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Discontinuities of surface properties are the most impor
tant locmions in a scene; the_�, are crucial for segmenta
tion because they often coincide with object boundaries'. 
Standard approaches to discontinuity detection decouple 
detection of disparity discontinuities from disparity 
computation. We have developed techniques for locating 
disparir,v discontinuities using informa1io1� i'!ternal to the 
srereo al orirhm of Drumheller and Pogg10-. rather than 
hy post-processing the stereo data. The algorithm 
determines displacements by maximizing the sum, at 
overlapping small regions. of local comparisons. The 
detection methods are motivated by analysis of the 
geometry of matching and occlusion, and the fact that 
detection is not just a pointwise decision. Our methods 
can be used in combination to produce robust perform
ance. This research is parr of a projecr to build a Vi ion 
Machine3 at MIT that integrates owpiu from early 
vision modules. Our techniques have been extensively 
tested on real images. 

Keywords: machine vision, occlusion. stereo, motion 

This investigation describes a component of the MIT 
Vision Machine'.! . that integrates output of early vision 
modules for tasks such as recognition and navigation. 
The integration stage computes maps of scene pro
perties augmented by an explicit representation of 
discontinuities in the scene. identifying their physical 
origin. Our major achievement is the development of 
techniques for locating disparity discontinuities using 
in formation internal to the stereo and motion modules. 
rather than by post-processing the output. Later p�o
cessing to detect disconLinuties-1 can then operate with 
substantiallv more information about their location. 
We have devised techniques for discontinuity location 
based on an analysis of patchwise matching scores 
internal to the algorithm. and based on the effects of 
Llcclusion. These methods suggest improvements to the 
rerformance of stereo near disparity discontinuities. 

Stereo and motion both compute similar quantities -
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image displacements of image elements. In the algor
ithms discussed here, we restrict ourselves to displace
ments (disparities) that are integer multiples of the 
pixel spacing. Thus, we can search for the best 
displacement for each point. We use, both in stereo and 
motion, a dense set of overlapping matching operators 
to compute displacements between the two images in 
stereo and motion. Both stereo and motion apply 
uniqueness and continuity constraints. Scene geomet
ries differ, however, and so do interpretations of 
ordering constraints. 

Exploiting parallelism 

Early vision is computationally intensive. The com
putation is mostly local and isotropic: local - the result 
at a location in the image depends only on nearby 
locations, and isotropic - the same processing occurs at 
separate locations in the image. This suggests that a 
SIMD parallel architecture is a good choice to meet the 
performance requirements of early vision. Specifically, 
our computational engine is the Connection Machine�, 
a fine-grain SIMD parallel computer. A further discus
sion of early vision and parallel computers can be found 
in Reference 6. 

Drumheller-Poggio parallel stereo algorithm 

The Drumheller-Poggio algorithm1 served as an experi
mental testbed for the research described here. An 
extended version of the algorithm forms part of the 
Vision Machine: the resulting stereo data is ne of the 
inputs to the MRF-based integration stage�. This 
section briefly reviews the original stereo algorithm, 
based on the description in Reference 2. 

Stereo matching is an ill-posed problem7 that cannot 
be solved without taking advantage of natural con
straints. The continuity constraint (e.g. Reference 8) 
asserts that the world consists primarily of piecewise 
smooth surfaces. If the scene contains no transparent 
objects. then the uniqueness constraint applies: there 
can be only one match along the left or right lines of 
sight. If there are no narrow occluding objects, the 
ordering constraint'J holds: any two points must be 
imaged in the same relative order in the left and right 
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. The_ specific a priori assumption used is that the
d1spant. f the surface is locallv constant in a small 
region surrounding u pixel. l t is a ·restrictive a sumption
�hie�. however. may be a satisfactory local approxima
llon in many case (it can be extended to more general
s.�rface assumptions in a straightforward way but at
high computational cost). Let Edx, ) and En (X. y)
repre ent the left and right image of a stereo pair or
som transformation of the images, such as filtered
images or a map of the zero-crossings in the two images
(more generally. they can be maps containing a feature
v�ctor at each location (x. y) in the image 111

). We look
for a discrete disparity d(x. y) at each location (x. y) in
the image that minimizes: 

(1) 

here the norm i a summation over a local support
neighbourhood N x. y) centred at each locati n (x. y);
d(x. y) i assumed constant in the neighbourho d. The
correlation of EL and ER is often used a a measure to
maximize equation 1) for each (x. y : 

(2) 

Without normalization. however. the correlation is
incorrect: the proper measure is: 

