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Abstract 

Mathematical foundations for orientation based shape representa­
tion are reviewed. Basic tools include support function, mixed volume, 
vector addition, Blaschke addition, ~nd the corresponding decomposi­
tions, as well as some basic facts about convex bodies, are presented. 
Results on several types of curvature measures such as spherical im­
ages, m-th order area functions are summarized . AB a case study, 
the EGI apprnach is examined to see how the classical results on 
Minkowski's problem are utilized in computational vision. Finally, 
results on Christoffel's problem are surveyed, including constructive 
proofs. 
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1 Introduction 

An orientation based representation is a representation that encodes some 
object property as a function of surface orientation. More formally, an ori­
entation based representation is a map, 'R, from connected point sets in 
Euclidean d-space, Rd, to functions defined on the unit sphere in d-space, 
sd-1. The following three orientation based representations are considered: 

Rl: Gaussian curvature. 

R2: Mean radius of curvature. 

R3: Distance (from an origin) to the closest tangent plane. 

The following questions are posed: 

Ql: For what class of objects is the representation unique? 

Q2: What methods exist to reconstruct the object given its representation? 

Q3: How can the representation be used for shape matching? 

The first two representations have been studied intensively by mathe­
maticians, and are known as Minkowski 's problem and Christoffel's problem 
respectively. The support function, R3, appears in proofs related to both 
Minkowski's problem and Christoffel's problem. 

In computational vision, the representation, Rl, was first utilized by 
Horn [13, 15]. Other researchers have proposed using the mean curvature, 
as well, as an orientation based representation [2]. The representation, R2, 
is the mean radius of curvature, not the mean curvature. The distinction 
may not seem significant but the mathematical properties of R2 have yet 
to be exploited in computational vision. Nalwa (19] has proposed using rep­
resentation R3. This representation also appears as an internal represen­
tation in certain algorithms in computational geometry. (See, for example, 
Little [17).) As will be shown, representation R3 also is related to the Leg­
endre transformation used in applied mathematics. The answer to question 
Ql is known for representations Rl-R3 when the object involved is convex. 
The representations Rl-R3 are not unique, in general. Special cases have 
been explored [13). As well, extentions to the representations to handle non­
convex objects have been considered [17]. Methods have been described to 
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reconstruct an object from its representation RI. The most effective of these 
is the iterative method of Little [17]. There have been no methods describaj 
to reconstruct an object from its representation R2. As will be shown, how­
ever, constructive proofs exist which s]J.ould lead to effective reconstruction 
algorithms. The representation R3 is an effective representation in that 
most other representations are readily computed, given R3. The represern­
tation RI has been used directly in shape matching Ikeuchi [16], Brou [4]. 
Little [17] developed a matching method based on the mixed volume that 
combines representations RI and R3. 

Section 2 presents some basic facts about hypersurfaces, particularly con­
vex hypersurfaces. Those facts, along with the tools used to discover them, 
establish the framework for the remaining sections. Section 3 describes 
Minkowski's problem, both in theory and in application. Section 4 describes 
Christoffel's problem, both in general and for the special case of polytopes. 
Appendix A provides notation and terminology used in this paper. 

2 Facts and Tools 

Most of the material in this section is excerpted from Bonnesen and Fenchel [3], 
Busemann (5), Griinbaum [121, Pogorelov [20], and Schneid r (22). roofs of 
theorems are not included except where a constructive proof forms the es­
sential basis for a subsequent algorithm. 

Many mathematical proofs assume smoothness conditions, which are not 
determined by the problem but rather by the methods of proof used. Many 
convexity results are simply due to convexity without smoothness assump­
tions. Methods without smoothness assumptions are relevant to discrete 
algorithms. 

This section begins with two theorems on the differentiability of convex 
hypersurfaces (Section 2.1 ). Section 2.2, 2.3, and 2.4 introduce, respectively, 
spherical image, support function, and area function of a convex body. As 
well, results about the existence and uniqueness of a convex body with respect 
to spherical image, support function, and area function, respectively, are 
reviewed. Section 2.5 describes two ways of combining convex bodies, vector 
addition and Blaschke addition. Section 2.6 describes mixed volume and the 
Brunn-Minkowski Theorem. Section 2.7 presents results associated with m­
th order area function. Finally, Section 2.8 introduces distance function, cross 
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sectional measure, breadth, diameter, and width of a convex body, and the 
Legendre transformation of a convex function. The Legendre transformatio:J?­
of a convex function can be viewed as the support function of a convex body. 
Moreover, the support function and the distance function of a convex body 
are Legendre transformations of each other (claimed by Fenchel (6).) 

2.1 Basic Facts and Concepts 

Theorem 2.1 For a given point p on a convex hypersurface C there is a 
neighborhood Gp of panda system of rectangular coordinates x1 , x 2 , ••• , xd-t, z 
with p as origin such that Gp is representable in the form 

Moreover f(x) is a convex function of x, and its difference quotients 

lf(x) - f(y)I x=f=y 
I x-y I ' 

are bounded. If (x0 ,z0 ) is a point in Gp where G is differentiable then f(x) 
possesses at x 0 a differential. 

Theorem 2.2 (Reidemeister, 1921) A convex hypersurface is almost every­
where differentiable. 

Although simple and basic, Theorems 2.1 and 2.2 are important. Quite 
often, we see the following types of statements: "Assume the surface of the 
object is sufficiently smooth, ... ", or "Let us consider the behavior of the 
surface in a local coordinate system around point p, ... ", etc. We should 
always be aware of the extent to which these assumptions are ensured as a 
result only of convexity. 

Definition 2.1 Let v E Rd. A hyperplane H = {x E Rdl (x,v) = a} is said 
to cut a subset A of Rd if there exist xi, x 2 E A such that (xi, v) < a and 
(x2 , v) > a. A hyperplane His said to support A if H does not cut A and 
the distance between H and A is 0. When a hyperplane H that supports 
A is represented as H = {x E Rdl (x,v) = a} such that (x,v) :Sa for all 
x E A, H is will be referred as the support hyperplane of A with outward 
normal v. 
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Theorem 2.3 
( a) If A is a bounded set in Rd and if His a given hyperplane, there exists 

a support hyperplane of A parallel to H. · 
(b) If A is, moreover, convex and its interior intA =/= 0, there exist exactly 

two such hyperplanes. 
( c) If A is convex and bounded, and x (/. intA, there exists a support 

hyperplane of A which contains x. 

Thus, given a convex hypersurface C which, by definition, is the bound­
ary of a convex set K, and a point p E C, we can talk about the support 
hyperplanes of C at p as the support hyperplanes of /( containing p, we also 
say that p has a support hyperplane Hp. Concerning the number of support 
hyperplanes at p, we have the following definition. 

Definition 2.2 A boundary point p of a convex body/( is said to be singular 
if/( has more than one support hyperplanes at p. If /( has only one support 
hyperplane at p, pis called regular. A support hyperplane of/( is said to be 
regular if it intersects /( at only one point. 

