w3,x3>> I 

<ul,u3>: =an/\ <vl,u2>: =an/\ <v2,v3>: =an 

A <ul,u2,u3>:Cpc A <vl,v2,v3>:Cpo } . 
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The meticulous reader will have already noticed in the last definition a slight deviation from the 

traditional one. The arrows of a comma category, according to the above definition, are quadruples 

instead of pairs. Although such a deviation is immaterial (it only affects the representation of the 

construct not its properties), it has been found necessary to avoid the explicit use of objects and 

Hom-sets. Nevertheless, it can be shown that a triple <e,d,f> is an object of (F,G) as defined in 

[MacLane 71] iff <e,d,f,f> is an object of (F,G) according to our definition. Moreover, an arrow 

<k,h>: <e,d,f> ➔ <e',d',f> in [MacLane 71] is exactly the arrow <k,h,f,f> in our definition. 

The difference is that in the first case an arrow cannot be determined by the pair <k,h> alone 

without explicitly giving its source and target, while in our presentation the tuple <k,h,f,f> uniqely 

detemines an arrow in (F,G). 

7.3.1. Lemma 
The sequent 

➔ [v'x,y,z:Cat][v'f:Func[x,y]][v'g:Func[z,y]] (f,g):Cat 

is derivable. 

7.4. Universals and Limits 

To improve readability, in the next two sections additional abbreviations will be used that resemble 

the functional notation used in mathematics. Specifically, if F is a functor ( or transformation) from 

B to C then 

F[x]c for {y I y:Arc "<x,y>:F}, 

[y➔z]c for { w I w:Arc /\ <w,y>:Src /\ <w,z>:Tgc }, 

and combining them 

[y➔F[x]]c for {w I w:Arc A <w,y>:Src A [3z:F[x]c]<w,z>:Tgc }. 

Similar definition can be given for [F[y]➔x]c and [F[y]➔F[x]]c. We can proceed now with the 

definition of universal arrows. 

Given a functor F:D➔C and an object c of C, the following term defines the set of universal 

arrows from c to F. 

UniArrFrom[F,D,C,c] for 

{ <r,u> I r:Ob[D] A u:[c➔F[r]]c 
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"['v'd:Ob[D]] ['v'g:[c➔F[d]]c] [3gl:[r➔d]o] [3fgl:F[gl]c]( <u,fgl,g>:Cpc 

" ['v'g2:[r➔d]o] ['v'fg2:F[g2]c]( <u,fg2,g>:Cpc::::, g1=8 og2) ) } 

By duality, the set of universal arrows from the functor F to an object c is given by: 

UniArrTo[F,D,C,c] for 

{ <r,u> I r:Ob[D] "u:[F[r]➔c]c 

"['v'd:Ob[D]] ['v'g:[F[d]➔C]c] [3gl:[d➔r]o] [3fgl:F[gl]c]( <fgl,u,g>:Cpc 

"['v'g2:[d➔r]o] ['v'fg2:F[g2]c](<fg2,u,g>:Cpc::::, g1=8 og2)) } 

A definition of the diagonal functor must preceed a discusion of limits and colimits. In the 

following definitions B and Care categories, can object of C and fan arrow of C: 

DF[B,C,c] for { <u,v> I u:ArB "v=8 cc } 

DT[B,C,fJ for { <u,v> I u:Ob[B] "v=8cf } . 

The diagonal functor from C to cB is defined as 

.1[B,C] for { < u,y> I u:Arc "y =e DT[B,C, u] } 

The following lemma justifies these definitions: 

7.4.1. Lemma 
The sequences 

➔ ['v'j,x:Cat][\ic:Ob[x]] DF[j,x,c]:Funcfj,x] 

➔ ['v'j,x:Cat] [\ic,c':Arxl ['v'f:[c➔c'lxl 

DTfj,x,f]:NatTrans[DF[j,x,c], DF[j,x,c'],j,x] 

➔ ['v'j,x:Cat] .1fj,x]:Func[x,xJ] 

are derivable. 

21 

Definitions of limits and colimits can now be given. Given a functor F:B➔C, the limits for F are 

given by 

Limit[F,B,C] for { <u,v> I <u,v>:UniArrowTo[ .1[B,C], C, cB, F] } 

and the colimits of F by 

Colimit[F,B,C] for { <u,v> I <u,v>:UniArrowFrom[ .1[B,C], C, cB, F] } . 

Products, powers, equalizers, pullbacks and their duals can easily be defined as special cases of 
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limits and colimits respectively. 

7.5. Adjoints 

Given two categories C, D, an ad.junction from C to D consists of a pair of functors F:C➔D, 

G:D➔C and a natural transformation 11 from the identity functor of C to the composition of F and 

G with some additional properties given by the folowing definition. 

