
Selection Networks

by

Nicholas Pippenger

Technical Report 90-12
May, 1990

READING ROOM - COMPUTER SCIENCE DEPT.
',~,,, ,,..--r-,,...... • ..,..,_, r"r"' ,..._. '

Department of Computer Science
The University of British Columbia

Vancouver, British Columbia V6T 1W5
Canada

We establish an upper bound asymptotic to 2n log2n for the number of comparators
required in a network that classifies n values into two classes each containing n/2 values,
with each value in one class less than or equal to each value in the other. (The best lower
bound known for this problem is asymptotic to (n/2)log2n.)

This research was partially supported by an NSERC Operating Grand and an ASI
Fellowship Award

R£ADJNG ROOM · COMPUTER SCIENCE DEPT
UNIVERSITY OF BRrTJSH COLUMBIA.

6356 AGRJCUL TURAL ROAD
VANCOUVER, B. C.

V6T lWS

. '

1. Introduction

The selection networks of which we speak are comparator networks (see Knuth [K])

that classify a set of n values into two classes, with each of the values in one class being at

least as large as all of those in the other. In this paper we shall confine our attention to the

simplest case, in which n is even and the two classes each contain n/2 values, but similar

methods apply to classes of unequal cardinality, as well as to the problem of selecting the

value having a prescribed rank, such as the median.

We shall present an upper bound asymtotic to 2n log2 n for the number of comparators

need to construct such a network. Alekseev [Al] has given a lower bound asymptotic to

(n/2) log2 n. Some perspective on the gap between these bounds is gained by considering

the analogous problem of determining the median of n values with an adaptive sequence

of comparisons: here the best upper bound known is asymptotic to 3n (see Schonhage,

Paterson and Pippenger [S]), and the best lower bound known is asymptotic to 2n (see

Bent and John [Be]).

The classifying problem has traditionally been considered in connection with the prob­

lem of sorting n values into order. In 1983, Ajtai, Komlos and Szemeredi [Aj] showed that

0(n log n) comparators are sufficient for sorting, and this bound obviously applies to clas­

sifying as well. The constant factor implicit in their original proof is enormous, however,

and further efforts to refine their ideas have not brought it below 1000 (see Paterson [Pal).

Our classifiers are based on the same fundamental idea as their sorters; our only contribu­

tion is to show that in the context of classifiers, it yields both a much simpler proof and a

much smaller constant.

Though we shall confine ourselves to proving the result stated above, two additional

points should be mentioned. First, we prove the existence of classifying networks without

giving an explicit construction. This situation arises from the use of expanding graphs; by

exploiting known explicit constructions for expanding graphs (see Pippenger [Pi], Section

3.2), and by accepting a somewhat larger bound (the best we have been able to obtain

is slightly less than 6n log2 n), we could give a completely explicit construction. Second,

the networks we describe have depth n((log n)2); with more care in the construction and

proof, we could establish a bound of O(log n). Our method does not seem well suited to

optimizing the depth, however, and we have not made any attempt to obtain the sharpest

possible result in this direction.

1

2. Expanding Graphs

We shall need some results concerning expanding graphs; these will be obtained as

special cases of a general result due to Bassalygo (B], to whom we refer for the proof.

A bipartite graph with n "left" vertices and m "right" vertices will be called an (a, /3)­
expander if any k of its left vertices (k < l an J) are connected to at least l/3k J right vertices

(the set A of left vertices is connected to the set B of right vertices if at least one edge

from A leads to each right vertex b, b EB; lx J is the integer part of x).

Lemma 2.1: (Bassalygo) For any positive integers q and p, any reals a and /3 (0 < a <
p//3q < 1), and any sufficiently large n (n ~ n0 (a,/3,q,p)), there exists an (a,/3)-expander

with qn left vertices and pn right vertices, for which the number of edges does not exceed

spqn, where s is any integer greater than

H(a) + (p/q)H(af3q/p).
pH(a) - a(3qH(p/(3q) '

H(x) = -xlogx - (1- x)log(l - x), 0 < x < 1.

The proof of Lemma 2.1 considers only graphs in which every left vertex meets sp

edges and every right vertex meets sq edges. This observation will be important when we

consider the depth, rather than merely the size, of networks.

