
Tight Lower Bounds for Probabilistic Solitude Verification
On Anonymous Rings

by

Karl Abrahamson*
Andrew Adlez t
Lisa Higham #

David Kirkpatrick *
Technical Report 90-4

January, 1990

* Computer Science Department
Washington State University
Pullman, WA 99164-1210

U.S.A.

t Department of Mathematics
* Department of Computer Science

University of British Columbia
Vancouver, B.C. V6T IWS

Canada

Computer Science Department
University of Calgary

Calgary, Alberta, T2N 1N4
Canada

** This research was supported in part by the Natural Sciences and Engineering Research Council of Canada and the
Killam Foundation. (Replaces TR 87-11)

Computer Science Department
University of British Columbia

Vancouver,B.C. V6T lWS
Caiada

! ..
I
l

1··

Abstract

Tight lower bounds on the expected bit complexity of the Solitude Verification problem

on anonymous asynchronous unidirectional rings are established that match the upper

bounds demonstrated in a companion paper [5]. In the algorithms of [5], a variety of

techniques are applied; In contrast, we find that a single technique, applied carefully,

suffices for all of the lower bounds. The bounds demonstrate that, for this problem, the

expected bit complexity depends subtly on the processors' knowledge of the size of the ring,

and on the type of algorithm (Las Vegas or Monte Carlo / distributive or nondistributive

termination).

1 Introduction

Solitude Detection is the problem: given a network of processors and a distinguished nonempty

subset of the processors, called contenders, determine whether or not there is just one con­

tender in the network. A weaker problem, Solitude Verification, only requires that the pro­

cessors determine if there is only one contender. (An algorithm for Solitude Verification is

allowed, for example, to deadlock or fail to terminate when there is more than one contender).

This paper and its companion paper [5] provide a detailed study of the communication

complexity of probabilistic algorithms for these two problems for anonymous, asynchronous,

unidirectional rings of processors. The two papers together determine, to within a constant

factor, the complexity of these problems measured in bits of communication for all versions

of the problems as two additional parameters vary. One parameter is the range of ring sizes

for which the algorithm is required to work. The other is the type of termination required of

the algorithm. The bit complexity bounds are established for Monte Carlo algorithms, that

is , algorithms that err with probability at most €. Bounds for Las Vegas algorithms, that is,

algorithms that terminate with probability one and upon termination are correct, follow as

corollaries.

Our motivation is to understand the effect on complexity of seemingly small changes in

the problem definition. This necessitates developing a precise model of computation that

incorporates enough precision to permit one to ask questions concerning probabilistic mea-

1

sures of complexity. Because the Solitude Detection problem is one of the simplest non-trivial

problems [4] and is a subproblem of many more common problems including the well-studied

problem of Leader Election [1, 2, 3, 6, 9, 12, 13, 15, 16, 17, 18, 19], it provides an appropriate

domain for the case study.

In this paper the model of computation is formalized and the lower bounds are established.

The matching upper bounds all appear in the companion paper [5).

The standard assumption for a distributed computation is that each processor knows

when the algorithm has terminated and hence terminates its own computation. This is called

distributive termination. A weaker notion of termination, nondistribU:tive termination, is

simply that all message traffic has ceased, a situation that may not be detectable. A processor

under the control of a nondistributively terminating algorithm may reach some conclusion

that it holds only as long as it receives no additional messages. The results of the paper are

informally summarized here although the actual theorems to appear make somewhat stronger

statements than this summary claims. The probability of error to be tolerated, denoted by

f, is a parameter to the algorithm and is assumed to be small. A parameter N is used to

describe the size of rings for which the algorithm is required to work.

Throughout this paper, the constant implicit in the n notation is truly constant, inde­

pendent of the algorithm and all of its parameters.

Informal Summary:

1. There is no Monte Carlo distributively terminating algorithm that solves Solitude Ver­

ification with error at most 1/4 on all rings.

2. Any Monte Carlo nondistributively terminating algorithm that solves Solitude Veri­

fication on all rings of size n where n is unconstrained has expected bit complexity

n (n log(¼)) .

3. Any Monte Carlo, distributively terminating algorithm that solves Solitude Verification

on all rings of size n wl1ere n E [1, N] has expected bit complexity n (nJlog(~) +

n log(¼)) when rirtg size is actually less than N /2.

2

4. For every p > 0, any Monte Carlo (even nondistributively terminating) algorithm that

solves Solitude Verification on all rings of size n where n E [(½ + p)N, N] has expected

bit complexity n (n min (log n, log log(¼)) + n min (log(¼), log(¼), log n)) on rings of

size r (½ + p)N l ·
5. Let v(n) be the smallest non-divisor of n. Any Monte Carlo (even nondistributively

terminating) algorithm that solves Solitude Verification on all rings of size n where n

is fixed has expected bit complexity n(nmin(logv(n), loglog(¼)) + nmin(loglogn,

log log log(¼))) .

6. Any Monte Carlo distributively terminating algorithm that solves Solitude Verification

on all rings of size n where n is fixed has expected bit complexity n (nmin (Jlogn,

J log log(¼))) .

Earlier lower bounds in communication complexity on rings have frequently been achieved

by techniques of "cutting and splicing" [2, 4, 7, 10, 11, 14]. The goal is to show that compu­

tations of a correct algorithm cannot be "cheap" in the sense that they have small communi­

cation cost. These techniques typically start with an assumed cheap computation on a ring,

and construct a new ring from the original such that each processor in the new ring has a

communication history identical to its corresponding processor in the original ring. Proces­

sors in the new ring must therefore reach the same conclusion as those in the original ring.

However, the construction is such that this conclusion is incorrect for the new ring.

The lower bounds in this paper are achieved through probabilistic analogues of these

techniques. Even in the much simpler error-free setting, subtleties arise in the application

of the techniques. For example, care must be taken not to induce deadlock when cutting

out pieces of the ring. In the more general probabilistic setting, the techniques analogous

to cutting and splicing are much more elaborate. In this setting complete rings of processes

must be manipulated rather than just single computations. Also, at each step of the con­

struction, bounds must be maintained on the probabilities of associated computations. This

significantly more subtle environment demands a very precise and somewhat formal model

3

of communication. A central tool that allows the extension of the elementary techniques to

a probabilistic setting is our "repeated histories lemma", Lemma 3.6, which establishes the

probability, as a function of the expected communication complexity, that two processors

separated by a very constrained distance will have identical communication histories. Using

tools such as the repeated histories lemma a new ring is constructed by removing, replicating,

and splicing together pieces of the original ring. A contradiction is reached because the new

ring has more than one contender and too high a probability of asserting solitude.

Although the lower bounds in this paper are all tight, they contrast in many ways with

the matching upper bounds [5]. For example, the lower bounds apply to Solitude Verification

while the algorithms solve Solitude Detection. The lower bounds impose no restrictions on

the type of error that is allowed, while the matching algorithms err (with low probability)

only in restricted ways. The lower bounds actually apply to algorithms that have an element

of nondeterministic as well as probabilistic behaviour while the upper bounds are achieved by

algorithms that are purely probabilistic. The companion paper contains a discussion of the

interpretation of this nondeterminism together with a description of the weak requirements

of the lower bounds as contrasted with the strong requirement achieved by the matching

algorithms. A surprising consequence of this investigation is. the discovery that the two

parameters, knowledge of ring size and type of termination, have a significant affect on the

expected bit complexity of Monte Carlo Solitude Detection on an asynchronous, anonymous

unidirectional ring while the complexity is insensitive to other changes in the requirements of

the solution.

2 The Model

2.1 Processes, Process Sequences, and Process Rings

A message is an element of M = {O, 1}+. If m EM then the cost of m, denoted llmll, is the

length of m. Elements of B = M* (that is, finite sequences of messages)1 are referred to as

1 For clarity a.nd conciseness, the • opera.tor (borrowed from opera.tors for strings) is used in this pa.per to

denote finite sequences. For example, M• is the set of finite sequences of messages.

4

(message) bundles. The empty bundle is denoted by b.. If Mis a bundle then we denote by

IIMII the cost of M, that is the sum of the costs of all messages in M.

The behaviour of an arbitrary processor can be viewed as a sequence of input and out­

put transmissions, where the actual choice and timing of successive outputs might depend

on the preceding sequence (including timing) of outputs and inputs as well as the outcomes

of random experiments. In an asynchronous setting, however, links have arbitrary delay.

Therefore, it is natural, from an algorithmic point of view, to consider only algorithms whose

processor behaviours are independent of timing information. Under the assumption of time­

independence, a sequence of output messages produced in response to a single input message

can be packaged together to form a single output message. Therefore, processors with time

independent behaviour can be assumed to be message-driven, with at most one output mes­

sage produced in response to each input message. This message-driven behaviour is modelled

by a probabilistic process2 that specifies, for each output state of the process, a probability

for each m E M. The output state of a process records not only the last input message,

but also the process's complete communication history. The probability associated with a

message m and output state s is the probability that the process responds with message m

after the specified sequence of outputs and inputs recorded in state s. For a fixed output

state the probabilities of output messages may sum to less than 1, reflecting the possibility

that no output message is produced.

