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Direct evidence for occlusion
in stereo and motion

James J Little and Walter E Gillett*

Discontinuities of surface properties are the most impor-
tant locations in a scene, thev are crucial for segmenta-
tion because they often coincide with object boundaries’.
Standard approaches to discontinuity detection decouple
detection of disparity discontinuities from disparity
computation. We have developed techniques for locating
disparity discontinuities using information internal to the
stereo algorithm of Drumbheller and Poggio®, rather than
by post-processing the stereo data. The algorithm
determines displacements by maximizing the sum, at
overlapping small regions, of local comparisons. The
detection methods are motivated by analvsis of the
geometry of matching and occlusion, and the fact that
detection is not just a pointwise decision. Our methods
can be used in combination to produce robust perform-
ance. This research is part of u project to build a Vision
Machine® at MIT that integrates outputs from early
vision modules. Our techniques have been extensively
tested on real images.

Kevwords: machine vision. occlusion, stereo, motion

This investigalion describes a component of the MIT
Vision Machine?, that integrates outputs of early vision
modules for tasks such as recognition and navigation.
The integration stage computes maps of scene pro-
perties augmented by an explicit representation of
discontinuities in the scene. identifying their physical
origin. Our major achievement is the development of
techniques for locating disparity discontinuities using
information internal to the stereo and motion modules,
rather than by post-processing the output. Later pro-
cessing to detect discontinuties® can then operate with
substantiallv more information about their location.
We have devised techniques for discontinuity location
based on an analysis of patchwise matching scores
internal to the algorithm, and based on the effects of
occlusion. These methods suggest improvements to the
performance of stereo near disparity discontinuities.
Stereo and motion both compute similar quantities —
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image displacements of image elements. In the algor-
ithms discussed here, we restrict ourselves to displace-
ments (disparities) that are integer multiples of the
pixel spacing. Thus, we can search for the best
displacement for each point. We use, both in stereo and
motion, a dense set of overlapping matching operators
to compute displacements between the two images in
stereo and motion. Both stereo and motion apply
uniqueness and continuity constraints. Scene geomet-
ries differ, however, and so do interpretations of
ordering constraints.

Exploiting parallelism

Early vision is computationally intensive. The com-
putation is mostly local and isotropic: local — the result
at a location in the image depends only on nearby
locations, and isotropic — the same processing occurs at
separate locations in the image. This suggests that a
SIMD parallel architecture is a good choice to meet the
performance requirements of early vision. Specifically,
our computational engine is the Connection Machine”,
a fine-grain SIMD parallel computer. A further discus-
sion of early vision and parallel computers can be found
in Reference 6.

Drumbheller-Poggio parallel stereo algorithm

The Drumheller-Poggio algorithm? served as an experi-
mental testbed for the research described here. An
extended version of the algorithm forms part of the
Vision Machine: the resulting stereo data is one of the
inputs to the MRF-based integration stage'. This
section briefly reviews the original stereo algorithm,
based on the description in Reference 2.

Stereo matching is an ill-posed problem’ that cannot
be solved without taking advantage of natural con-
straints. The continuity constraint (e.g. Reference 8)
asserts that the world consists primarily of piecewise
smooth surfaces. If the scene contains no transparent
objects, then the uniqueness constraint applies: there
can be only one match along the left or right lines of
sight. If there are no narrow occluding objects, the
ordering constraint” holds: any two points must be
imaged in the same relative order in the left and right
eyes.
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The specific a priori assumption used is that the
dispamy of the surface is locally constant in a smal!
region surrounding a pixel. 1t is a restrictive assumption
which. however. may be a satisfactory local approxima-
tion in many cases (it can be extended to more general
surface assumptions in a straightforward way but at
high computational cost). Let E,(x. ¥) and Eg(¥. ¥)
represent the left and right image of a stereo pair or
some transformation of the images. such as filtered
images or a map of the zero-crossings in the two images
(more generally. they can be maps containing a feature
veclor at each location (x, ¥) in the image'”). We look
for a discrete disparity d(x. y) at each location (x. ¥) in
the image that minimizes:

”EL('\'~.V)—E'R(x+d(x~y)”N(x.y) (1)

where the norm is a summation over a focal support
neighbourhood N(x. v) centred at each location (x, y):
d(x. y) is assumed constant in the neighbourhood. The
correlation of £, and Ey is often used as a measure to
maximize equation (1) for each (x. v):

f Eo(x.y) En(x+d(x, y), ) dxdy @)
Ny

Without normalization, however, the correlation is
incorrect: the proper measure is:

j EL(x. y) Ex(x+d(x. y), y) dxdy
Nivoy) (3)

f E (x.y) E.(x, y), dxdy
N

The algorithm actually implemented is somewhat more
complicated. since it involves geometric constraints
(ordering and uniqueness) that affect the way the
maximum operation is performed'. The Drumbheller-
Poggio algorithm is similar in spirit to the first stereo
algorithm proposed by Marr and Poggio®. a coopera-
tive algorithm in which potential matches reinforce
other malches that lie on the same surface and inhibit
other matches that violate the uniqueness constraint. It
also belongs in the family of correlation-based stereo
algorithms''-'*; the geometric constraints separate it
from early algorithms. The algorithm is composed of
the following steps:

1 Compute features for matching (edge detection or
band-pass filtering).

2 Compute matches scores between features.

3 Determine the degree of continuity around each
potential match.

4 Identify disparities based on the constraints of
continuity, uniqueness and ordering.

Potential matches between features are computed as
follows. The images are registered so that the epipolar
lines are horizontal'*, so the stereomatching problem
hecomes one-dimensional: a token in the left image can
match any token in the corresponding horizonial line in
the right image. Sliding the right image over the left
image horizontally, we compute a set of match score
planes, one for each horizontai disparity. Let p(x, y. d)
denote the value of the (v, y) entry of the mulch score

plane at disparity /. For edge-based tokens. the resuits
of comparison are binary. We set p(x. v. ) = L if there
is a token at location (x. ¥) in the left image and a
compatible token at location (v —d. v) in the right
image: otherwise. set p{x. v. d) = 0. In the case of the
Marr-Hildreth edge detector'. two tokens (edges) are
compatible if the signs of the convolution for each edge
(the edge polarities) agree. For brightness-based
matching. the matching score continuously varies (E,
and E, vary over some finite range and the norm of
their difference can take on a range of values. not just 0
and 1 - see equation (1)). The Canny edge detector'?
was used in most of the stereo examples. No thresholds
were used to select edges. Our implementation re-
quired that matched the gradients of image brightness
at matched edge features be within some small angle
(usually 30 degrees).

The value computed by equation (1) measures the
degree of continuity around each potential match at (x.
¥. d). For edge-based matching, pointwise feature
comparison is binary and summation counts the ‘votes’
for the disparity d in the d™ match plane. If the
continuity constraint is satisfied near (x. y. d) then N(x.
¥) contains many votes and the score s(x. v. d) is high
(see equation (2)). When the maltching is comparison of
filtered brightnesses. the quantity in equation (1)
attains a minimum at the correct displacement. We
mostly discuss the edge-based methods used in the
stereo investigation and therefore will try to maximize
the normalized correlation and will speak of peaks in
the measured values. Finally. we select the correct
matches by applying the uniqueness and ordering
constraints. To apply the uniqueness constraint, each
match suppresses all other matches along the left and
right lines of sight with lower scores. To enforce the
ordering constraint, if two matches are not imaged in
the same relative order in left and right views, we
discard the match with the smaller support score. In
effect, each match suppresses matches with lower
scores in its forbidden zone® ' (see below).