J.
. 

EL(x. y) ER(x + d(x, y), y) dxdy
,\1r., I (3) 

The algorithm actually implemented is somewhat m re
complicated. ince it involves geometric constraints
(ordering and uniqueness) that affect the way the
maximum operation is performed 1 . The Drumheller
? ggio algorithm is similar in spirit to the first stereo
alg rithm propo ed by Marr and PoggioK. a coopera
tive algorithm in which potential matches reinforce
other matches that lie on the same surface and inhibit
other matches that violate the uniquenes constraint. It
also bel nfs in the family of correlati n-based stereo
algoriLhms 1 • 12; the geometric constraint separate it
from early algorithms. The algorithm is composed of
the following steps: 

Compute features for matching (edge detection or
band-pass filtering). 

2 Compute matches scores between features. 
3 Determine the degree of continuity around each

potential match. 
4 Jdentify disparities based on the constraints of

continuity, uniqueness and ordering. 

P tential matches between feature· are computed as
foll< ws. The images are registered s that the epipolar
line. are horizontal 13, so the stereomatching problem
becomes one-dimensional: a token in the left image can
match any t ken in the corresp nding horizontal line in
the right image. Sliding the right image over the left
image horizontally, we compute a et of match core
planes. one ror each horizontal disparity. Let p(x, y, d)
den te the value of the (x. y) entry f the match score

plane at disparity d. For edge-bused wkc:ns. the results
)f comparison are binary. We set p(.r. y. d) = 1 if there
is a token at location (.x. y) in the left imnge and a
compatible token at I cation (.r - d. y) in the right
image: otherwise. et ptx. y. d) = 0. In the case of the
Marr-Hildreth edge detector 1

�. two tokens (edges) are
c mpatible if the signs of the convolution for each edge
(the edge polarities) agree. For brightness-based
matching. the matching score continuously varies (EL 

and Eu vary over ome finite range and the norm of
their difference can take on a range of values. not just O
and 1 - see equation (I)). The Canny edge detector 15 

was used in most of the stereo examples. No thresholds
were used to select edges. Our implementation re
quired that matched the gradients of image brightness
at matched edg features be within some small angle
(usually 30 degrees). 

The value computed by equation ( 1) measures the
degree of continuity around each potential match at (x.
y. d). F r edge-based matching. pointwise feature
compari n is binary and summation counts the 'votes· 
for the disparity d in the d th match plane. lf the
c ntinuity constraint is satisfied near (x. y. d) then N(x. 
y) contains many votes and the score s(x, y. d) is high
( ee equation (- . Wh n the mulching is comparison of
filtered brightnesse . the quantity in equation (1)
attains a minimum at Lhe correct displacement. We 
mostly discuss the edge-based methods used in the
stereo inve ·1igation and therefore will try to maximize
the normalized correlation and will speak of peaks in
the measured values. Finally. we select the correct
matches by applying the uniqueness and ordering
constraints. To apply the uniqueness constrajnt each
match suppresses all other matches along the left and
right line of sight with lower scores. To enforce the
ordering constraint. if two matches are not imaged in
the same relative order in left and right views, we
discard the match with the smaller support score. In
effect, each match suppresses matches with lower
scores in its forbidden zone9

· 
16 (see below). 

The matching scores of the stereo algorithm are
valuable information. They provide a confidence level
for each match that can discriminate between compet
ing matches, as in forbidden zone suppression (using
the ordering constraint). The description of the stereo
algorithm implies that scores are computed only for
points p and q that are potential matches (there are
compatible tokens at p and q). In fact, although
malche are only permitted at potential match sites,
matching cores are computed everywhere with no
additional computation (because of the homogeneous
nature of computation in SIMD machines). Similarly,
brightness-based matching produces dense informa
tion. These scores can be used to derive dense stereo
results: a strong score at x. y, d) indicates that the
point x. y) in the left image probably matches the point
(x + d. y) in the right image, whether or not the two
points c incid with tokens. Computing disparity
between tokens by using the scores i. a more informed
approach than using an interpolation technique that
must make a priori assumpti ns about the surfaces
present in the scene. The scores also help to suppre s
bad matches within occluded areas of the scene (see
below). All stereo data used here is dense unless
otherwise specified. Figure I shows a stereo ·cene and
disparity data derived by the algorithm; isodisparity



a 

Figure I. (a) Leji 1·ie1v of truck, teddy bear, and crane, 
(b) righ1 view, (c) isodisparity contours

contours of the interpolated disparity map depict the 
disparities. 