There is a natural conservative extension of this view of a process in which inputs are arbi­

trary bundles and the response to an input bundle M is the bundle formed by concatenating

in sequence each response to the individual messages in M. This bundle-driven interpretation

ensures that exactly one output bundle is produced in response to one input bundle. As an

additional benefit of this bundle-based interpretation, the initial output produced by a pro­

cess can be viewed as a response to an empty input bundle. Thereafter, empty input bundles

necessarily result in empty output bundles.

Elements of (Bx B)* are referred to as local behaviours; each pair in the sequence specifies

2 We use the word processor to refer to an informal notion, and process to refer to elements of our formal

model.

5

an input bundle and its associated output. Thus a (probabilistic) process 7r induces, for

each local behaviour C and each input bundle M, a probability space on B (the space of

possible output bundles). This interpretation of a process leads to a natural definition of the

probability of a local behaviour. First, observe that in general a bundle of output messages

may arise from a fixed input bundle and current state in several ways. The probability of local

behaviour C is the sum, over all ways that C can arise, of the product of the probabilities

associated with each of its output events.

Elements of 1i = B* (that is, finite length sequences of bundles) are referred to as (com­

munication) histories3. The length of a history h, denoted jhj, is the number of bundles in

h and the cost of h, denoted 11h11 is the sum of the costs of all bundles ih h. Every local

behaviour C can be decomposed into two equal length histories, the input history of C and

output history of C. The input (respectively, output) history is the sequence of first (respec­

tively, second) elements of the pairs in C. If h and h' are equal length histories, then h { 1r} h'

denotes the event that process 1r exhibits a local behaviour with output history h', when it

has input history h. Let h(i) denote the length i prefix of history h. The following property

is an immediate consequence of the assignment of probabilities to local behaviours:

Property 2.1 For all histories h and h' and all 1 ::; i ::;; jhl, Pr (h { 1r} h') ::;; Pr (h(i) { 1r} h(i)).

A process 7r is an initiator if Pr (6 { 1r} 6) = 0 and a non-initiator if Pr (6 { 7r} 6) = 1.

There is no essential loss of generality in assuming that each process is either an initiator

or a non-initiator; at an additional cost of n bits of communication, we can insist that all

processes with Pr (6 { 1r} 6) < 1 start by transmitting a 1-bit "wakeup" message to the

next such process (via the intervening non-initiators) and thereafter continue as before. We

distinguish a subset Ma ~ M called accepting messages, and a subset Mr ~ M - Ma called

rejecting messages. A history is an accepting history (respectively, rejecting history) if and

only if its last message (that is, the last message in its last non-empty bundle) is an accepting

3 1n this paper, the concatenation of two histories is to be interpreted as the concatenation of two sequences.

Thus, if h1 = M1,1 • • • M1,i and h2 = M2,1 • • • M 2 ,j then h1h2 denotes the new history sequence comprising the

bundles M1,1 · · · M1,iM2,1 · · · M2,,.

6

(respectively, rejecting) message. The set of all accepting (respectively, rejecting) histories is

denoted by 1ta (respectively, 1tr). A process is in an accepting state (respectively, rejecting

state) if its last message sent was an accepting (respectively, rejecting) message.

A sequence oft processors can be linked together into a line by letting the output of the

ith processor be the input of the (i + 1)st processor, for i = 1, ... , t -1. In many respects a line

of processors behaves like a single processor whose input is the input of the first processor and

whose output is the output of the last. This is formalized as follows. The sequence of histories

ho, h1, ... , ht describes a computation of a sequence of t processes in which the ith process

has input history hi-t and output history hi, for i = 1, ... , t. The cost of such a computation

is E!=t llhill- Note that history ho does not contribute to this cost. We denote by ho {1r1}

h1 • • • { 7rt} ht the event that the process sequence 1r1, 1r2, ... , 7rt produces the computation

described by ho, h1, ... , ht, when 1r1 has input history ho. Since the probabilistic choices of

the individual processes are assumed to be independent, we have:

t

Property 2.2 Pr(ho{1rt}h1 ··· {1rt}ht) = ITPr(hi-t {1ri}hi)•
i=l

If II =1r1, ... , 7rt is a sequence of processes then ho {II} ht denotes the disjunction of the

events of the form ho { 1rt} h1 • · · { 7rt} ht taken over all arbitrary histories h1, ... , ht-1 • Thus,

Pr(ho{II}ht) = L Pr(ho{1rt}h1•·• {1rt}ht)·
hiEH, l~i< t

As a consequence of the definition of an initiator:

Property 2 .3 If Pr (6 {II} M) > 0 where M f:. 6, then IT contains at least one initiator.

The preceding definitions allow us to study the communication of a line of processors as

a function of the communication of the individual processors. Our objective, however, is to

study the communication of rings of processors. Because the communication of processors on

a ring is assumed to be independent of timing information, the computation can be scheduled

in any convenient way. Imagine a scheduler that proceeds as follows. Some initiating processor

is chosen to send its initial message. Starting with this initiator, the scheduler proceeds once

7

around the ring and each processor in turn sends a sequence of messages consisting of the

processor's initial output message followed by its response to each message in sequence in its

input queue. Thereafter, the scheduler continues around the ring and each processor responds

in sequence to each message in its input queue. The meaningful part of the computation ends

when some processor reads all the messages in its input queue without generating any output

messages since then there necessarily are no outstanding messages. This is just a convenient

way to schedule computation. A processor is not allowed to look ahead at messages in the

remainder of its input queue before responding to the current message. Let a round be one

pass of the scheduler around the ring. The scheduler just described serves to partition the

sequence of input and output messages of each processor into bundles that correspond to

each round. Round one is initiated when the scheduler delivers an empty input bundle to an

arbitrary processor, p1. Processor p1 generates a bundle (either containing a single message

or empty) in response to this input, which in turn become the input bundle of the following

processor, P2• Similarly, in each round, on the ring of processors P1, ... ,Pt, for 1:::; i:::; t - 1,

the output bundle of Pi is the input bundle of Pi+l. The output bundle of Pt in round j is

the input bundle of p1 in round j + 1. By convention, the computation terminates when Pt

produces an empty output bundle; this ensures that the number of input and output bundles

is the same for all processors. Observe that for each processor all input and output bundles

except possibly the first and last are non-empty. This reflects the fact that once a null

output bundle has been produced with this scheduling of the ring, all subsequent outputs are

null. Because processor behaviours are independent, the probability of the computation on

the ring is the product of the probabilities of the behaviours of each processor. Note that a

computation of a ring of processors may have different descriptions depending on the choice of

the first processor (in effect, the point at which the ring is broken into a line). Nevertheless,

the probability space of sequences of messages transmitted by each processor remains the

same and hence the expected cost and outcome of the computation is independent of this

choice.

The preceding informal view of a scheduled ring motivates the definition of a computation

8

of a ring of processors in terms of the computation of a line of processors. A scheduled ring

is modelled by a sequence of processes that satisfies some additional properties. The input

and output histories associated with any process must be of the form B(B - 6)*8. Such

histories are referred to as ring histories. Furthermore, the output history ht associated with

the la.st processor and the input history h0 associated with the first processor must satisfy

ho6 = 6ht, Note that the placement of empty bundles is essential; it is quite possible that

h {IT} h holds with probability 1, and yet when IT is executed as a ring it produces no messages

for lack of an initiator. Accordingly, a history sequence ho, h1 , ... , ht is defined to be a ring

computation if each hi is a ring history and ho6 = 6ht, The event that the process sequence

IT produces a ring computation with output history h6 corresponds to the event 6h {IT} h6

as long as h contains no empty bundles.

2.2 Decisions and Termination

Some lower bounds in this paper require a restriction to processes that do not change an

accepting decision once made, while other lower bounds apply even to processes that may

reverse their decision throughout the computation. We capture this restriction on processes

by defining a process 1r to be irrevocably accepting if 1r never outputs another message after

having output an accepting message. A process that does not accept irrevocably may be left

in an accepting state after having sent its last output message without being able to detect

that the computation has terminated. Notice that the restriction to irrevocably accepting

processors permits rejecting decisions to be changed. This asymmetry permits slightly more

generality than if both accepting and rejecting decisions were required to be firm. It also

allows us to argue (below) that, without any essential loss of generality, the processes in any

ring computations can be assumed to reach unanimous decisions. The unanimity condition

tends to reduce the probability of erroneous computations. Also, perhaps more significantly,

it allows us to simplify our notation in discussing computations, since the outcome of every

computation is reflected in the history of each of its processors.

