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Abstract 

Tight lower bounds on the expected bit complexity of the Solitude Verification problem 

on anonymous asynchronous unidirectional rings are established that match the upper 

bounds demonstrated in a companion paper [5]. In the algorithms of [5], a variety of 

techniques are applied; In contrast, we find that a single technique, applied carefully, 

suffices for all of the lower bounds. The bounds demonstrate that, for this problem, the 

expected bit complexity depends subtly on the processors' knowledge of the size of the ring, 

and on the type of algorithm (Las Vegas or Monte Carlo / distributive or nondistributive 

termination). 

1 Introduction 

Solitude Detection is the problem: given a network of processors and a distinguished nonempty 

subset of the processors, called contenders, determine whether or not there is just one con­

tender in the network. A weaker problem, Solitude Verification, only requires that the pro­

cessors determine if there is only one contender. (An algorithm for Solitude Verification is 

allowed, for example, to deadlock or fail to terminate when there is more than one contender). 

This paper and its companion paper [5] provide a detailed study of the communication 

complexity of probabilistic algorithms for these two problems for anonymous, asynchronous, 

unidirectional rings of processors. The two papers together determine, to within a constant 

factor, the complexity of these problems measured in bits of communication for all versions 

of the problems as two additional parameters vary. One parameter is the range of ring sizes 

for which the algorithm is required to work. The other is the type of termination required of 

the algorithm. The bit complexity bounds are established for Monte Carlo algorithms, that 

is , algorithms that err with probability at most €. Bounds for Las Vegas algorithms, that is, 

algorithms that terminate with probability one and upon termination are correct, follow as 

corollaries. 

Our motivation is to understand the effect on complexity of seemingly small changes in 

the problem definition. This necessitates developing a precise model of computation that 

incorporates enough precision to permit one to ask questions concerning probabilistic mea-
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sures of complexity. Because the Solitude Detection problem is one of the simplest non-trivial 

problems [4] and is a subproblem of many more common problems including the well-studied 

problem of Leader Election [1, 2, 3, 6, 9, 12, 13, 15, 16, 17, 18, 19], it provides an appropriate 

domain for the case study. 

In this paper the model of computation is formalized and the lower bounds are established. 

The matching upper bounds all appear in the companion paper [5). 

The standard assumption for a distributed computation is that each processor knows 

when the algorithm has terminated and hence terminates its own computation. This is called 

distributive termination. A weaker notion of termination, nondistribU:tive termination, is 

simply that all message traffic has ceased, a situation that may not be detectable. A processor 

under the control of a nondistributively terminating algorithm may reach some conclusion 

that it holds only as long as it receives no additional messages. The results of the paper are 

informally summarized here although the actual theorems to appear make somewhat stronger 

statements than this summary claims. The probability of error to be tolerated, denoted by 

f, is a parameter to the algorithm and is assumed to be small. A parameter N is used to 

describe the size of rings for which the algorithm is required to work. 

Throughout this paper, the constant implicit in the n notation is truly constant, inde­

pendent of the algorithm and all of its parameters. 

Informal Summary: 

1. There is no Monte Carlo distributively terminating algorithm that solves Solitude Ver­

ification with error at most 1/4 on all rings. 

2. Any Monte Carlo nondistributively terminating algorithm that solves Solitude Veri­

fication on all rings of size n where n is unconstrained has expected bit complexity 

n ( n log(¼)) . 

3. Any Monte Carlo, distributively terminating algorithm that solves Solitude Verification 

on all rings of size n wl1ere n E [1, N] has expected bit complexity n (nJlog( ~) + 

n log(¼)) when rirtg size is actually less than N /2. 
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4. For every p > 0, any Monte Carlo ( even nondistributively terminating) algorithm that 

solves Solitude Verification on all rings of size n where n E [( ½ + p )N, N] has expected 

bit complexity n (n min (log n, log log(¼)) + n min (log(¼), log(¼), log n)) on rings of 

size r (½ + p)N l · 
5. Let v( n) be the smallest non-divisor of n. Any Monte Carlo ( even nondistributively 

terminating) algorithm that solves Solitude Verification on all rings of size n where n 

is fixed has expected bit complexity n(nmin(logv(n), loglog(¼)) + nmin(loglogn, 

log log log(¼))) . 

6. Any Monte Carlo distributively terminating algorithm that solves Solitude Verification 

on all rings of size n where n is fixed has expected bit complexity n ( nmin ( Jlogn, 

J log log(¼) ) ) . 

Earlier lower bounds in communication complexity on rings have frequently been achieved 

by techniques of "cutting and splicing" [2, 4, 7, 10, 11, 14]. The goal is to show that compu­

tations of a correct algorithm cannot be "cheap" in the sense that they have small communi­

cation cost. These techniques typically start with an assumed cheap computation on a ring, 

and construct a new ring from the original such that each processor in the new ring has a 

communication history identical to its corresponding processor in the original ring. Proces­

sors in the new ring must therefore reach the same conclusion as those in the original ring. 

However, the construction is such that this conclusion is incorrect for the new ring. 

The lower bounds in this paper are achieved through probabilistic analogues of these 

techniques. Even in the much simpler error-free setting, subtleties arise in the application 

of the techniques. For example, care must be taken not to induce deadlock when cutting 

out pieces of the ring. In the more general probabilistic setting, the techniques analogous 

to cutting and splicing are much more elaborate. In this setting complete rings of processes 

must be manipulated rather than just single computations. Also, at each step of the con­

struction, bounds must be maintained on the probabilities of associated computations. This 

significantly more subtle environment demands a very precise and somewhat formal model 
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of communication. A central tool that allows the extension of the elementary techniques to 

a probabilistic setting is our "repeated histories lemma", Lemma 3.6, which establishes the 

probability, as a function of the expected communication complexity, that two processors 

separated by a very constrained distance will have identical communication histories. Using 

tools such as the repeated histories lemma a new ring is constructed by removing, replicating, 

and splicing together pieces of the original ring. A contradiction is reached because the new 

ring has more than one contender and too high a probability of asserting solitude. 

Although the lower bounds in this paper are all tight, they contrast in many ways with 

the matching upper bounds [5]. For example, the lower bounds apply to Solitude Verification 

while the algorithms solve Solitude Detection. The lower bounds impose no restrictions on 

the type of error that is allowed, while the matching algorithms err (with low probability) 

only in restricted ways. The lower bounds actually apply to algorithms that have an element 

of nondeterministic as well as probabilistic behaviour while the upper bounds are achieved by 

algorithms that are purely probabilistic. The companion paper contains a discussion of the 

interpretation of this nondeterminism together with a description of the weak requirements 

of the lower bounds as contrasted with the strong requirement achieved by the matching 

algorithms. A surprising consequence of this investigation is. the discovery that the two 

parameters, knowledge of ring size and type of termination, have a significant affect on the 

expected bit complexity of Monte Carlo Solitude Detection on an asynchronous, anonymous 

unidirectional ring while the complexity is insensitive to other changes in the requirements of 

the solution. 

2 The Model 

2.1 Processes, Process Sequences, and Process Rings 

A message is an element of M = {O, 1}+. If m EM then the cost of m, denoted llmll, is the 

length of m. Elements of B = M* (that is, finite sequences of messages)1 are referred to as 

1 For clarity a.nd conciseness, the • opera.tor (borrowed from opera.tors for strings) is used in this pa.per to 

denote finite sequences. For example, M• is the set of finite sequences of messages. 
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(message) bundles. The empty bundle is denoted by b.. If Mis a bundle then we denote by 

IIMII the cost of M, that is the sum of the costs of all messages in M. 

The behaviour of an arbitrary processor can be viewed as a sequence of input and out­

put transmissions, where the actual choice and timing of successive outputs might depend 

on the preceding sequence (including timing) of outputs and inputs as well as the outcomes 

of random experiments. In an asynchronous setting, however, links have arbitrary delay. 

Therefore, it is natural, from an algorithmic point of view, to consider only algorithms whose 

processor behaviours are independent of timing information. Under the assumption of time­

independence, a sequence of output messages produced in response to a single input message 

can be packaged together to form a single output message. Therefore, processors with time 

independent behaviour can be assumed to be message-driven, with at most one output mes­

sage produced in response to each input message. This message-driven behaviour is modelled 

by a probabilistic process2 that specifies, for each output state of the process, a probability 

for each m E M. The output state of a process records not only the last input message, 

but also the process's complete communication history. The probability associated with a 

message m and output state s is the probability that the process responds with message m 

after the specified sequence of outputs and inputs recorded in state s. For a fixed output 

state the probabilities of output messages may sum to less than 1, reflecting the possibility 

that no output message is produced. 

There is a natural conservative extension of this view of a process in which inputs are arbi­

trary bundles and the response to an input bundle M is the bundle formed by concatenating 

in sequence each response to the individual messages in M. This bundle-driven interpretation 

ensures that exactly one output bundle is produced in response to one input bundle. As an 

additional benefit of this bundle-based interpretation, the initial output produced by a pro­

cess can be viewed as a response to an empty input bundle. Thereafter, empty input bundles 

necessarily result in empty output bundles. 