DISPARITY DISCONTl�L'ITIES 

We (.kscribc two Jbc.:ontinuit;v detection techniques. 
urising from analy..,i-, nf thc ichi.lvi, ur of matching 
methods neur ocduuin!! bnundaric.:s. nc method i. 
t ased on an u .11\-;1s nf mutchin!! .wre · for different 
Jisparitie ·. anti th-e mh-:r use\ the eflec.:ts of g.eomt:trk
C.:Lln�t rainb nca r oc.:cl u-;ion,;.

Close winners 

The l'/11.\'f! W/f111er.1· tedrnique unal. ,cs ,tereo and m riun 
111a1ching. �con.: ..... F,ir cac.:h point p = (.r. y) in the left 
image and</= Lr d. _\') in the right im�tge. the matc.:her 
L'llmputcs a \con.: 1·1.1. ,r. cl) indicating the likelihood 
th:11 11 matc.:hc.:..., q. 1.c that p aml ,, an: images of the 
.imc phy,1c;il point 1n the.: \Ccne. The -;core at a point 

,(,1. 1·. d) j..., the.: n.: .... ull of intcg:r:11ing. the pointwiss: 

:n11 

b 

match scores in a region ,V(x. y) (see equation (3)). The 
matcher examine. nly disparities in the fixed interval 
[ill. fd]. calkd th-: fiuimwl ra11gl!. where the user
cc>ntro!led parameter!i id and/dare the initial and final 
disparities. re ·pectively. Define the ·core vector 
dp)={s(x.y.id).s(x.y.id I) ... .. \·(.r.y.d)).the 
·equence f matching. score· for poinL p.

We begin with a simple example. Figure 2 shows a
random-dot stercogram (RDS) and a .chema1ic repre
sentation f the cene (left ii�, ). which fuses t yield
rhe impression f a ·quare flouting in frl1ni of the
background. The squnrt: is 192 192. centred in the
256 x 256 left view. The square is displace I by 15 pixels
(actually the figure ha� ll smaller displacement . The
dark trip on the left-hand side i · un occluded pan f
the background thal can be seen in the left view but not
the right.

Poi�t Bis I coted on the boundary of the square. The
local . upp rT neighb mrh11od of point B. , (B). i
divided between lhe s 1uare nnd the b;1ckground.
Approximately half r 1h1.: edges in .Y(B) will vote for
thl! wrong uisparit�. namely the background disparity.
The i;core vector I'( m. plollet.! a ;} graph of matching
"core versus disparity. is bim )cl.ii. with one peak t the
foreground disparity and an ther peak ;n the back
ground disparit .. In contrast. 1·(A) and 1•(C) are
unimodal. ince their -.;upport regions cover constant
tlispatily regions.

Figure ] shows <;<:, re vectors computed for the
random-d t ')tenet gr�1m (RD·)- high 'itLJre' represent
best matches. Note thu1 it b critic.:al that the diameter or

the upp1Hl neighbourho )d be larger than the largest
Jisparity gap in the image - tHherwise. the two peak
will not be de1ec1eJ using clo-.e w'inner-,. AL'io. the
maximum value for the match sc.:orc ut B will at mo t be
half that f the -.c, re at point� uch as A and : this
leads to a method for discontinuitv identificati n u ·ing
local -;patial extrema of the match '·rnre (sl!e Reference
16 anJ below).

We c.:ttll point Ba clo-;c winner because tht: •winning·
disparity has a clo-,e c mpelitor: �uc.:h p ints are likely
to be llK"atl:!!.l ·11 di-,panlv d,.,continuities. P 1r all points
p in the lclt image. u�c the following procet.!ure to

imu;;e und vision computing 
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Figure 2. (a/ Le_Ji i·ieH· of Random Doi Slt!reogram. (b) 
rig/11 vim·. !cl li11e drawing of scene: flot1ring square 

determine whether p is a close winner: 

Identify peaks in 1·(p) = (s;t1, s"1., • . . . •  s1,1}. 
2 If 1·(p) has tWl) or me Te peaks. pick the two largest. 

a and {3. a,;,:13. Let tht: margin m = (a-{3)/a. If 
mi::- ((J.2 here). then pi:, a close winner. 