We now observe that it is straightforward to modify processes, at a total cost of 0(en)

9

bits of communication when there are 0(c) initiators, so that if any process terminates in

an accepting state, then they all do. It suffices to replace empty output bundles (other than

those that initiate computation) by one of two distinguished poll messages. Poll messages are

initiated by processes that would otherwise produce an empty output bundle in response to a

non-empty input bundle. A poll message has type accept if at least one of the processes that

it has encountered (including its initiator) has reached an accepting decision. Non-accepting

poll messages are forwarded to the next process that initiated a poll message while accepting

poll messages continue to be forwarded until they reach a process that has sent an accepting

poll message. Since any computation with c initiators results in at most c initiated poll

messages, each process sends 0(c) bits in addition to its normal communication. For the

remainder of this paper it will be assumed that all processes have been modified in this way.

Hence, it can be assumed that if any process has a decision at the end of a computation, then

the decision is unanimous. This is justifiable only because our proofs are insensitive to the

complexity of the algorithm when there are two or more initiators. A computation ho, ... , ht

accepts if hi E 1ta, for i = 0, ... , t, and rejects if h; E 1tr, for i = 0, ... , t. Let Ha be the

subset of 1ta containing those histories with no empty bundles.

As a consequence of the assumed unanimity of assertions:

Property 2.4 The probability that the computation of a process sequence II accepts on a ring

is Lhe'Ha Pr(6h {II} h6).

The following two properties, which are also immediate consequences of the definitions in

subsection 2.1, are used to draw conclusions about rings of arbitrary processes and rings of

irrevocably accepting processes respectively.

Property 2.5 Let IT be any process sequence and h any accepting history. Then, with prob­

ability at least Pr (6h {IT} h6), computations of IT on a ring accept.

Let 6 {IT}* denote the disjunction of events of the form 6 {IT} h over all h E 1ta,

Property 2.6 Let IT and <I> be sequences of irrevocably accepting processes. Then, with prob­

ability at least Pr (6 {IT} *), computations of IT <I> on a ring accept.

10

2.3 Solitude Detection Algorithms

The decision of a Solitude Detection algorithm is expressed by associating the current decision

state of a process with the type of its most recent output message. Recall that decisions of

processes can be assumed to be unanimous. Accordingly, a computation asserts solitude if it

accepts and asserts nonsolitude if it rejects.

Let A denote the set of all probabilistic processes. A distributed probabilistic algorithm for

Solitude Detection would normally specify a fixed initiating process from A for all contenders

and a fixed non-initiating process for all non-contenders. (Certainly all of the algorithms of

the companion paper [5] satisfy this property). It is convenient to generalize this notion of

a distributed algorithm to permit arbitrary assignments from a set of initiating processes to

contenders, and from a set of non-initiating processes to non-contenders. Note that there is no

loss of generality in identifying initiators with contenders. Such a scheme can be imposed by

having all contenders begin by sending a 1-bit "wakeup" message to the next contender (via

the intervening non-contenders). Upon receipt of a "wakeup" message all processes proceed as

before. We define an algorithm to be just the set a ~ A of both initiating and non-initiating

processes that are available for assignment.

This generalization gives algorithms both probabilistic and nondeterministic attributes.

Like conventional probabilistic algorithms, an algorithm is said to solve a problem with prob­

ability p if, for all possible process assignments, the resulting computation reaches the desired

conclusion with probability at least p. Like conventional nondeterministic algorithms, it is

said to solve a problem efficiently if for some choice of process assignments the resulting

computation has low expected cost.4

More formally, let I denote an interval of positive integers and let 1l1 denote the class of

all rings of size t where t E J. If a ~ A is an algorithm, at denotes the set of sequences 1r1 ,

••• , 1rt where 11'i E a for 1 ::; i ::; t, and a 1 denotes Ute/ at. Therefore, a 1 corresponds to the

4 This use of "nondeterminism" should not be confused with the use of the same term by some authors to

refer to the undetermined behaviour of the scheduler. Since the scheduler cannot affect the communication on

a unidirectional ring, the results in this paper hold for all schedulers. The term here is used in the stronger

automata-theoretic sense and refers to the analysis under the assumption of lucky choices.

11

set of all assignments of processes in o to processors on rings in the set n1,
An algorithm is usually understood to be distributively terminating if the processors can

detect when the computation is finished. In this case, there is no need for processors to reach

tentative conclusions which may change throughout the computation as additional message

arrive; instead, each processor can make one (final) decision and send that decision in its

last message before terminating. Therefore an algorithm o terminates distributively if every

1r E o makes irrevocable decisions. For lower bounds on Solitude Verification, we weaken this

constraint slightly. A Solitude Verification algorithm o accepts distributively if every 1r E o

is irrevocably accepting.

This paper and its companion [5) are concerned with three closely related problems, called

Solitude Detection, Solitude Verification, and Weak Solitude Verification, defined as follows.

Let I denote an interval of positive integers.

Solitude Detection. o solves Solitude Detection with confidence 1 - € on rings in n1 if

(i) for any element of a 1 containing exactly one initiator, solitude is asserted with probability

at least 1 - f, and (ii) for any element of a 1 containing more than one initiator, nonsolitude

is asserted with probability at least 1 - €.

Solitude Verification. o solves Solitude Verification with confidence 1 - f on rings

in n1 if (i) for any element of a 1 containing exactly one initiator, solitude is asserted with

probability at least 1- f, and (ii) for any element of o 1 containing more than one initiator,

solitude is not asserted with probability at least 1 - €.

Weak Solitude Verification. o solves Weak Solitude Verification with confidence 1 - €

on rings in n1 if, for any element of o1 containing more than one initiator, solitude is not

asserted with probability at least 1 - €.

These definitions make it clear that Weak Solitude Verification is a subproblem of Solitude

Detection. Lower bounds for Weak Solitude Verification imply lower bounds for Solitude

Detection. Nonsolitude can be ascertained with a low expected cost by a simple exchange of

coin tosses [5]. But the problem we focus on is the cost of verifying, with high probability,

that there is only one initiator. Therefore the complexity of a Weak Solitude Verification

12

algorithm is defined to be the expected complexity when solitude is correctly asserted. (In

the case of algorithms that never correctly assert solitude, the complexity is undefined.)

More formally, let a be an algorithm that solves Weak Solitude Verification with confidence

1 - L Let S = {II E at I Pr(II asserts solitude) ~ 1 - f} =/ 0. The complexity of a on

rings of size t is5 inf E((llholl + · · · + llhtll) I ho, ... , ht is a computation of II that asserts
IlES

solitude) .

3 Tools for Deriving Lower Bounds

The symbol xis reserved to denote a number (which will be given a specific value whenever

necessary) called the cheapness threshold. A computation of a process sequence is said to be

cheap if it has total cost at most x- We denote by ho (1r1) h1 · • • (1rt) ht (respectively, ho (II) ht)

the conjunction of the event ho {1ri} h1 · • • {1rt} ht (respectively, ho {II} ht) and the event that

the computation is cheap.

Let II1, II2 and II3 be process sequences. The sequence II1 II2 is said to be formed by con­

catenation of II1 and II2 and the sequence II1II2II3 is formed by splicing II2 into the sequence

II1Il3. The following properties and lemmas, which are consequences of the definitions in

Section 2, are used to relate the probability of computations of the sequence II1 II2II3 to the

probabilities of related computations of the sequences Il1II3 and Il2.

Property 3.1 Pr(hi{Ili}h2{II2}h2{II3}h3) = Pr(hi{IIi}h2{Il3}h3) • Pr(h2{Il2}h2)

and Pr(h1 (II1) h2 (Il2) h2 (Il3) h3) ~ Pr(h1 (II1) h2 (II3) h3) · Pr(h2 (II2) h2).

Let h = M1 ···Mk and h' = M{ · · · Mf. Then h and h' are message-equivalent if the

sequence of messages formed from the concatenation of M1 through Mk is the same as the

sequence of messages formed from the concatenation of M{ through M{. That is, the histories

are the same up to packaging of messages into bundles. Let IT be a process sequence. The

concatenation of k copies of II, denoted Ilk, is said to be formed by replication of II. The

following lemma relates the probabilities of certain computations of IIk to those of II.

5 E(z) denotes the expected value of z .

13

Lemma 3.2 For any history h and integer k 2: 1 there is a message-equivalent history h'

such that Pr (6h' {Ilk} h' 6) 2: (Pr (6h {IT} h6)) k.