The matching scores of the stereo algorithm are
valuable information. They provide a confidence level
for each match that can discriminate between compet-
ing matches, as in forbidden zone suppression (using
the ordering constraint). The description of the stereo
algorithm implies that scores are computed only for
points p and ¢ that are potential matches (there are
compalible tokens at p and g¢). In fact, although
matches are only permitted at potential match sites,
matching scores are computed everywhere with no
additional computation (because of the homogeneous
nature of computation in SIMD machines). Similarly,
brightness-based matching produces dense informa-
tion. These scores can be used to derive dense stereo
results: a strong score at (x. y, d) indicates that the
point (x. y) in the left image probably matches the point
(x+d. y) in the right image, whether or not the two
points coincide with tokens. Computing disparity
between tokens by using the scores is a more informed
approach than using an interpolation technique that
must make a priori assumptions about the surfaces
present in the scene. The scores also help to suppress
bud matches within occluded areas of the scene (see
below). All stereo data used here is dense unless
otherwise specified, Figure 1 shows a stereo scene and
disparity data derived by the algorithm; isodisparity



Figure 1. (a) Left view of truck, teddy bear, and crane,
(b) right view. (c¢) isodisparity contours

contours of the interpolated dispurity map depict the
disparities.

DISPARITY DISCONTINUITIES

We describe two discontinuity detection techniques.
artsing from analysis of the behaviour ol matching
methods near occluding boundaries, One method s
Pased on an « alysis of matching scores for different
disparities. and the other uses the effects of geometric
canstraints near ocelusions.

Close winners

Ihe close winners technique analyses stereo and motion
matching scores. For cach pont p = (x. v) in the lefl
image and ¢ = v+ d. vy the right image. the matcher
computes & score st v d) indicating the likelihood
that p matches . e that poand ¢ are images of the
same physical pomt in the seene. The score at a point
yiv v d) s the resalt of integraiing the pointwise
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match scores in a region V(x. y) (see equation (3)). The
matcher examines only disparities in the fixed interval
[id. fd]. called the fusional runge. where the user-
controlled parameters id and fd are the initial and final
disparities. respectively., Define the score vector
viph={s(x. void)osteovaid + )00 L osixovod) ) the
sequence of matching scores for paint p.

We begin with a simple exampie. Figure 2 shows a
random-dot stercogram (RDS) and a schematic repre-
sentation of the scene (left view). which fuses to vield
the impression of a square floating in front of the
background. The square is 192X 192, centred in the
250 % 256 left view. The square is displaced by 13 pixels
(actually the figure has a smaller displacement). The
dark strip on the left-hand side is an occluded part of
the background that can be seen in the left view but not
the right.

Point B is located on the boundary of the square. The
lacal support neighbourhood of point B, N(B). is
divided between the square and the background.
Approximately half of the edges in NV{B) will vote for
the wrong disparity. namely the background disparity.
The score vector v( ). plotted as a graph of matching
score versus disparity. s bimodal. with one peak at the
foreground disparity and another peak at the back-
ground disparity. In contrast. (A and v(C) are
unimodal. since their support regions cover constant
disparity regions.

Figure 3 shows score vectors computed for the
random-dot stereogrum (RDS) - high scores represent
best matehes. Note thatitis eritical that the diameter of
the support neighbourhood be larger than the largest
disparity gap in the image - otherwise. the two peaks
will not be detected using close winners. Also. the
maximum valtue for the match score at B will at most be
half that of the score at paints such as A and C: this
leads to a method for discontinuity identification using
local spatial extrema of the match score (see Reference
16 and below)

We call point 8 a close winner because the *winning’
disparity has i close competitor: such points are likely
to be located at disparity discontinuities. For all points
p in the lett image. use the following procedure to

image and vision computing



Figure 2. (a) Lett view of Random Dot Sterengram, (b)
right view, (¢) line drawing of scene: floating square

determine whether p is a close winner:

I Identify peaks in v(p) = {Si Sw-1+ - - - - Stal) -

2 If v(p) has two or more peaks. pick the two largest.
a und B. ae=B. Let the margin m = (a—B)la. If
m= (0.2 here). then p s a close winner.

