
Optimal Algorithms for Probabilistic Solitude Detection
On Anonymous Rings**

by

Karl Abrahamson*
Andrew Adler t
Lisa Higham #

David Kirlcpatrick *
Technical Report 90-3

January, 1990

* Computer Science Department
Washington State University
Pullman, WA 99164-1210

U.S.A.

t Department of Mathematics
* Department of Computer Science

University of British Columbia
Vancouver, B.C. V6T 1W5

Canada

Computer Science Department
University of Calgary

Calgary, Alberta, TIN 1N4
Canada

** This research was supported in part by the Natural Sciences and Engineering Research Council of Canada and the
Killam Foundation.

Computer Science Department
University of British Columbia

Vancouver, B.C. V6T IW5
Canada

j

I·.
I

Abstract

Probabilistic algorithms that err with probability at most c 2:: 0 are developed for the

Solitude Detection problem on anonymous asynchronous unidirectional rings. Solitude

Detection requires that a nonempty set of distinguished processors determine whether

or not there is only one distinguished processor. The algorithms transmit an optimal

expected number of bits, to within a constant factor. Las Vegas and Monte Carlo algo­

rithms that terminate both distributively and nondistributively are developed. Their bit

complexities display a surprisingly rich dependence on the kind of algorithm and on the

processors' knowledge of the size of the ring.

1 Introduction

The motivation for this work is to understand the dependence of the communication complex­

ity of a problem in distributed computation on the processors' knowledge of the network over

which they communicate. To constrain the question, we choose a simple network topology

and a simple problem to study. The network is an asynchronous unidirectional ring. The

problem, Solitude Detection, is a subproblem of the well-studied problem of Leader Elec­

tion, and is one of the simplest distributed problems. A Boolean function closely related to

Solitude Detection is among the easiest nontrivial Boolean functions to compute, in terms

of expected bit complexity [4, 12). Given a nonempty set of distinguished processors, called

contenders, Solitude Detection requires that the processors determine whether or not there is

exactly one contender. The relevant knowledge concerns the size of the ring. To isolate that

knowledge for study, we assume that processors do not have distinct identifiers; that is, the

ring is anonymous.

Many algorithms for Leader Election on rings have been proposed. Las Vegas algorithms

have been suggested for anonymous rings [1, 2, 13) because, as Angluin observes [6), no de­

terministic solutions exist for anonymous rings. Suppose that an algorithm has knowledge

of some approximation N of the actual ring size n. There is a Las Vegas Leader Election

algorithm for rings of size n where N /2 < n ~ N with expected bit (and message) complexity

0(n log n) [2). This algorithm works by interleaving solutions to the two subproblems At-

1

trition and Solitude Detection. (Attrition is the problem of reducing the original number of

contenders to exactly one contender). Furthermore, even with exact knowledge of ring size,

fl(n log n) expected messages (and hence also bits) are required to elect a leader [3, 8, 9, 10, 12]

on anonymous rings. This lower bound extends to the Attrition subproblem ofleader election.

However, Solitude Detection can be solved in O(n) messages for N/2 < n $ N, although

fl(n log n) bits are still required for rings in this range [2]. Surprisingly, when ring size is

known exactly, the expected bit complexity of Solitude Detection drops to 0(n\ilog n) (4).

These results highlight the insensitivity of Attrition and the sensitivity of Solitude Detection

to knowledge of ring size.

This paper and a companion paper extend the investigation of the expected bit complex­

ity of Solitude Detection. Both Las Vegas algorithms, which never err, and Monte-Carlo

algorithms, which err with low probability, are considered here. The processors' knowledge

of ring size varies over the entire range of possibilities from no knowledge to exact knowledge.

We also consider two types of termination. The usual notion of termination is distributive

termination, in which a processor must, upon termination, reach an irrevocable conclusion.

Nondistributive termination, a weaker notion of termination introduced by Itai and Rodeh

(13], permits processors to reach tentative conclusions, which can be revoked upon receipt

of further communication. Thus, a processor can base its termination on a condition - the

cessation of message traffic - that it cannot directly detect.

This paper establishes upper bounds. The companion paper [5] establishes matching lower

bounds. Together, they show that the expected bit complexity of Solitude Detection displays

a surprisingly rich dependence on knowledge of ring size and type of algorithm employed.

Tables summarizing the results of this paper and the companion paper can be found in the

concluding section.

The remainder of this paper is organized as follows. We begin by considering the case

where the ring size n is not known exactly. Section 2 presents a simple Solitude Detection

algorithm upon which more sophisticated algorithms are built in subsequent sections. Section

3 develops some tools for constructing the more efficient algorithms. The tools provide esti-

2

mates of the lengths of gaps between consecutive contenders. Section 4 describes improved

Solitude Detection algorithms for approximately known ring size. Section 5 develops algo­

rithms for the case where n is known exactly. These take advantage of divisibility properties

of n to gain efficiency over prior algorithms. Finally, Section 6 ties together the results of this

and its companion paper.

Throughout, "log" denotes log2 and "ln" denotes loge.

2 A Basic Approach

Messages travel counter-clockwise around the ring. Say that a processor receives messages

from the left, and sends them to the right.

A straightforward idea is used by all of our randomized Solitude Detection algorithms.

Each contender makes t independent coin tosses, and sends them, one at a time, to the next

contender to the right, waiting to receive a coin toss before sending the next one. Noncon­

tenders participate only by forwarding coin tosses. If there is only one contender, then it will

receive the same sequence of coin tosses as it sends.