Proof: Suppose that Pr(6h {IT} h6) = p and h = M1 •••Mr, where Mi EB. Define Mo=

6 and M8 = 6, for s > ,r. Define Mj to be the bundle formed by concatenation of the se­

quences of messages in the SU bsequence of bundles Mi' ... 'Mi+j-1. Let >. = r r I k 1- It will suf­

fice to show that, for all t 2: 1, Pr(6Mf Mf+I .. · M(>.-t)k+I {Ilt} Mf Mt+l · .. Mt-i)k+t+i) 2:

pt. The proof is by induction on t. The basis, t = 1, is a straightforward consequence of the

bundle-driven nature of process~s. For t > 1,

Pr(6MfMf+l .. ,M(>.-l)k+i {ITt}MfMt+1Mf+t+l .. ,M(>.-I)k+t+l)

2: Pr (6Mf Mf+l ... Mi-1)k+1 {rrt-1} Mtl Mtk Mf+t ... M(>._1)k+t)

• Pr (Mf-
1
Ml Mf+t · · · M(>.-t)k+t {II} Mf Mt\1 Mk+t+l · · · M(>.-t)k+t+i)

= p · Pr(6Mf Mt+i · · · M(>.-I)k+I {nt-I} Mf-
1
Mt Mf+t · · · M(>.-t)k+t)

by the bundle-driven nature of processes. Setting t = k, it follows that Pr (6h' {Ilk} h' 6) 2:

t h h' - MkMk Mk P , W ere - 1 k+l ''' (>.-l)k+l' ■

Lemma 3.3 If IT is any sequence of irrevocably accepting processes and Pr(6 {II}*) = p,

then Pr(6 {Ilk}*) 2: 1- (1 - p)k, fork 2: 1

Proof: It suffices to observe that for k > 1,

•
The preceding properties and lemmas allow us to perform probabilistic analogues of col­

lapsing, replicating and splicing once certain events and their probabilities have been identi­

fied. The lemmas to follow provide the necessary probabilities. Lemma 3.4 counts the number

of distinct ring histories of cost at most k, and is required by the others. Lemma 3.5 allows us

to cut a ring of processes at some link, and to treat it as a line. Lemma 3.6 locates repeated

histories, and Lemmas 3. 7 and 3.8 use the repeated histories to collapse the line to a desired

size.

14

Lemma 3.4 There are fewer than 2 • 6k distinct ring histories of cost at most k.

Proof: Recall that ring histories contain no internal empty bundles and that messages are

never empty. Imagine that bundles are separated by end-of-bundle markers and messages

within bundles are separated by end-of-message markers. Then a sequence of bits can be

parsed into a history by placing between between any pair of bits either an end-of-message

marker or an end-of-bundle marker or no marker. Since, in addition, the history might begin

or end with an empty bundle, there are 2H23k-l histories of cost exactly k. Therefore, the

number of ring histories of cost at most k is 1 + I:f=1 2i+23i-l < 2 • 6k. ■

Given a process sequence II with low expected complexity, the following lemma provides

a fixed short ring history and a cyclic permutation if> of II such that, with reasonably high

probability, if> produces a ring computation with this history as its output.

Lemma 3.5 Let f < ½ and let II E At be any process sequence that asserts solitude on a ring

with probability at least 1 - f. Suppose that the expected bit complexity of computations of II

that assert solitude is at most x/2. Then there exists a cyclic permutation if> of II and an

accepting history h with 11h11 ~ x/t such that Pr(6h (if>) h6) > 5-x./t-2 •

Proof: Let II = 1r1 , ... , ?rt, Since the expected cost of computations that assert solitude

is at most x/2, the probability that an arbitrary computation of II asserts solitude and

communicates fewer than x bits is at least (1 - f)/2 > 1/4. The remaining probability

calculations are implicitly conditional on the computation asserting solitude and being cheap.

Let ei denote the expected cost of the output history of process 1r i, over all cheap ring

computations of II that assert solitude. For some i, ei ~ x/2t, so with probability at least

1/2, ?ri has an output history with cost no more than x/t. But by Lemma 3.4 there are fewer

than 2 • 6x/t distinct ring histories with at most x/t bits and hence, with probability greater

than (1/4)6-x./t, ?ri outputs some fixed accepting history h, where 11h11 ~ x/t. Removing the

conditioning on cheap computations that assert solitude, it follows that Pr(6h (if>) h6) >

(1/16)6-x/t > 6-x/t-2 where if> = ?ri+1, ... , ?rt, 71'1, ..• , ?ri. ■

15

At the heart of our lower bound proofs is the observation that a sequence of histories

of sufficiently small total cost must contain the same history twice. Lemma 3.6 refines this

observation to a probabilistic setting, and provides information about the separation between

the repetitions. It shows that, given a process sequence II and an integer l, with reasonably

high probability, the computation of II contains two identical histories whose separation is

a small integer multiple kl of l. The probability depends on the bound r on k and on the

cheapness threshold X·

Lemma 3.6 Let r and l be positive integers with r sufficiently large. Let IT be any sequence of

processes with !III ~ rl. Suppose that x < (!III log6 r)/36. Let h0 and h1 be arbitrary histories

in 1i. Then there exist non-empty process sequences <1>1, <1>2 and 4>3 where IT = 4>14>24>3 and

a history h* such that

Proof: Lett= Pr(h0 (II) h1), and suppose that~> 0, since otherwise the lemma is trivial.

Let 6 = log6 r and suppose that II =1r1 , .•• , 1r t. For 1 ~ i < t, let ei be the expected cost

of the output history of 7ri, conditional on h0 (II) h1. That is, ei = (1/tn::::h 11h11 · Pr(h0 (1r1,i)

h(11'i+1,t)h1). If ei < 6/12, say that link i is quiet. If 11h11 ~ 6/4-1, say that history his

cheap.

Suppose that link i is quiet and denote by ht the cheap history that maximizes Pr(h0 (11'1,i)

h"; (11'i+1,t) h1). Refer to ht as the preferred history on link i. By Lemma 3.4, there are fewer

than 2 • 66/ 4- 1 = 66/ 4 /3 = r 114 /3 cheap histories. So Pr (h0 (1r1,i) h"; (1ri+1,t) h1) >
7
?/4 , since

otherwise ~llhll$6/4_ 1 Pr (h0 (11'1,i) h (1ri+1,t) h1 ih0 (II) h1
) < (r 114 /3)/r 114 = 1/3 and hence

ei > (2/3)(6/4- 1). This is at least 6/12 for r ~ 68 , thus contradicting the assumption that

link i is quiet.

Let Bu,v = {u•rl+v+ kl : 0 ~ k ~ r-1}, where O ~ u ~ lt:;:/ J-1 and 1 ~ v ~ l. Note

that any two members of any set Bu,v are separated by kl where k is an integer between 1

and (r - 1). Of the t -1 internal links of II all but (t - 1) mod rl < t/2 belong to Uu,v Bu,v•

16

Choose u and v such that at least 1/3 of the r members of Bu,v are quiet links, given h0 (IT) h1 .

Such a pair u, v must exist, since otherwise at least 2/3 of at least t/2 links are not quiet,

contradicting the assumption that I::!=1 ei s x < to/36.
Again, because there are fewer than r 114 /3 cheap histories, at least w = l r 314 j of the cheap

members of Bu,v have identical preferred histories. Let i1, ... , iw be w such members, and let

h* denote their common preferred history. Let D 8 denote the event h0 (1r1,i,) h* (1ri,+1,t) h1,

for 1 s s s w. By the inclusion-exclusion principle, Lr<s Pr(Dr & Ds) ~ (Ls Pr(Ds)) - r
Since Pr(D.,) >) 14 , there must exist distinct r and s such that

>

>
r

for T ~ 16

Thus, assuming T ~ 68 , it follows that Pr(Dr & Ds) ~ r- 1 Pr(h0 (IT)h1). So it suffices to

■

The following two lemmas are used to collapse a ring from its initial size to below some

target size t*, overshooting as little as possible. Both lemmas apply Lemma 3.6 and Property

3.1 repeatedly to determine the probability of an event on a short sequence of processes from

the probability of a related event on the original sequence. They differ in that Lemma 3.8

employs a more delicate and sophisticated strategy for collapsing than does Lemma 3. 7 and

thus achieves a stronger result. Although Lemma 3.8 subsumes Lemma 3. 7, both are included

because the naive approach of Lemma 3. 7 sometimes suffices and the proof is simpler.

Lemma 3. 7 Let T, l and t* be positive integers with t* ~ rl and r sufficiently large. Let IT

be any sequence of processes with IITI ~ t*. Suppose that x < (t*log6 r)/36. Let h0 and h1 be

any histories. Then there exists a (non-contiguous) subsequence <I> of IT such that

i) t* - rl < l<I>I < t*,

ii) l<I>I = IITI (mod l), and

17

Proof: When applied to r, l and a process sequence r meeting the required conditions,

Lemma 3.6 identifies process sequences il> 1 , il>2 and il>3 satisfying

Property 3.1 ensures that Pr(h0 (cI> 1 cI>3) h1) ~ r-1 Pr(h0 (f) h1). The application of Lemma

3.6 and Property 3.1 to obtain the new sequence r' = il> 1 cI>3 from r is called a collapsing step.

Starting with sequence II, collapsing steps are repeatedly applied as long -as the conditions

of Lemma 3.6 are met, that is, as long as the resulting sequence has length at least t*. Each

collapsing step removes a subsequence that has length kl where 1 ~ k ~ r - 1. Let the final

sequence cI> be the first sequence obtained by successive collapsing that has length less than

t*. It follows that:

1. At most II111t• + 1 collapsing steps are required to obtain cl>.

2. lcI>I > t* - rl .

3. lcI>I = IIII (mod l).

