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Abstract 

This paper introduces a novel and new multi-scale shape representation tech
nique for space curves which satisfies several criteria considered necessary for any 
shape representation method. This property makes the representation suitable for 
tasks which call for recognition of a noisy curve at any scale or orientation. 

The method rests on the concept of describing a curve at varying levels of 
detail using features that are invariant with respect to transformations which do 
not change the shape of the curve. Three different ways of computing the 
representation are described in this paper. These three methods result in the fol
lowing representations: the curvature and torsion scale space images, the renor
malized curvature and torsion scale space images, and the resampled curvature 
and torsion scale space images. 

The process of describing a curve at increasing levels of abstraction is 
referred to as the evolution of that curve. Several evolution properties of space 
curves are described in this paper. Some of these properties show that evolution 
is a physically plausible operation and characterize possible behaviours of space 
curves during evolution. Some show that the representations proposed in this 
paper in fact satisfy the required criteria. Others impose constraints on the loca
tion of a space curve as it evolves. Together, these evolution properties provide a 
theoretical foundation for the representation methods introduced in this paper. 

A. Introduction 

Why study the problem of representing the shape of space curves? Space 
curves are useful to study for the following reasons: 

a. Trajectories of objects in outer space and paths taken by atomic particles are 
space curves. Often, such an object or particle can be recognized when study
ing the shape of its path when subjected to specific forces. 

b. Axes of generalized cones and cylinders [Agin & Binford 1973] are also space 
curves. A generalized cone or cylinder representation of a three-dimensional 
object can itself be efficiently represented by its axes. 

c. Bounding contours of objects that consist of flat or nearly flat surfaces are rich 
in information and can be used to represent the object effectively and economi
cally. These bounding contours are space curves and can be extracted by thin
ning the object into lines and planes. An attempt to describe such objects 
using three-dimensional surfaces may not add much useful information but can 
significantly increase storage and processing requirements. 

This paper introduces a novel theory of multi-scale shape representation for 
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space curves. A useful shape representation method in computational v1s1on 
should make accurate and reliable recognition of an object possible. Therefore 
such a representation should satisfy a number of necessary criteria. The following 
is a list of such criteria: 

a. Efficiency: The representation should be efficient to compute and store. This 
is important since it may be necessary for an object recognition system to per
form real-time recognition. 

b. Invariance: Uniform scaling, rotation and translation are considered to be the 
transformations which do not change the shape of an object. Therefore the 
representation should remain essentially invariant while the represented object 
undergoes one of these transformations. 

c. Sensitivity: The degree of change to the shape of an object should correspond 
to the degree of the resulting change in its representation. Otherwise, a small 
change to the shape of an object may cause a large change in its representation 
which will make it impossible to detect two objects that are close in shape. 

d. Uniqueness: There should be a one-to-one correspondence between objects 
and their representations. This requirement is only up to the class induced by 
criterion b above. If this criterion is not satisfied, it will be impossible to dis
tinguish objects of different shapes which have the same representation. 

e. Detail: The representation should contain information about the object at 
varying levels of detail. This is important since features on an object usually 
exist at different scales. Large-scale features describe the basic structure of the 
object while small-scale features describe fine detail on the object. 

f. Robustness: Any arbitrary initial choices should not change the structure of 
the representation. 

g. Local support: The representation should be computed using local support so 
that incomplete data only affects the representation locally. 

h. Ease of implementation: It is advantageous to use a shape representation 
technique which is as easy as possible to implement. This will help minimize 
programming and debugging efforts. 

i. Matchability: The representation technique should compute a data structure 
which lends itself easily to a matching algorithm. Such an algorithm would 
take two representations as input and return a description of the similarity ( or 
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dissimilarity) of the shapes they represent. If this criterion is not satisfied, 
recognition of an object will not be possible even if its representation has been 
computed. 