As soon as the bit received differs from that most recently sent, a contender sends an

alarm. Alarms are forwarded by noncontenders and by any contender that has not already

sent one. Transmission of an alarm causes a contender to abort the rest of the algorithm,

and to conclude that it is not alone. A contender tentatively concludes (perhaps erroneously)

that it is alone if it has sent and received t coin tosses without sending or receiving an alarm.

Notice that a solitary contender always reaches the correct conclusion that it is alone.

The basic procedure is summarized in Figure 1. Each iteration of the loop is called a

round.

Lemma 2.1 Let the actual number of contenders be c > 1. When the basic procedure is run

using t coin tosses,

(a) the probability that all contenders conclude that they are alone is 2-t(c-l),

(b) the probability that some contender concludes that it is alone is at most c2-tmin(t,c)/2 ,

3

alone := true;
for i := 1 tot

v := coin toss;
send(v);
receive(w);
if w '# v then

alone := false;
send (alarm);
stop

end if
end for

Figure 1: The basic procedure for a contender

(c) the total expected number of bits transmitted is O(n) .

Proof: (a) In order for all contenders to conclude that they are alone, every contender must

make the same ith coin toss, for i = 1, ... , t. The probability of that occurring is 2-t(c-l).

(b) A contender is fooled for k flips if its first k outputs match its first k inputs. Let Qo,

Q1, ... , Qc-1 denote the contenders in sequence around the ring.

If any one contender, say Qj, is fooled fort flips (and so concludes that it is alone), then

it must be the case that contender Qj-k is fooled for t - k flips, for 1 ~ k ~ t - 1, since

otherwise Qj would receive an alarm before its tth flip. (Subscripts are implicitly reduced

modulo c.) If c 2'.: t then all of these flips are independent, and there are at least t2 /2 of them.

On the other hand, if c < t then at least ct/2 of these flips are independent. In either case

Pr(Qj is fooled fort flips) < 2-tmin(t,c)/2, so the probability that some processor concludes

that it is alone is at most c2-t min(t,c)/2 •

(c) Since the coin tosses of adjacent contenders are independent, and a contender stops

as soon as it receives a coin toss different from what it last sent, the expected number of bits

transmitted by each contender is 0(1). •
It is not possible to detect solitude with distributive termination and probability of error

bounded away from zero if processes know nothing about the ring size, as is now shown. Let

4

R be a ring of size n with exactly one contender. Suppose the contender concludes that it is

alone after running some distributively terminating algorithm. Let h be the communication

history of that contender, consisting of all of its input and output messages, interleaved as

(input1 , output1 , input2 , ..• , inputk, outputk)- It is possible, by splicing together enough

copies of R, to form a ring R' with many contenders such that the probability that more

than one contender has a history of which h is an initial segment is arbitrarily close to one.

Therefore, without any knowledge about ring size, it is impossible for a contender to halt and

declare its solitude with any degree of certainty. Nondistributively terminating algorithms

for this problem do exist, however, as shown in Theorem 2.2.

The basic procedure has some features that are shared by all of our algorithms. Say that

a Solitude Detection algorithm has one-sided error if it cannot erroneously conclude that

there are two or more contenders, when there is just one contender. Say that the algorithm

is one-sided linear if the algorithm has expected bit complexity 0(n) when there are two or

more contenders. An algorithm is one-sided if it has one-sided error and is one-sided linear.

Throughout, 0 < f < 1 represents a parameter to a Monte Carlo algorithm. Such an

algorithm is a correct Monte Carlo algorithm if its error probability is at most f.

Theorem 2.2 There is a nondistributively terminating one-sided Monte Carlo Solitude De­

tection algorithm with worst case bit complexity O (n log(¾)) for rings of any size, where n is

the actual size of the ring.

Proof: Run the basic procedure with t = flog(¾) l, followed by

if an alarm arrives and alone = true then
alone := false;
send (alarm)

end if

This algorithm terminates nondistributively. When there is one contender, the algorithm

answers correctly. By Lemma 2.l(a), the probability that no processor sends an alarm when

there are at least two contenders is at most 2-t ~ f. If any processor sends an alarm then

5

all processors eventually receive one and conclude that they are not alone. Lemma 2.l(c)

provides the complexity bound when there are two or more contenders. ■

Distributive termination is possible when the algorithm is given an upper bound C on the

number of contenders.

Theorem 2.3 There is a distributively terminating one-sided Monte Carlo Solitude De­

tection algorithm for all rings with at most C contenders with worst case bit complexity

0 (nJlogC + nlog(¼)) .

Proof: We can assume that C 2: 2. Use the basic procedure with t = f J2 log C + log(¼)l­
Let c be the actual number of contenders. Then c2-tmin(t,c)/2 < c By Lemma 2.l(b), with

probability at least 1 - £, all of the processors reach the correct conclusion after at most t

coin tosses have been exchanged. So the algorithm has the desired properties. ■

Theorem 2.3 at once gives an O (nJlog N + n log(¼)) upper bound for the worst case

bit complexity of Monte Carlo Solitude Detection when an upper bound N on the ring size is

known by all processors. Thls upper bound can be sharpened to O (nJlog('!i) + nlog(¼))

in the expected case by usjng som id as to be developed in the next section.

There are two natural ways to employ the basic procedure within other algorithms. One

way is to precede another algorithm with the basic procedure, with the objective of lowering

the expected cost when there are two or more contenders. The same objective can often be

achieved by interleaving the basic procedure with another algorithm. The first approach can

be applied when the number of coin tosses needed is known in advance, and the second works

when the number of bits transmitted between successive coin toss exchanges is constant. We

will use these ideas in subsequent algorithms.