Elements of (Bx B)* are referred to as local behaviours; each pair in the sequence specifies 

2 We use the word processor to refer to an informal notion, and process to refer to elements of our formal 

model. 
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an input bundle and its associated output. Thus a (probabilistic) process 7r induces, for 

each local behaviour C and each input bundle M, a probability space on B (the space of 

possible output bundles). This interpretation of a process leads to a natural definition of the 

probability of a local behaviour. First, observe that in general a bundle of output messages 

may arise from a fixed input bundle and current state in several ways. The probability of local 

behaviour C is the sum, over all ways that C can arise, of the product of the probabilities 

associated with each of its output events. 

Elements of 1i = B* (that is, finite length sequences of bundles) are referred to as (com­

munication) histories3. The length of a history h, denoted jhj, is the number of bundles in 

h and the cost of h, denoted 11h11 is the sum of the costs of all bundles ih h. Every local 

behaviour C can be decomposed into two equal length histories, the input history of C and 

output history of C. The input (respectively, output) history is the sequence of first (respec­

tively, second) elements of the pairs in C. If h and h' are equal length histories, then h { 1r} h' 

denotes the event that process 1r exhibits a local behaviour with output history h', when it 

has input history h. Let h(i) denote the length i prefix of history h. The following property 

is an immediate consequence of the assignment of probabilities to local behaviours: 

Property 2.1 For all histories h and h' and all 1 ::; i ::;; jhl, Pr ( h { 1r} h') ::;; Pr ( h(i) { 1r} h(i)). 

A process 7r is an initiator if Pr ( 6 { 1r} 6) = 0 and a non-initiator if Pr ( 6 { 7r} 6) = 1. 

There is no essential loss of generality in assuming that each process is either an initiator 

or a non-initiator; at an additional cost of n bits of communication, we can insist that all 

processes with Pr ( 6 { 1r} 6) < 1 start by transmitting a 1-bit "wakeup" message to the 

next such process (via the intervening non-initiators) and thereafter continue as before. We 

distinguish a subset Ma ~ M called accepting messages, and a subset Mr ~ M - Ma called 

rejecting messages. A history is an accepting history (respectively, rejecting history) if and 

only if its last message ( that is, the last message in its last non-empty bundle) is an accepting 

3 1n this paper, the concatenation of two histories is to be interpreted as the concatenation of two sequences. 

Thus, if h1 = M1,1 • • • M1,i and h2 = M2,1 • • • M 2 ,j then h1h2 denotes the new history sequence comprising the 

bundles M1,1 · · · M1,iM2,1 · · · M2,,. 
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(respectively, rejecting) message. The set of all accepting (respectively, rejecting) histories is 

denoted by 1ta (respectively, 1tr ). A process is in an accepting state (respectively, rejecting 

state) if its last message sent was an accepting (respectively, rejecting) message. 

A sequence oft processors can be linked together into a line by letting the output of the 

ith processor be the input of the ( i + 1 )st processor, for i = 1, ... , t -1. In many respects a line 

of processors behaves like a single processor whose input is the input of the first processor and 

whose output is the output of the last. This is formalized as follows. The sequence of histories 

ho, h1, ... , ht describes a computation of a sequence of t processes in which the ith process 

has input history hi-t and output history hi, for i = 1, ... , t. The cost of such a computation 

is E!=t llhill- Note that history ho does not contribute to this cost. We denote by ho {1r1} 

h1 • • • { 7rt} ht the event that the process sequence 1r1, 1r2, ... , 7rt produces the computation 

described by ho, h1, ... , ht, when 1r1 has input history ho. Since the probabilistic choices of 

the individual processes are assumed to be independent, we have: 

t 

Property 2.2 Pr(ho{1rt}h1 ··· {1rt}ht) = ITPr(hi-t {1ri}hi)• 
i=l 

If II =1r1, ... , 7rt is a sequence of processes then ho {II} ht denotes the disjunction of the 

events of the form ho { 1rt} h1 • · · { 7rt} ht taken over all arbitrary histories h1, ... , ht-1 • Thus, 

Pr(ho{II}ht) = L Pr(ho{1rt}h1•·• {1rt}ht)· 
hiEH, l~i< t 

As a consequence of the definition of an initiator: 

Property 2 .3 If Pr ( 6 {II} M) > 0 where M f:. 6, then IT contains at least one initiator. 

The preceding definitions allow us to study the communication of a line of processors as 

a function of the communication of the individual processors. Our objective, however, is to 

study the communication of rings of processors. Because the communication of processors on 

a ring is assumed to be independent of timing information, the computation can be scheduled 

in any convenient way. Imagine a scheduler that proceeds as follows. Some initiating processor 

is chosen to send its initial message. Starting with this initiator, the scheduler proceeds once 
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around the ring and each processor in turn sends a sequence of messages consisting of the 

processor's initial output message followed by its response to each message in sequence in its 

input queue. Thereafter, the scheduler continues around the ring and each processor responds 

in sequence to each message in its input queue. The meaningful part of the computation ends 

when some processor reads all the messages in its input queue without generating any output 

messages since then there necessarily are no outstanding messages. This is just a convenient 

way to schedule computation. A processor is not allowed to look ahead at messages in the 

remainder of its input queue before responding to the current message. Let a round be one 

pass of the scheduler around the ring. The scheduler just described serves to partition the 

sequence of input and output messages of each processor into bundles that correspond to 

each round. Round one is initiated when the scheduler delivers an empty input bundle to an 

arbitrary processor, p1. Processor p1 generates a bundle (either containing a single message 

or empty) in response to this input, which in turn become the input bundle of the following 

processor, P2• Similarly, in each round, on the ring of processors P1, ... ,Pt, for 1:::; i:::; t - 1, 

the output bundle of Pi is the input bundle of Pi+l. The output bundle of Pt in round j is 

the input bundle of p1 in round j + 1. By convention, the computation terminates when Pt 

produces an empty output bundle; this ensures that the number of input and output bundles 

is the same for all processors. Observe that for each processor all input and output bundles 

except possibly the first and last are non-empty. This reflects the fact that once a null 

output bundle has been produced with this scheduling of the ring, all subsequent outputs are 

null. Because processor behaviours are independent, the probability of the computation on 

the ring is the product of the probabilities of the behaviours of each processor. Note that a 

computation of a ring of processors may have different descriptions depending on the choice of 

the first processor (in effect, the point at which the ring is broken into a line). Nevertheless, 

the probability space of sequences of messages transmitted by each processor remains the 

same and hence the expected cost and outcome of the computation is independent of this 

choice. 

The preceding informal view of a scheduled ring motivates the definition of a computation 
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of a ring of processors in terms of the computation of a line of processors. A scheduled ring 

is modelled by a sequence of processes that satisfies some additional properties. The input 

and output histories associated with any process must be of the form B(B - 6)*8. Such 

histories are referred to as ring histories. Furthermore, the output history ht associated with 

the la.st processor and the input history h0 associated with the first processor must satisfy 

ho6 = 6ht, Note that the placement of empty bundles is essential; it is quite possible that 

h {IT} h holds with probability 1, and yet when IT is executed as a ring it produces no messages 

for lack of an initiator. Accordingly, a history sequence ho, h1 , ... , ht is defined to be a ring 

computation if each hi is a ring history and ho6 = 6ht, The event that the process sequence 

IT produces a ring computation with output history h6 corresponds to the event 6h {IT} h6 

as long as h contains no empty bundles. 

2.2 Decisions and Termination 

Some lower bounds in this paper require a restriction to processes that do not change an 

accepting decision once made, while other lower bounds apply even to processes that may 

reverse their decision throughout the computation. We capture this restriction on processes 

by defining a process 1r to be irrevocably accepting if 1r never outputs another message after 

having output an accepting message. A process that does not accept irrevocably may be left 

in an accepting state after having sent its last output message without being able to detect 

that the computation has terminated. Notice that the restriction to irrevocably accepting 

processors permits rejecting decisions to be changed. This asymmetry permits slightly more 

generality than if both accepting and rejecting decisions were required to be firm. It also 

allows us to argue (below) that, without any essential loss of generality, the processes in any 

ring computations can be assumed to reach unanimous decisions. The unanimity condition 

tends to reduce the probability of erroneous computations. Also, perhaps more significantly, 

it allows us to simplify our notation in discussing computations, since the outcome of every 

computation is reflected in the history of each of its processors. 

We now observe that it is straightforward to modify processes, at a total cost of 0( en) 
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bits of communication when there are 0( c) initiators, so that if any process terminates in 

an accepting state, then they all do. It suffices to replace empty output bundles ( other than 

those that initiate computation) by one of two distinguished poll messages. Poll messages are 

initiated by processes that would otherwise produce an empty output bundle in response to a 

non-empty input bundle. A poll message has type accept if at least one of the processes that 

it has encountered (including its initiator) has reached an accepting decision. Non-accepting 

poll messages are forwarded to the next process that initiated a poll message while accepting 

poll messages continue to be forwarded until they reach a process that has sent an accepting 

poll message. Since any computation with c initiators results in at most c initiated poll 

messages, each process sends 0( c) bits in addition to its normal communication. For the 

remainder of this paper it will be assumed that all processes have been modified in this way. 