When mis set to 0.2, the magnitude of the smaller peak

a b c

Figure 3. Score vectors for different locations in an
RDS. (a) A: (128, 128), (b) B: (192, 128), (c) D: (85,
1284, Because the suppart neighbourhood is 17 % 17, the
support for A s contaned entirely within the floating
syare; the suppaort for B s split between both regions;
the sapport for 1) contains the object and a portion of the
felt e nat seen i the rieht

must be greater than 802 of the larger peak. This
simple peak-detection rule will not detect a peak which
is actually a plateau, but this flaw is trivial to remove.
Figure 4 shows close winners for several stereo scenes.
The “peak-ratio” method of Spoerri and Ullman'?
determines motion boundaries by a similar analysis of
histograms of the displacement ol tokens.

The preceding unalvsis assumes that the surface are
frontoparallel. This assumption can be relaxed without
weakening the detection of occlusions. The “teddy’
example contains surfuces thut not only are not
frontoparallel. but are also not planar. and the detec-
tion of discontinuities is gualitativelv correct. Figure §
shows a synethetic image of two tilted planes with
randomly textured colouring. viewed under perspective
projection. The normals of the background and fore-
ground planes at (048, 0.535, 0.69) and (—0.47. 0.39,
1.79). respectively. The disparities on the background
plane range from 3.6 to 7.6 and on the foreground from
19.3 to 20.8. Occlusion detection is poor on the right-
hund side of the square since the occluded region lies
there m the left image. The lefi-hand side is accurately
located.

Spoerri and Ullman'™ used a similar method. among
uthers. to derive a scheme for motion segmentation.
I'heir method combines measurements of normal
velocity with token matching., Local measurements
determine @ histogram  which  assumes a  bimodal
distribution, We base our histogram on a similar
histogram of matched tokens. but without the normal
velocity. which s meantngless in the context of
binocular stereo. When using the ‘close winners’
technique in motion. the normal velocity can be used to
shurpen the compatibility function for tokens. but
seems to be unnecessary. given the satisfactory results
demonstrated here, Itoas o useful check on the
consistency ol measurements from a displacement
mechamism and an instanuneous velocity mechanism
producing the normal  velocities.  Voorhees  and
Poggio™ employed o related technigue to locate tex-
ture bounditries. from a statusucal analysis of the local
distribution of oriented tokens
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Figure 4. Close winners for several stereo scenes. (a) Newspaper on wood: left view, (b) right view, (c) close winners

(newspaper), (d) close winners for teddyv (see Figure 1)

Localization and close winners

Localization with the close winners technique requires
additional computation. Although & bimodal score
vector usually indicates a nearby disparity discon-
tinuity, 1t is unclear how to locate the discontinuity
precisely. In the vicinity of a discantinuity contour. the
points with bimodal score vectors typicallv form a thin
strip in the vicinity ot the contour. How do we select
the points that lie on the contour? Points with the
smallest margin. where the two peaks in the score
vector are as equal as possible. are possible candidates.
Unfortunately. this approach yields the best answer
onlv in the case of a linear contour, which splits the
support neighbourhood evenly for a point on the
contour. [f the object boundary is convex. the point

s
ad
I

with smallest margin will be located outside the object:
if the object boundary is concave. the point with
smallest margin will be displaced outside of the object.
Of course. these two facts are dual. merely the
reference frame (the object) differs. without changing
the boundary. Narrow objects such as a thin bar may be
missed entirely. depending on the margin threshold and
neighbourhood size. In general. a smaller neighbour-
hood size provides better localization but a lower
signal-to-noise ratio, a trade off similar to that for the
smoothing parameter in edge detection. Despite poor
localization. close winners still indicate regions that are
likely to contain discontinuities; a later integration
stage can use this information.