3 Gap estimation

When the algorithm has even a crude upper bound on the ring size the possibility emerges of

verifying that there is just one contender by measuring the lengths of gaps between successive

contenders, and comparing them. Thus, more sophisticated Solitude Detection algorithms

6

are based on efficient algorithms for counting, either exactly or approximately, the lengths

of gaps between consecutive contenders on the ring. The simplest gap counting algorithm is

a deterministic one. Each contender starts a counter, which is incremented and forwarded

by each noncontender until it reaches the next contender. This costs 0(n log n) bits in the

worst case. More efficient algorithms are based on methods for obtaining estimates of the gap

lengths.

Two gap estimation algorithms follow. The first is designed to obtain a very crude estimate

at very low cost. The second obtains a good estimate at higher cost.

The first gap counting algorithm, algorithm Gl, is similar in spirit to Greenberg and

Ladner's estimation algorithm [11], although our algorithm tries estimates in decreasing order,

which is crucial in its use. Assume that an upper bound Non n is known. Let Q0, ... , Qc-l

be the contenders in counter-clockwise order around the ring. Let 9j be the number of

processors in the interval [Qj-l,Qj). Let f be any increasing function on the nonnegative

reals satisfying f(t + I) 2: 2t+1 f(t) for all t 2: 0, and let J- 1(x) = sup{t: f(t) $ x} be its

functional inverse. So f grows quite rapidly. For our purposes, f(t) = 2t
2

will suffice.

Gap estimation proceeds in rounds, starting with round 0. In round t, each passive proces­

sor performs a random experiment with success probability min(!(t)/ N, I). Each contender

Qj-1 sends a message across the gap to its right, informing Qj whether there were any suc­

cesses in the gap. If there were no successes, then Qj proceeds to round t + I. If there was a

success in the gap to its left in round t, then Q j sets its estimate {Jj of 9j to N / f (t + 1), sends

a message signaling the end of the gap estimation phase, and waits to receive such a message.

Such messages end gap estimation for any processor receiving them, and are forwarded until

they reach a processor that initiated one. Not all contenders Qi will produce an estimate

!Ji, but at least one must do so. Any contender that does not produce an estimate can be

sure that it is not alone. It sends an alarm, which only serves to decrease the communication

complexity.

To keep the complexity low when there are two or more contenders, the basic algorithm

is interleaved with the steps just outlined. Algorithm Gl is summarized in Figure 2.

7

Contender Qi:
t := O;
repeat

run the basic procedure for one round;
send "any successes?" to the right;
receive m from the left;
if m = "end estimation" then abort and conclude not alone;
t == t + 1

until m = "success!";
iii:= N/ J(t);
send "end estimation" to the right;
receive messages until "end estimation" arrives.

Noncontender:
t := O;
loop

run the basic algorithm for one round;
receive message m from left;
r := Bernoulli-trial(success probability = min(J(t)/ N, 1));
if m i:, "end estimation" and r = success

then send "success!" to right
else send m to the right;

t := t + 1
end loop.

Figure 2: Algorithm Gl.

8

Lemma 3.1 Algorithm Gl satisfies the following.

(c) The expected bit complexity of algorithm Gl is 0 (nJ-1(N /n)) when c = 1 and 0(n)

when c > 1.

Proof: (a) If gj independent random experiments are performed, each with probability

of success f(t)/ N, then the probability of at least one success is at most 9j f(t)/ N. So

Pr(gj = N / f(t + l)) ~ Yi f(t)/ N. Therefore

. ~ (9i f(t)) (N)
E(gj) ~ ~ N J(t + 1) ~ 9i·

(b) When there is a single contender, T = J- 1 (N/g0) rounds are used for gap estimation.

We bound E(T), the expected stopping time. Choose k such that N / J(k) < n ~ N / f(k-1).

The stopping times less thank+ 3 contribute less than k + 2 to the expectation. It remains to

show that the later stopping times make only a small contribution. But Pr(T = k + 2 + j) ~

Pr(no successes at round k + 1 + j). This is zero if /(k + j) ~ N, and otherwise it is

(l-f(k+j)/N? < e-nf(k+i)/N. But n > N /f(k), so Pr(T = k+2+j) < e-f(k+i)/f(k). So

from k + 3 to oo, the contribution to E(T) is at most Z::f=1(k + 2 + j)e-f(k+i)lf(k), which is

0(1).

(c) This follows easily from the fact that E(T) = o(J- 1(N/n)), and from properties of

the basic algorithm. ■

Algorithm Gl gives a very crude estimate of a gap, but spends few bits to do so. We also

require an algorithm that generally spends more bits, but achieves a more accurate estimate.

We continue to assume that an upper bound N on n is known to the processors, and in

addition assume that the gap being estimated has length at least N /2k for some given k.

Algorithm G2 has each contender start a counter, initially zero. That contender and each

following noncontender tosses a biased coin, and increments the counter with probability

9

Contender Qi:
run the ha.sic algorithm for flog log >-l rounds;
r := trial();
send r to the right;
receive bi from the left;
Yi = Nbi/ >..

N oncontender:
run the ha.sic algorithm for flog log>. l rounds;
receive count b;
r := trial();
send b + r to the right.

Trial():
r := Bernoulli-trial(success probability = >./ N);
return (if r = success then 1 else 0).