When mis set to 0.2. the magnitude of the smaller peak 

a b C 

Figure J. Score veclors for different locatiom· in an 
RDS. (aJ A: (/28, 128). fhJ B: (192. /28;, (cJ D: (85,
I ]8). Because rhe xupporl nt!ighhourlwod is 17 17. the 
.\'1/()fJ'Jr/ j(Jr A i,· conwined enllre/y wi1hin 11,e J7ouring 
.,·1111or •: th! ! \'1/fJfJOrt for R is ,·plit h1·1wee11 hoth regions: 
1l1e .\'1/f)fJ/Jrl /or {) nmWIII.\ rJ,e ol Jen t111d a ponion of 1/,e 
/1•/'1 /Ill/Ifft' 11u1 11•e11 111 the ri�I// 

b 

must b' greater than 80�1, f the larger peak. This 
simple peak-detection rule will not detect a peak which 
is actually a plateau. but this naw is trivial to rem ve. 
Figure .J. shows close winners for several ·tereo scenes. 
The ·peak-ratio· method of Spoerri and llman 17 

determines motion boundaries b, a similar unalv is f 
hist grams of the di ·placement ;r LOkens. 

The preceding analysi · a sumes rhat the surface are 
frontoparallel. Thi. a. sumption cun be relaxed without 
weakening the dett:ction t)f occlusions. The ·teddy' 
example cont,dns surfaces that n I only are not 
fronmparallel. but are also not rlanar. and the de tee• 
ti 1n of disc-ontinuitic� is qualitati\·el� c rrect. Figure 5 
stwws a :ynethetic image of rwo tilted planes with 
rundoml� textured colouring. \'iewcd under per pective 
projection. The normal,; of the background and fore• 
grnunJ planes at (0.-+8. 0.55. (J.69) and (-0.47. O.Jc, 
IJ.79). re.rectively. The disparitit: tJn the background 
pl.me range from 5.6 to 7.6, and on the foreground from 
19.3 to _tl .K. Occlusion detection is poor on the right
hunJ sick or the squaTe since the · ccluded region lies 
there in the lel't image. The left-hand side is accurately 
I )C�lleu. 

Spucrri and llman 17 used·, similar method. among 
other<;. LO derive u scheme f r moli n ·egmentation. 
fhcir methnd combine-; measurements of normal 
n;l<Jcit� with token rnalching. Local rne;:isurements 
dt:t�rminc u hi,Wgrum which assumes a bimodal 
(fotribution. We b-;ise our histogram n a similar 
hist�>11.n1rn of m;.1tchec.l tnkcns. but with(Jut the normal 
vclncit . which 1!-> meaninl!less in the c ntext of 
hinocuiar stereo. When u;ing the ·cl se winners' 
tcchni4uc in motion. the normal vel0city can be used to 
�h,irren the compatibility function for l kens. but 
,eem:, to hc unm:cessury. given the satisfactory results 
demonstrated hen.:. 11 i:,; a usdul check n the 
consistency of measurement'> from a di ·placement 
mi:ch11n 1sm nnd an in,tamincou!-> velocity mechanism 
producing the normal vclncities. Voorhees and 
Poggio 1� cmployr.:J ti relatr.:d Lechnique to locate tex
ture houndaric,. /'nlm :i -:tatisticul amllysis of the local 
di,trihution nf oriented tokcns. 
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Figure 4. Close winners for several stereo scenes. (a) Newspaper on wood: left view, (b) right view, (c) close winners 
(newspaper), (d) close winners for teddy (see Figure 1) 

Localization and close winners 

Localization with the close winners technique requires 
additional computati n. · !though a bimodal ·core 
vector usually indicates a nearby disparity di ·con
tinuity. it i unclear how to locate the discontinuity 
precisely. In the vicinity of a di·continuit_ contour. the 
pllints with bimodal ,;core ector· typically form a thin 
strip in the vic:init_ of lh1: contour. How do we select 
the points that lie on lht: cont ur'. Points with the 
smalle ·1 murgin. where rhe two peaks in the score 
vector are as equal as pm,�ible. are po . ible candidate·. 
Unfortunately. this approach yields the best answer 
only in the case of a linear contour, which splits the 
support neighbourhood evenly for a point on the 
contour. If the ohjcct boundary is convex. the point 

wilh smalle t margin ill be located outside the bject: 
if the -object b undar. is concave. the p iint with 
smallest margin will be displaced outside of rhe object. 
Of course. these two fact are dual. merelv the 
reference frame (the object) differs. without ch�nging 
the oundary. arrow objects such a· a thin bur may be 
missed entirely. depending n the margin threshold and 
neighbourhood size. In genernl. a smaller neighbour
ho d ·ize provides better localization blll a lower 
signal-to-noi'e rati . a lrad ff <;imilar to that for the 
smo thing parameter in edge detection. Despite poor 
localizati n. close winners still indicute regions that are 
likely to contain discontinuities; a late; integration 
stage can use this information. 