The foregoing picture is an oversimplification.
Consider the support neighbourhood for point D in

image and vision computing
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Figure 5. Close winners for tilted planes. (a) Svnthetic
image of tilted surfaces, (b) close winners (m =0.15)

Figure 2. The occluded part of the neighbourhood has
no match in the right view. since it is visible onlv to the
left eve. Therefore edges in the occluded area will vote
randomly. adding noise to the score vector. (If the
occluded area is wider than the support neighbour-
hood. the boundary will be missed entirely.) Note that
for a linear occluding contour, the close winner with the
smallest margin is located in the middle of the occluded
area. This effect is visible in Figure 6d. which shows
close winners for the newspaper scene superimposed on
a silhouette of the newspaper. Close winners for the left
boundary are displaced into the occluded region.
Further analysis allows us to compensate for the
effects of occlusion. The stereo algorithm uses the left
image as the reference image for the disparity map,

matching from left to right (an arbitrary implementa-
tion decision). When matching from left to right.
occlusion degrades the localization of left boundaries
(boundaries on the left sides of objects) but not the
localization of right boundaries. When matching from
right to left, the reverse is true. So. we use close
winners computed in left-to-right matching to deter-
mine right boundaries and close winners computed in
right-to-left matching to determine left boundaries.
(Left and right boundaries can be distinguished by the
slope of disparity change along epipolar lines, in the
disparity map.) Right-to-left close winners are com-
puted in right-image coordinates. so they must be
transformed into left-image coordinates using the
disparity map. Because the disparity map is ambiguous
at boundaries. the transformation splits the winners
into two separate contours. We resolve the ambiguity
by choosing the disparity value that corresponds to the
occluding contour, using the disparity change in the
interpolated disparity map. marking the discontinuity
at the higher disparities. Figure 6 displays the inter-
mediate and final results.

Suppression using ordering constraint

When one surface lies in front of another, the
foreground surface occludes a portion of the back-
ground surface. The location of the occluded region
depends on the viewpoint. Since the boundary on the
near side of an occluded region is the discontinuity
contour, identifying an occluded region leads us
directly to the associated disparity discontinuity. This
technique can be used to locate any disparity discon-
tinuity with the exception of extended horizontal
boundaries, which are not associated with occlusion.

Our goal is to identify occluded areas. Let us begin
by considering only right-occluded areas, i.e. areas that
are visible from the left but not the right view (see
Figure 7). By definition such an area does not have a
match in the right image. Thus. we could look for low
matching scores as an indicator of occlusion. However,
low matching scores can arise from a number of causes,
including disparities outside of the fusional range of the
algorithm. Later we show how the spatial variation of
the matching score can be used for determining
occlusions (see below). A better cue is provided as a
side effect of the ordering constraint. Recall that every
potential match is surrounded by an hourglass-shaped
region extending through the d and x dimensions, the
forbidden zone’, as pictured in Figure 7a.

Consider a simple step discontinuity (Figure 7b)
where the portion of the surface between points p and q
is right-occluded. The shaded region contains all points
that are imaged between p and ¢ in the left view.
Observe that the shaded region is contained entirely
within the union of the forbidden zones for p and g: the
area above the line joining p and ¢ is in the forbidden
zone for ¢, and the area below the line is in the
forbidden zone for p. Therefore all possible matches in
the left view between the images of p and g — the
occluded area - have been suppressed. Match suppres-
sion is the key to locating occluded areas. In a token-
based scheme, such as that of Mutch and Thompson'”,
it is possible to identify occlusions at regions where
most tokens are unmatched.
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Figure 6. Combining left-to-right and right-to-left close winners. (a) Left-to-right close winners superimposed on
newspaper silhouette (left view). (b) right-to-left close winners (right view), (c) right-to-left close winners transformed
into left image coordinates viu the disparity map, with ambiguous results, (d) combined left-to-right close winners and

correctly transformed right-to-left close winners

potental match

left eye

right eye

lett eye nght eye

Figure 7. (w) The forbidden zone (shaded) for a
parncular potential match. (b) the shaded region s
contained within the union of the forbidden zones for
points p and ¢, showing that no march will be permitted
there
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Mechanics of match suppression

While computing matches and applving the ordering
constraint, we can keep track of suppressed matches.
Since matching scores are computed at all points,
stereo produces dense suppression of competing
matches at occlusions.