We shall use this lemma with p = q = 1. We shall let a and /3 depend on a new

parameter {) by a = {) and (3 = (1 - {))/{). For every {) > 0 there is a value of s that

satisfies the hypothesis of Lemma 2.1.

The proof of Lemma 2.1 may be regarded as considering a probability distribution

graphs, and when p = q this distribution is invariant under the exchange of left and right

vertices. The proof also shows, not merely that there exists a graph with the prescribed

expansion properly, but that almost all considered graphs have this property. In particular,

a majority of the considered graphs have this property. It follows that there exists a graph

such that both it and the graph obtained from it by exchanging left and right vertices have

the prescribed expansion property.

Combining these elaborations of Lemma 2.1 we obtain the following corollary.

Corollary 2.2: For every {) > 0 there exists an s such that for all sufficiently large n

(depending on {)) there exists a bipartite graph with n left vertices, n right vertices and s

edges meeting each vertex such that (1) every set of k ~ {)n left vertices is connected to

at least (1 - {))k/{) right vertices, and (2) every set of k ~ {)n right vertices is connected

to at least (1- {))k/{) left vertices.

2

Returning to Lemma 2.1 with p = q = 1, if we take s = 4 and choose /3 < 3, then

the hypothesis is satisfied for all sufficiently small a > 0 (depending on /3). Thus we also

obtain the following corollary.

Corollary 2.9: For every /3 < 3 there exists an a > 0 such that for all sufficiently large n

(depending on /3) there exists a bipartite graph with n left vertices, n right vertices and

4 edges meeting every vertex such that (1) every set of k ~ o:n left vertices is connected

to at least (3k right vertices, and (2) every set of k ~ an right vertices is connected to at

least f3k left vertices.

3. Classifiers

A comparator network with 2m inputs and two sets of m outputs, the "left" outputs

and the "right" outputs, is an a-weak approximate classifier with tolerance {) (or simply

an a-weak {}-classifier) if, for any assignment of values to the inputs and positive integer

k ~ am, (1) at most {)k of the k smallest values appear at right outputs, and (2) at most {)k

of the largest values appear at left outputs. A 1-weak approximate classifier with tolerance

{) will be called an approximate classifier with tolerance {) (or simply a {}-classifier). An

approximate classifier with tolerance O will be called a classifier.

Classifiers are the goal of our construction. Approximate classifiers and weak approxi­

mate classifiers are the ultimate building blocks of our construction. These building blocks

are secured by a lemma that is a slight generalization of the most basic lemma of Ajtai,

Komlos and Szemeredi [AKSl], from whom the proof is easily adapted (see also Pippenger

[Pi], Section 3.2).

Let G be a bipartite graph with n left vertices and n right vertices, in which ev­

ery vertex meets s edges. The edges of G may be decomposed into s perfect matchings

E 1 , ... , Es between the left and right vertices. We may regard each perfect matching Er

as a comparator network, by taking a comparator for each edge in Er, labelling the inputs

of the comparator with the vertices met by the edge, labelling the smaller output of the

comparator with the left vertex met by the edge, and labelling the larger output of the

comparator with the right vertex met by the edge. We may then combine the comparator

networks E1, ... , Es into a single comparator network by identifying the outputs of Er

with the corresponding inputs of Er+i for each 1 ~ r ~ s - l. We shall denote the result­

ing comparator network by G; this notation is ambiguous, since different decompositions

of the bipartite graph yield different comparator networks, but this ambiguity will not be

important to us.

3

Lemma 9.1: (Ajtai, Komlos and Szemeredi) Let G be a bipartite graph with n left vertices

and n right vertices and s edges meeting every vertex in which (1) any set of k ~ a19n left

vertices is connected to at least (l -19)k/19 right vertices, and (2) any set of k::::; a19n right

vertices is connected to at least (1 - 19)k/19 left vertices. Let the left and right outputs

of the comparator network G be those labelled by the left and right vertices, respectively.

Then G is an a-weak 19-classifier.

