
Automatic Generation of
Interactive Applications

by

Emanuel G. Noilc

Technical Report 90-7

February, 1990

Computer Science Department
University of British Columbia

Vancouver, B.C. V6T 1W5
Canada

Abstract

As user interfaces become more powerful and easier to use, they are often harder to design
and implement. Thfa has created a great demand for tools which help progratn'mers create in
tei:act ive applications. While existing interface tools simplify interface creation , Lhey typically
foe us only on the interface, do not provide facilities for simplifying application genera,l.ion, and
are too low-level. We have developed a tool which automatically generates complete i11ter
active applications from a high-level description of the application 's semantics. We argu
that our system provides a very simple yet powerfu l environment for application develop
ment. I<ey ad vantages include: ease of use, separation of interface and application, inte1-face
and machine independence, more comprehensive programming aids, and greater potent..ial for
software reusability. While we tend to focus on the practica.l motivat;ions for Hsing sucl1 a tool 1

we conclude that this approach should form the basis of an important category of interfac
tools and deserves further study.

1 Introduction

During the last ten years we have witnessed a growing trend in the use of interactive applications
which employ sophisticated graphical user interfaces. This increased demand for easy-to-use
software has created a great need for programming tools which help to design and implement
user interfaces. A number of different approaches have emerged [HH89, Mye89).

At the University of British Columbia, we set out to tackle this problem with the following goals
in mind.

• The tool should be easy to use. In particular, interfaces should be defined at a very high
level. The programmer should not be burdened with details.

• The tool should provide an integrated programming environment - it should not merely
create interfaces.

• The tool should let the programmer create complete applications by combining existing
components with his own.

• Applications should be portable across machines and user interfaces.

• The tool should support the notion of a class hierarchy of objects with inheritance. Oper
ations which manipulate these objects are to be defined.

• The tool should be able to generate interfaces which support a number of interactive styles.

These objectives were met as follows.

• Describe the semantics of the application rather than the syntax of the user interface (by
specifying what an application should do rather than how).

• Generate the entire application, not just the interface. In this way it is possible to embed
more information about the environment in the tool. This can be used to further simplify
the programming task as a number of difficult issues such as communication and control
can be eliminated.

• Isolate environment and interface specific information in the code generation portion of the
tool. This makes it possible to create applications for any platform, user interface, and
interactive style. Existing user interface generation toolkits or UIMS 's may be employed in
realizing the desired interface. Thus the tool provides a layer on top of current technology -
the specification is at a much higher level and in contrast to most current systems, provides
a means for creating portable interface and style independent applications.

The resulting tool, NAAG (Not Another Application Generator), embodies these ideas. Before
describing it, we review some motivations for using interface tools in general and application
generators in particular.

1

2 Motivation

We clarify the need for programming tools to aid the design and implementation of user interfaces
by reviewing some of the key reasons for using such tools.

Although this paper is primarily concerned with the restricted case of generating interactive
applications, we review some key advantages of interface tools at several levels. At the most
general level, we look at user interface tools and the advantages they offer. Next, we look at a
class of tools which automatically generate user interfaces. Lastly, we elaborate on the advantages
of generating interactive applications.

2.1 User interface tools

Interface tools have been created primarily for the purpose of making interfaces cheaper and
easier to design and implement. Myers [Mye89] lists the following advantages derived from the
use of interface tools:

1. Resulting interfaces are better:

• Designs can be rapidly prototyped and implemented.

• It is easier to incorporate changes discovered through user testing because the interface
is easier to modify.

• One application can have many interfaces.

• More effort can be expended on the user interface tools than may be practical on any
single interface because the tools will be used repeatedly.

• Different applications will have more consistent interfaces because they have been
created with the same tools.

• It is easier to investigate different styles for an interface.

• It is easier for many specialists to be involved in designing the interface.

2. The interface code will be easier to create and more economical to maintain:

• The code will be better structured and more modular because it has been separated
from the application.

• The code will be more reusable because the tools incorporate common parts.

• The reliability of the interface is higher.

• Interface specifications can be represented, validated, and evaluated more easily.