Figure 3: Algorithm G2.

p = >./N, where>. is chosen according to the desired accuracy. When a contender Qi obtains

a count bi from its left, it sets its gap estimate Y.i of the actual gap gi to bi/P- To keep the

bit complexity low when there are two or more contenders, algorithm G2 starts with log log).

coin toss exchanges. Figure 3 shows algorithm G2.

Lemma 3.2 Let c1 > 1 and c2 < 1, and suppose gi ~ N /2k. Then the gap estimate Yi

produced by Qi during algorithm G2 satisfies the following.

(c) The expected bit complexity of algorithm G2 is 0(n log>.) when there is only one

contender and 0(n) when there are two or more contenders.

Proof: Part (c) is evident, since each gap counter ha.s an expected value less than >..

Consider a sequence of T independent Bernoulli trials with success probability p, and let X

be a random variable denoting the number of successes. Okamoto (14] shows that, for any

10

C > 0,

Pr (Jxii' - vP > c) < e-2Tc2

Pr (/xii' - vP < -c) < e-2Tc2

(3.1)

(3.2)

The similarity of (3.1) and (3.2) allows us to prove only assertion (a), with (b) following

almost identical reasoning. Let T = gj, p = >../N and X = P9j• Then

Pr(X > c1Tp)

Pr (PfI'-./P > y'CiP-./fi)
< e-2Tp(l-..jci")2

by (3.1)

$ e->.(l-..jci")2 /k since T 2: N /2k.

•
4 Improved Algorithms

Recall that, when nothing is known about the ring size n, no distributively terminating

Monte Carlo Solitude Detection algorithm exists. Assume that an upper bound N on n

is known. Then, as is shown below, not only does a distributively terminating Solitude

Detection algorithm exist, but its bit complexity is remarkably insensitive to the accuracy of

N as an estimate of n. The algorithm is derived from the following idea. Each contender

Qj forms an estimate [/j of the size of the gap separating Qj from the nearest contender to

the left. Then Qj uses N / 9j as an estimated upper bound on the number of contenders.

This hypothetical upper bound is then used to select the parameter for the basic procedure

in much the same way as the true upper bound was used in the algorithm of Theorem 2.3.

(Here, each contender makes the bold assumption that all gaps are equal. It is remarkable

that the algorithm performs well when the gaps are not at all equal, and the actual number

of contenders exceeds the estimated upper bound.)

11

Theorem 4.1 If an upper bound N on ring size is known by all processors, there is a dis­

tributively terminating one-sided Monte Carlo Solitude Detection algorithm with expected bit

complexity O (nJ log(1;:) + n log(¼)) .

Proof: The algorithm starts with each contender executing algorithm Gl, using function

f(t) = 2t
2

• If contender Qi obtains gap estimate {;j = aj, it executes the basic algorithm for

t = r log(¾) + l(j l rounds, where J(j = ✓2 log(N / llj).

Suppose there is a single contender. By Lemma 3.1(c), 0 (nJlog(~)) bits are communi-

cated on the average in the gap estimation phase. By Lemma 3.l(b), E(Ko) = 0 (✓log(1;:)).

So the expected bit complexity is 0 (n✓ log(1;:) + n log(¼)). When there are two or more

contenders, each processor sends 0(1) expected bits in the gap estimation phase and 0(1)

expected bits in later phases.

It remains to show that the algorithm erroneously asserts solitude with probability at

most L This part of the analysis is a more elaborate version of the analysis in Lemma 2.l(b).

The only feature of the gap estimates that is needed here is that E(gj)::; 9i·

Say that contender Qi is fooled if Qi reaches an incorrect decision. Let c be the actual

number of contenders. For j = 0, ... , c - 1 let F1 be the probability that contender Qi is

fooled, given that algorithm Gl has produced particular estimates 9i = aj,

Proof: Since Kj ~ c, in order for Qi to be fooled Kj +log(2/1:) times, every contender must

be fooled at least 1 + log(2/1:) times. Hence Fj::; 2-(c-l)log(4/i) = (1:/4f- 1 • ■

Claim 4.3 If [(i < c then Fj ::; E ai /2N.

Proof: In order for Qi to be fooled, the [(1 distinct processors Qi, Qj-1, ... , Qi-Ki+I

K 2 must be fooled a total of Lk,;1(log(2/1:) + k) ~ log(2/1:) + [(i /2 times. Hence Fj <
r(log(2/i)+K//2) = Wj / 2N. •

If Q; does not produce a gap estimate, then Q; is not fooled. Suppose Q; produces an

estimate. The probability that Q1 is fooled is at most (1:/4y- 1 + (1:/2N)E(g1 I 9i < c). But

12

the conditional expectation of !Ji is clearly at most E(gj), which by Lemma 3.l(a) is at most

Yi· So the probability that Qj is fooled is at most (€/4t-1 + €9j/2N. Hence the probability

that some contender is fooled is at most c(€/4)c-l + (€/2N) Lj 9i· Since c(€/4)c-l ~ f/2 and

Lj 9i = n ~ N, the probability that some contender is fooled is at most €. ■

The preceding algorithms have positive error probability when there are two or more

contenders. No algorithm can distinguish with certainty between a ring of size n containing

one contender and a ring of size 2n containing two contenders directly opposite each other,

as observed by Itai and Rodeh (6, 13]. Consequently, if all processors know at best that

lN/2J ~ n ~ N, there is no Las Vegas Solitude Detection algorithm. But if the processors

know that lN /2 J + 1 ~ n ~ N, there is a deterministic Solitude Detection algorithm with

worst case bit complexity O(nlogn) [2]. The algorithm simply has each processor execute

deterministic gap counting, and then send its ga.p count to the next contender (possibly itself).