Hence, it can be assumed that if any process has a decision at the end of a computation, then 

the decision is unanimous. This is justifiable only because our proofs are insensitive to the 

complexity of the algorithm when there are two or more initiators. A computation ho, ... , ht 

accepts if hi E 1ta, for i = 0, ... , t, and rejects if h; E 1tr, for i = 0, ... , t. Let Ha be the 

subset of 1ta containing those histories with no empty bundles. 

As a consequence of the assumed unanimity of assertions: 

Property 2.4 The probability that the computation of a process sequence II accepts on a ring 

is Lhe'Ha Pr( 6h {II} h6). 

The following two properties, which are also immediate consequences of the definitions in 

subsection 2.1, are used to draw conclusions about rings of arbitrary processes and rings of 

irrevocably accepting processes respectively. 

Property 2.5 Let IT be any process sequence and h any accepting history. Then, with prob­

ability at least Pr ( 6h {IT} h6), computations of IT on a ring accept. 

Let 6 {IT}* denote the disjunction of events of the form 6 {IT} h over all h E 1ta, 

Property 2.6 Let IT and <I> be sequences of irrevocably accepting processes. Then, with prob­

ability at least Pr ( 6 {IT} *), computations of IT <I> on a ring accept. 
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2.3 Solitude Detection Algorithms 

The decision of a Solitude Detection algorithm is expressed by associating the current decision 

state of a process with the type of its most recent output message. Recall that decisions of 

processes can be assumed to be unanimous. Accordingly, a computation asserts solitude if it 

accepts and asserts nonsolitude if it rejects. 

Let A denote the set of all probabilistic processes. A distributed probabilistic algorithm for 

Solitude Detection would normally specify a fixed initiating process from A for all contenders 

and a fixed non-initiating process for all non-contenders. (Certainly all of the algorithms of 

the companion paper [5] satisfy this property). It is convenient to generalize this notion of 

a distributed algorithm to permit arbitrary assignments from a set of initiating processes to 

contenders, and from a set of non-initiating processes to non-contenders. Note that there is no 

loss of generality in identifying initiators with contenders. Such a scheme can be imposed by 

having all contenders begin by sending a 1-bit "wakeup" message to the next contender (via 

the intervening non-contenders). Upon receipt of a "wakeup" message all processes proceed as 

before. We define an algorithm to be just the set a ~ A of both initiating and non-initiating 

processes that are available for assignment. 

This generalization gives algorithms both probabilistic and nondeterministic attributes. 

Like conventional probabilistic algorithms, an algorithm is said to solve a problem with prob­

ability p if, for all possible process assignments, the resulting computation reaches the desired 

conclusion with probability at least p. Like conventional nondeterministic algorithms, it is 

said to solve a problem efficiently if for some choice of process assignments the resulting 

computation has low expected cost.4 

More formally, let I denote an interval of positive integers and let 1l1 denote the class of 

all rings of size t where t E J. If a ~ A is an algorithm, at denotes the set of sequences 1r1 , 

••• , 1rt where 11'i E a for 1 ::; i ::; t, and a 1 denotes Ute/ at. Therefore, a 1 corresponds to the 

4 This use of "nondeterminism" should not be confused with the use of the same term by some authors to 

refer to the undetermined behaviour of the scheduler. Since the scheduler cannot affect the communication on 

a unidirectional ring, the results in this paper hold for all schedulers. The term here is used in the stronger 

automata-theoretic sense and refers to the analysis under the assumption of lucky choices. 
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set of all assignments of processes in o to processors on rings in the set n1, 
An algorithm is usually understood to be distributively terminating if the processors can 

detect when the computation is finished. In this case, there is no need for processors to reach 

tentative conclusions which may change throughout the computation as additional message 

arrive; instead, each processor can make one (final) decision and send that decision in its 

last message before terminating. Therefore an algorithm o terminates distributively if every 

1r E o makes irrevocable decisions. For lower bounds on Solitude Verification, we weaken this 

constraint slightly. A Solitude Verification algorithm o accepts distributively if every 1r E o 

is irrevocably accepting. 

This paper and its companion [5) are concerned with three closely related problems, called 

Solitude Detection, Solitude Verification, and Weak Solitude Verification, defined as follows. 

Let I denote an interval of positive integers. 

Solitude Detection. o solves Solitude Detection with confidence 1 - € on rings in n1 if 

(i) for any element of a 1 containing exactly one initiator, solitude is asserted with probability 

at least 1 - f, and (ii) for any element of a 1 containing more than one initiator, nonsolitude 

is asserted with probability at least 1 - €. 

Solitude Verification. o solves Solitude Verification with confidence 1 - f on rings 

in n1 if (i) for any element of a 1 containing exactly one initiator, solitude is asserted with 

probability at least 1- f, and (ii) for any element of o 1 containing more than one initiator, 

solitude is not asserted with probability at least 1 - €. 

Weak Solitude Verification. o solves Weak Solitude Verification with confidence 1 - € 

on rings in n1 if, for any element of o1 containing more than one initiator, solitude is not 

asserted with probability at least 1 - €. 

These definitions make it clear that Weak Solitude Verification is a subproblem of Solitude 

Detection. Lower bounds for Weak Solitude Verification imply lower bounds for Solitude 

Detection. Nonsolitude can be ascertained with a low expected cost by a simple exchange of 

coin tosses [5]. But the problem we focus on is the cost of verifying, with high probability, 

that there is only one initiator. Therefore the complexity of a Weak Solitude Verification 
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algorithm is defined to be the expected complexity when solitude is correctly asserted. (In 

the case of algorithms that never correctly assert solitude, the complexity is undefined.) 

More formally, let a be an algorithm that solves Weak Solitude Verification with confidence 

1 - L Let S = {II E at I Pr(II asserts solitude) ~ 1 - f} =/ 0. The complexity of a on 

rings of size t is5 inf E( (llholl + · · · + llhtll) I ho, ... , ht is a computation of II that asserts 
IlES 

solitude ) . 

3 Tools for Deriving Lower Bounds 

The symbol xis reserved to denote a number (which will be given a specific value whenever 

necessary) called the cheapness threshold. A computation of a process sequence is said to be 

cheap if it has total cost at most x- We denote by ho (1r1) h1 · • • (1rt) ht (respectively, ho (II) ht) 

the conjunction of the event ho {1ri} h1 · • • {1rt} ht (respectively, ho {II} ht) and the event that 

the computation is cheap. 

Let II1, II2 and II3 be process sequences. The sequence II1 II2 is said to be formed by con­

catenation of II1 and II2 and the sequence II1II2II3 is formed by splicing II2 into the sequence 

II1Il3. The following properties and lemmas, which are consequences of the definitions in 

Section 2, are used to relate the probability of computations of the sequence II1 II2II3 to the 

probabilities of related computations of the sequences Il1II3 and Il2. 

Property 3.1 Pr(hi{Ili}h2{II2}h2{II3}h3) = Pr(hi{IIi}h2{Il3}h3) • Pr(h2{Il2}h2) 

and Pr(h1 (II1) h2 (Il2) h2 (Il3) h3) ~ Pr(h1 (II1) h2 (II3) h3) · Pr(h2 (II2) h2). 

Let h = M1 ···Mk and h' = M{ · · · Mf. Then h and h' are message-equivalent if the 

sequence of messages formed from the concatenation of M1 through Mk is the same as the 

sequence of messages formed from the concatenation of M{ through M{. That is, the histories 

are the same up to packaging of messages into bundles. Let IT be a process sequence. The 

concatenation of k copies of II, denoted Ilk, is said to be formed by replication of II. The 

following lemma relates the probabilities of certain computations of IIk to those of II. 

5 E(z) denotes the expected value of z . 
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Lemma 3.2 For any history h and integer k 2: 1 there is a message-equivalent history h' 

such that Pr ( 6h' {Ilk} h' 6) 2: ( Pr ( 6h {IT} h6)) k. 

Proof: Suppose that Pr( 6h {IT} h6) = p and h = M1 •••Mr, where Mi EB. Define Mo= 

6 and M8 = 6, for s > ,r. Define Mj to be the bundle formed by concatenation of the se­

quences of messages in the SU bsequence of bundles Mi' ... 'Mi+j-1. Let >. = r r I k 1- It will suf­

fice to show that, for all t 2: 1, Pr( 6Mf Mf+I .. · M(>.-t)k+I {Ilt} Mf Mt+l · .. Mt-i)k+t+i) 2: 

pt. The proof is by induction on t. The basis, t = 1, is a straightforward consequence of the 

bundle-driven nature of process~s. For t > 1, 

Pr(6MfMf+l .. ,M(>.-l)k+i {ITt}MfMt+1Mf+t+l .. ,M(>.-I)k+t+l) 

2: Pr ( 6Mf Mf+l ... Mi-1)k+1 {rrt-1} Mtl Mtk Mf+t ... M(>._1)k+t) 

• Pr ( Mf-
1 
Ml Mf+t · · · M(>.-t)k+t {II} Mf Mt\1 Mk+t+l · · · M(>.-t)k+t+i) 

= p · Pr( 6Mf Mt+i · · · M(>.-I)k+I {nt-I} Mf-
1 
Mt Mf+t · · · M(>.-t)k+t) 

by the bundle-driven nature of processes. Setting t = k, it follows that Pr ( 6h' {Ilk} h' 6) 2: 

t h h' - MkMk Mk P , W ere - 1 k+l ''' (>.-l)k+l' ■ 

Lemma 3.3 If IT is any sequence of irrevocably accepting processes and Pr( 6 {II}*) = p, 

then Pr(6 {Ilk}*) 2: 1- (1 - p)k, fork 2: 1 

Proof: It suffices to observe that for k > 1, 

• 
The preceding properties and lemmas allow us to perform probabilistic analogues of col­

lapsing, replicating and splicing once certain events and their probabilities have been identi­

fied. The lemmas to follow provide the necessary probabilities. Lemma 3.4 counts the number 

of distinct ring histories of cost at most k, and is required by the others. Lemma 3.5 allows us 

to cut a ring of processes at some link, and to treat it as a line. Lemma 3.6 locates repeated 

histories, and Lemmas 3. 7 and 3.8 use the repeated histories to collapse the line to a desired 

size. 
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Lemma 3.4 There are fewer than 2 • 6k distinct ring histories of cost at most k. 