The foregoing picture is an oversimplification. 
Consider the support neighbourhood for point D in 

imuge und vision computing 
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Fi[iure 5. ClrJ\'e winners for rifted planes. (a) Synthetic 
image of ti/red surfaces, (bi close winners (m = 0.15) 

Figure 2. The occluded part of the neighbourhood has 
no match in the right view. since it is visible onlv to the 
left eye. Therefor� edges in the occluded c1rea �ill vote 
random Iv. adding noise to the score vector. ( If the 
occluded area is~ wider than the support neighbour
hood. the boundary will be missed entirely.) Note that 
for a linear occluding contour. the close winner with the 
smallest margin is located in the middle of the occluded 
area. This effect is visible in Figure 6d. which shows 
close winners for the newspaper scene superimposed on 
a silhouette of the newspaper. Close winners for the left 
boundary are displaced into the occluded region. 

Further analvsis allows us to compensate for the 
effects of oe<.:lu�ion. The stereo algorithm uses the left 
image as the reference image for the disparity map, 

matching from left to right (an arbitrary implementa
tion decision). When matching from left to right. 
occlusion degrades the localiz.ation of left boundaries 
(boundaries on the left sides of objects) but not the 
localization of right boundaries. When matching from 
right to left. the reverse is true. So. we use close 
winners computed in left-to-right matching to deter
mine right boundaries and close winners computed in 
right-to-left matching to determine left boundaries. 
(Left and right boundaries can be distinguished by the 
slope of disparity change along epipolar lines, in the 
disparity map.) Right-to-left close winners are com
puted in right-image coordinates. so they must be 
transformed into left-image coordinates using the 
disparity map. Because the disparity map is ambiguous 
at boundaries, the transformation splits the winners 
into two separate contours. We resolve the ambiguity 
by choosing the disparity value that corresponds to the 
occluding contour, using the disparity change in the 
interpolated disparity map. marking the discontinuity 
at the higher disparities. Figure 6 displays the inter
mediate and final results. 

Suppression using ordering constraint 

When one surface lies in front of another, the 
foreground surface occludes a portion of the back
ground surface. The location of the occluded region 
depends on the viewpoint. Since the boundary on the 
near side of an occluded region is the discontinuity 
contour. identifying an occluded region leads us 
directly to the associated disparity discontinuity. This 
technique can be used to locate any disparity discon
tinuity with the exception of extended horizontal 
boundaries. which are not associated with occlusion. 

Our goal is to identify occluded areas. Let us begin 
by considering only right-occluded areas, i.e. areas that 
are visible from the left but not the right view (see 
Figure 7). By definition such an area does not have a 
match in the right image. Thus. we could look for low 
matching scores as an indicator of occlusion. However, 
low matching scores can arise from a number of causes, 
including disparities outside of the fusional range of the 
algorithm. Later we show how the spatial variation of 
the matching score can be used for determining 
occlusions (see below). A better cue is provided as a 
side effect of the ordering constraint. Recall that every 
potential match is surrounded by an hourglass-shaped 
region extending through the d and x dimensions, the 
forbidden zone'\ as pictured in Figure 7a. 

Consider a simple step discontinuity (Figure 7b) 
where the portion of the surface between points p and q
is right-occluded. The shaded region contains all points 
that are imaged between p and q in the left view. 
Observe that the shaded region is contained entirely 
within the union of the forbidden zones for p and q: the 
area above the line joining p and q is in the forbidden 
zone for q, and the area below the line is in the 
forbidden zone for p. Therefore all possible matches in 
the left view between the images of p and q - the 
occluded area - have been suppressed. Match suppres
sion is the key to locating occluded areas. In a token
based scheme. such as that of Mutch and Thompson IY, 

it is possible to identify occlusions at regions where 
most tokens arc unmatched. 
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Figure 6. Combining left-w-right and right-to-left close winners. (a) Left-to-right close winners superimposed on 
newspaper silhoueue ( left view;. I b) right-to-left close winners (right view), ( c) right-to-left close winners transformed 
into left image coordinates l"ia the disparity map, with ambiguous results, ( d) combined left-to-right close winners and 
correctly transformed right-w-feft close winners 
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Fi){ltre 7. I u) The Jorh1dde11 :one /shaded J for a 
par11rnlur pmential mate It. I h I rite ,·haded region is 
n111wi11ed 11•itlti11 the 1111io11 of the Ji,rlmlden :une.1· for 
1>oi111.1· p ancl t/. 1·ho11·ing rh,11 no m,11d1 will he permiued
there

Mechanics of match suppression 

While computing matches and applying the ordering 
constraint. we can kcep track of suppressed matches. 

ince matching scores are computed at all points. 
·tereo produces dense suppression of competing
matches at occlusions.