4. Recursive Construction

A comparator network with 2m inputs, l outputs labelled as "low", l outputs labelled

as "high" and and 2m - 21 outputs labelled as "middle" is a strong partial classifier if,

for any assignment of values to the inputs, only values among the m/2 smallest appear

at low outputs and only values among the m/2 largest appear at high outputs. A strong

partial classifier is less than a classifier in that there are some outputs, the middle outputs,

at which any value may appear; but it is more than a classifier in that fewer values can

appear at the low and high outputs. Our goal in this section is to show how strong partial

classifiers can be assembled to form a classifier.

It will be convenient to use strong partial classifiers for which the number of inputs is

of the form 2v or 3 • 2v, with v a positive; numbers of this form will be called magic. If n

is any even positive integer, the largest magic number not exceeding n will be called the

magic part of n; it is even and at least 2n/3.

Consider the following recursive construction for a classifier with n inputs. Let 2m

denote the magic part of n. Feed 2m of the inputs into a strong partial classifier with 2m

inputs. Feed the remaining n - 2m inputs, together with the 2m - 21 middle outputs of the

strong partial classifier into a classifier with 2 - 2l inputs. The left and right outputs of

the combined network will be the low and high outputs, respectively, of the strong partial

classifier, together with the left and right outputs, respectively, of the constituent classifier.

A value appearing at a low output of the strong partial classifier must be among the

m/2 smallest of the 2m values at its inputs, and thus among the (m/2) + (n - 2m) =
n - 3m/2 smallest of all n values. Since 2m ~ 2n/3, it must be among the n/2 smallest of

all n values. Similarly, a value appearing at a high output of the strong partial classifier

must be among the n/2 largest of all n values. Thus, of the n/2 largest and n/2 smallest

values, equal numbers appear at the inputs of the classifier with n - 21 inputs. It follows

that any value appearing at a left output of this classifier must be among the n/2 smallest,

4

and any value appearing at a right output must be among the n/2 largest. Thus the

combined network is indeed a classifier.

Lemma 4,1: Let C > 0 be a constant. Suppose that, for every c > 0 and all sufficiently

large m (depending on c) there exists a strong partial classifier with 2m inputs, l low

outputs and l high outputs, and size at most (C + c)l log2 m. Then for every c > 0 and

all sufficiently large n (depending on c), there exists a classifier with n inputs and size at

most (C/2 + c)nlog2 n.

Proof: Apply the recursive construction until the number of inputs of the strong partial

classifier that is needed is too small for the hypothesis to apply. Terminate the recursion

with a sorting network using (';) comparators. The size of this final sorting network

depends only on c, and thus is at most (c/2)nlog2 n for all sufficiently large n (depending

on c).

Let 2m1 , ..• , 2m8 denote the numbers of inputs of the strong partial classifiers, and

let li, ... , lr denote the numbers of low outputs. We have 2mr ~ n for all 1 ~ r ~ s

and, since each left output of the combined network is a low output of at most one strong

partial classifier, ~i::;r=:;s lr ~ n/2. Thus the total size of all the strong partial classifiers is

at most ~i=:;r=:;s(C + c)lr log2 mr ~ (C/2 + c/2)nlog2 n. Adding the bound (c/2)nlog2 n

for the final sorter yields (C + c)n log2 n. b.

5. Crude Classification Trees

This section introduces classification trees, the basic tool we shall use to construct

strong partial classifiers. We shall begin with a crude version of the construction, and

later refine it to obtain our final bound.

Set {) = l/8. Corollary 2.2 and Lemma 3.1 then yield constants so and n0 such that

for all n ~ n0 , there is a {}-classifier with 2n inputs and depth s0 • (A simple calculation

shows that s0 = 28. The determination of n0 would require scrutiny of the proof of Lemma

2.1, but this proof consists of explicit estimates, so that n 0 is at least effectively calculable.

The actual values of these constants will not be important to us.)

Suppose that we wish to construct a strong partial classifier with 2m inputs, where

2m is a magic number. Feed the 2m inputs into a {}-classifier with 2m inputs. This

approximate classifier has m left outputs and m right outputs. Feed each of these sets of

outputs into a {}-classifier with m inputs. These two approximate classifiers have four sets

of outputs. Feed each of these sets into a {}-classifier with m/2 inputs, and continue in this

way nntil the sets of outputs of the approximate classifiers have cardinality less than 2n0 •

5

The result is a tree of approximate classifiers that we shall call a classification tree. At its

root are 2m inputs, and at its leaves are sets of outputs each containing fewer than 2n0

outputs.