A number of shape representation methods for planar curves have been pro
posed in the computational vision literature. A number of these methods can be 
extended to apply to space curves but each fails to satisfy one or more of the cri
teria outlined above. The following is a summary of those methods and the cri
teria each fails to satisfy: 

a. Hough transform: Has been used to detect lines (Hough 1962), circles (Duda & 
Hart 1972) and arbitrary shapes (Ballard 1981). Edge elements in the image 
vote for the parameters of the objects of which they are parts. The votes are 
accumulated in a parameter space. The peaks of the parameter space then 
indicate the parameters of the objects searched for. For any object more com
plicated than a line, the parameter space becomes multi-dimensional and 
therefore the Hough transform fails to satisfy the efficiency criterion. The 
parameters which define an object change when it undergoes rotation, uniform 
scaling or translation therefore the invariance criterion is not satisfied either. 
The local support criterion is also not satisfied since in order to obtain a dis
tinguishable peak in the parameter space, the entire object must be present in 
the image. 

b. Chain encoding [Freeman 1974, McKee & Aggarwal 1977) and polygonal 
approximations [Pavlidis 1972, 1977): The curve is approximated using a 
polygon or line segments which lie on a grid. These methods do not satisfy the 
invariance criterion since the approximating polygon rotates, scales and moves 
as the original curve rotates, scales and moves. Furthermore, the robustness 
criterion is not satisfied since changing the starting point on the curve can 
change the shape of the approximating polygon, and the sensitivity criterion is 
not satisfied since a small change in the shape of the curve can drastically 
change the shape of the approximating polygon. 

c. Shape factors and quantitative measurements [Danielsson 1978]: The shape of 
the object is described using one or more global quantitative measurements of 
the object such as area, perimeter and compactness. The uniqueness criterion 
is not satisfied since there is a dramatic reduction in data. The detail criterion 
is not satisfied since only one scale is represented. Furthermore, the local sup
port criterion is not satisfied since the entire object must be present in the 
image and the sensitivity criterion is not satisfied since even large changes in 
the shape of an object may cause no change in its representation. 

d. Strip trees [Davis 1977, Ballard & Brown 1982]: A strip tree 1s a set of 
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approximating polygons or polylines ordered such that each polygon or poly
line approximates the curve with less approximation error than the previous 
polygon or polyline. This class also suffers from the shortcomings of class b. 

e. Splines [Ballard & Brown 1982]: The curve is represented using a set of ana
lytic and smooth curves. The invariance criterion is not satisfied since shape
preserving transformations of the curve change the parameters of the approxi
mating splines. The uniqueness criterion is not satisfied since reconstruction of 
the original curve is not possible. The robustness criterion is also not satisfied 
since a particular choice of knot points results in a particular set of approxi
mating splines. 

f. Smoothing splines [Shahraray & Anderson 1989]: The curve is parametrized to 
obtain two coordinate functions. Cross-validated regularization [Wahba 1977] 
is then used to arrive at an "optimal" smoothing of each coordinate function. 
The smoothed functions together define a new smooth curve. This method 
does not satisfy the efficiency criterion since cross-validation is quite expensive. 
It does not satisfy the detail criterion since the object is represented at only 
one scale. It does not satisfy the uniqueness criterion since the reconstruction 
of the original curve is not possible, It also does not satisfy the local support 
criterion since all data points must be present for cross-validation. 

g. Fourier descriptors [Persoon & Fu 1974]: The curve is represented by the 
coefficients of the Fourier expansion of a parametric representation of the 
curve. The invariance criterion is not satisfied by this class since shape
preserving transformations of the curve will change its Fourier coefficients. The 
local support criterion is also not satisfied since the entire curve must be avail
able in order to compute its Fourier expansion. 

h. Curvature primal sketch [Asada & Brady 1984]: The curve is approximated 
using a library of well-defined, analytic curves. Then the curvature function of 
the approximating curve is computed and convolved with a Gaussian of vary
ing standard deviation. This method does not satisfy the sensitivity criterion. 
If the original curve is noisy, then computing its curvature function is an 
error-prone process and the computed representation may change significantly. 
More will be said on this method in section 6. 

i. Extended circular image [Horn & Weldon 1986]: This representation is the 
two-dimensional equivalent of the extended Gaussian image. In the extended 
circular image, one is given the radius of curvature as a function of normal 
direction. The invariance criterion is not satisfied by this method since the 
representation rotates as the original curve rotates. The uniqueness criterion is 
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also not satisfied since the representation is one-to-one only for the class of 
simple and convex curves. 

j. Volumometric diffusion [Koenderink & van Doorn 1986): A geometrical object 
is defined by way of its "characteristic function" x(r) which equals unity when 
the point r belongs to the object and zero otherwise. The object is then 
blurred by requiring that its characteristic function satisfy the diffusion equa
tion. The boundary of each blurred object is defined by the equation 
x(r) = 0.5. The efficiency criterion is not satisfied by this method since an 
image must be convolved with a large number of two-dimensional Gaussian 
filters. The invariance criterion is also not satisfied since shape-preserving 
transformations of the object also change the blurred objects computed by this 
method. 