A point (x. ¥) in the left image is suppressed if. for all
disparities d in the fusional range. the potential match
at (x. v. d) has been suppressed. Suppressed points
collectively determine regions of suppression that
correspond to night-occluded areas. Disparity discon-
tinuities are points on the right-hand side of suppressed
regions because that is the near side in the case of right-
occlusion. Others have noted™ the connection between
matching and identification of occlusions, but do not tie
it in to the full ordering constraint. Figure 8 shows the

image and vision computing
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Figure 8. ldentifying right-occluded and left-occluded regions for newspaper scene. (a) Suppressed points for right-
occlusion, (b) filtered suppressed points, (c) suppressed points for left-occlusion, (d) filtered suppressed points

suppressed regions for the newspaper scene. Some
suppressed points are part of significant occluded
regions and others result from incorrect matches or
disparity quantization effects. (A region at disparity k
occludes a pixel-wide strip of a region at disparity k — 1
adjoining it on the left - this is actually an occlusion of 1
disparity level!) As a simple measure to select signifi-
cant regions, we threshold the width of contiguous
strips of suppressed points. A more robust procedure
would be to find connected components of suppressed
points, then threshold the size of the connected
component. Spurious matches that occasionally occur
inside a completely occluded region can then be located
and discarded. Figure 8 shows the suppressed regions

and filtered suppressed regions for the left-occluded
and right-occluded regions of the newspaper-on-wood
scene.

There still remains the problem of detecting left-
occluded areas (visible from the right view but not from
the left view). Left-occluded areas are found by
running the same analysis, but matching the right image
to the left image insiead of the reverse. For left-
occluded areas, the associated disparity discontinuities
lie on the left-hand (again, near) side of the occlusion.
These discontinuities have been located in the right
image and must be mapped back into the left image.
The disparity at a discontinuity is ambiguous, but the
correct disparity is alwiys the near (larger) value.
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Figure 9. Ildentifying left-occluded regions. (a) Associated disparity discontinuities (left), (b) associated disparity
discontinuities (right), (c) merged discontinuities from left-occlusion and right occlusion, (d) merged discontinuities

superimposed on newspaper silhouette (left view)

Given the disparity, right image discontinuities can be
mapped into the left image. Our analysis is depicted in
Figure 9. '

Finally, there is an additional benefit of identifying
occluded areas. Knowledge of occlusion can improve
naive interpolation. Interpolation blurs discontinuities,
filling in occluded areas with depth data from both
sides. A better approach assumes that an occluded area
has the same disparity as the background. e.g. filling in
right-cl)ccluded regions with disparity values from left to
right*'.

Improving stereo performance near discontinuities

Most stereo algorithms depend on the continuity
constraint, the assumption that disparity varies
smoothly almost everywhere. It is not surprising that
stereo performs poorly at object boundaries, where
disparity is discontinuous. In this section we explore the
possibility that knowledge of disparity discontinuities
can be used by stereo to improve performance near
boundaries. In the particular case of the Drumheller-
Poggio algorithm, the problem is that support neigh-
bourhoods can cross disparity boundaries and pick

good votes

spurious votes SUPs Uil

depth discontinuity

Figure 10. The suport neighbourhood for the black dot
includes some spurious votes
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upon misleading information from the other side, as
shown in Figure 10.

Given knowledge of discontinuity locations, one can
consider improving stereo performance by reshaping
support neighbourhoods so that they do not cross
discontinuities. In Figure 10. we would keep the dotted
region and throw away the rest. The discontinuities
used to bound neighbourhoods can be provided by a
first pass of the stereo algorithm. using either the close
winners or occlusion techniques described earlier, or
can be fed back from the integration stage of the Vision
Machine. Another possibility is to use brightness
edges™. However. brighiness edges alone are not very
informative, since only a few of them coincide with
disparity boundaries; the role of the integration stage is
precisely to select such edges. The problem with
reshaping the neighbourhoods in this way is that errors
in localization of the discontinuities can be catas-
trophic; the entire remaining support neighbourhood
may be on the wrong side of the discontinuity.