2.2 Spherical Images 

Definition 2.3 A set M on sd-l is ( sphericaQ convex if for every 
u, v E M, u =/= ±v, M contains the shorter arc of the great circle determined 
on sd-l by U and v. 

Theorem 2.4 A convex set on sd-l is either sd-l or contained in a closed 
hemisphere of sd- l, 

Definition 2.4 Consider a convex hypersurface C. The spherical image 
v'(p) of a point p EC consists of the points of sd-1 which, as vectors, are the 
outward normals of the support hyperplanes of C at p. The spherical image 
v' ( M) of a set M ~ C is 

Note Spherical images are not defined for non-convex hypersurfaces, be­
cause the support hyperplanes at a concave point are not defined. 
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Theorem 2.5 For a convex hypersurface C, v'(C) is convex. 

Definition 2.5 For any set M C C for which v'(M) is measurable, the 
integral curvature of M is defined as 

v(M) = measure of v'(M) . 

Theorem 2.6 (Alexandrov) Given a convex hypersurface C, v'(M) is mea­
surable for any M E B( C) and the integral curvature v(M) is completely 
additive on B(C). 

Theorem 2.7 (Alexandrov) For a given completely additive non-negative 
set function a(M') defined for all M' E B(Sd-l) there exists a closed convex 
hypersurface C containing origin O in its interior such that a(M') = v(M) 
for the projection M of M' from O on C, if and only if 

(See Appendix A for the definition of Wd,) 

2. a(K) :::; wd - /3 for every convex set K on sd-I, where /3 is the 
measure of the spherical image of the cone projecting K from O . 

This theorem looks quite analogous to the existence theorem of Minkowski's 
problem. Actually, the proofs are quite similar. The corresponding unique­
ness theorem is stated as follows. 

Theorem 2.8 Let C1 and C2 be two closed convex hypersurfaces containing 
0 in the interior. If v(M1 ) = v(M2 ) for any M, E B(C,),i = 1,2, which are 
projections of each other from 0, then C2 is obtained from C1 by a dilation 
with center O . 

2.3 Support Functions 

Definition 2.6 Let KC Rd be a nonempty set. The support function H(v) 
of K is defined for all v E Rd by 

H(v) = sup{ (x, v) Ix EK}. 

Support functions are written as H(K; v) or HK(v) for the support functions 
of different point sets. 
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Let H(v) be the support function of a convex body K, v E Rd\ {O}. 
Then the support hyperplane of K with outer normal v can be represent~ 
as (x,v) = H(v). Actually, this was how Bonnesen defined support func­
tion. Support functions following different definitions are defined for different 
scopes of sets ( e.g., convex only), and have different domains ( e.g., on sd-t 
only). The definition we have here is the most general one in the sense that 
the support functions defined in other ways can be extended naturally to the 
support function we defined here. Support functions defined only on sd-t 
can be extended to be defined for any v E Rd as H(v) = llvllH(v/llvll). The 
following result asserts that the extended support functions are the support 
functions we defined. 

Theorem 2.9 The support function H(v) of a nonempty set K is positively 
homogeneous and convex, that is, it satisfies 

1. H(>.v) = >.H(v) 

2. H(v + w):::; H(v) + H(w) 

for all >. 2, 0, v E Rd, 

for all v, w E Rd. 

Support functions are defined for any nonempty set. However, the sup­
port functions of convex sets attracted more attention from mathematicians. 
From the above theorem, we know that the support function of a convex 
set is necessarily positively homogeneous and convex. We now prove that 
positively homogeneity and convexity are sufficient for a function to be the 
support function of a convex set. 

Theorem 2.10 If H(v) is any function defined on Rd such that 

1. H(>.v)=>.H(v) 

2. H(v + w):::; H(v) + H(w) 

for all>. 2. 0, v E Rd, 

for all v, w E Rd, 

then there exists a nonempty closed convex set K such that H( v) is the 
support function of K. 

Proof Let Ku= {xi (x, u) :::; H(u)} for u E sd-1, that is, the half space 
bounded by plane (x, u) = H( u) with unit outer normal u. Let K be the 
intersection of these half spaces, that is, 

K = {xi (x,u):::; H(u) for all u E Sd-1}. 
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We can prove that J{ is nonempty, closed, and convex. 

D 

Theorem 2.11 If Ki, K 2 are nonempty closed convex sets in Rd such that 
H(K1 ; v) = H(K2 ; v) for every v E Rd, then K1 = K 2• 

The uniqueness result does not hold for non-convex bodies. For ex­
ample, in Figure 1, polygons A and B have the same support function, 
H(A; v) = I:,f=1 lvil, if A is the cube having edges parallel to the axes with 
edge length 2 and is centered at the origin. Here A is convex, B is not, and 
hull(B) = A. 

[J B 

Figure 1: Two polygons with the same support function. 

Theorem 2.12 Let K1 and K 2 be two convex bodies. 
H(K1 ; v) < H(K2 ; v) holds for all v E Rd if and only if K 1 ~ K 2 • 

Then 

Theorem 2.13 If a convex body K has only regular support planes, then 
its support function H(K; v) has continuous partial derivatives of the first 
order, and 

8H(I{;v) . 
xi = a , i = 1, ... , d, 

Vi 

where Xi is the coordinate of its boundary points. 

2.4 Area Functions 

Definition 2.7 Let I{ be a convex body in Rd, w E B(Sd- 1 ). Denote, by 
S(K; w), the (d-1)-content (area when d = 3) of the set of all those boundary 
points of K, each of which has a support hyperplane with outward normal in 
w. Set function S(K;w) is called the area function (or primary area function 
by W. Firey) of K. 
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Theorem 2.14 Let µ be a positive measure on B(Sd-t) not concentrated 
on a great sphere, and suppose that 

f udµ(u) = 0. 
lsd-1 

Then there exists a convex body K, unique up to translation, with 
S(K; w) = µ(w). 

Obviously, the area function of a polytope Pis a discrete system of vectors 
A(P) = { ai I 1 S i S f(P)}, where f(P) is the number of facets of P. For 
each facet Fi of P, the direction of ai is that of the outward normal of Fi and 
the length of ai is equal to the ( d - 1 )-content of Fi. 

Definition 2.8 A system V = { vill S i S n} of non-zero vectors in Rd is 
called equilibrated if Ef=t Vi= 0 and no two of the vectors in V are positively 
proportional. V is called fully equilibr-ated in Rd when it is equilibrated and 
spans Rd. 

Theorem 2.15 (Minkowski's Fundamental Theorem) 
(1) If P is a polytope in Rd, then A(P) is equilibrated. If P is a 

k-polytope, then A( P) is fully equilibrated in the subspace Rk parallel to 
the affine space spanned by P. 

(2) If V is a fully equilibrated system in Rk, k ~ 2, there exists a polytope 
P, unique within a translation, such that V = A(P). 

2.5 Combinations of Convex bodies 

There are many ways to combine convex bodies. Two ways described here 
are vector addition (or mixture) and Blaschke addition. The two definitions 
are closely related to the support function and the area function respectively. 
Methods of combination lead naturally to questions of decomposition. This 
subsection also presents associated decomposition results. 