A contender that receives two gap counts 91 and 92 , representing the lengths of the two gaps

to its left, is alone if and only if 91 = 92 > N /2.
Curiously, at very nearly the same degree of knowledge of ring size that error-free Solitude

Detection becomes possible, the expected bit complexity of Monte Carlo Solitude Detection

drops. The Monte Carlo algorithms employed so far have decreased the error probability

by simply repeating an experiment. Such algorithms typically have a log(¼) term in their

complexities. To lower the complexity, we need more subtle techniques.

Suppose all processors know that (½ + p)N ~ n ~ N for some p > 0. If there is only

one contender, then there is only one gap, and its length must be at least(½+ p)N. If there

are two or more contenders, then some gap must have length at most N /2. The contenders

execute a gap estimation algorithm whose accuracy is, with high probability, sufficient to

distinguish between(½+ p)N and N /2. Using algorithm G2 as the gap estimation algorithm,

the probability of obtaining a misleading count decreases at least exponentially with increasing

>., while the cost increases only logarithmically with increasing >.. Hence, the expected bit

comple~ty is proportional to log log(¼), where€ is the error probability bound. Asp decreases,

more accuracy is needed, so there is also a log(}) term in the complexity. The same ideas

13

can be employed even when pis unknown, and it is only known that N /2 < n :'.S: N.

Theorem 4.4 There is a distributively terminating one-sided Monte Carlo Solitude Detection

algorithm for rings of size n E (N /2, N] with expected bit complexity O (n min (log n, log(¼),

log log(¼)+ log(¼))), where p = N /n - 1/2.

Proof: Since worst case bit complexity 0(n log n) is achievable by a deterministic algorithm

and expected case bit complexity O (n log(¼)) is achievable by Theorem 4.1, it suffices to

produce an algorithm with expected bit complexity O (n log log(¼) +log(¼)). We begin by

producing an algorithm with two-sided error, and then show how to eliminate the error on

one side.

The value of p does not need to be known by the algorithm. However, we initially presume

that pis known, and show later how to do without that knowledge.

First each contender obtains a gap count by executing algorithm G2 with parameter >. to

be chosen below. Let a1 be the gap estimate obtained by a given contender. Each contender

sends its estimate a1 (in the form of the raw count a1>./N) to the next contender, and receives

a2. It concludes that it is alone if a 1 = a 2 z 1
~ 2 N.

We can assume that p is small. Then an appropriate choice of >. is >. = ;r ln ¼- The

expected bit complexity is O(n log>.) = 0 (nloglog(¼)+n log(¼)) when there is one contender,

and O(n) when there are two or more. Now we bound the error probabilities.

Claim 4.5 The probability that a sole contender erroneously concludes that it is not alone is

at most€.

Proof: The sole contender is fooled only if its estimate of the gap length is less that

1¥N, which, by Lemma 3.2(b), happens with probability less than e-.\(l-./C2)
2

for c2 =
(1 + p)/(1 + 2p). But (1- Jc;')2 ~ p2 /4 for small p, so the probability that a sole contender

is fooled is less than e-.\p
2

/
5 < L ■

Claim 4.6 The probability that some contender erroneously concludes that it is alone is at

most€.

14

Proof: Say that a contender is almost fooled if its estimates a1 and a2 satisfy a 1 + a2 ~

(1 + p)N. A contender erroneously concludes that it is alone only if it is almost fooled, so it

suffices to bound the probability that some contender is almost fooled. That probability is

maximized when there are just two contenders, since changing any one of c ~ 3 contenders

to a non-contender can only increase the probability that some contender is almost fooled.

Then the total number of processors that incremented a counter is (a 1 + a 2)>./ N, and a1 + a2

is the gap estimate that a sole contender would have obtained with the same coin tosses. The

worst case occurs when n = N. By Lemma 3.2(a), the probability that some contender is

almost fooled is Pr(g0 ;::: (1 + p)N) < e-A(l-Fi)
2

for any c1 < 1 + p. Choosing c1 arbitrarily

close to 1 + p results in (1 - yei)2 ~ p2 /4, so, as in Claim 4.5, the error probability is less

than L ■

The algorithm just described has two-sided error. Errors when there actually is a single

contender can be eliminated as follows. First run the algorithm as given. If the outcome is

"alone", then conclude alone and halt. Otherwise, run the algorithm of Theorem 4.1, and

adopt its conclusion. The modified algorithm does not err when there is one contender, and

has error probability less than 2E when there are two or more con tenders. When n ~ (½ +

p)N, and there is in fact one contender, the modified algorithm has expected bit complexity

0 (n log log(¼) + n log(¼) + m log(¼)). But dog(¼) s ½ for E s 1/ 4.

Finally, we re:move the presumption that p is known. The algorithm simply tries succes­

sively smaller values of p and E, starting with Po = 1/log(¼) and Eo = E/2, and proceeding

with (p1, E1), (p2, E2), ... with Pi+I = pf and Ei+I = Ei/2. The algorithm terminates with

answer "alone" when a trial with value p = Pi yields a gap estimate larger than (½ + ~)N.

Otherwise, it proceeds to the next trial, with p = Pi+ 1 . When log log(¼) +log(¼) > min(log n,

log(¼)), a different algorithm is started.