Each collapsing step multiplies the probability bound by r- 1 , so

■

Lemma 3.8 Let r, l and t* be positive integers with t* ~ rl and r sufficiently large. Let II

be any sequence of processes with IIII ~ t*. Suppose that x < (t*log6 r)/36. Let h0 and h1 be

any histories. Then there exists a (non-contiguous) subsequence cI> of II such that

i) t* - rl < lcI>I < t*,

18

ii) JcI>J = JIII (mod l), and

Proof: As in Lemma 3.7, we apply Lemma 3.6 and Property 3.1 repeatedly, each time

eliminating some processes between repeated histories. At a given collapsing step, the re­

maining sequence r has some length t', where t* ~ t' ~ JIIJ, and t' = JIII (mod l), and

Pr(h0 (f)h1
) =p.

Let l' be the largest multiple of l that does not exceed I+ t'-;_t•. Then l' > (t' - t*)/r.

By Lemma 3.6, with I' playing the role of l and t' playing the role oft, r transmits repeated

histories, separated by ml where l' ~ml< rl' ~ rl +t-t*, with probability at least p/r. By

Property 3.1, there exists a (non-contiguous) subsequence f' of r with length less than t' - l',

such that Pr(h0 (f') h1) ~ p/r. By starting with II and collapsing some number g times in

this fashion, we eventually construct a sequence cJ> where

1. t* - Tl< lcJ>J < t*,

2. JcJ>J = JIIJ (mod l), and

For each collapsing step except the last, the value of t' - t* decreases by a factor of at least

1 - 1/r. Since the last collapse is by at least l processes, it follows that g ~ 1 + [; where g is

the smallest integer such that (JIIJ - t*) (1 - ¼)° < l. Taking logarithms to the base e, and

using the fact that ln (1 - ¼) < -¼, we get that [; ~ 1 + r ln ITTl1t•. ■

To summarize the notation, rr represents a probabilistic process, and II represents a se­

quence of probabilistic processes. If h is a communication history, then h(i) is the length i

prefix of h. The symbol I:::,. represents the empty bundle, which only occurs at the beginning

or end of a ring history. Notation h {II} h' denotes the event that probabilistic process II has

output history h' when its input history is h, and h {II}* is the event that II asserts solitude

when its input history is h. Notation h (II) h' denotes the event consisting of the conjunction

of h {II} h' and the event that the total number of bits transmitted by II with input history h

19

is at most some preassigned value X· The event notation is extended to multiple histories by

letting, for example, ho { 1ri} h1 { 1r2} h2 represent the conjunction of ho { 1ri} h1 and h1 { 1r2} h2,

4 Overview of Lower Bound Proofs

The lower bound proofs all proceed similarly. In this section the common structure of the

proofs is highlighted. The proofs convert a size n E 11 single contender ring of processes

whose computations are correct with high probability, and have low expected bit complexity,

to another ring of processes with size n' E J2 and with two or more contenders whose com­

putations err with unacceptably high probability. Because of the unanimity of decisions, it

suffices to show that, with unacceptably high probability, some process in the final ring ter­

minates in an (erroneous) accepting state. For this reason the proofs are referred to as fooling

arguments. A standard fooling argument applies to arbitrary message-driven processes and

thus holds for even nondistributively terminating algorithms. From a fooling argument it can

be concluded that with high probability there is an erroneous accepting history in the final

ring when all message traffic has ceased. A weak fooling argument applies only to irrevocably

accepting processes and therefore holds for distributively terminating algorithms. From a

weak argument it can be concluded that with high probability there is some accepting history

at some point in the computation. Since the processes' accepting decisions are irrevocable

it is unnecessary to assure that message traffic has ceased in order to conclude that such a

computation is in error.

More precisely, a fooling argument for an algorithm n consists of the following steps.

Schema 4.1

1. Assume that for any n E Ii, there is a process sequence Il E on that has exactly

one contender and asserts solitude with confidence at least 1 - E and has expected bit

complexity less than x/2, where xis chosen as an appropriate function of E and n.

2. Apply Lemma 3.5 to conclude that there is a cyclic permutation r of Il and a history

h E 1la where 11h11 ~ x/n such that Pr(6h (r)h6) ~ 6-x/n-2.

20

3. Using the collapsing, replicating and splicing lemmas, produce a fooling sequence «I> E

o:12 with two or more contenders such that Pr (6h {«I>} h6) > €.

4. Apply Property 2.5 to conclude that, with probability greater than €, computations of

«I> erroneously assert solitude.

Steps 1, 2 and 4 are essentially the same for all the lower bound proofs. Therefore the

proofs begin by stating the values of x, Ii and h and proceeding with step 3. Step 3 differs

in each of the lower bound proofs. We refer to this step as the core of the fooling argument.

The conclusion of a fooling argument for a is that if a solves Weak Solitude Verification with

confidence 1 - € on rings in Rh, then the expected bit complexity of a on ring of size n E Ii

is n(x).

A weak fooling argument for a distributively terminating algorithm a differs from a stan­

dard fooling argument in that the core need only establish that Pr (6 {«I>} *) > € for some

process sequence «I> E a[l,b) where h = [a, b]. Thereafter, step 4 applies Property 2.6 to reach

the desired conclusion.

Our proofs must keep track of probabilities of events, and each collapsing, replicating or

splicing operation decreases the known probability bound. Therefore, it is necessary to keep

the number of steps small. In some cases, the need for efficiency results in relatively difficult

proofs.

It will be useful in general to have a linear lower bound.

Theorem 4.2 If a solves Weak Solitude Verification on rings of size n with confidence greater

than 3/4, then the expected bit complexity of a is at least n/6 on rings of size n.

Proof: Suppose that process sequence II E an with a single contender asserts solitude

with confidence greater than 3/4 and has expected bit complexity less than n/6. Then, with

probability at least 2/3, correct computations of II have complexity less than n/2. But, by

the message-driven nature of computations, it follows that, with probability greater than 2/3,

message traffic in correct computations of II travel less than half way around the ring beyond

the contender. In this case the contender in II concludes that it is alone without receiving

21

any communication. Thus with probability at least (3/4)(2/3) = 1/2 arbitrary computations

of II conclude solitude with message traffic on less than the first half of the ring.

Now consider the process sequence <I> constructed by splicing together two pieces of II

both starting with the contender: one piece consisting of L n/2 J processes and the other piece

f n/21 processes of II. Then with probability (1/2)2 = 1/4, both contenders in <I> erroneously

conclude they are alone after message traffic has ceased. ■

In the interest of ease of presentation, little attempt is made to establish good asymptotic

constants in the lower bounds.

5 Bounds for Ring Size Loosely Known

We say that an algorithm a knows only that ring size n is in [a, N] if a must work for all

rings in n[a,N)· We prove two lower bounds on the expected bit complexity of Monte Carlo

Solitude Detection algorithms that know only that a~ n ~ N, where a~ N/2, namely (1)

an n (n log(¼)) lower bound for nondistributively terminating algorithms (which of course

applies also to distributively terminating algorithms), and (2) an n (nJlog(i;f)) lower bound

for dfatributively terminating algorithms. Then (nlog(¼)) bound only holds when n happens

to be at most N /2, although the algorithm only knows that a ~ n ~ N. When n > N /2, the

complexity can be lower than n (nlog(¼)) [5).

The n (n log(¼)) bound is the simpler of the two. The core involves no collapsing and

only a single replication.

Theorem 5.1 Let O < € < 1/4 and let a be any (even nondistributively terminating) algo­

rithm that solves Weak Solitude Verification with confidence 1- E on any ring in n[a,N] where

a~ N/2. Then the expected bit complexity ofa on rings of size n E [a,N/2) is n (nlog(f)).

Proof: By the linear lower bound of Theorem 4.2, and we can assume that f is small. A

fooling argument is given by following Schjema 4.1 with x = (2n/5) log6(¼), I1 = [a, N /2) and

12 = [2a, N]. After applying steps 1 and 2 of the schema, we have r E a[a,N/2] with exactly

one contender and h E 1ta such that Pr(6h (r) h6) ~ 6-x/n- 2 •

22

Consider the sequence <I> = I'2 E o:h formed by splicing together two copies of r. By

Lemma 3.2, there exists a history h' E Ha such that

Pr(.6h'{<I>}h'.6) > (5-x/n-2)2

5-4€4/5

> €

for€ < 5-20 • Since <I> has two contenders, the argument is completed by appealing to Property

2.5. •
The n (nj log(r::)) lower bound is based on a weak fooling argument and hence only

applies to distributively terminating algorithms. Like the previous lower bound, there is no

collapsing in the core of the argument. However, more replication is required.

Theorem 5.2 Let a be any distributively accepting algorithm that solves Weak Solitude Ver­

ification with confidence greater than 3/4 on rings in R[a,N]· Then the expected bit complexity

of a on rings of size n E [a,N] is n (njI g(~J).