Proof: Recall that ring histories contain no internal empty bundles and that messages are 

never empty. Imagine that bundles are separated by end-of-bundle markers and messages 

within bundles are separated by end-of-message markers. Then a sequence of bits can be 

parsed into a history by placing between between any pair of bits either an end-of-message 

marker or an end-of-bundle marker or no marker. Since, in addition, the history might begin 

or end with an empty bundle, there are 2H23k-l histories of cost exactly k. Therefore, the 

number of ring histories of cost at most k is 1 + I:f=1 2i+23i-l < 2 • 6k. ■ 

Given a process sequence II with low expected complexity, the following lemma provides 

a fixed short ring history and a cyclic permutation if> of II such that, with reasonably high 

probability, if> produces a ring computation with this history as its output. 

Lemma 3.5 Let f < ½ and let II E At be any process sequence that asserts solitude on a ring 

with probability at least 1 - f. Suppose that the expected bit complexity of computations of II 

that assert solitude is at most x/2. Then there exists a cyclic permutation if> of II and an 

accepting history h with 11h11 ~ x/t such that Pr(6h (if>) h6) > 5-x./t-2 • 

Proof: Let II = 1r1 , ... , ?rt, Since the expected cost of computations that assert solitude 

is at most x/2, the probability that an arbitrary computation of II asserts solitude and 

communicates fewer than x bits is at least (1 - f)/2 > 1/4. The remaining probability 

calculations are implicitly conditional on the computation asserting solitude and being cheap. 

Let ei denote the expected cost of the output history of process 1r i, over all cheap ring 

computations of II that assert solitude. For some i, ei ~ x/2t, so with probability at least 

1/2, ?ri has an output history with cost no more than x/t. But by Lemma 3.4 there are fewer 

than 2 • 6x/t distinct ring histories with at most x/t bits and hence, with probability greater 

than (1/4)6-x./t, ?ri outputs some fixed accepting history h, where 11h11 ~ x/t. Removing the 

conditioning on cheap computations that assert solitude, it follows that Pr(6h (if>) h6) > 

(1/16)6-x/t > 6-x/t-2 where if> = ?ri+1, ... , ?rt, 71'1, ..• , ?ri. ■ 
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At the heart of our lower bound proofs is the observation that a sequence of histories 

of sufficiently small total cost must contain the same history twice. Lemma 3.6 refines this 

observation to a probabilistic setting, and provides information about the separation between 

the repetitions. It shows that, given a process sequence II and an integer l, with reasonably 

high probability, the computation of II contains two identical histories whose separation is 

a small integer multiple kl of l. The probability depends on the bound r on k and on the 

cheapness threshold X· 

Lemma 3.6 Let r and l be positive integers with r sufficiently large. Let IT be any sequence of 

processes with !III ~ rl. Suppose that x < (!III log6 r)/36. Let h0 and h1 be arbitrary histories 

in 1i. Then there exist non-empty process sequences <1>1, <1>2 and 4>3 where IT = 4>14>24>3 and 

a history h* such that 

Proof: Lett= Pr( h0 (II) h1), and suppose that~> 0, since otherwise the lemma is trivial. 

Let 6 = log6 r and suppose that II =1r1 , .•• , 1r t. For 1 ~ i < t, let ei be the expected cost 

of the output history of 7ri, conditional on h0 (II) h1. That is, ei = (1/tn::::h 11h11 · Pr( h0 (1r1,i) 

h(11'i+1,t)h1). If ei < 6/12, say that link i is quiet. If 11h11 ~ 6/4-1, say that history his 

cheap. 

Suppose that link i is quiet and denote by ht the cheap history that maximizes Pr( h0 (11'1,i) 

h"; (11'i+1,t) h1). Refer to ht as the preferred history on link i. By Lemma 3.4, there are fewer 

than 2 • 66/ 4- 1 = 66/ 4 /3 = r 114 /3 cheap histories. So Pr ( h0 (1r1,i) h"; (1ri+1,t) h1) > 
7
?/4 , since 

otherwise ~llhll$6/4_ 1 Pr (h0 (11'1,i) h (1ri+1,t) h1 ih0 (II) h1
) < (r 114 /3)/r 114 = 1/3 and hence 

ei > (2/3)(6/4- 1). This is at least 6/12 for r ~ 68 , thus contradicting the assumption that 

link i is quiet. 

Let Bu,v = {u•rl+v+ kl : 0 ~ k ~ r-1}, where O ~ u ~ lt:;:/ J-1 and 1 ~ v ~ l. Note 

that any two members of any set Bu,v are separated by kl where k is an integer between 1 

and (r - 1). Of the t -1 internal links of II all but (t - 1) mod rl < t/2 belong to Uu,v Bu,v• 
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Choose u and v such that at least 1/3 of the r members of Bu,v are quiet links, given h0 (IT) h1 . 

Such a pair u, v must exist, since otherwise at least 2/3 of at least t/2 links are not quiet, 

contradicting the assumption that I::!=1 ei s x < to/36. 
Again, because there are fewer than r 114 /3 cheap histories, at least w = l r 314 j of the cheap 

members of Bu,v have identical preferred histories. Let i1, ... , iw be w such members, and let 

h* denote their common preferred history. Let D 8 denote the event h0 (1r1,i,) h* (1ri,+1,t) h1, 

for 1 s s s w. By the inclusion-exclusion principle, Lr<s Pr(Dr & Ds) ~ (Ls Pr(Ds)) - r 
Since Pr(D.,) > ) 14 , there must exist distinct r and s such that 

> 

> 
r 

for T ~ 16 

Thus, assuming T ~ 68 , it follows that Pr(Dr & Ds) ~ r- 1 Pr(h0 (IT)h1). So it suffices to 

■ 

The following two lemmas are used to collapse a ring from its initial size to below some 

target size t*, overshooting as little as possible. Both lemmas apply Lemma 3.6 and Property 

3.1 repeatedly to determine the probability of an event on a short sequence of processes from 

the probability of a related event on the original sequence. They differ in that Lemma 3.8 

employs a more delicate and sophisticated strategy for collapsing than does Lemma 3. 7 and 

thus achieves a stronger result. Although Lemma 3.8 subsumes Lemma 3. 7, both are included 

because the naive approach of Lemma 3. 7 sometimes suffices and the proof is simpler. 

Lemma 3. 7 Let T, l and t* be positive integers with t* ~ rl and r sufficiently large. Let IT 

be any sequence of processes with IITI ~ t*. Suppose that x < (t*log6 r)/36. Let h0 and h1 be 

any histories. Then there exists a (non-contiguous) subsequence <I> of IT such that 

i) t* - rl < l<I>I < t*, 

ii) l<I>I = IITI (mod l), and 

17 



Proof: When applied to r, l and a process sequence r meeting the required conditions, 

Lemma 3.6 identifies process sequences il> 1 , il>2 and il>3 satisfying 

Property 3.1 ensures that Pr( h0 (cI> 1 cI>3 ) h1) ~ r-1 Pr( h0 (f) h1). The application of Lemma 

3.6 and Property 3.1 to obtain the new sequence r' = il> 1 cI>3 from r is called a collapsing step. 

Starting with sequence II, collapsing steps are repeatedly applied as long -as the conditions 

of Lemma 3.6 are met, that is, as long as the resulting sequence has length at least t*. Each 

collapsing step removes a subsequence that has length kl where 1 ~ k ~ r - 1. Let the final 

sequence cI> be the first sequence obtained by successive collapsing that has length less than 

t*. It follows that: 

1. At most II111t• + 1 collapsing steps are required to obtain cl>. 

2. lcI>I > t* - rl . 

3. lcI>I = IIII (mod l). 

Each collapsing step multiplies the probability bound by r- 1 , so 

■ 

Lemma 3.8 Let r, l and t* be positive integers with t* ~ rl and r sufficiently large. Let II 

be any sequence of processes with IIII ~ t*. Suppose that x < (t*log6 r)/36. Let h0 and h1 be 

any histories. Then there exists a (non-contiguous) subsequence cI> of II such that 

i) t* - rl < lcI>I < t*, 
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ii) JcI>J = JIII (mod l), and 

Proof: As in Lemma 3.7, we apply Lemma 3.6 and Property 3.1 repeatedly, each time 

eliminating some processes between repeated histories. At a given collapsing step, the re­

maining sequence r has some length t', where t* ~ t' ~ JIIJ, and t' = JIII (mod l), and 

Pr(h0 (f)h1
) =p. 