When there are two or more contenders, we rely on an interleaved basic algorithm to

keep the complexity low. When there is just one contender, the expected number of trials

is O (log log(})), and the total error probability is at most Li Ei < E. Each trial costs

approximately twice as much as the previous trial, and the expected cost is clearly the desired

15

cost. ■

5 Algorithms for Known Ring Size

In this section it is assumed that the algorithm knows the ring size exactly. Solitude Detection

algorithms are described for four conditions, depending on whether a Las Vegas or one-sided

Monte Carlo algorithm is desired, and whether the algorithm must terminate distributively

or not. Since all of the algorithms are similar, they are all presented as a single parameterized

algorithm, consisting of four stages. Not all stages are executed in all conditions. Stage 3 is

only executed if distributive termination is required. Stage 4 is only executed by Monte Carlo

algorithms.

Let v(n) denote the smallest positive nondivisor of n. Observe that v(n) is a prime power;

say, v(n) = p 8
• Let t?(x) = ln Ilq<x q, where q ranges over primes. Then limx-+oo t?(x) / x = I

[7]. Clearly Inn 2:'. t?(v(n)-1), so v(n) = O(logn). The algorithm has an integer parameter

l > I, which is adjusted according to type of algorithm desired. Let t be the smallest integer

such that pt 2:'. l, and let m = ps+t. Notice that m does not divide n and m > l.

The algorithm is described for a contender. Non-contenders cooperate as described. If a

contender receives evidence that it is not alone before the algorithm is finished then it sends

one of two kinds of alarm. A loud alarm is sent if the evidence is conclusive. Having sent a

loud alarm, a contender aborts the algorithm, and concludes that it is not alone. A soft alarm

is sent during a Monte Carlo algorithm when a contender has received strong but inconclusive

evidence that it is not alone. After sending a soft alarm, a contender waits to receive a soft

alarm, then proceeds directly to stage 4.

Alarms are forwarded by non-contenders. A contender that receives a message of a type

different from what it is expecting, including any kind of alarm, aborts what it is doing, and

sends a loud alarm. Each contender sends at most one alarm of each kind. A contender

that has finished the algorithm without sending or receiving a loud alarm concludes that it

is alone.

Stage 0: (This stage makes the algorithm one-sided linear.) Run r21og ml rounds of the basic

16

procedure.

Stage 1: (This stage will generate an alarm if there are c contenders, where 2 ~ c ~ l.) Send a

counter, initially 1, to the right. The counter is incremented mod m 2 by each non-contender,

and propagates to the next contender. Receive a count from the left. If the count is not

congruent ton (mod m 2
), send a loud alarm.

Stage 2: (This stage generates an alarm within every sequence of l distinct contenders,

provided none of them sent an alarm in stage 1.) Inform the contender to the right whether

the distance separating it from yourself is greater than n/l.

(a) For a Las Vegas algorithm, send a counter, initially 1, to the right. Each non-contender

increments the counter, until the counter reaches a value greater than n/l. At that

point, the message "long" is propagated to the next contender. Receive a message from

the left. If the message is not "long," send a loud alarm.

(b) For a Monte Carlo algorithm with error probability at most E, use a truncated version

of algorithm G2 with increment probability ")..jn, where ").. is chosen below. When the

counter reaches a value greater than 2")../ l, the message "long" is propagated to the next

contender. Receive a message from the left. If the message is a counter, rather than

"long," let fl be the estimate, send a soft alarm, wait for a soft alarm to arrive, then go

to stage 4.

Stage 3: (This stage is only executed if distributive termination is desired. It serves to flush

alarms.) Alternately send and receive l "ok" messages.

Stage 4: (This stage is only executed by processors that sent a soft alarm. It eliminates the

possibility of error when there is a single contender.) Let fl be the estimate computed in stage

2. Execute the basic procedure for t rounds, where t is chosen below. Send a loud alarm as

soon as the toss received does not match that just sent.

Lemma 5.1 Suppose that, in every sequence of l + 1 consecutive contenders, at least one of

the contenders sends an alarm in stage 1 or 2. Then every contender eventually sends an

alarm.

17

Proof: If the algorithm terminates nondistributively, then all contenders will send an alarm

if any do. If the algorithm terminates distributively, then stage 3 will cause an alarm to move

through l contenders. ■

Lemma 5.2 If there are c contenders, where 2 ~ c ~ l, then some contender sends a loud

alarm in stage 1, and all contenders conclude that they are not alone.

Proof: Suppose no alarm is sent in stage 1. Let 91, ... , Ye be the lengths of the gaps

separating the contenders. Then g1 + •••+Ye = n. Since no alarms are sent at stage 1, it

must be the case that 9i = n (mod m2) for j = 1, ... , c. Let r be the remainder when

n is divided by m2 • Then er = g1 + •••+Ye = r (mod m2), from which it follows that

m2 I (c - l)r. But m % n, so m % r, and, since m is a prime power, m I (c - 1). Hence,

c > m > l, contradicting the required condition. The second statement follows from Lemma

5.1. •
Theorem 5.3 There is a one-sided linear Las Vegas Solitude Detection algorithm for rings

of known size n that

(a) terminates distributively and transmits O (nJlog n) bits m the worst case when

there is just one contender, or

(b) terminates nondistributively and transmits O (n log log n) bits in the worst case when

there is just one contender.

Proof: Correctness. Loud alarms are sent only when a contender has conclusive evidence

that it is not alone. Hence, when there is a single contender, the algorithm answers correctly.

Suppose there are c ~ 2 contenders. If c ~ l then all contenders conclude that they are not

alone, by Lemma 5.2. If c > l, then at least one of any sequence of l + 1 consecutive gaps

must have length less than n/1. So some contender will detect a short gap at stage 2, and

will send an alarm. By Lemma 5.1, all contenders send an alarm. Only loud alarms are sent

in Las Vegas algorithms, so all contenders conclude that they are not alone.