Proof: By Theorem 4.2 we can assume that N /n is large. A weak fooling argument is given

by following Schema 4.1 with x = n (1/2) log6 (~) and / 1 = h = [a, N]. After applying

steps 1 and 2 of the schema, we have r E o:fa,N] with exactly one contender and h E Ha

satisfying 11h11 ~ x/n and Pr(.6h (r) h.6) ~ 5-x/n-2
•

Consider the sequence rk where k = lhl ~ x/n. By Lemma 3.2, there exists an accepting

bundle M (formed by concatenating all the bundles in h), such that Pr(.6M {I'k} M .6) ~

5-k(x/n+2) ~ 5-(x/n)(x/n+2). Hence, by Property 2.1, Pr (.6 {rk} *) ~ 5-(x/n)(x/n+2).

Lett= LN/(nk)J. But 2(x/n)2 = log6 (N/n) and k ~ x/n. Sot~ 5(2(x/n)2)jk- l >

5(x/n)2 +2(x/n) > 1. Let <I> = rtk. By Lemma 3.3, Pr (.6 {<I>} *) ~ 1 - (1 - 6-(x/n)(x/n+2) r >

1 - 1/e > 1/2. Since <I> E o:fa,N] has more than one contender, the argument is completed by

appealing to Property 2.6. •

23

6 Bounds for Ring Size Approximately Known

By the matching upper bound results [5], the lower bounds of the preceding section are tight

to within a constant factor as long as the algorithm knows at best that N /2 ~ n ~ N.

But suppose that all processors know that (½ + p)N ~ n ~ N for some given positive

p < 1/2. We prove two lower bounds on the expected bit complexity of Solitude Detection:

(1) an n (nmin(loglog(¼),logN)) bound, showing that, for sufficiently large N, the hit

complexity is doubly logarithmic in 1/ E, and (2) an n (n min(log p, log(¼), log N)) bound,

showing that the cost is logarithmic in 1/ p when N is large and f. is small. Both bounds

apply to nondistributively terminating algorithms. For simplicity, we prove the first bound

for p = 1/4, although a modified proof applies to any positive p < 1/2.

Theorem 6.1 Let O < f. < 1/4, and let a be any (even nondistributively terminating) algo­

rithm that solves Weak Solitude Verification with confidence 1- f. on rings in 1?,[3N;4,N]. Then

the expected bit complexity of a on rings of size n E [3N /4, N] is n (n min (log log(¼),log N)).

Proof: By Theorem 4.2 we can assume that N is large and f. is small. A fooling argument

is given by following Schema 4.1 with x = 1~6 lmin (log6 log(¼),log6 N)j and 11 = 12 =

[3N / 4, N]. After applying steps 1 and 2 of the schema, we have r E ali with exactly one

contender and h E 1ta such that Pr (6h (r) h6) ~ 6-x/n- 2.

Let r = 673x/n, l = l: j and t* = N /2. Since x ~ (n/146) log6 N, it follows that

N ~ 6146x/n = r-2 > 8r, implying 1 ~ l. Moreover, t*(log6 r)/36 = ~ • ~ · 3~ > X· Hence,

by Lemma 3. 7, there exists a non-contiguous subsequence T of r such that 3N /8 ~ t• - rl <

ITI < t* = N/2 and

Pr(6h(T)h6) > r_1_n-;t" Pr(6h(f)h6)

> T-5r6-x/n-2

By Property 2.3, T contains a contender. Now consider the sequence~ = (T)2. By Lemma

3.2, Pr(.6.h' { ~} h' .6.) ~ r-12r where h' is equivalent to h. But x ~ (n/146) log6 log(¼) and

24

,_ .

r = 673x/n, implying r::; (log(¼))1l2 . So r- 12
-r > €. Since <I> E 0/2 has two contenders, the

argument is completed by appealing to Property 2.5. ■

The next theorem shows the dependence of the bit complexity of Solitude Detection on

p. Notice that it only applies at the lower end of the interval [(½ + p)N, NJ.

Theorem 6.2 Let O < £ < 1/4 and let a be any (even nondistributively terminating) algo­

rithm that solves Weak Solitude Verification with confidence l - £ on rings in n[(½+p)N,NJ

where O < p < 1/2. Then the expected bit complexity of a on rings of size r (½ + p)N l is

n (nmin (log(¼),log(¼),logN)).

Proof: By Theorem 4.2 we can assume that N is large, and both p and £ are small.

Abbreviate (½ + p)N by n and assume n is an integer. Let z be the largest multiple of 3 not

exceeding min (log6 (¼),log6 (¼), log6 N). A fooling argument is given by following Schema 4.1

with x = lnz/109J, Ii= [n,n] and h = [n,N]. After applying steps 1 and 2 of the schema,

we have r of length n with exactly one contender and h E 1ta such that Pr (.6h (f) h.6) >

6-x/n-2.

The core of the argument begins with a single collapsing step. Apply Lemma 3.6 to r
with l = lN6-z J and r = 5z/3

• The condition x < (JrJ log6 r)/36 is easily verified. Also

l 2: max(l, pN) since z::; min(log6 N,log6(¼)), and l < rl < N/4 < n since z is large. So a

single collapsing step removes some number k of processors from r, where pN ::; k < N /4.

The result is a sequence YE oJ(¼+p)N,N/2] such that Pr(.6h(Y)h.6) 2: r- 15-x/n- 2 . By

Property 2.3, Y contains a contender.

Let <I> = (Y) 2• By Lemma 3.2, Pr (.6h' {<I>} h' .6) > r-25-2x/n-4 where h' is equivalent to

h. But log6(r262x/n+4) = 2z/3+2x/n+4 < 0.7z+4 < log6 (¼), since z::; logi¼) is large. So

Pr(.6h' {<I>}h'.6) >€.Since <I> E a[(½+p)N,N] has two contenders, the argument is completed

by appealing to Property 2.5. ■

25

7 Bounds for Ring Size Exactly Known

We say that the algorithm a knows n exactly if a is only required to work on rings of size

n. In that case, the lower bound proofs become more difficult, since the core must produce a

new sequence of processes whose length is exactly the same as the length of the original one.

For distributive termination it is eaBy to pad out the new sequence to the desired length, but

for nondistributive termination there must be an exact size match.

We prove three lower bounds on the expected bit complexity of Monte Carlo Solitude

Detection: (1) an n (n min (Jlog n, J log log(¾))) bound for distributively terminating al­

gorithms, (2) an n (n min (log v(n), log log(¾))) bound for non distributively terminating al­

gorithms, where v(n) is the smallest positive nondivisor of n, and (3) an n (n min (log log n,

log log log(¾))) bound for nondistributively terminating algorithms.

Theorem 7 .1 Let O < f < 1/ 4 and let a be a distributively accepting algorithm that solves

Weak Solitude Verification with confidence 1 - f on rings of size n. Then the expected bit

complexity of a on rings of size n is n(nmin(Jlog n, Jloglog(¼))).

Proof: By the linear lower bound of Theorem 4.2, and we can assume that n is large and f is

small. Let z = min (J log6 n, J log6 log(¾)). A weak fooling argument is given by following

Schema 4.1 with x = nz/9 and I1 = h = [n, n]. After applying steps 1 and 2 of the schema,

we haver of length n with exactly one contender and h E 1-la satisfying 11h11 :5 x/n = z/9

and Pr (6h (r) h6) ~ 6-z/9- 2•

The core of the argument applies Lemma 3.8 to collapse r, followed by Lemma 3.2 to

replicate the result. Let target size t* = f9n/ z l, and parameters T = l 6z
2

/
2 j ::; ./ii, and

l = l;; j. Then (t* log6 r)/36 > nz/9 = x and rl :5 t* and l > 1. So the conditions of

Lemma 3.8 are met. The result is a sequence T such that ITI < t* and Pr(6h (T) h6) ~

7 -
2
--r1n(",'•) 6-z/9 - 2 • But (n - t*)/l < n/l < (zr)/18, and Tis large, so Pr (6h (T) h6) >

r-2r--rln-rT--rln(z/l8)6-z/9- 2 ~ r--rlog-r. By Property 2.3, T ha.5 one contender.

Let cI> = (Tl where k = max(lhl,2)::; z/9. By Lemma 3.2, Pr(6M{cI>}M6) >

r-(z-rlog-r)/9 , where M is the accepting bundle formed by concatenating all the bundles in h.

26

Hence, applying Property 2.1, Pr(L{<I>}*) 2: Pr(L{<I>}M) 2: T-(z-rlog-r)/9 _ But for large

enough n, log.,logr(z-rlog-r)/9 < 2log6 r ~ 2(z2 /2) ~ log6 log(¼)- Hence, Pr(L{<I>}*) > L

Since 4> has length klTI < z/9 (f 9zn l - 1) ~ n and has more than one contender, the argument

is completed by appealing to Property 2.6. ■

Corollary 7 .2 The complexity of any distributively accepting Las Vegas algorithm that solves

Weak Solitude Verification with confidence at least 1- 1/2n on rings of size n is fl (nv'loin)
bits.

The previous proof does not require that the fooling sequence <I> be constructed to a precise

length since, when we are only interested in distributively terminating algorithms, Property

2.6 allows us to pad <I> out to length n with an additional sequence of arbitrary processes.