Let l' be the largest multiple of l that does not exceed I+ t'-;_t•. Then l' > (t' - t*)/r. 

By Lemma 3.6, with I' playing the role of l and t' playing the role oft, r transmits repeated 

histories, separated by ml where l' ~ml< rl' ~ rl +t-t*, with probability at least p/r. By 

Property 3.1, there exists a (non-contiguous) subsequence f' of r with length less than t' - l', 

such that Pr(h0 (f') h1 ) ~ p/r. By starting with II and collapsing some number g times in 

this fashion, we eventually construct a sequence cJ> where 

1. t* - Tl< lcJ>J < t*, 

2. JcJ>J = JIIJ (mod l), and 

For each collapsing step except the last, the value of t' - t* decreases by a factor of at least 

1 - 1/r. Since the last collapse is by at least l processes, it follows that g ~ 1 + [; where g is 

the smallest integer such that (JIIJ - t*) ( 1 - ¼ )° < l. Taking logarithms to the base e, and 

using the fact that ln ( 1 - ¼) < -¼, we get that [; ~ 1 + r ln ITTl1t•. ■ 

To summarize the notation, rr represents a probabilistic process, and II represents a se­

quence of probabilistic processes. If h is a communication history, then h(i) is the length i 

prefix of h. The symbol I:::,. represents the empty bundle, which only occurs at the beginning 

or end of a ring history. Notation h {II} h' denotes the event that probabilistic process II has 

output history h' when its input history is h, and h {II}* is the event that II asserts solitude 

when its input history is h. Notation h (II) h' denotes the event consisting of the conjunction 

of h {II} h' and the event that the total number of bits transmitted by II with input history h 
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is at most some preassigned value X· The event notation is extended to multiple histories by 

letting, for example, ho { 1ri} h1 { 1r2} h2 represent the conjunction of ho { 1ri} h1 and h1 { 1r2} h2, 

4 Overview of Lower Bound Proofs 

The lower bound proofs all proceed similarly. In this section the common structure of the 

proofs is highlighted. The proofs convert a size n E 11 single contender ring of processes 

whose computations are correct with high probability, and have low expected bit complexity, 

to another ring of processes with size n' E J2 and with two or more contenders whose com­

putations err with unacceptably high probability. Because of the unanimity of decisions, it 

suffices to show that, with unacceptably high probability, some process in the final ring ter­

minates in an (erroneous) accepting state. For this reason the proofs are referred to as fooling 

arguments. A standard fooling argument applies to arbitrary message-driven processes and 

thus holds for even nondistributively terminating algorithms. From a fooling argument it can 

be concluded that with high probability there is an erroneous accepting history in the final 

ring when all message traffic has ceased. A weak fooling argument applies only to irrevocably 

accepting processes and therefore holds for distributively terminating algorithms. From a 

weak argument it can be concluded that with high probability there is some accepting history 

at some point in the computation. Since the processes' accepting decisions are irrevocable 

it is unnecessary to assure that message traffic has ceased in order to conclude that such a 

computation is in error. 

More precisely, a fooling argument for an algorithm n consists of the following steps. 

Schema 4.1 

1. Assume that for any n E Ii, there is a process sequence Il E on that has exactly 

one contender and asserts solitude with confidence at least 1 - E and has expected bit 

complexity less than x/2, where xis chosen as an appropriate function of E and n. 

2. Apply Lemma 3.5 to conclude that there is a cyclic permutation r of Il and a history 

h E 1la where 11h11 ~ x/n such that Pr(6h (r)h6) ~ 6-x/n-2. 
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3. Using the collapsing, replicating and splicing lemmas, produce a fooling sequence «I> E 

o:12 with two or more contenders such that Pr ( 6h {«I>} h6) > €. 

4. Apply Property 2.5 to conclude that, with probability greater than €, computations of 

«I> erroneously assert solitude. 

Steps 1, 2 and 4 are essentially the same for all the lower bound proofs. Therefore the 

proofs begin by stating the values of x, Ii and h and proceeding with step 3. Step 3 differs 

in each of the lower bound proofs. We refer to this step as the core of the fooling argument. 

The conclusion of a fooling argument for a is that if a solves Weak Solitude Verification with 

confidence 1 - € on rings in Rh, then the expected bit complexity of a on ring of size n E Ii 

is n(x). 

A weak fooling argument for a distributively terminating algorithm a differs from a stan­

dard fooling argument in that the core need only establish that Pr ( 6 {«I>} *) > € for some 

process sequence «I> E a[l,b) where h = [a, b]. Thereafter, step 4 applies Property 2.6 to reach 

the desired conclusion. 

Our proofs must keep track of probabilities of events, and each collapsing, replicating or 

splicing operation decreases the known probability bound. Therefore, it is necessary to keep 

the number of steps small. In some cases, the need for efficiency results in relatively difficult 

proofs. 

It will be useful in general to have a linear lower bound. 

Theorem 4.2 If a solves Weak Solitude Verification on rings of size n with confidence greater 

than 3/4, then the expected bit complexity of a is at least n/6 on rings of size n. 

Proof: Suppose that process sequence II E an with a single contender asserts solitude 

with confidence greater than 3/4 and has expected bit complexity less than n/6. Then, with 

probability at least 2/3, correct computations of II have complexity less than n/2. But, by 

the message-driven nature of computations, it follows that, with probability greater than 2/3, 

message traffic in correct computations of II travel less than half way around the ring beyond 

the contender. In this case the contender in II concludes that it is alone without receiving 
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any communication. Thus with probability at least (3/4)(2/3) = 1/2 arbitrary computations 

of II conclude solitude with message traffic on less than the first half of the ring. 

Now consider the process sequence <I> constructed by splicing together two pieces of II 

both starting with the contender: one piece consisting of L n/2 J processes and the other piece 

f n/21 processes of II. Then with probability (1/2)2 = 1/4, both contenders in <I> erroneously 

conclude they are alone after message traffic has ceased. ■ 

In the interest of ease of presentation, little attempt is made to establish good asymptotic 

constants in the lower bounds. 

5 Bounds for Ring Size Loosely Known 

We say that an algorithm a knows only that ring size n is in [a, N] if a must work for all 

rings in n[a,N)· We prove two lower bounds on the expected bit complexity of Monte Carlo 

Solitude Detection algorithms that know only that a~ n ~ N, where a~ N/2, namely (1) 

an n ( n log(¼)) lower bound for nondistributively terminating algorithms (which of course 

applies also to distributively terminating algorithms), and (2) an n ( nJlog( i;f)) lower bound 

for dfatributively terminating algorithms. Then ( nlog( ¼ )) bound only holds when n happens 

to be at most N /2, although the algorithm only knows that a ~ n ~ N. When n > N /2, the 

complexity can be lower than n (nlog(¼)) [5). 

The n ( n log(¼)) bound is the simpler of the two. The core involves no collapsing and 

only a single replication. 

Theorem 5.1 Let O < € < 1/4 and let a be any (even nondistributively terminating) algo­

rithm that solves Weak Solitude Verification with confidence 1- E on any ring in n[a,N] where 

a~ N/2. Then the expected bit complexity ofa on rings of size n E [a,N/2) is n (nlog(f)). 

Proof: By the linear lower bound of Theorem 4.2, and we can assume that f is small. A 

fooling argument is given by following Schjema 4.1 with x = (2n/5) log6( ¼ ), I1 = [a, N /2) and 

12 = [2a, N]. After applying steps 1 and 2 of the schema, we have r E a[a,N/2] with exactly 

one contender and h E 1ta such that Pr( 6h (r) h6) ~ 6-x/n- 2 • 
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Consider the sequence <I> = I'2 E o:h formed by splicing together two copies of r. By 

Lemma 3.2, there exists a history h' E Ha such that 

Pr(.6h'{<I>}h'.6) > (5-x/n-2)2 

5-4€4/5 

> € 

for€ < 5-20 • Since <I> has two contenders, the argument is completed by appealing to Property 

2.5. • 
The n ( nj log( r::)) lower bound is based on a weak fooling argument and hence only 

applies to distributively terminating algorithms. Like the previous lower bound, there is no 

collapsing in the core of the argument. However, more replication is required. 

Theorem 5.2 Let a be any distributively accepting algorithm that solves Weak Solitude Ver­

ification with confidence greater than 3/4 on rings in R[a,N]· Then the expected bit complexity 

of a on rings of size n E [a,N] is n ( njI g(~J). 

Proof: By Theorem 4.2 we can assume that N /n is large. A weak fooling argument is given 

by following Schema 4.1 with x = n (1/2) log6 ( ~) and / 1 = h = [a, N]. After applying 

steps 1 and 2 of the schema, we have r E o:fa,N] with exactly one contender and h E Ha 

satisfying 11h11 ~ x/n and Pr(.6h (r) h.6) ~ 5-x/n-2
• 

Consider the sequence rk where k = lhl ~ x/n. By Lemma 3.2, there exists an accepting 

bundle M (formed by concatenating all the bundles in h), such that Pr( .6M {I'k} M .6) ~ 

5-k(x/n+2) ~ 5-(x/n)(x/n+2). Hence, by Property 2.1, Pr ( .6 {rk} *) ~ 5-(x/n)(x/n+2). 