A point (.r. _) in the: left image I. ·uppre ·ed if. for all 
disparities din the fusional range. the potential match 
at (x. y. d) hw; been '>Uppres·ctl. Suppre ed point 
collectively detcrmint: regrnns l f suppre sion that 
corresp nd to right-1 c.:cludeJ area . Disparity discon
tinuities are points on the ngh1-hand side of suppressed 
regions because that i!,, the nc.:ar -;iJe in the case of right· 
occlusion. Othe� have m tc.:u�" lht: connection between 
matching and identification of occlusions, but do not tie 
it in to the full ordering constraint. Figure 8 shows the 
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Figure 8. ldentifving right-occluded and left-occluded regions for newspaper scene. (a) Suppressed points for right
occlusion, {b) filtered suppressed points, (c) suppressed points for left-occlusion, (d) filtered suppressed points 

suppressed regions for the newspaper scene. Some 
suppressed points are part of significant occluded 
regions and others result from incorrect matches or 
disparity quantization effects. (A region at disparity k 
occludes a pixel-wide strip of a region at disparity k - 1 
adjoining it on the left - this is actually an occlusion of 1 
disparity level!) As a simple measure to select signifi
cant regions, we threshold the width of contiguous 
strips of suppressed points. A more robust procedure 
would be to find connected components of suppressed 
points, then threshold the size of the connected 
component. Spurious matches that occasionally occur 
inside a completely occluded region can then be located 
and discarded. Figure 8 shows the suppressed regions 

and filtered suppressed regions for the left-occluded 
and right-occluded regions of the newspaper-on-wood 
scene. 

There still remains the problem of detecting left
occluded areas (visible from the right view but not from 
the left view). Left-occluded areas are found by 
running the same analysi , but matching the right image 
to the left image in tead of the reverse. For left
occluded areas, the ass dated disparity discontinuities 
lie on the left-hand (again, near) side of the occlusion. 
These discontinuities have been located in the right 
image and must be m�pped back into the left image. 
The disparity at a discontinuity is ambiguous, but the 
correct disparity is alway<, the nt:ar (larger) value. 
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Figure 9. Identifying left-occluded regions. (a) Associated disparity discontinuities (left), (b) associated disparity 
discontinuities (right), (c) merged discontinuities from left-occlusion and right occlusion, (d) merged discontinuities 
superimposed on newspaper silhouette (left view) 

Given the disparity, right image discontinuities can be 
mapped into the left image. Our analysis is depicted in 
Figure 9. 

Finally, there is an additional benefit of identifying 
occluded areas. Knowledge of occlusion can improve 
naive interpolation. Interpolation blurs discontinuities, 
filling in occluded areas with depth data from both 
sides. A better approach assumes that an occluded area 
has the same disparity as the background. e.g. filling in 
right-occluded regions with disparity values from left to 
right21

. 

Improving stereo performance near discontinuities 

Most stereo algorithms depend on the continuity 
constraint, the assumption that disparity varies 
smoothly almost everywhere. It is not surprising that 
stereo performs poorly at object boundaries, where 
disparity is discontinuous. In this section we explore the 
possibility that knowledge of disparity discontinuities 
can be used by stereo to improve performance near 
boundaries. In the particular case of the Drumheller
Poggio algorithm, the problem is that support neigh
bourhoods can cross disparity boundaries and pick 

spurious votes 

good votes 

support neigti>orhood 

depth discontinuity 

Figure 10. The suport neighbourhood for the black dot 
includes some 1p11rious vote.1· 

upon misleading information from the other side, as 
shown in Figure 10. 

Given knowledge of discontinuity locations, one can 
consider improving stereo performance by reshaping 
support neighbourhoods so that they do not cross 
discontinuities. In Figure 10. we would keep the dotted 
region and throw away the rest. The discontinuities 
used to bound neighbourhoods can be provided by a 
first pass of the stereo algorithm. using either the close 
winners or occlusion techniques described earlier, or 
can be fed back from the integration stage of the Vision 
Machine. Anolher possibility is to use brightness 
edges22

. However. brightne s edges alone are not very 
informative. since only a few of them coincide with 
disparity boundaries; the role of the integration stage is 
precisely to select such edges. The problem with 
reshaping the neighbourhoods in this way is that errors 
in localization of the discontinuities can be catas
trophic; the entire remaining support neighbourhood 
may be on the wrong side of the discontinuity. 