A multi-scale representation for one-dimensional functions was first proposed 
by Stansfield [1980) and later developed by Witkin [1983). The function J(x) is 
convolved with a Gaussian function as its variance u2 varies from a small to a 
large value. The zero-crossings of the second derivative of each convolved func
tion are extracted and marked in the x-u plane. The result is the scale space 
image of the function. 

The curvature scale space image was introduced in [Mokhtarian & Mack
worth 1986) as a new shape representation for planar curves. The representation 
is computed by convolving a path-based parametric representation of the curve 
with a Gaussian function, as the standard deviation of the Gaussian varies from a 
small to a large value, and extracting the curvature zero-crossing points of the 
resulting curves. The representation is essentially invariant under rotation, uni
form scaling and translation of the curve. This and a number of other properties 
makes it suitable for recognizing a noisy curve at any scale or orientation. This 
representation was further generalized to space curves by Mokhtarian [1988a). 
The curvature and torsion scale space images of a space curve are computed by 
extracting the curvature level-crossings and torsion zero-crossings of the curve 
respectively at varying levels of detail. The process of describing a curve at 
increasing levels of abstraction is referred to as the evolution of that curve. The 
evolution of a space curve and the curvature and torsion scale space images are 
described in detail in section B. 

Mackworth and Mokhtarian [1988) introduced a modification of the curva
ture scale space image referred to as the renormalized curvature scale space 
image. This representation is computed in a similar fashion but the curve is 
reparametrized by arc length after convolution. As was demonstrated in [Mack
worth & Mokhtarian 1988), the renormalized curvature scale space image is more 
suitable for recognizing a curve with non-uniform noise added to it. However, 
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unlike the regular curvature scale space representation, the renormalized curva
ture scale space applies only to closed curves. The renormalized curvature and 
torsion scale space images are described in detail in section C. 

The resampled scale space images are significant further refinements of the 
renormalized scale space images which are based on the concept of arc length evo
lution. It is shown that the resampled scale space images are even more suitable 
than the renormalized scale space images for recognition of curves with added 
non-uniform noise. The arc length evolution of a space curve and the resampled 
curvature and torsion scale space images are described in detail in section D. 

Section E contains the evolution and arc length evolution properties of space 
curves. Almost all these properties are shown to be true about both evolution and 
arc length evolution. Together, these properties provide a theoretical foundation 
for the representation method proposed in this paper. The proofs of the lemmas 
and theorems of section E are contained in the appendix. 

Section F presents several examples of space curves during evolution and 
scale space representations of those curves and presents a number of experiments 
carried out to demonstrate the stability of the proposed representations under 
various conditions of noise. Section F also discusses the significance of the evolu
tion and arc length evolution properties described in section E. It argues that 
these properties show that: 

a. Evolution and arc length evolution are physically plausible operations. 

b. There exist strong constraints on the location of a space curve during evolu
tion or arc length evolution. 

c. The representations based on evolution and arc length evolution satisfy the cri
teria required of any shape representation method. 

d. Behaviour of a space curve during evolution or arc length evolution can be 
completely characterized. For example, the shape of a space curve can be 
locally determined before and after the creation of a cusp point. 

Section G presents the conclusions of this paper. 

B. The curvature and torsion scale space images 

This section introduces the parametric representation of space curves and 
describes the Frenet Trihedron for space curves. Curvature and torsion of a space 
curve are then defined and geometrical interpretations given to them. Next, it is 
shown how to compute curvature and torsion on a space curve at varying levels 
of detail. A multi-scale representation for a space curve which combines 
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information about the curvature and torsion of the curve at varymg levels of 
detail is then proposed. 

I. The parametric representation of a space curve 

The set of points of a space curve are the values of the continuous, vector
valued, locally one-to-one function [Goetz 1970]: 

r = r( u) = (x( u), y( u), z( u)) (1) 

where x( u), y( u) and z( u) are the components of r( u) and u is a function of arc
length s of the curve. s is also called the natural parameter. The function r( u) or 
the triple of functions (x(u), y(u), z(u)) is called a parametric representation of 
the curve. 