18

Complexity. The coin tosses in stage Oare sufficient to keep the expected bit complexity

linear when there are two or more contenders, so consider the case of just one contender.

In stages 0 and 1 0(n log m) = 0 (n log 11(n) + n log l) bits are exchanged, and in stage

2 0(n + (n/l)logn) bits are exchanged. For nondistributive termination, no other stages

are executed. Choosing l = r1og n l for n > 2 yields total bit complexity O (n log 11(n) +
n log log n) = 0(n log log n). For distributive termination, stage 3 costs an additional 0(nl)

bits. The total bit complexity of o(nlog11(n) + (n/l)logn + nl) is minimized, to within

a constant factor, by choosing l = r Jlog n l for n > 2. That yields total bit complexity

0 (nJlog n). ■

Theorem 5.4 There is a one-sided Monte Carlo Solitude Detection algorithm for rings of

size n that

(a) terminates distributively and transmits O (nmin(Jlog n, log log(¼), log v(n)+

Jlog log(¼))) expected bits when there is just one contender, or

(b) terminates nondistributively and transmits O (n min (log log n, log log(¼), log 11(n) +
log log log(¼))) expected bits when there is just one contender.

Proof: Correctness. A loud alarm is sent only when a contender receives conclusive

evidence that it is not alone, so suppose there are two or more contenders. There are two

ways to err: either some contender terminates without having sent any kind of alarm, or every

contender sends a loud or soft alarm, and some contender fails to send a loud alarm at stage

4. We show that the probability of each kind of error occurring is at most E/2.

Let p1 be the probability of the former kind of error, and suppose that such an error

occurs. Say that a gap is short if its length is less than n/l, and is long if its length is greater

than 2n/l. By Lemma 5.2, no alarms are sent in stage 1, so there must be more than l

contenders. So every sequence of l + 1 consecutive gaps must include a short gap. By Lemma

5.1, since some contender fails to send an alarm in stage 2, there must be some short gap G

that is measured as being long in stage 2(b). The probability q of that occurring is maximized

when G has length n/ l - 1. By Lemma 3.2, q < e-2>.(i-V2)2 /I < e->./3I. The probability that

19

some short gap is measured as long is maximized when there are fewer than 2l contenders,

since combining two very short gaps to produce a short gap can only increase the probability

of many increments in some short gap. So p1 < 2ze->-/3l. Choose >. = 3llog(4l/ t-). Then

PI < f./2.

Now consider the second kind of error, that every contender sends some kind of alarm, but

some contender fails to send a loud alarm in stage 4. Loud alarms can only help, so suppose

all contenders send a soft alarm. Stage 4 is just the algorithm of Theorem 4.1, with the gap

estimate already provided. Our estimate fli of the gap length gj has expected value exactly

9i, assuming stage 4 is reached, so the error analysis of Theorem 4.1 applies. In order to drop

the error probability to f./2, we choose t = log(4/f.) + J21og(n/gj)-

Complexity. Stage O guarantees expected linear bits when there are two or more con­

tenders, so consider the case of a single con tender. Stage 1 costs O (n log m) = 0 (n log 11(n) +
n log l) bits. The counter at stage 2 travels a distance that is binomially distributed with

a mean of about 2n/l before becoming "long", so the expected bit complexity of stage 2 is

0 (n + 7 log f) = 0 (n + T log log l + T log log(¼)) .

Stage 4 is relatively costly, but fortunately it is rarely executed. The probability that a

sole contender reaches stage 4 is less than e- 2>-(I-02)
2

for c2 > 2/l, by Lemma 3.2. We will

choose l > 8, so let c2 = 1/4. Since>.= 3llog(4l/f.), the probability of reaching stage 4 is less

than f.. Given that a single contender does reach stage 4, its estimate fj is almost surely very

close to the maximum possible value, 2n/l. So E(✓log (n / fj)) < JTog1. The contribution

of stage 4 to the expected bit complexity is thus O (rn log(¼) + rny'Iogl) = 0(n) for the

choices of l to be made below.

For nondistributive termination, choose l = max(9, r log log(¼) l). Then the expected bit

complexity for stages 1, 2 and 4 is o(nlogv(n) + nlogl + 7loglog(¼)) = o(nlogv(n) +
nlogloglog(¼)).

For distributive termination, stage 3 contributes an additional 0(nl) bits. Choose l =

max(9, ✓log log(;)). Then the expected bit complexity is O (nl + nlog v(n) + 7 loglog(¼)) =
0 (nlogv(n) + nJloglog(¼)) .

20

knowledge distributive nondistri bu tive
termination termination

N/2 $ n $ N impossible impossible

N/2 < n $ N 0(nlogn) 0(nlogn)

n= N 0(nJlog n) 0(n log log n)

Table 1: The expected bit complexity of Las Vegas (error-free) Solitude Detection.

For very small £, the Las Vegas algorithm of Theorem 5.3 is more efficient than the one

just analyzed. Also, in some cases the n log v(n) term can dominate, and it might be better

to run the algorithm of Theorem 4.4, with p = ½- By choosing the best algorithm for the

situation, the expected bit complexity becomes o(nmin(logv(n) + logloglog(¼), loglogn,

log log(¼))) for nondistributive termination, and O (n min (log v(n) + ✓log log(¾), Jlog n,

log log(¼))) for distributive termination. ■

6 Conclusion

This paper has demonstrated several techniques for solving Solitude Detection on asyn­

chronous anonymous unidirectional rings using few expected bits. Given the variety of tech­

niques employed, it would not be at all surprising to find that other techniques yield even

better algorithms. But that is not the case. Lower bounds that match (to within a constant

factor) the upper bounds proved here are proved in [5]. In fact, the algorithms were in some

cases inspired by the lower bound proofs.