• Device dependencies are isolated in the user interface tool, so it is easier to port an
application to different environments.

2

2.2 Automatic generation of user interfaces

Tools which automatically generate interfaces based on the application's semantics, have the
following advantages over and above the ones listed in the preceding section.

1. Interactive applications are easier to create and maintain:

• The interface can be generated from the information implicit in the description of the
application's- semantics. For example, consider an operation which requires as one of
its inputs an integer value selected from a given range of integers. In most systems
the programmer would have to describe how such a value might be obtained - using
a slider gadget for example. A programmer using a tool which relies on semantic
information, however, would describe this input simply as an integer in a range - the
tool would decide how to best obtain such a value using available resources.

• The ability to automatically generate interfaces will be more important as interfaces
become more sophisticated. An interface tool can be seen as a combination of compiler
and expert system. It must use large amounts of information to solve a translation
problem - creating a low-level description from a high-level one. As the gap between
the source and target languages widens, the tool must employ more information and
smarter translating schemes to carry out the transformation.

2. It is possible to achieve a greater separation of interface and application:

• Interface or dialogue independence implies that the dialogue (interface) and the compu
tational (application) components are independent - changes in one should not affect
the other [HH89]. Since the tool generates the interface, the programmer can treat the
interface as a black box whose behaviour can be described by a set of rules. This set of
rules defines an internal dialogue - a protocol which the dialogue and computational
components must adhere to. However, as different tools may employ different internal
dialogues, portability may be sacrificed.

• It is easier to generate interfaces which are tailored to a specific user community and
employ a unique style of interaction. Where alternatives exist, the tool can be designed
to pick the most appropriate method of communicating with the user. For example, if
the interface must obtain an integer from a given range, the tool may choose to use a
slider gadget if the range is large, and a numeric text gadget with increment/decrement
buttons if the range is small. At a more abstract level, a user-modelling facility can be
used to guide the human-computer conversation. Tools which automatically generate
interfaces can be used in conjunction with such facilities to dynamically create the
most appropriate interface based on an on-going evaluation of the interaction.

• Since the tool uses semantic information only, it can generate interfaces which are more
uniform and reliable (at the cost of reduced flexibility as the programmer is given less
control over what is generated).

3

While most interface tools emphasize the task of describing the interface, this class of tools
regards the interface as a side-effect - something which can be generated automatically from the
deeper semantic description.

2.3 Automatic generation of interactive applications

Application generators take the preceding approach one step further by creating the entire ap
plication rather than just the interface. This has a number of inherent advantages.

1. It represents the simplest model for application development:

• Minimum programming effort is required to create interactive applications. The pro
grammer does not have to create the dialogue component, nor write internal dialogues
to communicate with an automatically generated dialogue component. As such, he
can focus his efforts on creating the computational component.

• Issues such as control and communication are eliminated. Typically these are the
greatest impediments to interface development - even once the programmer has mas
tered this aspect, there is no guarantee that the programs he writes will be portable,
as most toolkits and UIMS's handle these issues differently.

• Many tasks can be eliminated or simplified. For example, most window systems re
quire the programmer to supply routines for resizing and repainting windows, event
processing, and resource management. Most of these tasks can be performed by the
tool, while others such as mouse event processing can be greatly simplified.

2. More information can be embedded in the tool:

• Since the tool has intimate knowledge of the target environment, it can generate code
which is optimized. For example, there are typically many ways of performing graphics
operations in a given system. The tool can be designed to choose the most efficient
means to carry out computationally-intensive tasks.

• A more complete programming environment can be defined. Since the tool generates
the entire application, it can utilize other tools to reduce the programming effort. For
example, a make utility can be invoked to automatically compile code generated by
the tool and combine it with external object modules to obtain an executable version
of the application.

• The tool can be used to carry out many of the tasks that are usually performed by the
programmer - this makes it possible to produce applications which are more modular,
contain fewer bugs, and use resources more efficiently than hand-coded programs.

3. Programming model is more consistent:

• Applications are easier to port, as the programmer is not required to learn a new
environment. It is possible to port existing applications without change simply by
recompiling them using the modified version of the tool.