2.5.1 Vector Addition 

Definition 2.9 For two set Q and R in Rd, the vector sum Q + R of Q and 
R is defined as 

Q + R = {x + ylx E Q,y ER} 
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If P = Q + R, then Q and R are called summands of P. The process 
is called vector addition. Associated with the vector addition, is a scalar 
multiplication >.Q defined as >.Q = { >.x Ix E Q}. The set {a} + >.Q, a E Rd,· 
is said to be homothetic to Q, and positively homothetic to Q if>.. > 0. 

Theorem 2.16 
(1) A set Pis the vector sum of Q and R if and only if 

H(P;v) = H(Q;v) + H(R;v), for all v E Rd. 

(2) Let Q and R be two polytopes, q;, i = 1, ... , n and r;,j = 1, ... , m, 
be the vertices of Q and R, respectively. A set P is the vector sum of Q and 
R if and only if P is the con vex hull of the set 

{qi+ r;li = 1, ... ,n, j = 1, ... ,m}. 

Assertions (1) and (2) can be regarded. as equivalent ways of defining 
vector sum. Assertion (1) says that H(Q + R;v) = H(Q;v) + H(R;v). 
Assertion (2) implies that the vector sum of two polytopes is again a polytope. 

In the same manner as we define vector sum of two convex bodies, we 
can define the linear combinations of convex bodies. Let Ai ~ 0, i = 1, ... , r, 
the linear combination of convex bodies Ki, i = 1, ... , r, is defined as 

K = {A1X1 + · · · + ArXr I X; E Ki} 

and is represented as 
r 

K = >.1K1 + • • · + ArKr =~>.Ki. 

The position of K generally depends on the choice of origin O . If O is re-
--+ 

placed by another point O', K will be translated by (Li=l >..;-1) 00', where 
--+ 

00' is the vector from O to 0'. Hence, if Li=l >..; = 1, linear combinations 
will be independent of the coordinate system. Of particular interest is the 
linear combination 

Ko = (1 - O)Ko + OK1 , 0 < 0 ~ 1 

of two convex bodies Ko and K 1 • 

Similarly to the argument of Theorem 2.16, the support function H( v) 
of the linear combination of convex bodies Ki, i = 1, ... , r is the linear 
combination of the support functions Hi(v) of Ki, i.e., 

H(v) = >.1H1(v) + · · · + ArHr(v). 
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2.5.2 Blaschke Addition 

Definition 2.10 Let Ki and K 2 be two convex bodies with area function 
S(Ki; w) and S(Ki; w), respectively. The Blaschke sum of Ki and K 2 is 
defined as the convex body K whose area function equals to S(Ki; w) + 
S(1<1; w), and is represented as K = Ki#K2 • The process is called Blaschke 
addition. The notion of scalar multiplication associated with Blaschke addi­
tion is defined as the convex body with area function ,\S(K; w), denoted as 
,\ X K. 

To see that Blaschke sum is well defined, recall Theorem 2.14 in Sec­
tion 2.4. That the area functions S(K1 ; w) and S(K2; w) satisfy the con­
dition of the theorem implies that their sum also satisfies the same con­
dition. Thus a convex body is uniquely determined, up to translation, as 
having the sum of the two area functions as its area function. By definition, 
S(Ki #K2; w) = S(Ki; w) + S(K2; w). 

Similar to vector sum, we can define.the weighted Blaschke sum of convex 
bodies. Let Ki, i = 1, ... , r be convex bodies, Ai 2 0, i = 1, ... , r, define 

K = Ai X K1#" · #Ar X Kr= #'i=iAi X Ki 

to be the convex body having function S(K; w) = -XiS(Ki; w)+· · ·+-XrS(Kr; w) 
as its area function. Similarly, Ke = (1 - 0) x K 0 # 0 x Ki, 0 < 0 ~ 1, may 
draw our special attention under certain circumstance. 

2.5.3 Vector Addition vs. Blaschke Addition 

The area function of Ke = (1 - 0)K0 + 0Ki, where Ko and Ki are convex 
bodies, is given by the generalized Steiner formula (quoted by Firey (8)), as, 

By Theorem 2.14, there is a unique convex body which has Soi as its area 
function. Firey called this convex body the mixed convex body resulting from 
K0 and Ki, and denoted it as C(K0 , Ki). Then 

(1 - 0)Ko + 0Ki = (1 - 0)2 x K0 # 20(1 - 0) x C(K0 , Ki) # 02 x K 1 . 
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2.5.4 Decomposition of Polytopes 

In the plane, every polygon is the vector sum of finitely many summands 
of a simple type (segments and triangles), and every convex set is the limit 
of finite vector sums of triangles. Both assertions fail to have analogues 
in higher dimensions. The decomposition of d-polytopes with respect to 
Blaschke addition is well behaved, as the following theorems show. 

Theorem 2.17 ( Firey-Griinbaum) E'very polytope Pis expressible in the 
form 

P = #?1:1Pi 

where each Pi is a simplex. Further, if P is d-dimensional and the number of 
facets of Pis f(P) = n 2: d+l, then there is a representation with m ~ n-d. 

Theorem 2.18 ( Firey-Griinbaum) Every d-polytope Pis representable in 
the form P = #i=i Pi where each Pi is a d-polytope with the number of facets 
of P is f(Pi) ~ 2d. 

2.6 Mixed Volumes 

Definition 2.11 The d-dimensional measure (or volume) of K is denoted 
by V(K). For variable Ai 2: 0 the volume of K = I::i=l AJ{i is a form 

r r r 

V(K) = :E :E • • • :E Yi1 ... idAi1 •••Aid 
i1=l i2=l id=l 

of degreed in the Ai, where the coefficients ½1 ... id are uniquely determined by 
requiring that they are symmetric in their subscripts. Then ½1 ••• id depends 
only on the bodies Ki1, ... , Kid and not on the remaining bodies K;, hence 
we may write V(Ki1, ... , Kid) for ½1 ••• id, and call it the mixed volume of 
Ki1, ... 'Kid• 

The most important case in studying mixed volumes is the case which 
involves only two distinct convex bodies. Thus the notation Vm(Ki, K 2) was 
introduced as : 

Vm(K1, K2) = V(~,!{2,. ~-, K2) = Yri-m(K2, K1) 
d-m m 
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Then 

V(.-\1K1 + .-\2K2) = 'f
0 

( ! ) ,,xf-m .-\rVm(K1, K2) 

Since V(E ,,\iK) = (E .,\i)dV(K), we have V(K, ... , K) = V(K) . 
All in all, the notion of mixed volumes does not seem to be easy to grasp. 