Lett= LN/(nk)J. But 2(x/n)2 = log6 (N/n) and k ~ x/n. Sot~ 5(2(x/n)2)jk- l > 

5(x/n)2 +2(x/n) > 1. Let <I> = rtk. By Lemma 3.3, Pr ( .6 {<I>} *) ~ 1 - ( 1 - 6-(x/n)(x/n+2) r > 

1 - 1/e > 1/2. Since <I> E o:fa,N] has more than one contender, the argument is completed by 

appealing to Property 2.6. • 
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6 Bounds for Ring Size Approximately Known 

By the matching upper bound results [5], the lower bounds of the preceding section are tight 

to within a constant factor as long as the algorithm knows at best that N /2 ~ n ~ N. 

But suppose that all processors know that ( ½ + p )N ~ n ~ N for some given positive 

p < 1/2. We prove two lower bounds on the expected bit complexity of Solitude Detection: 

(1) an n (nmin(loglog(¼),logN)) bound, showing that, for sufficiently large N, the hit 

complexity is doubly logarithmic in 1/ E, and (2) an n ( n min(log p, log(¼), log N)) bound, 

showing that the cost is logarithmic in 1/ p when N is large and f. is small. Both bounds 

apply to nondistributively terminating algorithms. For simplicity, we prove the first bound 

for p = 1/4, although a modified proof applies to any positive p < 1/2. 

Theorem 6.1 Let O < f. < 1/4, and let a be any (even nondistributively terminating) algo­

rithm that solves Weak Solitude Verification with confidence 1- f. on rings in 1?,[3N;4,N]. Then 

the expected bit complexity of a on rings of size n E [3N /4, N] is n ( n min (log log(¼ ),log N)). 

Proof: By Theorem 4.2 we can assume that N is large and f. is small. A fooling argument 

is given by following Schema 4.1 with x = 1~6 lmin (log6 log(¼),log6 N)j and 11 = 12 = 

[3N / 4, N]. After applying steps 1 and 2 of the schema, we have r E ali with exactly one 

contender and h E 1ta such that Pr ( 6h (r) h6) ~ 6-x/n- 2. 

Let r = 673x/n, l = l: j and t* = N /2. Since x ~ ( n/146) log6 N, it follows that 

N ~ 6146x/n = r-2 > 8r, implying 1 ~ l. Moreover, t*(log6 r)/36 = ~ • ~ · 3~ > X· Hence, 

by Lemma 3. 7, there exists a non-contiguous subsequence T of r such that 3N /8 ~ t• - rl < 

ITI < t* = N/2 and 

Pr(6h(T)h6) > r_1_n-;t" Pr(6h(f)h6) 

> T-5r6-x/n-2 

By Property 2.3, T contains a contender. Now consider the sequence~ = (T)2. By Lemma 

3.2, Pr( .6.h' { ~} h' .6.) ~ r-12r where h' is equivalent to h. But x ~ ( n/146) log6 log(¼) and 
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r = 673x/n, implying r::; (log(¼))1l2 . So r- 12
-r > €. Since <I> E 0/2 has two contenders, the 

argument is completed by appealing to Property 2.5. ■ 

The next theorem shows the dependence of the bit complexity of Solitude Detection on 

p. Notice that it only applies at the lower end of the interval [( ½ + p )N, NJ. 

Theorem 6.2 Let O < £ < 1/4 and let a be any (even nondistributively terminating) algo­

rithm that solves Weak Solitude Verification with confidence l - £ on rings in n[(½+p)N,NJ 

where O < p < 1/2. Then the expected bit complexity of a on rings of size r ( ½ + p )N l is 

n (nmin (log(¼),log(¼),logN)). 

Proof: By Theorem 4.2 we can assume that N is large, and both p and £ are small. 

Abbreviate ( ½ + p )N by n and assume n is an integer. Let z be the largest multiple of 3 not 

exceeding min (log6 ( ¼),log6 ( ¼ ), log6 N). A fooling argument is given by following Schema 4.1 

with x = lnz/109J, Ii= [n,n] and h = [n,N]. After applying steps 1 and 2 of the schema, 

we have r of length n with exactly one contender and h E 1ta such that Pr ( .6h (f) h.6) > 

6-x/n-2. 

The core of the argument begins with a single collapsing step. Apply Lemma 3.6 to r 
with l = lN6-z J and r = 5z/3

• The condition x < (JrJ log6 r)/36 is easily verified. Also 

l 2: max(l, pN) since z::; min(log6 N,log6(¼)), and l < rl < N/4 < n since z is large. So a 

single collapsing step removes some number k of processors from r, where pN ::; k < N /4. 

The result is a sequence YE oJ(¼+p)N,N/2] such that Pr(.6h(Y)h.6) 2: r- 15-x/n- 2 . By 

Property 2.3, Y contains a contender. 

Let <I> = (Y) 2• By Lemma 3.2, Pr ( .6h' {<I>} h' .6) > r-25-2x/n-4 where h' is equivalent to 

h. But log6(r262x/n+4) = 2z/3+2x/n+4 < 0.7z+4 < log6 (¼), since z::; logi¼) is large. So 

Pr(.6h' {<I>}h'.6) >€.Since <I> E a[(½+p)N,N] has two contenders, the argument is completed 

by appealing to Property 2.5. ■ 
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7 Bounds for Ring Size Exactly Known 

We say that the algorithm a knows n exactly if a is only required to work on rings of size 

n. In that case, the lower bound proofs become more difficult, since the core must produce a 

new sequence of processes whose length is exactly the same as the length of the original one. 

For distributive termination it is eaBy to pad out the new sequence to the desired length, but 

for nondistributive termination there must be an exact size match. 

We prove three lower bounds on the expected bit complexity of Monte Carlo Solitude 

Detection: (1) an n ( n min ( Jlog n, J log log(¾))) bound for distributively terminating al­

gorithms, (2) an n ( n min (log v( n ), log log(¾))) bound for non distributively terminating al­

gorithms, where v( n) is the smallest positive nondivisor of n, and (3) an n ( n min (log log n, 

log log log(¾))) bound for nondistributively terminating algorithms. 

Theorem 7 .1 Let O < f < 1/ 4 and let a be a distributively accepting algorithm that solves 

Weak Solitude Verification with confidence 1 - f on rings of size n. Then the expected bit 

complexity of a on rings of size n is n( nmin( Jlog n, Jloglog(¼))). 

Proof: By the linear lower bound of Theorem 4.2, and we can assume that n is large and f is 

small. Let z = min ( J log6 n, J log6 log(¾)). A weak fooling argument is given by following 

Schema 4.1 with x = nz/9 and I1 = h = [n, n]. After applying steps 1 and 2 of the schema, 

we haver of length n with exactly one contender and h E 1-la satisfying 11h11 :5 x/n = z/9 

and Pr ( 6h (r) h6) ~ 6-z/9- 2• 

The core of the argument applies Lemma 3.8 to collapse r, followed by Lemma 3.2 to 

replicate the result. Let target size t* = f9n/ z l, and parameters T = l 6z
2 

/
2 j ::; ./ii, and 

l = l;; j. Then (t* log6 r)/36 > nz/9 = x and rl :5 t* and l > 1. So the conditions of 

Lemma 3.8 are met. The result is a sequence T such that ITI < t* and Pr(6h (T) h6) ~ 

7 -
2
--r1n( ",'•) 6-z/9 - 2 • But (n - t*)/l < n/l < (zr)/18, and Tis large, so Pr ( 6h (T) h6) > 

r-2r--rln-rT--rln(z/l8)6-z/9- 2 ~ r--rlog-r. By Property 2.3, T ha.5 one contender. 

Let cI> = (Tl where k = max(lhl,2)::; z/9. By Lemma 3.2, Pr(6M{cI>}M6) > 

r-(z-rlog-r)/9 , where M is the accepting bundle formed by concatenating all the bundles in h. 
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Hence, applying Property 2.1, Pr(L{<I>}*) 2: Pr(L{<I>}M) 2: T-(z-rlog-r)/9 _ But for large 

enough n, log.,logr(z-rlog-r)/9 < 2log6 r ~ 2(z2 /2) ~ log6 log(¼)- Hence, Pr(L{<I>}*) > L 

Since 4> has length klTI < z/9 (f 9zn l - 1) ~ n and has more than one contender, the argument 

is completed by appealing to Property 2.6. ■ 

Corollary 7 .2 The complexity of any distributively accepting Las Vegas algorithm that solves 

Weak Solitude Verification with confidence at least 1- 1/2n on rings of size n is fl (nv'loin) 
bits. 

The previous proof does not require that the fooling sequence <I> be constructed to a precise 

length since, when we are only interested in distributively terminating algorithms, Property 

2.6 allows us to pad <I> out to length n with an additional sequence of arbitrary processes. 

For nondistributive termination, much more care is needed to ensure a fooling sequence of 

length exactly n. It is therefore not surprising to find divisibility properties of n not only in 

the proofs, but in the complexity bounds as well. 