For nondistributive termination, much more care is needed to ensure a fooling sequence of

length exactly n. It is therefore not surprising to find divisibility properties of n not only in

the proofs, but in the complexity bounds as well.

Theorem 7.3 Let O < f < 1/4 and let a be any (even nondistributively terminating) algo­

rithm that solves Weak Solitude Verification with confidence 1 - f on rings of size n. Then

the expected bit complexity of a on rings of size n is fl (n min (log v(n), log log(¼))), where

v(n) is the smallest nondivisor of n.

Proof: By the linear lower bound of Theorem 4.2, we can assume that n and v(n) are

large and f is small. In particular, n is even. Let z be the largest even integer not exceeding

min (v(n)-1, log114 (1/f)). A fooling argument is given by following Schema 4.1 with x =
(n/75)(log6 z), and 11 = h = [n, n]. After applying steps 1 and 2 of the schema, we haver

of length n with exactly one contender and h E 1ta such that Pr (Lh (f) hL) 2: 5-x/n-2 •

The core of the argument has four steps. (1) Identify a short contiguous subsequence of

r, which will be used in step 3 to pad a sequence to length exactly n/2. (2) Collapse the two

other pieces found in step 1 to short sequences. (3) Splice replications of the piece found in

step 1 into the shortened pieces found in step 2 to form a sequence of length exactly n/2. (4)

Replicate the sequence from step 3 once.

27

Let >.(x) denote the least common multiple of the positive integers not exceeding x. Apply

Lemma 3.6 tor with T = r1 = z/2, and l = Li = n/ >.(z). Condition x < (If! log6 r)/36 follows

immediately from the choice of X· Also r1li < n, and Ii is a positive integer, since z < v(n).

According to Lemma 3.6, r = T'1!0 where JwJ = m/1 for some positive integer m < r1, and,

for some history h*, Pr(.6.h (T) h* ('1!) h* (0) h.6.) ~ r116-x/n-2 > z-2. By Property 3.1,

Pr (.6.h (T) h*), Pr (h* {'1!} h*) and Pr (h* (0) h.6.) are all greater than z-2.

Notice that n/(2J'1!J) = >.(z)/(2m) is an integer, since m < r1 = z/2. So JwJ divides n/2,

a fact that will be crucial for step 3.

Step 2 consists of collapsing T and 0 each to size less than n/4. Apply Lemma 3.8 to

each, using target size t* = n/4, and parameters l = 12 = JwJ, and T = r2 = z2. Then

r2l2 < nz3 /(2>.(z)). Since z is large, the conditions 1 :::; 12 < r 2l2 < t* and x < (t* log6 r2)/36

of Lemma 3.8 are easily verified. Let T' and 0' be the results of applying Lemma 3.8 to

T and 0 respectively. Then n/2 - 2r2l2 = n/2 - 2z2J'1!J < JT'0'1 < n/2. According to

() ()
-2-72 ln(~)

the lemma, P r .6.h (T') h* and Pr h* (0') h.6. are both at least. z- 2r2
12

• Since

(n - t*)/h < n/JwJ :::; >.(z) and ln(>.(x)) ~ x [8) both of those probabilities are at least z-3z
3

•

For step 3 observe (using Lemma 3.8) that JT'0'J = (JTJ+ J0J) (mod JwJ). But JT'1!0J = n,

and JwJ divides n/2, so JwJ divides JT'0'J. Therefore, there must be some positive integer

k:::; 2z2 such that JT'0'J + kJwJ = n/2.

For step 4 let cI> = (T'wk0')2 E an. Because Pr(.6.h (T'0') h.6.) > 0, Property 2.3 ensures

that either T' or 0' has a contender. Hence, cI> contains two contenders. Moreover, for some

history h' equivalent to h, Pr (.6.h' {cl>} h' .6.) ~ (z-3z
3

• z-2k . z-3z
3)2 ~ z-12z

3
-

4 k > 2-z
4 ~

f, since z:::; log114 (¼). The argument is completed by appealing to Property 2.5. ■

When nondistributive termination is acceptable, the bound of Theorem 7.1 can be beaten

[5). In that case, the following theorem applies.

Theorem 7.4 Let O < € < 1/4 and let a be any (even nondistributively terminating) algo­

rithm which solves Weak Solitude Verification with confidence 1 - f on rings of size n. Then

the expected bit complexity of a on rings of size n is n (n min (log log n, log log log(¼))).

28

Proof: By the linear lower bound of Theorem 4.2, assume that n is large and l is small.

Let z = min (inn, log6 logG(¼)). A fooling argument is given by following Schema 4.1 with

x = (n/75)log6 z and Ii = /2 = [n, n]. After applying steps 1 and 2 of the schema, we have

r of length n with exactly one contender and h E Ha such that Pr (6.h (f) h6.) 2:: 6-x/n-2 =
z-(1/75)6-2.

The core of this proof is more involved than preceding proofs and proceeds in 6 steps.

In Step 1, a relatively short subsequence 0 1 is found in r, which will be used to make fine

adjustments in the length of the constructed sequence cJ>. Step 2 isolates a longer sequence 02

in r, which will be used to make large adjustments in the length of cJ>. Step 3 performs the

main collapsing of r. Step 4 pads the collapsed sequence with replications of 0 2. Step 5 pads

further with replications of 0 1. Step 6 does the final replication to arrive at a contradiction.

The length of 0 2 is crucial to the argument. The need for the other sequence 01 is to correct

for slight imprecision in our ability to control the length of 02.

Step 1: Isolate 01, Apply Lemma 3.6 to r with l = 11 = 1 and T = T1 = r z1/21.
Then rl < n and (nlog6 r)/36 2:: nlog6 z

112 /36 > X· So the conditions of Lemma 3.6 are

met, implying r = '110 11 where 1 :S 10 1 1 < z1/2 and, for some history h1 , Pr(6.h(w)

hi(01)hi(Y)h6.) 2:: z-1/2z-1/ 75 5-2 > z-0·9 • By Property 3.1 each of Pr(6.h('1101)h1),

Pr (h1 (01) h1) and Pr(h1 (01 Y) h6.) are greater than z-0
·
9

• Let d1 = 101 I-

Step 2: Isolate 0 2. In Step 3, r will be collapsed by multiples of 1021 down to a size

close to n' = ln/(d1 + l)J. It is crucial that 102I be chosen carefully, so that a length quite

close to n' can be achieved in a small number of individual collapsing and splicing steps,

which keeps the probabilities sufficiently large.

Let ..\(x) denote the least common multiple of the integers not exceeding x. Apply Lemma

3.6 to the larger of '1101 and 01 Y, which has length at least n/2 and which without loss of

generality can be assumed to be 01 i. Let T = T2 = r z l and l = 12 = d1 r d~~r:) l · Then T2l2 <

n/2 because z is much smaller than A(z). Also (l01illog6 r)/36 2:: (nlog6 z)/72 > X· So the

conditions of Lemma 3.6 are met, implying 01 i = 302A where l021 = m/2 for some positive

integer m < z, and for some history h2, Pr(h1 (3) h2 (02) h2 (A) h6.) > ,2
1 z-0·9 > z-2. By

29

Property 3.1 each of Pr (h1 (S) h2), Pr (h2 (0 2) h2) and Pr (h2 (02A) ht::,) are greater than

z-2. Let d2 = 1021, Since m < z, m divides A(z), so d2 divides A(.z)/2,

To summarize, there are two subsequences 0 1 and 02 of r, of lengths d1 and d2, respec­

tively, where 1 $ d1 $ 12 $ d2 < l2 z and d1 < z112 • Known divisibility properties are that

d1 I l2 and 12 I d2 and d2 I A(z)l2, Sequence r = "il1302A,

Step 3: Collapse pieces of r. Collapse each of q,, S and 02A separately to size at

most t* = l n' /3 J. Leave any segment that is already no longer than t* unchanged. For

each of those that are longer than t*, apply Lemma 3. 7 using the parameters t*, l = [3 = d2

and T = T3 = r z3VZl. To verify the conditions of Lemma 3.7, notice that /JT3 < l2ZT3 =
d1z r ~ l r z3VZl < z2+3VZ r Xfz}l But ln A(z) ~Zand Z < ln n, so l3T3 < ~+z2+3J;° < t*.