The following relationships are helpful in understanding this notion. 
Consider a non-degenerate polytope P. Denote by p', i = 1, ... , N, the 

facets of P, by A(pi) the area of pi, by u i the unit outer normal of the support 
plane of P containing pi. It can be proved that 

N 

V(P) = d-1 L H(P; ui)A(pi). 
i=l 

This can be generalized to mixed volumes of a polytope P and an arbitrary 
convex body K* as 

N 

½(P, K*) = d-1 L H(K*; ui)A(pi). (1) 
i=l 

Furthermore, if K is an arbitrary convex body with interior points, bdK its 
boundary, dS the area element of bdK, then a limit process of the above 
equation will give us 

(2) 

The flexibility of the mixed volumes makes it easy to get various geometric 
quantities of K 1 by substituting suitable K2, ... , Kd in V(Ki, ... , Kd), For 
example, let Ube the unit ball, d½(K, U) is the area of bdK by Equation 2, 
because H(U; u) = l. In fact, Bonnesen and Fenchel [3] defines the surface 
area S(K) of an arbitrary convex body K as d • ½(K,U). Furthermore, if 
K 1 , K2, ... , Kd-l are convex bodies, then d· V(U, K1 , •.• , Kd-i) is designated 
as their mixed surface area. 

Theorem 2.19 (Brunn-Minkowski Theorem) If Ko and K 1 are convex bod­
ies in Rd, then 

is a concave function of a, which is linear if and only if Ko and K 1 are 
homothetic or lie in parallel hyperplanes. 
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Corollary 2.20 (Minkowski's Inequalities) 

½d(Ko, Ki)~ yd-i(Ko)V(Ki), 

Vl-i(Ko, Ki) ~ V(Ko)vd-i(Ki) . 

If Ko and Ki do not lie in parallel hypersurfaces the equality sign holds only 
when Ko and Ki are homothetic. 

Corollary 2.21 (Quadratic Inequalities of Minkowski) 

½2 (K0 , K1) ~ V(Ko)½(Ko, K1) , 

V;_ 1(Ko, K1) ~ Vct-2(Ko, K1)V(K1) . 

These inequalities are used to solve many extremal and uniqueness prob­
lems. 

2. 7 m-th Order Area Functions 

Definition 2.12 Let K be a convex body, Ube the unit ball, w E B(Sd-1). 
Then for,\~ 0, S(K + >.U; w) is a polynomial 

d-1 ( d- 1 ) . L • Sd-1-i(K;w)>.'. 
i=l i 

This defines the measure sd-1-i(K; w) over B(sd-l) for i = 0, 1, ... 'd - I . 
Call Sd-l-i(K; w) the area function of order d - 1 - i of K. 

If K is a regular convex body and R1 , R2 , ••• , Rd-l are the principal radii 
of curvature of the surface of K, then 

where {R1, ... , Rm} is them-th elementary symmetric function of R1 , R2 , ••• , Rd-t, 
denoted as Dm. In particular, D1 = R1 + R2+, ···,+Rd-I and 
Dd-1 = R1R2' • · Rd-1• 
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Theorem 2.22 ( Alexandrov-Fenchel-Jessen) If K 1 and K2 are convex bod­
ies in Rd, i E {1, ... , d-1}, dimKi, dimK2 ~ i+ 1, then Si(K1 ; ·) = Si(K2 ; ·) 

if and only if K 1 and K2 are translates of each other. 

Theorem 2.23 ( Alexandrov 1961 ) Suppose K1 and K 2 are convex bodies 
in Rd for which 

for some i E {1, ... ,d-1} (where for i = d- l the second condition has to 
be replaced by V(K1 ) ~ V(K2 )). Then K, K' are translates of each other. 

The above theorems are about the uniqueness of convex bodies with re­
spect tom-th order area functions. Results about the existence of a convex 
body, for which m-th order area function is given, are stated in terms of the 
necessary and sufficient conditions for a measure defined over B(Sd-l) to be 
m-th order area function of a convex body. The problem is called Minkowski­
Christoffel problem, see Firey (11]. Form= d - l, we have seen the answer 
in Section 2.4. Firey (10] solved this problem for the case that m = 1, and 
we will see how in Section 4.2. Thus ford= 3, the Minkowski-Christoffel 
problems are solved, although the problems are still open for d > 3. We know 
that S0(K; w) is the area of w. For S1(K;w), the problem can be thought of 
as a generalization of Christoffel's problem, which will be discussed in Section 
4. S2(I<; w) is the area function of K, and the problem can be thought of as 
a generalization of Minkowski's problem which is the topic of Section 3. 

Let M be the set of finite Borel measures on sd-l which have barycen­
tre 0, Sm be the set of m-th order area functions of convex bodies in Rd, 
m = 1, ... , d - l. Weil [23] proved that Sd-l is dense in M (in the weak 
topology). 

2.8 Other Functions and Combinations 

So far, we have seen quite a few functions that are associated with convex 
bodies, like support function, area function, and so on. They basically mea­
sure certain properties of the convex bodies involved. Meanwhile, we have 
seen two ways of combining convex bodies, vector addition and Blaschke ad­
dition. They can be thought of as combining certain property measurements 
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of the convex bodies involved. There are a few other functions that are as­
sociated with convex bodies in terms of measuring certain properties of the 
convex bodies involved. And of course, there are other ways of combining 
convex bodies. 

2.8.1 Distance Function and Polar Means 

Definition 2.13 Let K be a convex body with interior points. Suppose the 
origin O is chosen in the interior of K. For any x E Rd\{O}, let ex be 

--+ 

the (unique) intersection point of the ray Ox with the boundary of K. The 
distance function F(x), x E Rd, of K is defined as 

1. F(O) = O, and 

2. F(x) = llxll/lllxll, XE Rd\ {0}. 

The following observations regarding distance function follow immedi­
ately from the definition. 1) The points that satisfy the inequality F( x) ~ 1 
are precisely the points of K. 2) If two convex sets with O as their common 
interior point have the same distance function, the two must be the same. 3) 
If the distance function of K is F(x), that of AK is F(x)/ A. 4) Suppose F0(x) 
and F1 (x) are the distance functions of convex sets Ko and K 1 respectively. 
F0 (x) 2:: F1 (x), Vx E Rd if and only Ko~ K1 . 

Theorem 2.24 The distance function F(x) of a convex set K has the fol­
lowing properties : 

a)F(x)>0 
b) F(µx) = µF(x) 
c) F(x + y) < F(x) + F(y) 

with equality if and only if x = 0, 
for all µ, > 0, x E Rd, 
for all x, y E Rd. 

Proof Properties a) and b) follow immediately from the definition of F. 
To prove c), let x and y be different from O (the assertion holds obviously 
when x or y are 0), we have 

F(F(x)) = F(7Z,J) = 1. 

Therefore, 
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because of the convexity of K. Choose()= F(tjl~(Y) in the above inequality, 
together with the positive homogeneity of F, we get F( x + y) S F( x) + F(y )_. 

□ 

Theorem 2.25 If F(x) is any function defined on Rd such that 

a) F(x) ~ 0 
b) F(µx) = µF(x) 
c) F(x + y) S F(x) + F(y) 

with equality if and only if x = 0, 
for all µ > 0, x E Rd, 
for all x, y E Rd, 

then there exists a nonempty closed convex set K such that F(x) is the 
distance function of K. 

Proof Let I<= {xi F(x) S 1} If x EK, y EI<, and OS() S 1, then 
F(x) s 1, F(y) S 1. By c) and b) 

F((l - O)x + Oy) S (1 - O)F(x) + OF(y) S 1 . 