The next step will be to label the outputs as low, high and middle in such a way that

the result is a strong partial classifier. When as we do this we assign the same label to

all the outputs in a subtree, we may prune away that subtree, and affix the label to the

outputs of the approximate classifier feeding the subtree. A large fraction of the tree will

be eliminated in this way.

We begin by labelling as middle the right outputs of the left child of the root, and the

left outputs of the right child of the root (and pruning away the subtrees below). We shall

label as low some of the outputs in the subtree fed by the left outputs of the left child,

and as high some of the outputs in the subtree fed by the right outputs of the right child.

We shall now describe which outputs are to be labelled as low. The mirror image of this

procedure will label an equal number of outputs as high.

Consider the m/2 smallest values assigned to the inputs, since it is these that are

eligible to appear at an output labelled as low. We shall call these m/2 values good, and

the other 3m/2 values bad.

At most a fraction {) = 1/8 of the good values can appear at right outputs of the

approximate classifier at the root, and at most a fraction 1/8 can appear at right outputs

of the approximate classifier that is its left child. Thus at least a fraction 1-1/8-1/8 = 3/4

of the good values appear at left outputs of the left child. Since the number of good values

equals the number of left outputs of the left child, at most a fraction 1 - 3/4 = 1/4 of the

values appearing at these outputs are bad.

We may characterize the set of left outputs of the left child by its cardinality m/2 and

its "impurity" 1/4 (the largest possible fraction of its values that could be bad). Suppose

now that we have a set of outputs of some approximate classifier with cardinality k and

impurity T/· Firstly, if T/ > 1/2, we shall label these outputs as middle (and prune away the

subtree below). Secondly, if ryk < l, then not a single bad value can appear at one of these

outputs; thus we shall label them as low (and prune away the subtree below). Finally, if

17 :5 1/2 and ryk ~ 1, then we shall consider the sets of outputs of the child. The set of

left outputs has cardinality k/2 and (by Lemma 3.1) impurity 2{)ry = 17/4, and the set of

right outputs has cardinality k /2 and impurity 217 (the factors of 2 in the impurities arise

because we are considering a fraction of half as many things). We may continue in this

way along each path in the tree until we assign a label or reach a leaf. H we reach a leaf,

we shall label its outputs as middle if ryk ~ l, and as low if ryk < 1.

6

The first question we shall ask is: what fraction of the outputs are labelled as middle

by being in a set with impurity exceeding 1/2? To answer this question, we shall consider

the following random walk on the integers. Start at the position 2, Z0 = 2. At each step

independently move to the psoition one smaller, Zt+1 = Zt -1, or two larger, Zt+1 = Zt =
2, with equal probabilities. What is the probability of ever reaching a position smaller

than 1? Since the walk is confined to the integers, this is the probability of ever reaching

the psoition 0, Zt = 0. The answer to this question is an upper bound to the fraction of

the outputs that are labelled as middle by being in a set with impurity exceeding 1/2, as

can be seen by considering the correspondence between paths in the tree and walks, where

the number of levels from the root corresponds to time in the walk, and the negative of

the logarithm (to base 2) of the impurity corresponds to position in the walk.

In the present instance, the probability of ever reaching the position O can be deter­

mined explicitly and is (3 - ,/5)/2 = 0.382 To see this, let f(x) denote the power

series in x in which the coefficient of xt is the number of walks that start at 1 and reach

0 for the first time at time t. Then f(x) 2 is the power series for walks that start at 2 and

reach O for the first time at time t, since each such walk can be uniquely parsed into two

subwalks according to the time at which it first reaches 1, and the numbers of possibilities

for both subwalks are counted by f(x). Thus the probability we seek is f(l/2)2, so it will

suffice to show that /(1/2) = (-1 + ./5)/2 = 0.618 Let g(x) count the number of

walks that start at 1 and return to 1 for the first time at time t. Then g(x) = xf(x)2,
since such a walk must go to 3 on the first step, then return to 1 for the first time int - l

more steps. On the other hand, f(x) = x + xg(x) + xg(x)2 + · · · = x/(l - g(x)), since

the walks counted by f(x) may be classified according to the number of times they visit 1

before reaching 0. Thus f(x) satisfies the equation xf(x)3
- f(x) + x = 0, so that f(l/2)

satisfies /(1/2) 3 - 2/(1/2) + 1 = 0, which yields the stated result.