II. Frenet Trihedron and formulae for space curves 

With every point P of a space curve of class C2 is associated an orthonormal 
triple of unit vectors: the tangent vector t, the principal normal vector n and the 
binormal vector b (Figure 1 ). The osculating plane at P is defined to be the 
plane with the highest order of contact with the curve at P. The principal normal 
vector is the unit vector normal to the curve at P which lies in the osculating 
plane. The binormal vector is the unit vector perpendicular to the osculating 
plane such that the three vectors t, n and b in that order form a positively 
oriented triple. The plane containing t and n is the osculating plane. The one 
containing n and bis the normal plane and the one containing b and t is the rec
tifying plane. The derivatives oft, n and b with respect to the arc-length param
eter give us: 

dt - = ,en, 
ds 

dn 
- =-,ct+ rb, 
ds 

db 
- =-rn. 
ds 

These formulae are called the Frenet or the Serret-Frenet formulae. The 
coefficients ,c and rare called the curvature and torsion of the curve respectively. 

Curvature is the instantaneous rate of change of the tangent vector to the 
curve with respect to the arc length parameter. Curvature has no sign. Torsion 
is the instantaneous rate of change of the binormal vector with respect to the arc 
length parameter. A sign is assigned to the absolute measure of torsion as follow
ing: 

Let point P correspond to value s of the arc length parameter and let point Q 
correspond to value s+h. Let line l be the intersection of the osculating planes at 
P and Q. Give line l the orientation of a vector won l such that t.w>O. Consider 
the rotation about I through a non-obtuse angle which superposes the osculating 
plane at P on the osculating plane at Q. This rotation also superposes b(s) on 
b(s+h). If b(s), b(s+h) and w form a positively oriented triple, then torsion has 
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positive sign, otherwise it has negative sign. 

Since the curve is represented in parametric form, in order to compute cur
vature and torsion at each point on the curve, we need to express those quanti
ties in terms of the derivatives of x(.), y(.) and z(.). In what follows, r(u) 
represents the parametrization of a space curve with respect to an arbitrary 
parameter and p( s) represents the parametrization of that curve with respect to 
the arc-length parameter. We next show how to express curvature and torsion on 
a space curve in terms of derivatives of its coordinate functions. 

III. Curvature 

In case of an arc-length parametrization, we have: 

K = li>I = ✓ex? + Cii)2 + (z)2 
• 

Given an arbitrary parametrization of the curve: 

In coordinate form 

where 

IV. Torsion 

A= y ~
y z 

B= Z X .. .. 
Z X 

lrxrl 
li-13 . 

X y .. 
X y 

We will first derive an expression for the torsion of a space curve with arc
length parametrization. Multiplying both sides of the third Frenet formula by n 
results in 

r = -b.,n = -(txn).,n = -(t.,xn)n- (txn.,)n = tnn.,. 

Note that tnn., is the mixed product of vectors t, n and n., and 1s equal to 
(txn)n.,. We now make use of 

t = p, ij' Ka •• 
n.,= L... _ -p 

K K2 

to obtain 
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X y Z ...... 
X y Z 

• •• ••• X 'if z' 
T - .P.J!.L - .P..P...J!._ - -------

- K2 - (p)2 - (z)2 + (y)2 + (z)2. 

In case of an arbitrary parametrization, we make use of: 

and 

to obtain 

• • dt •• ..( dt )2 • d2t 
p = r-, p = r - + r-

ds ds ds2 ' 

... . .. ( dt )3 
3 •• ( dt) d2t • d3t 

p =r - + r--+r-
ds ds ds2 ds3 

•••• ,. 1 • 16 
T = ~.r 

li-16 (i-xr) 2 
rrr - (rxr)2 . 

In coordinate form 

X y z .. .. 
X y z 
x· fl z· 

r=------
A2 + B2 + c2 

where A, Band Care as before. 

V. Computing curvature and torsion at varying levels of detail 

In order to compute K and r at varying levels of detail of the curve r, func
tions x( u), y( u) and z( u) are convolved with a Gaussian kernel g( u,a) of width a 
[Marr & Hildreth 1980]: 

u2 

( ) 
1 - 20'2 

g u,a = r,:;-e . 
av21r 

The convolved functions together define the evolved curve r o-· The convolution of 
a function /( u) and the Gaussian kernel is defined as: 

00 

J 
-(u-v)2 

F(u,a) = f(u) © g(u,a) = f(v) ~e 2u2 dv. 
(7 21r 

-00 

Furthermore, it is known that 

F(. ) _ 8F( u,a) _ !( ) /J:\ 89( u,a) u,a - - u ~ a au u 
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F( u,o-) = a2 F( u,o-) = f( u) 0 a2g( u,o-) 
8u2 au2 

and 

F ( u,o-) = &3 F( u,o-) = f( u) 0 &3g( u,u) . 
8u3 · 8u3 

These properties of convolution can be used to compute curvature and torsion on 
evolved versions of a space curve. Let 

X( u,u) = x( u) @g( u,o-) 

Y( u,u) = y( u) @g( u,o-) 

and 

Z( u,o-) = z( u) @g( u,o-). 