Thus I< is convex. Furthermore, if x is an arbitrary point different from 0, 
--+ 

ex is a boundary point of K that lies on the ray Ox, then b) and F(ex) = 1 
imply 

□ 

The concept and properties of the distance function are due to Minkowski. 
The above materials are extracted from Bonnesen and Fenchel [3]. As with 
vector addition and Blaschke addition, we may define another combination 
of convex bodies via a combination of the distance functions of the convex 
bodies involved. It was studied by Firey [7]. We will cite the definition 
and a theorem (of Brunn-Minkowski type, claimed by Firey) to finish this 
subsection. 

If F0 (x) and F1 (x) are the distance functions of convex sets K 0 and K 1 

containing O as a common interior point, then 
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and more generally, 

FJP)(x) = {/(1 - O)FC(x) + OFf(x), 1 ~ p ~ oo, 

satisfy conditions a) through c) stated in Theorem 2.25. By FJ00>(x) we mean 

lim FJP\x) = max(F0(x),F1(x)) 
p-+00 

for 0 < 0 < 1 with Fl00\x) = F;(x) for i = 1,2. Then we can speak of a 
unique convex body Klp) having the distance function FJ00>. We will call 
this body the pth dot-mean of Ko and K 1 . The convex body with distance 
function {/FC(x) + Ff(x) is called the pth dot-sum of K0 and K 1 • 

Theorem 2.26 

yt/d(Ko n K1) ~ yt/d(Klp)) ~ 1/ {j(l - O)V-p/d(Ko) + 0v-p/d(K1) ' 

for 1 ~ p < oo. There is equality on the left if and only if K O = K 1 and on 
the right if and only if K 0 = >..K1 with center of homothety at 0. Further 

yt/d(Ko n K1) = yt/d(Kl00>) < min(V1/d(Ko), yt/d(K1)) 

with equality on the right if and only if Ko= K 1 • 

2.8.2 Cross Sectional Measure 

Let K be a convex body and v an arbitrary direction. The ( d-1 )-dimensional 
volume of the orthogonal projection of K onto a hyperplane with normal 
direction v is called the ( ( d-1 )-dimensional ) cross sectional measure of K 
in the direction v, denoted as u(K; v). For d = 3, u(K; v) is called the 
brightness function of K, i.e., the area of orthogonal projection of K onto a 
plane with normal direction v. 

It can be justified that 

u(K;v) = d · ½(K,v). 

From Firey [8], we can represent the brightness function u(K; v) of K in 
terms of its area function S ( K; w) : 

u(K;v) = ~fs
2 
I (v,w) I S(K;dw(w)). 

18 



From this formula it can be inferred that the brightness, in any given direc­
tion, of a Blaschke sum is the sum of the corresponding brightnesses of th~ 
summands. 

Theorem 2.27 (Alexandrov 1937) If two centrally symmetric convex bodies 
have the same brightness function, then they differ at most by a translation. 

It follows that spheres are the only central bodies of constant brightness. 
Let K' be the reflection of K, K #K' is defined as the areal domain of K. 
Since I< #K' is central, and K, K' have the same brightness function, we say 
that K has constant brightness function if and only if K #K' is a sphere. 

Given the (d-1)-dimensional cross sectional measure u(K; v) of convex 
body K, the surface area S(K;Sd-l) of K can be computed via Cauchy's 
formula 

S(K; sd-l) = - 1
- / u(I<; u)dw. 

7rd-1 lsd-1 

2.8.3 Breadth, Diameter, Width 

Let K be a convex body and v an arbitrary direction. The distance between 
the two support planes of a convex body K with normal direction vis called 
the breadth of Kin the direction v, and is denoted as B(K; v ). The maximum 
of B(K;v) over all vis called the diameter of K, denoted as D(K). The 
minimum of B(K; v) over v is called the width of K, and is denoted as 
~(K). A convex body is called a body of constant breadth if it has the same 
breadth in all directions, hence if the diameter is equal to the width. 

Since B(K; v) = H(K; v) + H(K; -v) for all direction v, for any convex 
body K, it follows that the breadth, in any given direction, of a vector sum 
is the sum of the corresponding breadths of the summands. 

Let K' be the reflection of K, K + K' is called the vector domain of I<. A 
convex body K is a body of constant breadth if and only if its vector domain 
is a sphere. 

2.8.4 Legendre Transformation 

Legendre transformation is a very useful mathematical tool in mathemati­
cal analysis. It establishes a duality between objects in dual spaces. It is 
also used in the theory of partial differential equations to reduce the order 
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f(x) 

f'l'(p) 

(p, -1) (p, -1) 

Figure 2: Legendre Transformation. 

of partial differential equations (By means of a Legendre transformation, a 
Lagrangian system of second-order differential equations is converted into a 
symmetrical system of first-order equations called a Hamiltonian system of 
equations. See Arnold [1 ]. ) 

Among many versions of the definition of Legendre Transformation, we 
will use the one that best fits in the context of our discussion. 

Definition 2.14 Let f(x), x EA, be a convex function defined on A~ Rd 
( det({J2 f /oxi{)xi) is not zero on A). The Legendre transformation/* off 
is defined as 

f*(x*) = max((x,x*) - f(x)), 

where the domain A* off* is the set of points x* at which the extreme value 
exists. 

Given a convex function f defined on A ~ Rd, let A+ be the point set 
in Rd+l bounded by {(x, f(x)) E Rd+llx E A}. A+ is convex because f is 
convex. Let v E Rd, v+ = (v, -1) E Rd+l, then 

H(A+; v+) = max{(x+, v+)jx+ EA+}= f*(v). 

This means that f*(v) is the value of the support function of A+ in the 
orientation v+. Figure 2 demonstrates the relation between f and f*, and 
gives an visual explanation of the above statement. 

Interestingly enough, the distance function and the support function of a 
convex body are Legendre transformations of each other ( called conjugate 
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by Fenchel [6].) Fenchel did not provide any evidence for the validity of this 
claim. A set of conditions for the existence and the uniqueness of a function 
conjugate to a given function is given instead. · 

3 Minkowski's Problem and the EGI 

We have already seen a glimpse of Minkowski's problem in Section 2.4. This 
section presents a more detailed historical account of the problem and how 
the results have been utilized, to date, in computational vision. 

3.1 Minkowski's Problem 

Minkowski's problem concerns the existence and uniqueness of a closed con­
vex surface C such that the Gauss curvature of C at a point with unit outward 
normal vector u is a given function K(u). Minkowski solved the problem in 
a certain generalized sense and also appropriately modified for polyhedra, 
which we have seen in Section 2.4. Alexandrov and Fenchel-Jessen showed 
independently that the problem can be solved concerning set functions. Now 
let us look at the solution to the original Minkowski's problem. 

Theorem 3.1 Let K(u) be a given positive continuous function defined for 
u E sd- I which satisfies the condition 

f udw(u) _ 
0 

lsd-1 K(u) - ' 

where dw( u) is the area element on sd-i. Then there exists a closed convex 
surface cl>, unique up to translation, whose Gauss curvature at the point with 
outward normal u is K(u). 