Theorem 7.3 Let O < f < 1/4 and let a be any (even nondistributively terminating) algo­

rithm that solves Weak Solitude Verification with confidence 1 - f on rings of size n. Then 

the expected bit complexity of a on rings of size n is fl ( n min (log v( n ), log log(¼))), where 

v( n) is the smallest nondivisor of n. 

Proof: By the linear lower bound of Theorem 4.2, we can assume that n and v( n) are 

large and f is small. In particular, n is even. Let z be the largest even integer not exceeding 

min (v(n)-1, log114 (1/f)). A fooling argument is given by following Schema 4.1 with x = 
(n/75)(log6 z), and 11 = h = [n, n]. After applying steps 1 and 2 of the schema, we haver 

of length n with exactly one contender and h E 1ta such that Pr ( Lh (f) hL) 2: 5-x/n-2 • 

The core of the argument has four steps. (1) Identify a short contiguous subsequence of 

r, which will be used in step 3 to pad a sequence to length exactly n/2. (2) Collapse the two 

other pieces found in step 1 to short sequences. (3) Splice replications of the piece found in 

step 1 into the shortened pieces found in step 2 to form a sequence of length exactly n/2. (4) 

Replicate the sequence from step 3 once. 
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Let >.(x) denote the least common multiple of the positive integers not exceeding x. Apply 

Lemma 3.6 tor with T = r1 = z/2, and l = Li = n/ >.(z). Condition x < (If! log6 r)/36 follows 

immediately from the choice of X· Also r1li < n, and Ii is a positive integer, since z < v(n). 

According to Lemma 3.6, r = T'1!0 where JwJ = m/1 for some positive integer m < r1, and, 

for some history h*, Pr( .6.h (T) h* ('1!) h* (0) h.6.) ~ r116-x/n-2 > z-2. By Property 3.1, 

Pr ( .6.h (T) h*), Pr ( h* {'1!} h*) and Pr ( h* (0) h.6.) are all greater than z-2. 

Notice that n/(2J'1!J) = >.(z)/(2m) is an integer, since m < r1 = z/2. So JwJ divides n/2, 

a fact that will be crucial for step 3. 

Step 2 consists of collapsing T and 0 each to size less than n/4. Apply Lemma 3.8 to 

each, using target size t* = n/4, and parameters l = 12 = JwJ, and T = r2 = z2. Then 

r2l2 < nz3 /(2>.(z)). Since z is large, the conditions 1 :::; 12 < r 2l2 < t* and x < (t* log6 r2)/36 

of Lemma 3.8 are easily verified. Let T' and 0' be the results of applying Lemma 3.8 to 

T and 0 respectively. Then n/2 - 2r2l2 = n/2 - 2z2J'1!J < JT'0'1 < n/2. According to 

( ) ( ) 
-2-72 ln( ~ ) 

the lemma, P r .6.h (T') h* and Pr h* (0') h.6. are both at least. z- 2r2 
12 

• Since 

(n - t*)/h < n/JwJ :::; >.(z) and ln(>.(x )) ~ x [8) both of those probabilities are at least z-3z
3

• 

For step 3 observe (using Lemma 3.8) that JT'0'J = (JTJ+ J0J) (mod JwJ). But JT'1!0J = n, 

and JwJ divides n/2, so JwJ divides JT'0'J. Therefore, there must be some positive integer 

k:::; 2z2 such that JT'0'J + kJwJ = n/2. 

For step 4 let cI> = (T'wk0')2 E an. Because Pr( .6.h (T'0') h.6.) > 0, Property 2.3 ensures 

that either T' or 0' has a contender. Hence, cI> contains two contenders. Moreover, for some 

history h' equivalent to h, Pr ( .6.h' {cl>} h' .6.) ~ ( z-3z
3 

• z-2k . z-3z
3 )2 ~ z-12z

3 
-

4 k > 2-z
4 ~ 

f, since z:::; log114 (¼ ). The argument is completed by appealing to Property 2.5. ■ 

When nondistributive termination is acceptable, the bound of Theorem 7.1 can be beaten 

[5). In that case, the following theorem applies. 

Theorem 7.4 Let O < € < 1/4 and let a be any (even nondistributively terminating) algo­

rithm which solves Weak Solitude Verification with confidence 1 - f on rings of size n. Then 

the expected bit complexity of a on rings of size n is n ( n min (log log n, log log log(¼))). 
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Proof: By the linear lower bound of Theorem 4.2, assume that n is large and l is small. 

Let z = min (inn, log6 logG( ¼)). A fooling argument is given by following Schema 4.1 with 

x = (n/75)log6 z and Ii = /2 = [n, n]. After applying steps 1 and 2 of the schema, we have 

r of length n with exactly one contender and h E Ha such that Pr ( 6.h (f) h6.) 2:: 6-x/n-2 = 
z-(1/75)6-2. 

The core of this proof is more involved than preceding proofs and proceeds in 6 steps. 

In Step 1, a relatively short subsequence 0 1 is found in r, which will be used to make fine 

adjustments in the length of the constructed sequence cJ>. Step 2 isolates a longer sequence 02 

in r, which will be used to make large adjustments in the length of cJ>. Step 3 performs the 

main collapsing of r. Step 4 pads the collapsed sequence with replications of 0 2. Step 5 pads 

further with replications of 0 1. Step 6 does the final replication to arrive at a contradiction. 

The length of 0 2 is crucial to the argument. The need for the other sequence 01 is to correct 

for slight imprecision in our ability to control the length of 02. 

Step 1: Isolate 01, Apply Lemma 3.6 to r with l = 11 = 1 and T = T1 = r z1/21. 
Then rl < n and (nlog6 r)/36 2:: nlog6 z

112 /36 > X· So the conditions of Lemma 3.6 are 

met, implying r = '110 11 where 1 :S 10 1 1 < z1/2 and, for some history h1 , Pr(6.h(w) 

hi(01)hi(Y)h6.) 2:: z-1/2z-1/ 75 5-2 > z-0·9 • By Property 3.1 each of Pr(6.h('1101)h1), 

Pr ( h1 (01) h1) and Pr( h1 (01 Y) h6.) are greater than z-0
·
9

• Let d1 = 101 I-

Step 2: Isolate 0 2. In Step 3, r will be collapsed by multiples of 1021 down to a size 

close to n' = ln/(d1 + l)J. It is crucial that 102I be chosen carefully, so that a length quite 

close to n' can be achieved in a small number of individual collapsing and splicing steps, 

which keeps the probabilities sufficiently large. 

Let ..\(x) denote the least common multiple of the integers not exceeding x. Apply Lemma 

3.6 to the larger of '1101 and 01 Y, which has length at least n/2 and which without loss of 

generality can be assumed to be 01 i. Let T = T2 = r z l and l = 12 = d1 r d~~r:) l · Then T2l2 < 

n/2 because z is much smaller than A(z). Also (l01illog6 r)/36 2:: (nlog6 z)/72 > X· So the 

conditions of Lemma 3.6 are met, implying 01 i = 302A where l021 = m/2 for some positive 

integer m < z, and for some history h2, Pr( h1 (3) h2 (02) h2 (A) h6.) > ,2
1 z-0·9 > z-2. By 

29 



Property 3.1 each of Pr ( h1 (S) h2), Pr ( h2 ( 0 2) h2) and Pr ( h2 ( 02A) ht::,) are greater than 

z-2. Let d2 = 1021, Since m < z, m divides A(z), so d2 divides A(.z)/2, 

To summarize, there are two subsequences 0 1 and 02 of r, of lengths d1 and d2, respec­

tively, where 1 $ d1 $ 12 $ d2 < l2 z and d1 < z112 • Known divisibility properties are that 

d1 I l2 and 12 I d2 and d2 I A(z)l2, Sequence r = "il1302A, 

Step 3: Collapse pieces of r. Collapse each of q,, S and 02A separately to size at 

most t* = l n' /3 J. Leave any segment that is already no longer than t* unchanged. For 

each of those that are longer than t*, apply Lemma 3. 7 using the parameters t*, l = [3 = d2 

and T = T3 = r z3VZl. To verify the conditions of Lemma 3.7, notice that /JT3 < l2ZT3 = 
d1z r ~ l r z3VZl < z2+3VZ r Xfz}l But ln A(z) ~Zand Z < ln n, so l3T3 < ~+z2+3J;° < t*. 

Also notice that (t* log6 r3)/36 2: (ln' /3J log6 (z3VZ )/36 > nl~~6 z dY.;l > x since d1 < ../z. 
So the conditions of Lemma 3.7 are met. Let <I>1, <I> 2 and <I>3 he the sequences resulting 

from q,, S and 0 2A respectively and combine the results supplied by Lemma 3.7 for each 

of <I>1, <I>2 and <l>3. Note that each collapsing step removes at least d2 processors. Thus the 

total number of steps, summed over <I> 1, <I>2 and <I>3, cannot exceed n/d2, But n/d2 $ n/12 $ 

nA(z)/(n - n') < 2A(z) < 3Z, for large z. Let n" = l<I>1<I>2<I>3I, According to Lemma 3.7, 

(b) n" = n (mod d2 ) and 

Step 4: Pad with 02. The object is to pad <I>2 to form sequence <I>~ such that n' -

A(z)d1 < l<I>1<I>~<I>3I $ n'. If n" = l<I>1<I>2<I>3I is already greater than n' - A(z)d1, simply let 

<I>; = <I>2, Otherwise, n" $ n' - A( z )d1. Since ( n- n') / A( z) $ 12 < ( n - n') / A( z) + d1, conclude 

that n' - A(z)d1 < n - A(z)l2 $ n'. Hence, it suffices to pad to length exactly n - A(z)l2, 

Since n" = n (mod d2), and A(z)l2 = 0 (mod d2), then n" = n - A(z)l2 (mod d2). So there 

must be a positive integer k < 3r3 such that n" + kd2 = n - A(z)l2, Let i11~ = <I>2(02l-
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Since Pr(h2{02}h2) > z- 2 and Pr(hd<I>2}h2) > 6-4\ then Pr(hdcI>;}h2) > z-6r3 6_ 4
z. 