4

• Although the ability to escape from the tool can be important in certain circumstances,
restricting functionality has the advantage that the applications are more portable -
the programmer does not have to rely on mechanisms outside of the tool and cannot
introduce compatibility problems.

4. The tool is more portable:

• The very high-level specification makes the fewest assumptions about the nature of
the interface or the underlying application. This allows the tool to choose the most
appropriate mechanisms to realize the interface. For example, while one sy~tem may
use programmed function keys to obtain user inputs from menu panels, another may
employ a mouse to select items from drop-down menus accessed from a menu bar.
A third may use pop-up menus with pull-rights and dialog boxes. This idea extends
beyond being able to use different interactive styles or devices as the only information
being captured is what must be accomplished - not how.

• Can use existing tools to realize interfaces. Each target environment typically has
several interface tools which are capable of generating interfaces consistent with that of
most applications created for that target. For example, the Apple Macintosh computer
has a very standardized interface, as does the NeXT, yet a functionally equivalent
application would possess a different look and feel depending on which platform it was
developed for.

• Code generation module can be modified to create source code for a variety of operating
systems, languages, and user interfaces. As more information is embedded in the tool,
the tool can be adapted to more environments.

2.4 Summary

In this section we studied the advantages of interface tools at three levels of specialization. As the
tools become more specialized they are typically less complex and easier to use. This gain comes
at a price - reduced generality. This, however, does not have to be a crippling deficiency. One
of the key considerations in any task is the choice of the right tool for the job. It is undesirable
to use a low-level tool where a higher level tool will suffice. Similarly, if the problem cannot be
expressed in a high-level fashion, a more general tool should be sought. Although application
generators are limited with respect to the kinds of applications they are capable of producing
they nevertheless have a number of important advantages and are of significant practkal value.

3 NAAG

3.1 Introduction

NAAG is a tool which generates interactive applications from a high-level description of the
application's semantics. Essentially, it enables a programmer to create an interactive application

5

by specifying what type of tasks the application is to carry out rather than how. As a direct
consequence, NAAG applications are portable not only across machines, but across user interfaces.

Existing user interface generation systems can be extremely time-consuming to learn and difficult
to use. NAAG insulates the programmer from many complexities at some cost in terms of reduced
functionality. For example, NAAG provides for interface independent graphics. The programmer
simply calls predefined routines to output graphical elements in his own preferred coordinate
system. NAAG maintains its own display list and performs such tasks as the repainting and
resizing of graphics windows while maintaining correct aspect ratios.

Note, however, that NAAG is much more than an interface generator-it is a programming envi
ronment consisting of a very-high-level language, macro preprocessor, compiler, and automatic
make utility. Existing UNIX tools are used to realize a number of these components. Further
more, NAAG allows the programmer to define classes, and operations which can be applied to
objects belonging to these classes. NAAG generates graphical, object-oriented user interfaces,
suitable for interacting with the objects which the application creates.

3.2 Application programmer's model

This section provides an overview of the NAAG programmer's model. NAAG is described in
greater detail elsewhere [Noi90].

From the NAAG perspective, an application consists of an organization of operations which
manipulate objects belonging to a number of classes. NAAG provides the means for realizing
these abstractions as C functions and data types. Since operations are the main building blocks
of NAAG applications, we start out by looking at some examples.

First, consider one common type of operation: reading an object description from a file. Typically
this operation requires a single input: the filename. Figure 1 contains a NAAG program segment
which describes an operation for reading image data from a file, while Figure 2 shows the resulting
dialog box generated by NAAG (for a specific interface - see implementation notes). The
argument construct is used to describe what type of value the application must obtain from
the user in order to carry out the operation. Table 1 shows the argument types which are
currently implemented in NAAG. As a further example, Figure 3 shows a more involved operation
description, while Figure 4 contains the resulting dialog box.

Given a number of operations, the next step would be to organize the operations into a hierarchy
of menus. While this information is used to establish a semantic grouping of operations based on
some criteria, there is no implication of how these groupings will be realized. Figure 5 contains a
NAAG description of one menu in a vision application, while Figure 6 shows a part of the menu
tree which was generated by NAAG. Menus contain menu items which may be other menus,
operations, or stubs - operations which have not been implemented.