Next we shall ask: what fraction of the outputs are labelled as middle by being in a

leaf that is not pruned away? Such a leaf has cardinality at most 2n0 , and thus it must

have impurity at least 1/2n0 to avoid being labelled as low. Let d denote the number

of levels of approximate classifiers in the tree. Rephrased in terms of random walks, our

question becomes: what is the probability of being at a position at most co = log2 no at

time d - 2? (The first two levels of the tree do not correspond to steps of the random

walk.) We shall answer this question with a lemma that goes beyond our present needs,

but which will be applied repeatedly later.

We shall consider random walks with discrete time indexed by the natural numbers and

discrete positions indexed by the integers. We shall assume that the steps are independent

7

and identically distributed, but we shall allow the steps to have any probability distribution

on a finite set of integers. We shall say that such a random walk is positively biased if the

expectation of a step is positive. (In the present instance, the step is uniformly distributed

on the set {-1,2}, and the expectation is (-1 + 2)/2 = 1/2 > 0.)

Lemma 5.1: Let Zt, t = 0, 1, 2, ... , be a positively biased random walk starting at 0, and

let c be any position. Then there exist constants A and b < l such that for all t, the

probability that Zt is at most c does not exceed Abt.

Proof: Let cI>(!) = Ex(exp-(eZ1)). The power series expansion of cI>(!) isl - lEx(Z1) +
O(e2). Since Ex(Z1) > 0, we can choose eo > 0 sufficiently small so that cI>(lo) < 1. Since

the steps are independent and identically distributed, we have Ex(exp-(foZt)) = cI>(e0 /.

H Zt =:; c, then exp-(eoZt) ~ exp-(eoc). Thus, by Markov's inequality, the probability

that Zt =:; c is at most cI>(fo)t / exp-(foc), so we may take A= exp(foc) and b = cI>(fo). fj,

We may now apply Lemma 5.1 with t = d - 2 ~ log2 (m/4n0) and conclude that the

fraction of outputs that are labelled as middle by being in a leaf that is not pruned away

is at most Abd =:; Cm-e, where C and e > 0 are constants. The only feature of this bound

that is relevant to our present purposes is that it tends to zero, even when multiplied by

d =:; log2 m.

Finally, we shall ask: what is the size of the strong partial classifier constructed in this

way? To answer this question, we shall again transform it into a question about random

walks. In a "synchronous" comparator network (in which the two inputs of any comparator

are at the same depth), each comparator contributes 2 to the sum of the depths of the

outputs. Thus the number of comparators is n/2 times the average depth of the outputs.

Since the depth of each strong partial classifier is s0 , the number of comparators is s0 n/2

times the average level at which the outputs are labelled. For outputs labelled as low or

labelled as middle by being in a leaf that is not pruned away, the level at which they are

labelled is at most d =:; log2 m. (For outputs labelled as low, it is in most cases substantially

less than this, but we shall not attempt to exploit this effect, since later optimizations will

render it negligible.) For outputs labelled as middle because their impurity exceeds 1/2,
the level at which they are labelled is two more than the number of steps taken by the

corresponding walk to reach position O for the first time. (Again, the first two levels of the

tree do not correspond to steps of the random walk.)

In the present instance, this average number of steps can be calculated explicitly

and is 4/,/5 = 1.788 It is obtained from the power series f(x) 2 that counts the

walks by evaluating xd(f(x)2)/dx at x = 1/2 or, equivalently, evaluating f'(x)f(x) at

x = 1/2. This evaluation is most conveniently accomplished by dividing the equation

8

x f (x)3
- f(x) + x = 0 by x, differentiating with respect to x, multiplying by x2 , solving

for f' (x) in terms of f (x) and x, multiplying by f (x) and evaluating the result at x = l /2.
Taking account of the equation f(l/2) 2 = (3 - ,v'5)/2 derived earlier yields the stated

result.