Let cI> 4 = cI> 1 «1>;<1>3 . Then Pr ( 6.h { <l>4} h.6) > 6_ 5
z. By Property 2.3, <!>4 must contain a 

contender. Also, l<I>4I = n (mod d2). 

Step 5: Pad with 01. Since l<I>4I = n (mod d2) and d1 divides d2, lcI>4I = n (mod d1), 

Since n' - .\(z)d1 < lcI>4I ~ n', conclude that n - .\(z)d1(d1 + 1) - d1 ~ (d1 + l)l<I>4I :Sn. So 

there must be a nonnegative integer J( < (.\(z) + l)(d1 + 1) such that (d1 + l)l<l>4i + K d1 = n. 

Let cI>s = cI>1(01)KcJ>;cI>3. Then Pr(.6h{cI>s}h.6) > 6_5zz-(-X(z)+l)(di+l). 

Step 6: Replication. Let cI> = <1> 5 (<1> 4 )d1 • Then lcI>I = n, and <I> has more than one 

contender. Also, Pr ( 6.h { <l>} h.6) > 6-sz(di +1) z-(.X(z)+i)(di +l) > 6_6z, since d1 < vz, -\( z) < 

3z and z is large. Recall that z ~ log6 log6 ( ¼). Therefore Pr ( 6.h {<I>} h.6) > f. The argument 

is completed by appealing to Property 2.5. ■ 

Corollary 7 .5 The complexity of any nondistributively terminating Las Vegas algorithm that 

solves Weak Solitude Verification with confidence at least 1 - 1/2n on rings of size n is 

n ( n log log n) bits. 

8 Concluding Remarks 

The lower bounds of this paper apply to Monte Carlo algorithms, that is, to algorithms that 

err with small probability (at most f). The matching upper bounds [5] are also achieved with 

Monte Carlo algorithms. A stricter requirement is to insist on Las Vegas algorithms, that is, 

algorithms that must be correct upon termination and must terminate with probability one. 

The elaborate model used in this paper can be substantially simplified when the results 

are required only for Las Vegas algorithms. The Monte Carlo proofs all proceed by deriving 

a ring of processes that errs with too high a probability from the assumption of a correct 

ring of processes that has a low expected complexity. Since Las Vegas algorithms must have 

zero probability of error, the proofs are relieved of the burden of maintaining bounds on the 

probability of error of the new ring at every stage of the construction. Furthermore, there 

is no need to start with a probability space of computations for a ring of processes; rather, 
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the manipulations are applied to a single computation. It is only necessary to derive some 

possible erroneous computation from the assumption that there is some computation with 

low complexity. 

This simplified perspective leads to stronger statements of theorems as well as less com­

plicated proofs. The results apply to the best case complexity of a correct algorithm, rather 

than to the expected case. Furthermore, the results hold even if, with high probability, the 

algorithm deadlocks or fails to terminate. All that is required of the algorithm is that it is 

correct if and when it terminates. 

This weak requirement for correctness together with the interpretation of complexity as 

the best case complexity reflect the automaton-theoretic notion of nondeterminism. Thus 

we call such algorithms nondeterministic (distributed) algorithms. The details of the general 

nondeterministic model for communication complexity of distributed algorithms can be found 

elsewhere [4]. In this model, the results of Section 7 become: 

Theorem 8.1 The complexity of any distributively accepting nondeterministic algorithm that 

solves Weak Solitude Verification for rings in R[n,n] is n ( nJlog n) bits. 

Theorem 8.2 The complexity of any nondistributively terminating nondeterministic algo­

rithm that solves Weak Solitude Verification for rings in R[n,n] is n ( n log log n) bits. 

The lower bound of Theorem 8.1 can be extended to a lower bound of n ( nJlog n) hits 

for general non-constant function evaluation, and applies to any nondeterministic distributed 

algorithm for a ring of size n [4]. This bound is tight; there is a cyclic non-constant Boolean 

function that can be computed in O (nJlog n) expected hits on an asynchronous anonymous 

unidirectional ring. The Monte Carlo result of Theorem 7.1 can similarly be extended to 

Monte Carlo non-constant function evaluation. However, the bound of Theorem 7.3 is not 

known to hold for non-constant function evaluation with distributed termination. There is a 

gap in the known upper and lower bounds for Monte Carlo non-constant function evaluation. 

The generalization from Las Vegas to nondeterministic algorithms can be mimicked to 

derive a more general notion than the strict Monte Carlo model of an algorithm. As described 
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in subsection 2.3, this more general model, which has both probabilistic and nondeterministic 

properties, is the one for which the lower bounds of this paper actually hold. 

References 

[1] K. Abrahamson, A. Adler, R. Gelbart, L. Higham, and D. Kirkpatrick. The bit complex­

ity of probabilistic leader election on a unidirectional ring. In Distributed Algorithms on 

Graphs, pages 1-12. Carleton University Press, 1986. Proc. 1st International Workshop 

on Distributed Algorithms. 

[2] K. Abrahamson, A. Adler, R. Gelbart, L. Higham, and D. Kirkpatrick. The bit complex­

ity of randomized leader election on a ring. SIAM Journal on Computing, 18(1):12-29, 

1989. 

[3] K. Abrahamson, A. Adler, L. Higham, and D. Kirkpatrick. Probabilistic evaluation of 

common functions on rings of known size. Technical Report 88-15, University of British 

Columbia, 1988. 

[4] K. Abrahamson, A. Adler, L. Higham, and D. Kirkpatrick. Randomized function evalu­

ation on a ring. Distributed Computing, 3(3):107-117, 1989. 

[5] K. Abrahamson, A. Adler, L. Higham, and D. Kirkpatrick. Optimal algorithms for prob­

abilistic solitude detection on anonymous rings. Technical Report TR 90-3, University 

of British Columbia, 1990. 

[6] Y. Afek. Distributed Algorithms for Election in Unidirectional and Complete Networks. 

PhD thesis, University of California at Los Angeles, 1985. 

[7] D. Angluin. Local and global properties in networks of processors. In Proceedings of the 

Twelfth Annual ACM Symposium on Theory of Computing, pages 82-93, 1980. 

[8] T. M. Apostol. Introduction to Analytic Number Theory. Springer-Verlag, New York, 

1976. 

33 



[9] H. Attiya, N. Santoro, and S. Zaks. From rings to complete graphs - 0(nlogn) to O(n) 

distributed leader election. Technical Report SCS-TR-109, Carleton University, 1987. 

[10] H. Attiya and M. Snir. Better computing on the anonymous ring. In Proc. Aegean 

Workshop on Computing, pages 329-338, 1988. 

[11] H. Attiya, M. Snir, and M. Warmuth. Computing on an anonymous ring. In Proc. 4th 

Annual ACM Symp. on Principles of Distributed Computing, pages 196-203, 1985. 

[12] H. L. Bodlaender. New lower bound techniques for distributed leader finding and other 

problems on rings of processors. Technical Report RUU-CS-88-18, Rijksuniversiteit 

Utrecht, 1988. 

[13] D. Dolev, M. Klawe, and M. Rodeh. An O(nlogn) unidirectional distributed algorithm 

for extrema finding in a circle. J. Algorithms, 3(3):245-260, 1982. 

[14] P. Duris and Z. Galil. Two lower bounds in asynchronous distributed computation 

(preliminary version). In Proc. 28nd Annual Symp. on Foundations of Comput. Sci., 

pages 326-330, 1987. 

(15] G. Fredrickson and N. Lynch. The impact of synchronous communication on the problem 

of electing a leader in a ring. In Proceedings of the Sixteenth Annual A CM Symposium 

on Theory of Computing, pages 493-503, 1984. 

[16] A. ltai and M. Rodeh. Symmetry breaking in distributed networks. In Proc. 22nd Annual 

Symp. on Foundations of Comput. Sci., pages 150-158, 1981. 

[17] J. Pachl. A lower bound for probabilistic distributed algorithms. Technical Report 

CS-85-25, University of Waterloo, Waterloo, Ontario, 1985. 

[18] J. Pach!, E. Korach, and D. Rotem. Lower bounds for distributed maximum finding. J. 

Assoc. Comput. Mach., 31(4):905-918, 1984. 

[19] G. Peterson. An O(nlogn) algorithm for the circular extrema problem. ACM Trans. on 

Prog. Lang. and Systems, 4(4):758-752, 1982. 

34 

I ,. 