A possible alternative approach would be to run
stereo at a series of scales, coarse to fine. Specifically,
different scales are implemented by using different
support neighbourhood sizes, a large neighbourhood
for a coarse scale. Use disparity values from one scale
to guide search at the next scale, except near disparity
boundaries. For a point near a disparity boundary, a
large neighbourhood will cross the boundary, as
discussed above. So. at each scale. look for close
winners. For those points that are not close winners,
use the disparity value obtained to guide search at the
next scale. as usual. For those points that are close
winners. the disparity value determined at that scale
may be completely wrong, so let search at the next scale
be unconstrained. The advantage of this approach is
that it does not require a priori knowledge of discon-
tinuity locations.

Figure 11 shows an exaggerated example of such an

a b c

Figure 11, Muliiple scales: boundarv of region with
disparity = 10. (@) Large scule - support widih = 23. {b)
seall scale — support width =7, (¢) combination of
scales

image and vision computing



Figure 12. Half neighbourhoods: a support region and
subregions

approach. We have run stereo on the RDS of Figure 2
at two different scales, width =23 and width=7. The
true disparity of the central floating square is 10. Each
picture shows the boundaries of the connected compo-
nent in the disparity data with value 10. For (a), the
large scale. the boundary is clean but is rounded off at
the corners. For (b). the small scale, the boundary is
noisy but less rounded olf at the corners. (c) combines
the two, using the small-scale disparity map at locations
identified as close winners at the large scale. Notice
that (c) has the clean plateau at disparity 10 of the large
scale while retaining the sharp corners of the small
scale. Unfortunately, the signal-to-noise ratio is low at
the small scale. so the boundary is rather erratic.

Varying support regions

The output of the stereo and motion modules depends
on the size of the support neighbourhood. When a
depth or motion discontinuity bisects the support
region. the resulls are less reliable. but can be analysed
to identify occlusions. By using a set of smaller support
regions that divide a support region (see Figure 12), we
cun get the response of the matching module over the
range of supports. At a discontinuity. the set of
detectors should give different outputs. and otherwise
should agree. So. we mark the points where displace-
ment is detected but the set of detectors do not agree as
discontinuities (Figure 13). This work is preliminary,
but promising. From this we should be able to expand
the number of orientations cutting the neighbourhood
and identify the orientation of discontinuities.

SEGMENTATION IN MOTION

As mentioned above, motion is analogous to binocular
stereo — time between images in motion replaces
displacement of viewpoints in stereo. There are no
problems with camera parameters. since there is only
one camera. But the set of displacements is larger and

Figure 13. Slanted planes: occlusion identification points
where multiple support subregions differ

two-dimensional. In stereo, horizontal lines give no
disparity cue; in motion, no particular orientation is
ambiguous, but when the image brightness function is
locally well approximated by a plane. ambiguity occurs,

The motion algorithm of Little er al.'" and Biilthoff e
al.*' is analogous to the Drumheller-Poggio® stereo
algorithm. The algorithm searches for a discrete
displacement at each (x, y) to minimize the summed
differences of local patches of the two images. A simple
uniqueness constraint is employed; each point in the
second image finds its best match in the first. This is
improved by adding a second constraint. namely, that
matching be symmetric. that each point in the first
image find its best match, and that the match be also
the best match for the point in the second image. This
exactly corresponds to suppression along both lines of
sight as in stereo.

The full forbidden zone (see above) of stereo has an
analogous structure for motion. For stereo. the struc-
ture of the disparity planes leads to a 3-dimensional
structure, in which the zone of suppressed points is
2-dimensional, lying in an epipolar plane. Since
the displacements for motion are 2-dimensional, the
displacement space is 4-dimensional — the matching
score at each point must be compared with the score at
all points whose x —y coordinate can be reached by a
displacement within the given range. One dimension is
disparity, while the other two are those spanned by the
x —y displacements in the image.

Occlusion in motion

Several simple methods have proven effective for
detecting occluding boundaries, based on the local
spatial variation of the matching scores. Again, these
techniques recognize that, at the image of boundaries,
a detector of finite spatial extent will overlap regions
having differing displacements.