By using include files it is possible to easily assemble existing menus and operations into complete
menu hierarchies. As the programmer does not have to be familiar with the contents of the
included files, this method of composing new applications from existing components is not only

6

/•--- file: Loadimage.op ------ ----------- - - ------------------------------•/

.operation Loadimage {
.class .none /• operation does not belong to a class•/

/• object library which contains function•/

}

.libraries { "-limgio"}

.label "open image"

.help "This routine opens

.argument {

images stored in IFF format"

.text .max_length 40 .initial 11 /grads/noik/data/image/DOBOY.IFF"

. label "IFF Image filename:"

.help "Enter the filename of the image to be opened"
}

.result {
.class Image

}

/• result is an Image object •I

/•--- end of file: Loadimage.op --•/

Figure 1: A NAAG description of an operation which reads image data from a file.

18] open image

I FF Image file name: Jgrads/noi k/data/image/DOBOV.1 FF

(Continue) (Cancel)

Figure 2: Load[mage dialog box generated by NAAG.

7

/•--- tile: camera.op --•/

.operation camera {
.class .none

}

.libraries { "-limglib"}

.label "camera capture"

.help "Capture an image with a camera"

.argument {
.set { "preview" "capture"} .initial 1
.label "Action"}

.argument {
.range .minimum O .maximum 60 .initial 0
.label "Duration/Delay (sec)"}

.argument {
.tlag . initial 1
.label "Interlaced video"}

.argument {
.range .minimum 128 .maximum 512 .initial 256
.label "Image width"}

.argument {
.range .minimum 128 .maximum 512 .initial 266
.label "Image height"}

.argument {
.range
.label

.argument
.range
.label

.argument

.minimum 0
"x ottset"
{

.minimum 0
"y ottaet"
{

.maximum 63 . initial 0
}

.maximum 63 . initial O
}

.range .minimum O .maximum 255 .initial O

.label "Digimax ottset"}
.argument {

. set { "-4" "-2" "0" "2" "4" "6" 11 811 "10" } . initial 2

.label "Digimax gain (db)"}
.argument {

.set { "none" "2" "3" "4"} .initial 0

.label "Digimax tilter" }
.result {

.class Image}

/•--- end ot tile: camera.op --•/

Figure 3: An image capture operation.

8

Argument Description
range an integer from a given range
set an item from a given set
flag a boolean value
text a text item
point a point in the window
region a region in the window
object a handle to the object

Table 1: NAAG operation argument types.

181 camera capllln

Action I pre¥1ew I capt ure !
Duration/Delay (sec) O D==== 60....__

Interlaced video ~

lmae• width 129 -□===512

Image height 129 -□===512

x offset o D==== 63

y offset o DI==== 63

Dlglmaxoffset O 0====255

Dig I max gain (db) I --4 ! -2 ! 0 ! 2 I 4 I 6 ! 8 j 1 O l

Die I max fllter I none ! 2 l 3 j 'l I
(Continue) (Cancel)

Figure 4: camera dialog box generated by NAAG.

9

/•--- tile: image. mn --------------,-------------------------------------•/

.menu {
.claas Image
.label "Image operations"
.help "This menu contains a number ot image processing operations"

.menu {
.class Image
.label "Trans:formations"
.help "This menu contains operations :for trans:forming image data"

include ":flip.mn"
include "rotate.mn"

.menu {
.class Image
. label "Rescale"
,help "Operations tor the re■ caling o:f images"

}
}

include <image/zoom.op>
include <image/munch.op>
include <image/resample.op>
.stub "iscale"

include "statistics .mn"
include "window.mn"
include "lowlevel.mn"
}

/•--- end ot :file: image. mn ----------------------------------·--------------•/

Figure 5: A NAAG menu which contains a number of image processing operations.

10

Figure 6: A partial menu tree attached to an image object.