We can now sum the contributions to the size of the strong partial classifier. The

l outputs labelled as low contribute at most (s0 l/2)logm, and those labelled as high

contribute equally. The outputs labelled as middle by being in a leaf that is not pruned

away contribute at most Fm1-e log2 m for some constants F and e > 0, and the outputs

labelled as middle because their impurity exceeds 1/2 contribute at most Gm for some

constant G. Since the l = O(m), we conclude that for every c > 0 and all sufficiently

large m (depending on c), there exists a strong partial classifier with 2m inputs, l outputs

labelled as low and an equal number labelled as high, and size at most (so+ c)llog2 l. It

follows from Lemma 4.1 that for every c > 0 and all sufficiently large n (depending on c),

there exists a classifier with n inputs and size at most (s 0 /2 + c)nlog2 n. The remainder

of this paper is devoted to refining the construction just given to reduce the constant s0 /2

to 2.

6. Refined Classification Trees

If we ask what properties were essential to the construction in the preceding section,

we find three. First, the probability that the random walk ever reaches the position O is

strictly less that 1. Second, the probability that the walk is near position O after t steps

decreases exponentially with t. Third, the expected number of steps needed to reach 0

(with no contribution from walks that never reach 0) is finite.

The second property is a consequence of the random walk being positively biased.

Thus it is natural to seek ways to reduce the number of comparators while preserving the

property that the corresponding random walk is positively biased. When this is done, the

explicit calculations by which we established the first and third properties will no longer

be feasible, but we will see that these properties are consequences of the second property.

The property that the random walk was positively biased follows from the inequality

{) < l/4 (so that the geometric mean of the factors 2 and 2iJ, by which impurities change

from parent to child, is less than 1). We shall arrange for {) to vary from level to level in

such a way that the average (again in the sense of the geometric mean) of {) is strictly less

that 1/4, but by a very small margin. We shall also exploit the fact that for most of the

9

approximate classifiers in the classification tree, the number of bad elements is very small,

so that we may substitute weak approximate classifiers (as defined in Section 3).

Let h be a positive integer. Set i)h = 21/h /4 and f3h = (1 - {h)/{)h· Since {)h > 1/4,

we have f3h < 3. Corollary 2.3 and Lemma 3.1 establishe the existence of ah > 0 such

that, for all sufficiently large n (depending on h), there exists a ah-weak t? h -classifier with

2n inputs and depth 4.

Let us now define a gadget to be a tree comprising h levels of ah-weak approximate

classifiers, which therefore approximately classifies the values assigned to its inputs into 2h

classes. The ah-weak approximate classifier at the root will have tolerance 1/8, and those

at the remaining h - 1 levels will have tolerance {) h.

Suppose that at most a fraction 7J of the values assigned to the inputs of the gadget

are bad, where 7J ~ ah, We may determine the impurities of the 2h sets of outputs by

proceeding through successive levels of the tree as before. The root multiplies the impurity

by a factor of 2 or 1/4, and every other node multiplies it by a factor of 2 or 21/h /2. A

simple calculation shows that the geometric mean of the impurities of the 2h sets of outputs

is 1/21/2h, which is less than 1.

Since all changes to impurities are by factors of 21/h we may consider a random walk

on the integers by taking the position to be h times the negative of the logarithm (to base

2) of the impurity, and letting the probability distribution for each step correspond to the

changes to impurities for a gadget. The expectation for a step is h times the negative of

the logarithm of the geometric mean of the changes, which is 1 /2. Thus the random walk

is positively biased.

Since every path through a gadget passes through one weak approximate classifier

with tolerance 1/8 and through h - 1 with tolerance {)h > 1/4, we can construct a gadget

with depth at most 4(h - 1) + so.