A possible alternative approach would be to run 
stereo at a series of scales, coarse to fine. Specifically, 
different scales are implemented by using different 
support neighbourhood sizes, a large neighbourhood 
for a coarse scale. Use disparity values from one scale 
to guide search at the next scale, except near disparity 
boundaries. For a point near a disparity boundary, a 
large neighbourhood will cross the boundary, as 
discussed above. So. at each scale. look for close 
winners. For those points that are not close winners, 
use the disparity value obtained to guide search at the 
next scale. as usual. For those points that are close 
winners. the disparity value determined at that scale 
may be completely wrong, so let search at the next scale 
be unconstrained. The advantage of this approach is 
that it does not require a priori knowledge of discon
tinuity locations. 

Figure 11 shows an exaggerated example of such an 

□□□
a b C 

Figure I/. Multiple scales. boundary of region with 
disparity = /0. (a) Large scale - rnpport width= 23. (b) 
u-na/1 scale - support width = ?. (cJ combination of
sc:all!.�

image and vision computing 
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Figure 12. Half neighbourhoods: a support region and 
subregions 

approach. We have run stereo on the RDS of Figure 2 
at tw different scales, width= 23 and width= 7. The 
true di ·parity of the central floating square i 10. Each 
picture shows th� boundaries of the connected compo
nent in the disparity data with value 10. For (a), the 
large scale. the boundary is clean but is rounded off at 
the corners. For (b). the small ·cale, the boundary is 
noisy but less round doff at the corners. (c) combines 
the two. using the mall-scale disparity map at locations 
idc::ntified as close winners at the large scale. Notice 
that (c) has the clean plateau at disparity 10 of the large 
scale while retaining the sharp corners of the small 
scale. Unfortunately. the signal-to-noise ratio is low at 
the small scale, so the boundary is rather erratic. 

Varying support regions 

The output of the stereo and motion modules depends 
on the size of the support neighbourhood. When a 
depth or motion di ·continuity bi ects the supp rt 
region. the resulls are less reliable, but can be analy ed 
to identify occlu. i ns. By using a set of smaller support 
region· that divide a support region (see Figure 12), we 
can get lhe respon e of Lhe matching module over the 
range of supp rts. At a discontinuity. the set of 
detector· should give different outputs. and therwise 
should agree. So. we mark the p ints where displace
ment i detected but the ·et of detectors do not agree a 
disc ntinuities (Figure 13). This work is preliminary. 
but promising. From thi we should be able to expand 
the number of rientations cutLing the neighbourhood 
and identify the orientation of discontinuities. 

SEGMENTATION IN MOTION 

As mentioned above. motion is analogous to binocular 
stereo - time between images in motion replaces 
displacement of viewpoints in stereo. There are no 
problems with camera parameters. since there is only 
one cam ra. But the set of displacements is larger and 

Figure 13. Slanted planes: occlusion identification points 
where multiple support subregions differ 

two-dimensional. In stereo. horizontal lines give no 
disparity cue; in motion. no particular orientation is 
ambiguous, but when the image brightness function is 
locally well approximated by a plane. ambiguity occurs. 

The motion algorithm f Little et al. 111 and Bulthoff et 
al.�� is analogous t the Drumheller-P ggio1 stereo 
algorithm. The algorithm searches for a discrete 
displacement at each (x. ) to minimize the summed 
differences of local patches f the two images. A simple 
uniqueness constraint is employed; each point in the 
second image finds its best match in the first. This is 
improved by adding a second constraint. namely, that 
matching be symmetric. that each point in the first 
image find its best match, and tha1 the match be al o 
the best match for the point in the second image. This 
exactly corresponds to suppression along both lines of 
sight as in stereo. 

The full forbidden zone (see above) of stereo has an 
analogous structure for motion. For stereo, the struc
ture of the disparity planes leads to a 3-dimensional 
structure. in which the zone of suppressed points is 
2-dimensional, lying in an epipolar plane. Since
the displacements for motion are 2-dimensional, the
displacement space is 4-dimensional - the matching
score at each point must be compared with the score at
all points whose x - y coordinate can be reached by a
displacement within the given range. One dimension is
disparity, while the other two are those spanned by the
x - y displacements in the image.