11

/•--- tile: vision.n --•/

.application vision

.label "UBC Integrated Vision System"

.help "This is a sample image processing application tor computer vision"

.classes
include <hist/hist.cl>
include <image/image.cl>

.menus
include "tile.mn"
include "image.mn"

/•--- end ot tile: vision.n ---- - - - - ---- ------------ --------------- ---•/

Figure 7: A NAAG ma.in program.

/•--- tile: image.cl - - - - ---------------- ---------- -------------- --- - - ---•/

.define_class Image {
.class .none

}

.includes { "image/image.h"}

.libraries { "-limg"}

. display_routine Displayimage

.destroy_routine Destroyimage

I• not a subclass ot an existing class•/
I• C typedef for Image data structure•/
/• object library which contains routines•/
I• HAAG display routine •I
I• IAAG destroy routine •I

/•--- end of tile: image. cl -------- - - ------- - - ------ - - - ----------•/

Figure 8: A NAAG class definition.

simple, but very powerful.

Now that we have menu trees, we can look at the basic NAAG application. It consists of~
section for defining classes and a section for defining menus. Figure 7 contains a sample N AAG
application ma.in program. What is left to describe is the way one defines a class using NAAG.
Figure 8 shows the class definition for the Image class used in the preceding examples. The
display routine is a user-supplied function which is invoked by NAAG to display an object. It
simply calls some sequence of NAAG drawing primitives to render the given object. The NAAG
primitives are listed in Table 2. Since these primitives are device and interface independent,
a single display routine will suffice for all target environments. The destroy routine is a user
supplied function which is invoked by N AAG to release any resources held by the object (typically,
it frees memory allocated to store the object's data structure).

A few quick words about the primitives. The drawing primitives function in the coordinate
system defined by the user when creating a new window. This eliminates scaling of coordinate

12

int n_colour(int red, int green, int blue);
int n_drawJine(int xl, int yl, int x2, int y2);
int n_draw_point(int x, int y);
int n_draw_rectangle(int xl, int yl, int x2, int y2);
int n_draw_text(int x, int y, char *s);
int n_drawJmage(int x, int y, int width, int height, int depth, char *data);
int nJine_width(int width);
int nJocator(void (*event_proc)(int event, int x, int y));
int n_message..error(char *s);
int n..message_plain(char *s);
int n_window_clear();
int n_window_create(int xl, int yl, int x2, int y2, char *title);
int n_ window _message(char *s);
int n_window..restore();
int n_window..save();
int n_window_title(char *title);

Table 2: NAAG primitives

values as N AAG maintains the correct aspect ratio when the drawing windows are resized, and is
an example of one more way that the programmer's task can be simplified. The n_window..save
primitive can be used to record the state of the window while n_window_restore restores the
window to the previously saved state. N AAG maintains an internal display list of items drawn and
treats image data in the same manner as graphical items such as lines. Images are automatically
resampled when a window is resized, and gray-level images are automatically dithered if they are
being displayed on a bi-level display. This makes it possible to easily combine image and graphics
elements since they are treated uniformly and share a common coordinate system. The n_locator
routine lets the programmer register a routine for processing mouse events. Mouse events have
been reduced to just four types: button up, button down, move, and drag. The locator primitive
in conjunction with the screen save/restore primitives can be used to implement rubber-banding,
dragging, and graphical undo operations with just a few lines of high-level code. For example,
Figure 9 shows a C function which implements rubber-banding of rectangular regions.

Now that we have a complete program, we can create the entire application with a single com
mand. NAAG automatically generates the complete application and any related files. Thus the
programmer may alter the menu tree by moving, adding, or removing components and obtain
the modified application with a single recompilation.

3.3 Implementation notes

The current version of NAAG produces X Windows applications for Sun 3 and Sun 4 architectures.
One of the most important features of X is its device-independent architecture which allows
programmers to develop portable graphical user interfaces. This was a key consideration in

13

void RubberBandRegion(int event, int x, int y)
{

}

static int u, v;

switch(event) {

}

case N_LOCATOR_DOWN
n_window_save();
U = Xj V = y;
break;

case N_LOCATOR_DRAG
n_window_restore();
n_draw_rectangle(u, v, x, y);
break;

case N_LOCATOR_UP
n_window_restore();
I• (u,v) - (x,y) is the chosen region •I
I• ... code to do something with it ... •/
break;

default :
break;

Figure 9: A rectangular region rubber-banding routine.