The gadget we have constructed is composed from ak-weak approximate classifiers,

and thus is only useful when the number of bad values is small. We shall can the gadgets

described above cheap gadgets. We shall also define dear gadgets, which have the same

tree structure, but with approximate classifiers (rather than weak approximate classifiers)

at all nodes, and with all classifiers having tolerance 1/8. We shall use the same step

probability distribution for dear gadgets that we used for cheap gadgets (though of course

dear gadgets do much more). The depth of a dear gadget is at most hs0 •

We shall now construct a refined classification tree using gadgets rather than approx­

imate classifiers as nodes below the root and its children (so that the tree is 2h-ary rather

10

than binary below the first two levels). We assign impurities to each set of outputs of each

gadget as before. We shall use a cheap gadget when the impurity of the set of inputs is at

most ah, and a dear gadget when the impurity exceeds ah,

We shall label outputs as low, high or middle, and prune away subtrees as before. It

remains to estimate the number of outputs labelled as low, high or middle, and to estimate

the size of the resulting strong partial classifier.

The fraction of the outputs that are labelled as middle because their impurity exceeds

1/2 can be bounded as before by the probability that the corresponding random walk

reaches a non-positive position. (We must consider non-positive positions, rather than

just the position 0, because a single step may now decrease the position by more than 1.)

For this purpose we shall use the following lemma.

Lemma 6.1: Consider a positively biased random walk starting at a positive position. Then

the probability that the walk ever reaches a non-positive position is strictly less than 1.

Proof: By Lemma 5.1, the probability that the walk is at a non-positive position at time

t is at most Abt for some constants A and b < 1. The series I:t2:l Abt converges, so we

may choose T sufficiently large that I:t~T Abt ~ 1/2. Let -.6. denote the most negative

step that is taken with positive probability, and let P > 0 denote the probability that a

step is positive. Then ZAr ~ .6.T with probability at least pAT_ IT this event occurs,

the walk cannot reach a non-positive position in fewer than T additional steps, and the

probability of it reaching a non-positive position in Tor more additional steps is no larger

than the probability of reaching a position at most .6.T in Tor more additional steps, and

this is at most 1/2. Thus the probability of ever reaching a non-positive position is at

most (1 - pt:,.T) + pAT /2 < 1. 6

Using Lemma 5.1 as before, we can again show that the fraction of the outputs that

are labelled as middle by being in a leaf that is not pruned away can is at most Cm -e,
where C and e > 0 are constants.

To estimate the size of the strong partial classifier we have constructed, we again begin

by considering the average level at which outputs are labelled as middle because their

impurity exceeds 1/2. This is bounded by the expectation for the corresponding random

walk of the number of steps needed to reach a non-positive position (with no contribution

from walks that never reach a non-positive position). We shall use the following lemma.

Lemma 6.2: Consider a positively biased random walk starting from a positive position.

Let U denote the number of steps needed to reach a non-negative position, if the walk

11

ever reaches anon-negative position, or O if the walk never reaches a non-negative position.

Then the expectation of U is finite.

Proof: Applying Lemma 5.1 with c the negative of the starting position, we have that the

probability of being at a non-positive position at time t is at most Abt for some constants A

and b < l. The convergent series Et~l Abtt bormds the sum over all visits to non-negative

positions of the times at which the visits occur. This in turn bounds the sum over first

visits, which is exactly U. 6.

For refined classification trees, we shall need an additional estimate concerning the

total size of dear gadgets. Since a dear gadget is used precisely when the impurity exceeds

a threshold ah, then total size of dear gadgets can be bormded in terms of the average time

spent by the random walk at positions less than a corresponding constant ch= -hlog2 ah,

By Lemma 5.1, this average time is bounded by a convergent series Et~l Abt, for some

constants A and b < l, and thus is finite. It follows that the total size of dear gadgets is

at most Hm, for some constant H.

Summing the contributions to the size as before, we find that for every h and all

sufficiently large m (depending on h), there exists a strong partial classifier with 2m

inputs, l outputs labelled as low and an equal number labelled as high, and size at most

(4(h - 1) +so+ l)llog2 h l = (4 + (so - 3)/h)llog2 l. Letting h tend to infinity, we see

that for every c > 0 and all sufficiently large m (depending on c), there exists a strong

partial classifier as above with size at most (4+c)llog2 l. It follows from Lemma 4.1 that

for every c > 0 and all sufficiently large n (depending on c), there exists a classifier with

n inputs and size at most (2 + c)n log2 n. Thus we have achieved the goal of this paper.