Occlusion in motion 

Several simple methods have proven effective for 
detecting occluding boundaries, based on the local 
spatial variation of the matching scores. Again, these 
techniques recognize that, at the image of boundaries, 
a detector of finite spatial extent will overlap regions 
having differing displacements. 

Local differences in the flow field 

The detection of occlusion can occur before or after 
determination of local motion measurements. i.e. the 
flow field c mputation. One technique, inspired by 
models derived from studies of rhe ny24 , computes, for 
each component of the displacement. the average 
magnitude f the velocity over two spatial scales, A 1 

and A:! < <A:!. lt marks as boundary point· those 
locations where the magnitude al scale ,\ 1 is signifi
cantly larger (or ·mailer) than lhe magnitude at scale 
A1. The difference in magnitudes in the two scales i 
approximately zero within regions of slowly varying 
displacement and large al points adjacent to rapid 
changes in magnitude of either component of the 
<.Jispl· cement. Note that this in fact consists of marking 
the high outputs of a filter that is essentially a 
difference of Gaussians. This can be applied either to 
the entire vector v(x, y) or to each component, and 
then combined. Nakayama and Loomis25 uggested a 
similar meth d, but did not implemeni it. The lobula 
method, of course, examines the output of the flow, 
and is not thus a direct technique. 

Hildreth20 detects motion boundaries by finding 
locations where there is locally a change in the sign of 
the:: normal tlow component. This has the advantage 
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Figure I 4. Random Dot Sterl!Ogram: occlusion ilientifi
rntion. (a) Locally lows ·ores, (b) low scores and local 
minima 
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Figure 15. (a) Rotating and translating persons, (b) 
motion field, (c) continuous skeleton of locally low 
scores 

of deciding on boundary location before any local 
smoothing blurs their location. Even normal compo
nents, however. need non-local information. 

Locally low scores 

Becau e of the behaviour of matching near occlusions, 
the score vector (in motion a 2-dimensional histogram) 
. hould be bimodal. Neither of these peaks are a. high 
as the peak rec rded by p ints who e patch does not 
overlap occlu ions. Thus. the magnitude of the best 
matching core should vary patially near boundarie . 
When the best core is locally low. small with re pect to 
the I ea! a erage. it i likely that the point lies n a 
boundar . Again. detecting this event involves marking 
point where the difference of Gaussians. each appro
priately scaled. produce negative value . Unlike the 
previous method. this technique is applied to matching 
scores and not lhe velocity Field and its components. 
and thus is a direct technique. The locally low scores 
method is atrractive ince it does require analysing the 
distribution of cores (as in lhe clo e winners method). 
which is prohibitively e pensi e f r motion. Tw fact· 
increase the cost - the number f displacements may be 
large and the analy ·i · must be done in two dimension . 
unlike stereo. Figure 14 shows the results of applying 
the locally low score method to the Random Dot 
Stereogram of Figures 1c and d . 

Figure l 5 show. the moti n input. vector field and 
segmentation by locally 1 w ·cores applied to a motion 
sequence of two researchers: the left figure rotate . 
rowurd the left and the right is moving upward. 

B th of these methods are less reliable in areas 
where there is little information -either represented by 
few edges or. equivalently. small spatial variation in 
brightness. It is important to -;uppress p ints where the 
local information available ru the matcher is small, 
when detecting boundaries by either of the above 
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Figure 16. Scores for the tilted plane stereo stimulus 

methods. We have implemented techniques in the 
motion algorithm that measure the average image 
curvature in an area. and suppress output of discon
tinuities· based on low scores in those areas. 
Anandan27 has devised a multi-scale correlational 
motion technique that provides oriented local measures 
of matching. His method uses small (5 x 5) local 
summation regions and correlation. He has observed 
that the scores are low at occluding boundaries. and 
suggested that occlusion could be determined by 
appropriate analvsis. 

Note that the ·1ocallv low scores method also works 
for stereo examples s�ch as the tilted lanes shown in 
Figure 5. The scores for those matches are shown m 
Figure 16. 

CONCLUSION 

We have addressed the detection of discontinuities in 
stereo and motion. within the context of efficient, 
parallel implementation. The techniques we have 
examined all use information internal to the corres
pondence process to identify discontinuities. Any later 
processing to determine the figure/ground relation and 
to improve surface description (such as interpolation) 
begins with an almost complete description of the 
location of discontinuities. 

While we have restricted the implementation and 
discussion to integer displacements, there is nothing 
inherent in the method that precludes computing 
displacement at subpixel precision. These techniques 
all can easily be implemented on a SIMD parallel 
computer. suggesting that their implementation in 
simple circuits is feasible. 
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