Theorem 2.14 solved a generalized Minkowski's problem, i.e., a problem 
concerning area function instead of Gauss curvature. The sense of general­
ization is based on the relation between area function and Gauss curvature. 
Recall Equation 3, we have 
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where R1 , R2 , ••• , Rd-l are the principal radii of curvature. To see that 
Theorem 2.15 also solves a generalized Minkowski's problem, recall that 
Gauss curvature can be described as 

I<( ) = lim IG(E)I 
p IEl-+0 IEI 

where Eis a compact portion of the surface containing p, G(E) is the image 
of E under Gauss map. Thus the principal radii of curvature and the area 
of the preimage of Gauss map are related somehow. For a polytope, the 
preimage of Gauss map is either the area of a facet of the polytope or zero, 
i.e., a discrete system of non-coplanar vectors. 

3.2 The EGI Representation in Computational Vision 

EGI stands for Extended Gaussian Image, which is defined, for a surface C, 
as a map which associates the inverse of Gauss curvature at a boundary point 
of a surface to the orientation of the surface at the point: 

1 
Ge: sd-l I--+ R1

, Vu E sd-1, Gc(u) = I<(x(u)), 

where x(u) is the point on C with unit outward normal u, and K(x(u)) is 
the Gauss curvature of Cat point x(u). Such a map Go is called the EGI of 
C. 

In computational vision research, we need to use a discrete version of the 
EGI, i.e., the EGI of polytopes. Since the Gaussian curvature at the faces of 
a polytope vanishes, the above definition of EGI can no longer be used. In 
fact, the definition in use in computational vision research is the same as the 
definition of the area. function of a polytope mentioned in Section 2.4, i.e., a 
discrete system of vectors A(P) = {ai 11 :5 i :5 f(P)}, where f(P) is the 
number of facets of P, the direction of ai is the same as that of the outward 
normal of face Fi and the length of ai is equal to the ( d - I )-content of Fi. 

The EGI has the following properties: 

1. It is insensitive to the position of an object ; 

2. It is unique for a convex body (cf. Theorem 2.14 2.15) ; 
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3. It can be computed easily from needle diagrams obtained using pho­
tometric stereo, or depth maps obtained using the binocular stereo 
method ( cf. [14]) . 

The EGI is useful for recognition and attitude determination. For the 
rest of this section, we will review the work of Little [17]. Other work on the 
EGI is found in Horn [13, 14]. 

Little made full use of Brunn-Minkowski's Theorem (Theorem 2.19). Now 
we are only concerned with R 3

, i.e., d = 3. Let P and Q be two convex bodies, 
R = J..P + (1 - J..)Q. By the Brunn-Minkowski Theorem, 

v½(J..P + (1- J..)Q) ~ J..Vt(P) + (1 - J..)V½(Q). 

If the left hand side is replaced by its representation in terms of mixed vol­
umes, one obtains 

V/(Q,P) ~ V(P)V2(Q). 

The Brunn-Minkowski Theorem states that the polytope P, having unit vol­
ume, that minimizes V1 ( Q, P) is homothetic to Q. Now suppose Q has area 
function .A(Q) = {.A(qi) I 1 ~ i ~ N}, where qi are faces of Q and with 
outward unit normal wi. Recall, from Equation 1, that 

½_3(Q,P) = (} EH(P;wi).A(qi))3
. 

i=l 

Using this relation, Little developed an iterative method which com­
bines the techniques of constructing a polytope from its support vector 
( values of support function at the facet orientations of the polytope) and 
minimization techniques to construct the support function of P such that 
.A(P) = .A(Q). This is to say that given a sensed EGI .A(Q), its correspond­
ing polytope can be reconstructed. 

In attitude determination, we are given a sensed EGI .A( Q) and we want 
to find the attitude which rotates the sensed EGI into correspondence with 
the prototype EGL Think of the P in the above inequalities as the prototype. 
Then to determine object attitude, Little minimized 

N 

L H(P; R(wi)).A(qi) 
i=l 

over all rotation operations R. 
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4 Christoffel's Problem 

Christoffel's problem concerns the existence and uniqueness of a closed con:. 
vex surface C such that the sum of the principal radii of curvature at a point 
with unit outward normal vector u is a given function </>(u) defined on sd-l_ 

The problem has been attacked by quite a few mathematicians, includ­
ing Christoffel himself. A recent solution to the existence problem is the 
constructive proof by Firey [9], which the author claimed corrects and com­
plements the incomplete treatment to the problem of earlier results. 

Although a constructive proof potentially is a big help, the smoothness 
requirement of Firey's theorem essentially excludes many objects which we 
may be interested in, for example, polytopes. Firey said that his treatment 
is rather unsatisfactory in that the smoothness restrictions are set by the 
method rather than the problem. In another paper [10], Firey generalized 
the original Christoffel problem to the following : what are necessary and 
sufficient conditions on a set function <P defined over B(sd-l) in order that 
<P be the first order area function for some convex body K. 

This generalization inspired us to think of constructing set functions that 
measure the "bendness" of a surface. Schneider [21] determined necessary 
and sufficient conditions for a Borel measure <p on sd-l to be the first order 
area function of a convex polytope. Schneider claimed that his result was 
not deducible directly from Firey's general results. 

The rest of this section is divided into three subsections in which the three 
treatments are sketched respectively. 

4.1 Original Christoffel's Problem 

Let K be a convex body having only regular support hyperplanes, 
u E sd-1, x(u) be the point on the boundary bdK of K at which the unit 
outer normal is u. Function x is called the normal representation of bdK, 
and it can be extended to be defined on Rd\{O} by x(v) = x(v/llvll). 

Theorem 4.1 In order that x, assumed to be continuously differentiable, 
be the normal representation of the boundary of a non-degenerate convex 
body with regular support planes, it is necessary and sufficient that, when 
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extended to be defined over Rd\{O}, its Jacobi matrix 

(
Oxi(v)) 

8v · J 

(A) 

does not vanish identically and is symmetric and non-negative definite on 
sd-1. 

The proof of this theorem is based on the relation between the normal rep­
resentation x of a convex body and its support function, i.e. (Theorem 2.13), 

Suppose x is the normal representation of the boundary of convex body K 
with support function H. Assume H is at least three times continuously dif­
ferentiable. Then the d - 1 principal radii of curvature, 
Ri(u), i = 1, ... , d - 1, at x(u) are, together with zero, the eigenvalues of 
the Hessian matrix of H. Hence the sum of the principal radii of curvature 
at x(u) is the trace of the Hessian matrix of H, i.e., 

Thus the Christoffel's problem is to seek solutions to the partial differential 
equation 

8¢(v) . 
~xi(v) = --!:! - , z = 1, ... ,d 

VVi 

which are regular over sd-l given¢. 
Define spherical distance s as 

s(u',u) = Arc cos ((u',u)/llullllu'II), 

and set 

1(s) = _2._1
8 

cosecd-2t(1t sind-2t'dt')dt. 
Wd 1r/2 1r 

(B) 

The Green function constructed for the equation is defined for u' =f. u by 

G(u',u) = 1 (s(u',u)). (4) 
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Ford= 3, 

( , ) 1 [ ( u', tt) l 
Gu ,u = 41rln 1- llu'II !lull . 