14

choosing a target environment since it enabled a single target to work on a number of _platforms.
See [SG86, Nye89, You89] for a description of the X Windows System, the Xlib programmil1g
inteJ"face, and the Xt Intrinsics layer of the X toolkit.

To simplify the generation of X-based applications we chose to use the XView Open Look Toolkit
[Hel89]. XView enables the programmer to build interactive applications without having to know
many of the details of the underlying window system-its object-oriented programmer1s interface
is simpler to learn and easier to use than Xlib.

A number of UNIX tools are used in constructing NAAG [KR]. The C preprocessor cpp [KR78] is
used as a first pass filter and allows the programmer to take advantage of the macro preprocessor
features such as the file include facility when preparing NAAG source code. lex [LS] and yacc
[Joh] are used to implement the lexical analysis and parse phases of the compiler and to generate
a parse tree. These phases of the compiler are independent of the target environment. Code
generation is performed by modules wrHten in C, which create the following outputs:

• C program which calls a number of functions supplied in the NAAG run-time support
libraries to build an XView interface.

• A Makefile for compiling the generated C code and linking in all external object modules
and libraries.

• Help information to be used at run-time.

• A man style manual page.

The make utility is invoked by NAAG to compile the generated source code and link in all
associated obj ct modules and libraries including the NAAG generic and target-specific run-time
support modules. Figure 10 gives a graphical representation of the relationships between the
various components.

3.4 Relationship to existing tools

Many object-oriented tools such as Interviews (LVC89] allow programmers to define user inter
faces in a disciplined fashion and often at a higher level than the underlying windowing system
which they employ. These tools are most appropriate for designing unique or custom interfaces
rather than creating relatively standard interactive applications . Although they typically sim
plify a number of programming tasks, they still Tequire a high degree of sophistication from the
programmer. Furthermore, they typically do not provide any facilities to simplify other aspects
of software development, but focus entirely on generating the interface. Direct manipulation
tools such as Peridot [Mye87], which allow the designer to interactively describe the user inter
face by giving examples, are even less desirable in our context as we wish to automate the task
of applicMion generation. Similarly, tools which attempt to combine programming and direct
manipulation such as (ABM89], are not suitable for automating application generation.

15

Application compono,n,.

----------------•-•- - •---•-------•-•------------------ I

1 J NAAO openilianr H- -..,
• • :

NAAOmenus

I
I
I

~- -~
-------- '.l,-J ... _ N~AA~O--~l __ > 7 A pplicatlon !
j I NAAO classes H- -.,I

,- - -
I
I
I
I
I
I
I

ii C data type1 I !
! ,---Dilp-. _l_a_y_, d_er_tro_y_----, :

mouse routinea
: ·---~----·:

l NAAO support
I
I

:,_ _ -1 NAAO includes

NAAO

cpp:

preproc

I
I
I
I
I
I
I
I
I
I

' ············· ··························· ··· ... ······· ·1
lex: i l yacc: \ j C: 1 j make: ,.
tokenize : : parse : : codegen : : compile :

1 j ! j \ j and link ! ,
···-······-•''·•··· ······································'

~
I
I

•--------------' I I I
I 1··••••••• • ••••• • •• ··•• ·••• :

~-- -1 Ccodc H-----1
: : i :
: •,--------, ! I r- --~ ma1ccrue H- ----i
: •••·••••••••••• •• •••• .. . -,.J :

I

: t •••• - • - • - • - •• - ••••••••••• ~

~ - - - ~ Help Info lj
I • •
I : !
I : ,--------, •

'-- - -~ MM!u1l I I
• •••••••••••••••••••••••• j

I
I
I
I

NAAO libraries:

gcnc,rlc/1pecific
- --l--------••-•-----•-------------•--••------------•-• I

Figure 10: NAAG framework for application development.