Tables 1 and 2 summarize the results of this paper and its companion paper [5]. Some­

times, distributive termination costs more bits than nondistributive termination, as one would

expect. But when processors know that ring size n satisfies N /2 < n $ N, the cost of achiev­

ing distributive termination is at most a constant factor worse than that of nondistributive

termination. Also, although the tables show that more information generally helps, there

are exceptions. For example, when nondistributive termination suffices, there is no difference

21

knowledge distri bu ti ve nondistri bu ti ve
termination termination

none impossible 0 nlog(¼)

a$ n $ N (*) 0 nJlog(~) + nlog(¼) 0 nlog(¼)

N/2 < n $ N 0 f(n,n/N -1/2,E) 0 f(n,n/N -1/2,E)

0(nmin(0(nrnin(

n=N logv(n) + /loglog(¼), log v(n) + log log log(¼),

ylogn, loglog(¼) log log n, log log(¼)

J(n,p,€) = min nlogn, nlog(¼), nloglog(¼) + nlog(¼)

(*) a$ N /2; lower bounds require n $ N /2.

Table 2: The expected bit complexity of Monte Carlo Solitude Detection with error probability

€ > 0.

between the cases where just an upper bound on n is known and where nothing at all is

known about n.

What the tables do not show is that the upper and lower bounds are in fact stronger than

stated, and contrast in strength in several ways. In the case of Monte Carlo algorithms, the

lower bounds apply to algorithms with two-sided error, while the upper bounds all achieve one­

sided error. Our algorithms never deadlock . But the lower bounds apply even to algorithms

that might deadlock or loop forever with arbitrarily high probability, and need never do

anything useful (but must not lie) when there are two or more contenders; the given bound

applies to the class of computations with a single contender that do terminate with the

correct answer. Our nondistributively terminating algorithms actually distributively reject: a

decision that there are two or more contenders is never revoked on later receipt of a message.

Our lower bounds for distributively terminating algorithms apply also to algorithms that

distributively accept, but can nondistributively reject. Our upper bounds are for anonymous

rings. Our lower bounds permit processors to have identities, provided that those identities

22

are not guaranteed to be distinct, and the algorithm must be correct (with the required

probability) for any sequence of identifiers; the lower bounds apply to the best case over all

identifier sequences. Our upper bounds all require only 0(n) expected bits when there are

two or more contenders; the lower bounds neither constrain nor make assumptions about

complexity when there are two or more contenders.

References

[1] K. Abrahamson, A. Adler, R. Gelbart, L. Higham, and D. Kirkpatrick. The bit complex­

ity of probabilistic leader election on a unidirectional ring. In Distributed Algorithms on

Graphs, pages 1-12. Carleton University Press, 1986. Proc. 1st International Workshop

on Distributed Algorithms.

[2] K. Abrahamson, A. Adler, R. Gelbart, L. Higham, and D. Kirkpatrick. The bit complex­

ity of randomized leader election on a ring. SIAM Journal on Computing, 18(1):12-29,

1989.

[3] K. Abrahamson, A. Adler, L. Higham, and D. Kirkpatrick. Probabilistic evaluation of

common functions on rings of known size. Technical Report 88-15, University of British

Columbia, 1988.

[4] K. Abrahamson, A. Adler, L. Higham, and D. Kirkpatrick. Randomized function evalu­

ation on a ring. Distributed Computing, 3(3):107- 117, 1989.

[5] K. Abrahamson, A. Adler, L. Higham, and D. Kirkpatrick. Tight lower bounds for prob­

abilistic solitude verification on anonymous rings. Technical Report TR 90-4, University

of British Columbia, 1990.

[6] D. Angluin. Local and global properties in networks of processors. In Proceedings of the

Twelfth Annual ACM Symposium on Theory of Computing, pages 82-93, 1980.

[7] T. M. Apostol. Introduction to Analytic Number Theory. Springer-Verlag, New York,

1976.

23

[8] H. Attiya and M. Snir. Better computing on the anonymous ring. In Proc. Aegean

Workshop on Computing, pages 329-338, 1988.

[9] H. L. Bodlaender. New lower bound techniques for distributed leader finding and other

problems on rings of processors. Technical Report RUU-CS-88-18, Rijksuniversiteit

Utrecht, 1988.

[10] P. Duris and Z. Galil. Two lower bounds in asynchronous distributed computation

(preliminary version). In Proc. 28nd Annual Symp. on Foundations of Comput. Sci.,

pages 326-330, 1987.

[11] A. Greenberg and R. Ladner. Estimating the multiplicities of conflicts in multiple access

channels. In Proc. 24nd Annual Symp. on Foundations of Comput. Sci., pages 383-392,

1983.

[12] L. Higham. Randomized Distributed Computing on Rings. PhD thesis, University of

British Columbia, Vancouver, Canada, 1988.

[13] A. Itai and M. Rodeh. Symmetry breaking in distributed networks. In Proc. 22nd Annual

Symp. on Foundations of Comput. Sci., pages 150-158, 1981.

[14] M. Okamoto. Some inequalities relating to the partial sum of binomial probabilities.

Annals of the Institute of Statistical Mathematics, 10:29-35, 1958.

24