7. Embellishments

In this section we shall offer some additional comments on the embellishments to our

main result that were mentioned in the introduction.

If one wishes to classifiy n values into classes of cardinality t and n - t, this can be

accomplished by modifying the definitions of some of the components in the construction.

Ones redefine "strong partial classifier" so that the numbers of outputs labelled as low and

high are in the correct proportion, t: n-t, and so that t/2 and (n-t)/2 values are eligible

to appear as low and high outputs, respectively. One must then modify the upper levels

of the clasifi.cation trees to accomodate the new definitions of "good" and "bad" values,

which now differ on the two sides of the trees. (Special care is necesary if t or n - t is

much smaller than n.) The constant factor in the final result is independent oft, but this

12

should be regarded as a deficiency rather than a merit, since it is to be expected that this

constant should decrease as t is varied away from n/2.

The problem of obtaining an explicit construction is attacked by replacing Lemma

2.1 by an analogous explicit result (see Pippenger (Pi], Section 3.2). A complication arises

from the fact that the explicit results hold only for certain n, rather Than for all sufficiently

large n. Thus one obtains, for example, weak approximate classifiers with 2(q + 1) inputs,

where q is a prime congruent to 1 modulo 4. In constructing classification trees, then, one

must always settle for using the next smaller weak weak aproximate classifer of this form,

and reconcile oneself to labelling the remaining outputs of the parent approximate clasifier

as middle. Standard results on the distribution of primes, however, allow one to show that

only a negligible frasction of the outputs are labelled as middle in this way. Using weak

approximate classifiers with depths 8, 12 and 30 results in a final bound slightly less than

6nlog2 n.

Finally, if one wishes to ensure that the depth of the final classifier is O(log n), one

must modify the recursive construction so that the various strong partial classifiers are

"overlapped" in depth. To do this it is most convenient to make them "stronger" (so that

m/4 rather than m/2 values are eligible to appear at an output labelled as low or high).

One can then show that enough outputs are available from the whallower levels of the first

r strong partial classifiers to supply inputs for the (r + 1)-st strong partial clasifier.

8. Conclusion

We have established the existence of classifiers with many fewer comparators than

those previously known. For most constructions that rely on expanding graphs (such

as those given by Bassalygo (BJ), the constant factor depends on the current state of

technology of expanding graphs, and can be expected to improve with further advances

in the state of this art. The result of this paper, however, will not be improved in this

way: the constant in the leading term of the size depends only on the degree needed

for expanding graphs to expand very small sets, and this aspect of expanding graphs is

understood completely (graphs of degrees can expand small sets by any factor up to s -1,

but not by more).

It would be of interest to see if a similar situation can be brought about for other

applications of expanding graphs, perhaps even for the most celebrated application of all,

the sorting networks of Ajtai, Komlos and Szemeredi.

13

9, References

[Aj] M. Ajtai, J . Komlos and E. Szemeredi, "Sorting in clogn Parallel Steps", Combina­

torica, 3 (1983) 1-19.

[Al] V. E. Alekseev, "Sorting Algorithms with Minimum Memory", Kibernetica, 5 (1969)

99-103.

[B] L. A. Bassalygo, "Asymptotically Optimal Switching Circuits", Problems of Info.

Transm., 17 (1981) 206-211.

[Be] S. W. Bent and J. W. John, "Finding the Median Requires 2n Comparisons", ACM

Symp. on Theory of Computing, 17 (1985) 213-216.

[K] D. E. Knuth, The Art of Computer Programming, v. 3, Sorting and Searching,

Addison-Wesley, Reading, MA, 1973.

[Pa) M. S. Paterson, "Improved Sorting Networks with O(log n) Depth", Algorithmica, to

appear.

[Pi] N. Pippenger, "Communication Networks", J. van Leeuwen (editor), Handbook of

Theoretical Computer Science, North-Holland, Amsterdam, 1990.

[SJ A. Schonhage, M. Paterson and N. Pippenger, "Finding the Median", J. Comp. and

Sys. Sci., 13 (1976) 184-199.

14