16

I
I
I
I
I
I
I
I

v
Executable

One of the first attempts to describe the interface in terms of its semantics rather than its syntax
was given in (Bla77]. Our approach is similar to that of Syngraph [Ols83, OD83], Mike [Ols86],
and IDL [Fol87, FKKM89]. We have described some of our goals and motivations earlier. Many
of these ideas came from earlier work in attempting to create a framework for developing portable
interactive applications for computer vision (Noi89]. Our approach differs from that of Mike or
IDL in the following respect.

1. NAAG is intended to be a tool for programmers:

• It enables programmers to create interactive applications with minimal effort. NAAG
employs a number of existing tools to reduce the programming effort and emphasizes
creation of complete interactive applications rather than of just the interface.

• A certain level of computer-literacy is assumed. Specifically, arguments that language
based interface tools are harder to learn and use than tools which allow the interface to
be defined by direct-manipulation, are not relevant, as programmers are accustomed
to using formal languages to specify computational tasks. Note, however, that NAAG
can be used to create interactive graphical editors for manipulating NAAG programs
in a manner similar to visual programming [Mye86].

2. NAAG generates applications which use standard interactive techniques:

• It is often worthwhile to sacrifice :flexibility for a substantial gain in ease of use. A
large class of applications have relatively modest requirements in terms of the kinds
of inputs they must acquire and the outputs they must display.

• Both the applications it generates and NAAG itself are very portable. NAAG employs
existing technology and can be modified to generate semantically equivalent interfaces
for different targets. This allows a single specification to be compiled to obtain applica
tions which run on several machines and employ a variety of interfaces and interactive
styles.

3. The integrated environment allows applications to be defined and implemented very quickly:

• NAAG is simple and fast enough to be used as a rapid-prototyping tool. For example,
a simple drawing program employing standard graphics procedures and mouse inter
actions was defined and implemented in under three hours. This application, as every
NAAG program, is fully portable, as it does not rely on any mechanisms outside of
NAAG.

• Tasks such as compiling and linking existing and generated modules to create the
complete application are performed automatically and help to reduce the programming
effort.

• As in the TIGER system's common development environment at Boeing [Kas85],
NAAG fosters a consistent, unified approach to application development. The pro
grammer's view of the application is simple and remains consistent across environ
ments. Furthermore, since software written in NAAG must adhere to a number of
conventions (modular design, consistent treatment of the roles of inputs and outputs,

17

interface-independent operations, etc), it may be easily incorporated in other systems.
As the underlying operations (semantics) have to be realized in every case, the total
investment in NAAG consists of a number of very simple NAAG specifications. This
amounts to a very small proportion of the total effort and allows the programmer to
focus on the semantics of the application rather than developing code to interact with
the user.

4. NAAG contains more knowledge of the target environment and is able to produce optimized
code:

• Operating system and programming tools (macro preprocessor, compilers, make utility,
object modules and libraries, etc).

• Application programming language.

• Interface toolkit or UIMS used to realize the interface. Tasks such as communication,
resource management, window management, and graphics are performed automatically
and in the most efficient manner.

• Information on how to perform various interactive tasks such as obtaining different
kinds of information from the user, error handling, and providing help, is built into
NAAG.

4 Conclusions

Interface tools simplify the design and implementation of user interfaces. Sophisticated general
purpose tools are difficult to use and may not be appropriate for many standard applications.
Tools which generate interactive applications from a high-level description of the application's
semantics require minimum effort to use and provide greater opportunity to employ existing
technology.

NAAG, a tool we have developed at UBC, represents an advance in software engineering in several
ways:

1. Enables the programmer to create sophisticated interactive applications with minimum
effort.

2. Fosters a strategy which emphasizes the creation of modules which are clearly separated
from the user interface and thus have greater potential for reusability.

3. Provides a simple yet powerful mechanism for defining object-oriented classes and opera
tions on objects belonging to these classes.

4. Increases software portability. By modifying NAAG's code generation module, existing
applications can be recompiled to run on different machines and to employ a variety of user
interfaces and interactive styles.

18

5. Promotes a more consistent environment for the application developer and a more uniform
interface for the user through the standardization of programming tools and interactive
styles respectively.

6. Simplifies and speeds up application creation resulting in applications which are more effi
cient and contain fewer bugs than hand-coded systems.