The solution to the equation is then 

x(u') = [ G(u',u)V<p(u)dw(u). 
lsd-1 

Here is the main theorem. 

Theorem 4.2 Let <p be a continuously differentiable function over sd-l. 

There exists a non-degenerate convex body K with regular support hyper­
planes such that <p( u) is the sum of the principal radii of curvature at that 
boundary point of K at which u is the outer normal if and only if <p satisfies 
the following conditions. Let 

then 
f uq,(u)dw(u) = 0, 

lsd-1 

f (u,u")0(u',u)(V<p(u),u")dw(u) ~ 0, 
lsd-1 

(C) 

(C') 

for all u' on sd-l and u" for which (u', u") = 0 with strict inequality for some 
such choices. 

Condition (C) is necessary and sufficient in order for equation (B) to 
have a regular solution on sd- 1• In order for the solution of (B) to be indeed 
the normal representation of a convex body, condition ( C') is necessary and 
sufficient, which is obtained through forcing the quadratic form of the Jacobi 
matrix to be larger than or equal to zero. For d = 3, condition ( C') can be 
simplified as 

[ (u, u")(Vq,(u), u") dw(u) < 0. 
J s2 1 - ( u, u') -
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4.2 Christoffel's Problem for General Convex Bodies 

To feel the sense of generalization, let </> be a continuous function defined on 
sd-1, WE B(sd-1 ), and define 

<I>(w) = L </J(u)dw(u). 

Then <I> is a completely additive set function over B(Sd-1
). In case <pis the 

sum of the principal radii of curvature function associated with convex body 
K, then <I> is the first order area function of K (recall Equation 3). 

Theorem 4.3 A completely additive set function <I> over B(Sd-l) is the first 
order area function of a convex body if and only if it satisfies 

f u<I>(dw)=O, 
lsd-1 

I/ 91(u',u)<I>(dw)I < +oo, lsd-1 

where g1 is the fundamental singularity 

and 

where 

{ 

2~ln Arc cos( (u', u) /llull llu'II) 
g1(u', u) = 

- (d- 3)..,d-t [Arc cos( (u', u) /llull llu'll)]3
-d 

f A(u', v', u)<I>(dw);?: O, 
lsd-1 

if d = 3, 

if d > 3, 

A(u', v', u) = r(u', u) + r(v', u) - r(u' + v', u), 

r(u', u) = (d - 2)(u', u)G(u', u) - (u', VG(u', u)), 

and G is the Green function constructed for the original Christoffel's problem 
(see Equation 4 and 5). 
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4.3 Christoffel's Problem for Polytopes 

Before we examine the first order area function of polytope, we need to 
define spherical polytope and spherical complex. We will use the definition 
by McMullen and Shephard [18]. 

Definition 4.1 A spherical polytope in sd-l is the intersection of a finite 
number of closed hemispheres which is not empty and contains no pair of 
antipodal points of sd-l 

Definition 4.2 A spherical complex C is a finite set C = { c1, ... , Cr} of 
distinct spherical polytopes (cells) Ci on sd-l which satisfies the following 
two conditions : 

2. For each i, j, the intersection ci n c; is a face (proper or improper) of 
both Ci and c;. 

Note 1 Spherical images of all non-empty faces of a polytope determine a 
spherical complex on sd-l _ 

Note 2 Each d-polytope P corresponds to a spherical complex by the map-

as 

pmg -q> : XE bdP,x -+ Ox nsd-l, 
--+ 

where Ox is the ray passing x with endpoint 0. <.P maps proper faces 
to spherical polytopes. It has been shown that the reverse is not nec­
essarily correct, i.e., there are spherical complexes that are not radial 
projections of any polytopes. 

The first order area function S1 ( P, w) of a polytope P can be represented 

1 
S1(P,w) = -d-I:.\(e)µd_ 2(wnv(e)) 

-1 e 

for any w E B ( sd-l), where the summation goes over all edges e of P, ,\ ( e) 
is the length of edge e, v( e) is the spherjcal image of e, and µd_ 2( w n v( e)) is 
the (d-2)-dimensjonal content of w n v(e) on sd- i _ 
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Theorem 4.4 (Schneider 1977) For a Borel measure</> on sd-l there exists a 
d-polytope P such that </J(w) = S1(P, w) if and only if <p satisfies the following 
conditions: · 

1. The support of¢, is the union of the (d-2)-dimensional elements of a 
spherical complex S. 

2. For each (d-2)-element ( of S, there exists a positive number.\(() such 
that </J(w) = .\(()µd_ 2(w) for each w ~ (. 

3. For each (d-3)-element T/ ES, 

I: .\(()u(77, () = 0 

' 
where the summation goes over all ( d-2)-elements ( E S for which T/ is 
a side, and u(q, () = vdllvdl such that v, is the orthogonal projection 
of ( on the two dimensional linear subspace orthogonal to T/· 

Proof The necessity of the conditions is not difficult to prove. We will 
only provide the proof of the sufficiency of the conditions. 

Let e1 , .•• , ek be the (d-1)-elements of S. By an element path p, we mean 
an ordered sequence (ei1' ... 'e.m) of (d-1)-elements of s such that e.r n e.r+l 
is a (d-2)-element, r = 1, ... ,m-1. Assign a vector v(p) to an element path 
pas 

m-1 

v(p) = I: A( eir (l eir+l )v( ir, ir+l) 
r=l 

where v(i,j) is the unit vector which is orthogonal to the linear hull of eine; 
and pointing into the interior of the halfspace containing e;. Define the 
following combinatorial deformations of element paths: 

(a) The element path (e,n .. . , eim) is replaced by 

where eir n e; is a ( d-2)-element or vice versa. 

(fJ) The element path (ei1 , ••• , eim) is replaced by 
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where 

are exactly those (d-1)-elements that contain a specific (d-3)-element T/ 
and are arranged in a natural cyclic order. 

Obviously, deformations of type (a) do not change the vector v(p). By 
condition 3, deformations of type ((3) also do not change v(p). Hence, an 
element path from ei1 to eim can be deformed to any other element paths 
with the same endpoints, by a finite number of deformation of type (a) and 
type ((3), without changing v(p). That is to say that the vector v(p) only 
depends on the start point and end point of element path p. For j = 1, ... , k, 
define Xj = v(p;) by choosing an arbitrary element path Pi from ei toe;. We 
will show that the convex hull of the points x1 , .•. , Xk is the polytope we are 
loolring for. 

Define a function h(•) : Rd ---+ R as follows: h(O) = 0. For every 
v E Rd \ {O}, choose a (d-1)-element ei(v) E S such that 
v/llvll E ei(v), then set h(v) = (Xi(v), v). 