Local differences in the flow field

The detection of occlusion can occur before or after
determination of local motion measurements. i.e. the
flow field computation. One technique, inspired by
models derived from studies of the fly24, computes, for
each component of the displacement. the average
magnitude of the velocity over two spatial scales, A,
and As< <A, It marks as boundary points those
locations where the magnitude at scale A, is signifi-
cantly larger (or smaller) than the magnitude at scale
As. The difference 1n magnitudes in the two scales i8
approximately zero within regions of slowly varying
displacement and large at points adjacent to rapid
changes in magnitude of either component of the
displacement. Note that this in fact consists of marking
the high outputs of a filter that is essentially a
difference of Gaussians. This can be applied either to
the entire vector v(x, y) or to each component, and
then combined. Nakayama and Loomis® suggested a
similar method, but did not implement it. The lobula
method, of course, examines the output of the flow,
and is not thus a direct technique.

Hildreth?® detects motion boundaries by finding
locations where there is locally a change in the sign of
the normal flow component. This has the advantage
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Figure 14. Random Dot Stereogram: occlusion identifi-
cation. (a) Locally low scores, (b) low scores and local
minima

Cc

Figure 15. (a) Rotating and translating persons, (b)
motion field, (c) continuous skeleton of locally low
scores

of deciding on boundary location before any local
smoothing blurs their location. Even normal compo-
nents, however. need non-local information.

Locally low scores

Because of the behaviour of matching near occlusions,
the score vector (in motion a 2-dimensional histogram)
should be bimodal. Neither of these peaks are as high
as the peaks recorded by points whose patch does not
overlap occlusions. Thus. the magnitude of the best
matching score should vary spatially near boundaries.
When the best score is locally low. smalil with respect to
the local average. it is likelv that the point lies on a
boundary. Again. detecting this event involves marking
points where the difference of Gaussians. each appro-
priately scaled. produces negative values. Unlike the
previous method. this technigue is applied to matching
scores and not the velocity field and its components.
and thus is a direct technigue. The locally low scores
method is attractive since it does require analysing the
distribution of scores (as in the close winners method).
which is prohibitively expensive for motion. Two facts
increase the cost — the number of displacements may be
large and the analysis must be done in two dimensions.
unlike stereo. Figure 14 shows the results of applying
the locally low score method to the Random Dot
Stereogram of Figures 2c and d.

Figure |5 shows the motion input. vector flield and
segmentation by locally low scores applied to 2 motion
sequence of two researchers: the left figure rotates
towiurd the left and the right is moving upward.

Both of these methods are less reliable in areas
where there is little information — either represented by
few edges or. equivalently. small spatial variation in
brightness. It is important to suppress points where the
local information available to the matcher is small,
when detecting boundaries by either of the above
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Figure 16. Scores for the tilted plane stereo stimulus

methods. We have implemented techniques in the
motion algorithm that measure the average image
curvature in an area. and suppress output of discon-
tinuities - based on low scores in those areas.
Anandan-’ has devised a multi-scale correlational
motion technique that provides oriented local measures
of matching. His method uses small (5x5) local
summation regions and correlation. He has observed
that the scores are low at occluding boundaries. and
suggested that occlusion could be determined by
appropriate analvsis.

Note that the locallv low scores method also works
for stereo examples such as the tilted lanes shown in
Figure 5. The scores for those matches are shown in
Figure 16.

CONCLUSION

We have addressed the detection of discontinuities in
stereo and motion. within the context of efficient,
parallel implementation. The techniques we have
examined all use information internal to the corres-
pondence process to identify discontinuities. Any later
processing to determine the figure/ground relation and
to improve surface description (such as interpolation)
begins with an almost complete description of the
location of discontinuities.

While we have restricted the implementation and
discussion to integer displacements, there is nothing
inherent in the method that precludes computing
displacement at subpixel precision. These techniques
all can easily be implemented on a SIMD parallel
computer, suggesting that their implementation in
simple circuits is feasible.
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