As user interfaces become more sophisticated, more powerful interface tools will have to be
created. This approach provides a very simple mechanism for creating interactive applications
and should be of significant practical value in the future.

19

Acknowledgements

This work owes much to David Lowe who has been a constant source of support and guidance.
The creation of NAAG has been an evolutionary process - the feedback that I have received from
David and others was invaluable. In particular, I would like to thank Michael Horsch for his
willingness to listen to my numerous ideas and for providing helpful insights. I extend my thanks
also to Andrew Csinger for exercising his excellent proof reading skills.

References

[ABM89] G. Avrahami, K.P. Brooks, and Brown M.H. A two-view approach to constructing
user interfaces. Computer Graphics, 23(3):137-146, 1989.

[Bla77] J .L. Black. A general purpose dialogue processor. In Proceedings of the National
Computer Conference, pages 397-408, New York, NY, 1977. ACM.

[FKKM89] J. Foley, W.C. Kim, S. Kovacevic, and K. Murray. Defining interfaces at a high level
of abstraction. IEEE Software, 6(1):25-32, January 1989.

[Fol87] J. Foley. Transformations on a formal specification of user-computer interfaces. Com
puter Graphics, 21(2):109-113, 1987.

[Hel89] D. Heller. XView Programming Manual. O'Reilly and Associates, Sebastopol, CA,
1989.

[HH89] H.R. Hartson and D. Hix. Human-computer interface development: Concepts and
systems for its management. ACM Computing Surveys, 21(1):5-92, 1989.

[Joh] S.C. Johnson. YACC-Yet Another Compiler-Compiler. Bell Laboratories, Murray
Hill, NJ.

[Kas85] D.J. Kasik. An architecture for graphics application development. In Proceedings
of the IEEE International Conference on Robotics and Automation, pages 365-371,
New York, NY, 1985. IEEE.

[KR] B.W. Kernighan and D.M. Ritchie. UNIX Programming. Prentice-Hall, Englewood
Cliffs, NJ.

[KR78] B.W. Kernighan and D.M. Ritchie. The C Programming Language. Prentice-Hall,
Englewood Cliffs, NJ, 1978.

[LS] M.E. Lesk and E. Schmidt. Lex - A Lexical Analyzer Generator. Prentice-Hall,
Englewood Cliffs, NJ.

[LVC89] M.A. Linton, J.M. Vlissides, and P.R. Calder. Composing user interfaces with inter
views. IEEE Computer, pages 8-22, 1989.

20

[Mye86]

[Mye87]

[Mye89]

[Noi89]

[Noi90]

[Nye89]

[OD83]

[Ols83]

[Ols86]

[SG86]

[You89]

B.A. Myers. Visual programming, programming by example, and program visualiza
tion; a taxonomy. In Proceedings of the SIGCHI'86: Human Factors in Computing
Systems, Boston, MA, April 13-17, 1986. ACM.

B.A. Myers. Creating interaction techniques by demonstration. IEEE Computer
Graphics and Applications, pages 51-60, September 1987.

B.A. Myers. User-interface tools: Introduction and survey. IEEE Software, 6(1):15-
23, January 1989.

E.G. Noik. A user interface independent computer vision system. University of British
Columbia, 1989.

E.G. Naik. Naag-not another application generator user's guide. University of British
Columbia, 1990.

A. Nye. Xlib Programming Manual. O'Reilly and Associates, Sebastopol, CA, 1989.

D.R. Jr. Olsen and E.P. Dempsey. Syngraph: A graphical user interface generator.
Computer Graphics, 17(3):43-50, 1983.

D.R. Jr. Olsen. Automatic generation of interactive systems. Computer Graphics,
17(6):53-57, 1983.

D.R. Jr. Olsen. Mike: The menu interaction kontrol environment. ACM Transactions
on Graphics, 5(4):318-344, 1986.

R.W. Scheifler and J. Gettys. The x window system. ACM Transactions on Graphics,
5(2):79-109, April 1986.

D.A. Young. X Window Systems Programming and Applications with Xt. Prentice
Hall, Englewood Cliffs, NJ, 1989.

21