It follows that curvature on an evolved curve r u is given by 

Jn2 + E2 + p2 K=~----------------
where 

and 

( .X( u,o-)2 + Y( u,o-)2 + Z( u,o-)2)312 

D = Y.( u,o-) -9.( u,u) 
Y( u,u) Z( u,u) 

E = .?,( u,o-) ~( u,o-) 
Z( u,o-) X( u,u) 

F= %.(u,o-) 
X( u,o-) 

Y.( u,u) 
Y( u,o-) 

and torsion on evolved curve r u is given by 

%.( u,u) 
X(u,a) 
"'( ) X u,o-

Y.( u,a) .?,( u,cr) 
¥.( u,o-). ,?.( u,u) 
Y ( ·u,u) Z ( u,o-) T=-----------------D2 + E2 + p2 

where D, E and Fare as before. 

VI. A multi-scale representation for space curves 

The curvature and torsion functions of a space curve specify that curve 
uniquely up to rotation and translation [Do Carma 1976]. We therefore propose a 
representation for a space curve that consists of the curvature scale space and 
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torsion scale space images of the curve. This representation is a generalization of 
the curvature scale space representation proposed for planar curves in 
[Mokhtarian & Mackworth 1986]. The scale space image was first proposed as a 
representation for one-dimensional signals in [Stansfield 1980] and developed in 
[Wi tkin 1983]. 

To compute the torsion scale space image of a space curve 
r = (x(u),y(u),z(u)), evolved curves ru are computed as u varies from a small to 
a large value. The torsion zero-crossing points of each r u are extracted and 
recorded in the u-u space. The smallest value of u used is slightly larger than 
zero and the largest value of u used in the smallest value of u that results in a r u 

with very few torsion zero-crossing points. 

The curvature scale space image of a space curve is constructed in a similar 
fashion. The only difference is that level-crossings rather than zero-crossings are 
searched for. This is because the curvature of a space curve has only magnitude 
and no sign. Some care should be given to choosing a suitable value for level L. 
If L is too large, the number of level-crossing points found on curves r u drops to 
zero quickly as u increases and the resulting curvature scale space image will not 
be very rich and therefore not suitable for matching. If L is too small, the result
ing curvature scale space image will contain excessive detail. The actual value 
used for L is the average of curvature values of points of r uo where u0 E [O,utJ 
and u t is the largest value of u used to compute the torsion scale space image of 
r. Using such a value ensures that the resulting curvature scale space image will 
be sufficiently rich for matching and will represent roughly the same range of 
values of u represented in the torsion scale space image of r. 

In order to match a space curve against another, the torsion scale space 
images of both are constructed and matched against each other using the algo
rithm described in [Mokhtarian & Mackworth 1986]. If the resulting cost of 
match is low, then one curve is transformed according to the transformation 
parameters predicted by the match so that both curves exist at the same scale. 
The curvature scale space images of both curves are then constructed and 
matched using the same algorithm. The final cost of match is a combination of 
the two costs. 

C. The renormalized curvature and torsion scale space images 

Mackworth and Mokhtarian (1988] observed that although w is the normal
ized arc length parameter on the original curve r, the parameter u is not, in gen
eral, the normalized arc length parameter on the evolved curve r u· This can lead 
to poor matches when local shape differences exist between two curves. To over
come this problem, we propose the renormalized curvature and torsion scale 
space images. 
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and 

where 

Now define 
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R(u,<1) = (X(u,a), Y(u,a),Z(u,a)) 

u 

JIRvC v,a) I dv 
0 4>a(u) = _1 ___ _ 

JIR11( v,<1) I dv 
0 

A -1 X(w,a) = X(4>a (w),a) 

Y(w,a) = Y(4>;1(w),a) 

A -1 Z(w,a) = Z(4>a (w),a). 

(2) 

Functions X( w,a), Y( w,a) and Z( w,a) defined by equations (2) define the renor
malized version of each r a· That is, each evolved curve r a is reparametrized by 
its normalized arc length parameter w. 