Also notice that (t* log6 r3)/36 2: (ln' /3J log6 (z3VZ)/36 > nl~~6 z dY.;l > x since d1 < ../z.
So the conditions of Lemma 3.7 are met. Let <I>1, <I> 2 and <I>3 he the sequences resulting

from q,, S and 0 2A respectively and combine the results supplied by Lemma 3.7 for each

of <I>1, <I>2 and <l>3. Note that each collapsing step removes at least d2 processors. Thus the

total number of steps, summed over <I> 1, <I>2 and <I>3, cannot exceed n/d2, But n/d2 $ n/12 $

nA(z)/(n - n') < 2A(z) < 3Z, for large z. Let n" = l<I>1<I>2<I>3I, According to Lemma 3.7,

(b) n" = n (mod d2) and

Step 4: Pad with 02. The object is to pad <I>2 to form sequence <I>~ such that n' -

A(z)d1 < l<I>1<I>~<I>3I $ n'. If n" = l<I>1<I>2<I>3I is already greater than n' - A(z)d1, simply let

<I>; = <I>2, Otherwise, n" $ n' - A(z)d1. Since (n- n') / A(z) $ 12 < (n - n') / A(z) + d1, conclude

that n' - A(z)d1 < n - A(z)l2 $ n'. Hence, it suffices to pad to length exactly n - A(z)l2,

Since n" = n (mod d2), and A(z)l2 = 0 (mod d2), then n" = n - A(z)l2 (mod d2). So there

must be a positive integer k < 3r3 such that n" + kd2 = n - A(z)l2, Let i11~ = <I>2(02l-

30

Since Pr(h2{02}h2) > z- 2 and Pr(hd<I>2}h2) > 6-4\ then Pr(hdcI>;}h2) > z-6r3 6_ 4
z.

Let cI> 4 = cI> 1 «1>;<1>3 . Then Pr (6.h { <l>4} h.6) > 6_ 5
z. By Property 2.3, <!>4 must contain a

contender. Also, l<I>4I = n (mod d2).

Step 5: Pad with 01. Since l<I>4I = n (mod d2) and d1 divides d2, lcI>4I = n (mod d1),

Since n' - .\(z)d1 < lcI>4I ~ n', conclude that n - .\(z)d1(d1 + 1) - d1 ~ (d1 + l)l<I>4I :Sn. So

there must be a nonnegative integer J(< (.\(z) + l)(d1 + 1) such that (d1 + l)l<l>4i + K d1 = n.

Let cI>s = cI>1(01)KcJ>;cI>3. Then Pr(.6h{cI>s}h.6) > 6_5zz-(-X(z)+l)(di+l).

Step 6: Replication. Let cI> = <1> 5 (<1> 4)d1 • Then lcI>I = n, and <I> has more than one

contender. Also, Pr (6.h { <l>} h.6) > 6-sz(di +1) z-(.X(z)+i)(di +l) > 6_6z, since d1 < vz, -\(z) <

3z and z is large. Recall that z ~ log6 log6 (¼). Therefore Pr (6.h {<I>} h.6) > f. The argument

is completed by appealing to Property 2.5. ■

Corollary 7 .5 The complexity of any nondistributively terminating Las Vegas algorithm that

solves Weak Solitude Verification with confidence at least 1 - 1/2n on rings of size n is

n (n log log n) bits.

8 Concluding Remarks

The lower bounds of this paper apply to Monte Carlo algorithms, that is, to algorithms that

err with small probability (at most f). The matching upper bounds [5] are also achieved with

Monte Carlo algorithms. A stricter requirement is to insist on Las Vegas algorithms, that is,

algorithms that must be correct upon termination and must terminate with probability one.

The elaborate model used in this paper can be substantially simplified when the results

are required only for Las Vegas algorithms. The Monte Carlo proofs all proceed by deriving

a ring of processes that errs with too high a probability from the assumption of a correct

ring of processes that has a low expected complexity. Since Las Vegas algorithms must have

zero probability of error, the proofs are relieved of the burden of maintaining bounds on the

probability of error of the new ring at every stage of the construction. Furthermore, there

is no need to start with a probability space of computations for a ring of processes; rather,

31

the manipulations are applied to a single computation. It is only necessary to derive some

possible erroneous computation from the assumption that there is some computation with

low complexity.

This simplified perspective leads to stronger statements of theorems as well as less com­

plicated proofs. The results apply to the best case complexity of a correct algorithm, rather

than to the expected case. Furthermore, the results hold even if, with high probability, the

algorithm deadlocks or fails to terminate. All that is required of the algorithm is that it is

correct if and when it terminates.

This weak requirement for correctness together with the interpretation of complexity as

the best case complexity reflect the automaton-theoretic notion of nondeterminism. Thus

we call such algorithms nondeterministic (distributed) algorithms. The details of the general

nondeterministic model for communication complexity of distributed algorithms can be found

elsewhere [4]. In this model, the results of Section 7 become:

Theorem 8.1 The complexity of any distributively accepting nondeterministic algorithm that

solves Weak Solitude Verification for rings in R[n,n] is n (nJlog n) bits.

Theorem 8.2 The complexity of any nondistributively terminating nondeterministic algo­

rithm that solves Weak Solitude Verification for rings in R[n,n] is n (n log log n) bits.

The lower bound of Theorem 8.1 can be extended to a lower bound of n (nJlog n) hits

for general non-constant function evaluation, and applies to any nondeterministic distributed

algorithm for a ring of size n [4]. This bound is tight; there is a cyclic non-constant Boolean

function that can be computed in O (nJlog n) expected hits on an asynchronous anonymous

unidirectional ring. The Monte Carlo result of Theorem 7.1 can similarly be extended to

Monte Carlo non-constant function evaluation. However, the bound of Theorem 7.3 is not

known to hold for non-constant function evaluation with distributed termination. There is a

gap in the known upper and lower bounds for Monte Carlo non-constant function evaluation.

The generalization from Las Vegas to nondeterministic algorithms can be mimicked to

derive a more general notion than the strict Monte Carlo model of an algorithm. As described

32

in subsection 2.3, this more general model, which has both probabilistic and nondeterministic

properties, is the one for which the lower bounds of this paper actually hold.

References

[1] K. Abrahamson, A. Adler, R. Gelbart, L. Higham, and D. Kirkpatrick. The bit complex­

ity of probabilistic leader election on a unidirectional ring. In Distributed Algorithms on

Graphs, pages 1-12. Carleton University Press, 1986. Proc. 1st International Workshop

on Distributed Algorithms.

[2] K. Abrahamson, A. Adler, R. Gelbart, L. Higham, and D. Kirkpatrick. The bit complex­

ity of randomized leader election on a ring. SIAM Journal on Computing, 18(1):12-29,

1989.

[3] K. Abrahamson, A. Adler, L. Higham, and D. Kirkpatrick. Probabilistic evaluation of

common functions on rings of known size. Technical Report 88-15, University of British

Columbia, 1988.

[4] K. Abrahamson, A. Adler, L. Higham, and D. Kirkpatrick. Randomized function evalu­

ation on a ring. Distributed Computing, 3(3):107-117, 1989.

[5] K. Abrahamson, A. Adler, L. Higham, and D. Kirkpatrick. Optimal algorithms for prob­

abilistic solitude detection on anonymous rings. Technical Report TR 90-3, University

of British Columbia, 1990.

[6] Y. Afek. Distributed Algorithms for Election in Unidirectional and Complete Networks.

PhD thesis, University of California at Los Angeles, 1985.

[7] D. Angluin. Local and global properties in networks of processors. In Proceedings of the

Twelfth Annual ACM Symposium on Theory of Computing, pages 82-93, 1980.

[8] T. M. Apostol. Introduction to Analytic Number Theory. Springer-Verlag, New York,

1976.

33

[9] H. Attiya, N. Santoro, and S. Zaks. From rings to complete graphs - 0(nlogn) to O(n)

distributed leader election. Technical Report SCS-TR-109, Carleton University, 1987.

[10] H. Attiya and M. Snir. Better computing on the anonymous ring. In Proc. Aegean

Workshop on Computing, pages 329-338, 1988.

[11] H. Attiya, M. Snir, and M. Warmuth. Computing on an anonymous ring. In Proc. 4th

Annual ACM Symp. on Principles of Distributed Computing, pages 196-203, 1985.

[12] H. L. Bodlaender. New lower bound techniques for distributed leader finding and other

problems on rings of processors. Technical Report RUU-CS-88-18, Rijksuniversiteit

Utrecht, 1988.

[13] D. Dolev, M. Klawe, and M. Rodeh. An O(nlogn) unidirectional distributed algorithm

for extrema finding in a circle. J. Algorithms, 3(3):245-260, 1982.

[14] P. Duris and Z. Galil. Two lower bounds in asynchronous distributed computation

(preliminary version). In Proc. 28nd Annual Symp. on Foundations of Comput. Sci.,

pages 326-330, 1987.

(15] G. Fredrickson and N. Lynch. The impact of synchronous communication on the problem

of electing a leader in a ring. In Proceedings of the Sixteenth Annual A CM Symposium

on Theory of Computing, pages 493-503, 1984.

[16] A. ltai and M. Rodeh. Symmetry breaking in distributed networks. In Proc. 22nd Annual

Symp. on Foundations of Comput. Sci., pages 150-158, 1981.

[17] J. Pachl. A lower bound for probabilistic distributed algorithms. Technical Report

CS-85-25, University of Waterloo, Waterloo, Ontario, 1985.

[18] J. Pach!, E. Korach, and D. Rotem. Lower bounds for distributed maximum finding. J.

Assoc. Comput. Mach., 31(4):905-918, 1984.

[19] G. Peterson. An O(nlogn) algorithm for the circular extrema problem. ACM Trans. on

Prog. Lang. and Systems, 4(4):758-752, 1982.

34

I ,.