We need to verify that his well defined, i.e., the definition of h does not 
depend on the selection of ei(v)• Let e; be another (d-1)-element such that 
v/llvll E e;. Then there exi:sts an element path (eip ... ,e,m ) 
with i1 = ii(v), im = j, and v/llvll E eir, r = 1, ... 'm. According to the 
definition of vectors x;, we have 

m-1 
(x,m,v)-(x,i,v) = :E >.(eir neir+1Hv(ir,ir+1),v) = o 

r=l 

because v( ir, ir+i) is orthogonal to the linear hull of eir n eir+i, and by con.: 
dition v/llvll E eir n eir+1' v(ir, ir+i) is perpendicular to v. Thus h is well 
defined. 

It follows from above that h is continuous: The continuity of h at O is 
obvious. Let u E Rd\ {O}, and Ube a neighborhood of u/llull in sd-l that 
does not intersect any (d-1)-elements of S that are disjoint to u/llull- For 
V Eu, we have u/llull E ei(v), and therefore 

h(u) = (xi(v),u) = h(v) + (xi(v),u - v). 

Thus h is continuous. 
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We now prove that h is convex. Let u1 , u 2 , a 1u1 + a2u2 E sd-1, ar > 0, 
r = 1, 2 be such that Ur lies in the interior of a (d-1)-element eir, whereby 
Q'.1U1 + 02U2 E ei1 n e,2, and ei1 n ei2 is a (d-2)-element. Then . 

and therefore 

Choose ui, u2 E sd-l such that u1 =/- ±u2 and the shorter arc connecting 
u1 and u2 does not intersect any element of S of dimension less than d - 2. 
The restriction of h on the convex cone defined by u1 and u2 is piecewise 
linear and from the continuity and local convexity of h, the convexity of h 
follows. 

Since h is positively homogeneous, convex, and piecewise linear, there 
must exist a polytope P such that h is the support function of P. From the 
definition of h, it follows that X1, •.. , Xk are vertices of P, and ei is exactly 
the spherical image of the vertex x,, i = 1, ... , k. Therefore Sis the spherical 
image of the polytope P. Especially, the (d-2)-elements of Sare the spherical 
images of the edges of P with the ( d-2)-element ei n e; being the spherical 
image of the edge with the endpoints Xi and x;, and this edge has length 
>.(ei n e;). Now by definition, the first order area function of Pis indeed the 
given measure <P, which completes our proof. 

D 

The above proof is a direct translatjon from the German paper [21]. We 
would like to make a few points which may help understanding Schneider's 
idea. Suppose we start with a polytope P. We calculate its first order area 
function, and try to construct a polytope following the above constructive 
proof. 

1. It is assumed that we have a coordinate system in which a poly­
tope will be constructed. Since the vector assigned to an element path 
(6, ei1' ... 'eim, 6) from e1 to 6 is always a null vector, X1 is actually the 
origin of the coordinate system. The choice of 6 among all (d-1)-elements 
of S determines the position of the polytope constructed. The reconstructed 
polytope is unique up to a translation. 
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2. From its definition, the vector v( ir, ir+i) is parallel to the edge e of P 
that has eir n eir+l as its spherical image. Then, A(eir n eir+1)v(ir, ir+1) is a 
vector that is parallel to e and has the same length as of e. Therefore, Xi is 
indeed the vertex of P that has ei as its spherical image. 

3. A minor complement to the proof of the function h being convex is 
needed. Since 

we have 

5 Summary 

Most of the results surveyed in this paper is about the existence and unique­
ness of convex bodies whose property measurements in consideration are 
given functions, the variables of which are usually interpreted as surface ori­
entations. Having constructive proofs of existence may result in algorithms 
for reconstructions of convex bodies from their property measurements. Re­
call the results about support functions, distance functions, and first order 
area functions, for example. 

The characteristic properties of the following functions are studied: spher­
ical image, area function, m-th order area function, distance function, cross 
sectional measure, breadth, Gaussian curvature, and sum of principal radii 
of curvature. Those functions encode certain properties of convex bodies as 
functions of surface orientation. We are particularly interested in support 
function, first order area function, and sum of principal radii of curvature. 
Questions Ql and Q2 raised in Section 1 are theoretically answered. We 
have seen, however, little hint on how Q3 could be answered. 

Support function gets lots of our attention because of its nice properties 
and the role it plays in solving many problems. Nalwa [19] proposed support 
function to be an orientation based representation, but gave no explanation 
about how he might go about it. We think it is still early to determine the 
role that support function might play in the research of computational vision. 
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Finally, all of the results are about convex bodies. We certainly hope that 
we could, in the future, have some results that do not require convexity. 
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A Notation and Terminology 

We do not intend to unify the terminologies for the subject of discourse. 
Also, we do not want to present the concepts from scratch. The intention of 
this section is to provide the definition of the concepts we used ( or had in 
mind) when we wrote this paper. 

Our subjects (objects, shapes, surfaces, etc.) are restricted to be wn­

nected point sets in Rd, d = 2, 3, .... We write intA for the interior of A for 
any A ~ Rd. I£ needed, we will just stay in R2 and R3 , i.e., we will make no 
effort to generalize any result to an arbitrary space. 

Denote by S1 and S2 the unit circle in R2 and the unit sphere in R 3 

respectively. They are also called the Gaussian circle and Gaussian sphere. 
(Sd- t denotes the unit sphere in Rd.) 1rd = 1rd/2 /f(d/2 + 1). Hence the area, 
wd of sd- l is equal to d1rd = 21rd/2 /f( d/2). Denote by B(A) the a-algebra of 
Borel subset of A. Let :F(Sd) denote the set of functions defined on Sd, and 
cr(Sd) the set of r-order differentiable functions defined on Sd. Denote, by 
0, the origin of the coordinate systems. 

Definition A.1 A set I< ~ Rd is said to be convex if for each pair of distinct 
point x, y E I< the closed segment with endpoints x and y is contained in K. 
A convex set has dimension r if it is contained in a r-flat and does not lie in 
a (r-1)-flat. Denote the dimension of J{ by dimK. 
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Definition A.2 A convex hypersurface in Rd is the boundary of ad-dimensional 
convex set K in Rd provided it is non-empty and connected. 

Theorem A.l A convex hypersurface in Rd is either homeomorphic to sd-l 
or to Rd-1, or to a product sd-l-r x Rr, 1 ~ r ~ d - 2 (and hence is, 
respectively called closed or open or cylindrical). 

Definition A.3 The convex hull hull(A) of a set A ~ Rd is defined as the 
intersection of all convex sets in Rd whjch contain A. A compact convex set 
I{ ~ Rd is called a polytope provided it is the convex hull of a finite set. 
A d-polytope is a polytope of dimension d. A d-simplex is defined as the 
convex hull of some d + 1 affinely independent points. 

Definition A.4 A set function on B(A) is said to be completely additive if 
for any two set E 1 , E 2 E B(A) that E 1 n E 2 0 then 
f(E1 + E2) = f(E1) + f(E2). 

Definition A.5 The support of a measure µ defined in space n is defined 
as the closed set n-U{G: µ(G) = O,G open}. 
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