Adjunction[C,D,F,G,11] for 

F:Func[C,D] /\ G:Func[D,C] 

/\ 11:NatTrans[][dl[C], lFC[F,C,D,G,D,C], C, C] 

/\ [Vx:Ob[C]] [Vy:Ob[D]] [Vf:[x➔G[y]]C] [3Tix:11[x]c] 

[:lfl:[F[x]➔y]o] [:lgfl:G[fl]c] ( <11x,gfl,f>:Cpc 

/\ [Vf2:[F[x]➔Y]o] [Vgf2:G[f2]c] ( <11x,gf2,f>:Cpc => f1=3 of2)) 

or equivalently, 

Adjunction[C,D,F,G;11] for 

F:Func[C,D] /\ G:Func[D,C] 

/\ 11:NatTrans[Tidl[C], lFC[F,C,D,G,D,C], C, C] 

/\ [Vx:Ob[C]] [:lfx:F[x]o] [311x:11[x]c] <fx,11x>:UniArrFrom[G,D,C,x] 

Finally, the set of adjoint pairs of functors from C to D is defined as 

Adjoint[C,D] for 

{ <f,g> I [311:NatTrans[Tidl[C], lFC[ f,C,D, g,D,C], C, C] ] Adjunction[C,D, f, g,11] } . 

8. FUTURE DIRECTIONS 

Formalizations for most of the main concepts and constructs in category theory have been 

presented. NaDSet definitions for natural transformations, functor categories, an equivalence 

relation on categories, products, comma categories, universals limits, adjoints and some related 

theorems have been provided . This suggests that the variety of constructs defined for categories, 

toposes, triples and related theories, [Barr Wells 85] can be defined within NaDSet. 

There are two kinds of issues that have not been addressed in this paper. The first concerns the 

definition of the category of sets per se and the second involves notions like completeness that make 

either an implicit! or an explicit reference to the traditional foundations of the category theory. 
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Although these issues are topics of future research, some preliminary ideas and directions are 

presented in the following paragraphs. 

23 

In a traditional presentation of category theory [MacLane 71], the category of sets, Set, is defined 

to be a category whose objects consist of every object that a classical set theory accepts as set and 

whose arrows are the mappings among these sets. In NaDSet, however, set abstraction is 

introduced via abstraction rules, rather than through a comprehension axiom scheme, and enjoys an 

equal treatment with the connectives and quantifiers. As a consequence, NaDSet provides a 

characterii.ation of sound arguments, and not a characterii.ation of acceptable sets. Nevertheless, 

the category Set should be definable within NaDSet Section 8 of [Gilmore 89] provides a NaDSet 

formalii.ation of Godel-Bernays set theory within which every theorem of Godel-Bernays theory 

can be derived. Using the formalization, it should be possible to define a term representing the 

class of Godel-Bernays sets; the class of mappings among these sets then can be defined as the set 

of triples with elements the domain, co-domain, and the extension of the mapping. Among the 

remaining components of Set, target, source, and composition should have the expected definitions 

while arrow identity is taken to be the extensional identity over the mappings. It is expected that the 

traditional categorical constructions that are related to Set, such as horn-functors, functor 

representations and the Yoneda construction, can also be developed within NaDSet. 

Set is not the only meaningful category of sets that can be defined within NaDSet. There are two 

identity relations definable in the theory: the intensional identity defined by 

= for { <u,v> I [Vz]( u:z ::> v:z) } 

and the extensional identity 

=e for { <u,v> I [Vz]( z:u = z:v) } 

Each one of them defines a different 'universal' set : 

Vl for { u I u=u } 

V2 for {u I u=eu}. 

Any one of Vl, V2 and VI n V2 can be used as the object component of a category of sets VlSet, 

V2Set, and Vl2Set, respectively. It should be possible to show that Set is a subcategory of 

VlSet. What properties each of them has and whether the classical constructions on Set can be 

carried over to these categories, remains to be seen. 

An analogous treatment may given to the second group of issues. The concept of completeness is 

taken to illustrate the main idea. A category is said to be small if its objects and arrows are 

Godel-Bernays sets. Traditionally, a category C is called small-complete if every functor from a 

small category J to Chas a limit [MacLane 71]. Such a notion can be defined in NaDSet given the 
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N aDSet definition of Godel-Bernays sets. Moreover it is believed that classical results such as 

Freyd's proposition ( that a small category which is small-complete is a preorder) and Freyd's 

Adjoint Functor Theorem [MacLane 71] can be proved in this framework. Nonetheless, a more 

general notion of completeness can be defined in N aDSet. Let R be a unary relation on Cat 

definable within NaDSet, and define an R-category to be one that satisfies R. A category C is 

called R-complete if every functor from an R-category to Chas a limit. This leads naturally to the 

question: Does there exist other interesting special cases of R-completeness besides the 

small-completeness case? 

Another class of issues is addressed in [Gilrnore&Tsiknis90c]. 
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