Notice that 

4>(7(0) = 0 

4>a(l) = 1 

and 

Also 

IRu(u,<1)1 
------ >0 1 

JlRv(v,a)ldv 
0 

at non-singular points. 

4>0( u) = u. 

4> a( u) deviates from the identity function 4> a( u) = u only to the extent to which 
the scale-related statistics deviate from stationarity along the original curve. 

The function defined implicitly by 

K( W 1<1) = C 

is the renormalized curvature scale space image of r and the function defined 
implicitly by 
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r(w,u) = 0 

is the renormalized torsion scale space image of r. 

D. The resampled curvature and torsion scale space images 

Note that as a space curve evolves according to the process defined in section 
B, the parametrization of its coordinate functions x( u), y( u) and z( u) does not 
change. In other words, the function mapping values of the parameter u of the 
original coordinate functions :z:( u), y( u) and z( u) to the values of the parameter u 
of the smoothed coordinate functions X( u,u ), Y( u,u) and Z( u,u) is the identity 
function. 

For both theoretical and practical reasons, it is interesting to generalize the 
definition of evolution so that the mapping function can be different from the 
identity function. Again let r be defined by: 

r = {(x(w),y(w),z(w))lw E [0,1]}. 

The generalized evolution which maps r tor u is now defined by: 

r--+ r u = {(X( W,u), Y( W,u), Z( W,u))I WE [0,1]} 
where 

X( W,u) = x( W) @g( W,u) 

Y( W,u) = y( W) @g( W,u) 

and 

Z( W,u) = z( W) @g( W,u) . 

Note that 

W= W(w,u) 

and 

W(w,u0) 

where u0 is any value of u, is a continuous and monotonic function of w. This 
condition is necessary to ensure physical plausibility since Wis the parameter of 
the evolved curve r u· 

A specially interesting case is when W always remains the arc length para.m
eter as the curve evolves. When this criterion is satisfied, the evolution of r is 
referred to as arc length evolution. An explicit formula for W can be derived 
[Gage & Hamilton 1986]. 

Recall equation (1) 
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r( u) = ( x( u), y( u), z( u)). 

The Frenet equations for a planar curve are given by 

8t 8r 
au= 1aul11:n 

an ar ar 
8u =-laul11:t + laulrb. 

Let t = a 2 /2. Observe that 

8 8r 2 8 8r 8r 8r &r 
ot Cl au I ) = a/ au · au) = 2( au · auat ). 

Note that 

8r 8r 
-=I-It 8u 8u 

and 

8r 
-=Kll 
8t 

since the Gaussian function satisfies the heat equation. It follows that 

8 8r 8r 8 8r 811: 8r 8r 8r 
8t(l 8u 12)=2(1 au It, au (11:n))=2(18u It.( 8u n-1 au i11:2t+1 au 111:rb))=-21 au 1211:2. 

Therefore 

or 

J... I 8r I = -1~111:2. ot au au 
Let L denote the length of the curve. Now observe that 

L L 1 

BL = f J_ I 8r I du= -J I 8r I 11:2 du= -/11:2 dw. 
8t 

0
8t8u 

0
8u 0 

Since the value w0 of the normalized arc length parameter w at a point P meas
ures the length of the curve from the starting point to point P, it follows that 

aw w 
8t = -f11:2(W,t)dW 

0 

and therefore 
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tW 

W( w,t) = -J J K2
( W,t) dW dt. 

0 0 

W(w,O) = w. 

The function defined implicitly by 

,c( W,o-) = C 

(3) 

is the resampled curvature scale space of r and the function defined implicitly by 

r( W,o-) = 0 

is the resampled torsion scale space of r. 
Since the function ,c( W, t) in (3) is unknown, W( w, t) can not be computed 

directly from (3). However, the resampled curvature and torsion scale space 
images can be computed in a simple way: A Gaussian filter based on a small 
value of the standard deviation is computed. The curve r is parametrized by the 
normalized arc length parameter and convolved with the filter. The resulting 
curve is reparametrized by the normalized arc length parameter and convolved 
again with the same filter. This process is repeated until the curve has very few 
torsion zero-crossing points. The curvature level-crossings of each curve are 
marked in the resampled curvature scale space image and the torsion zero
crossings of each curve are marked in the resampled torsion scale space image. 

E. Evolution and arc length evolution properties of space 
curves 

This section contains a number of results on evolution and arc length evolu
tion of space curves as defined in section D. The proofs can be found in the 
appendix. 

The first five lemmas express a number of global properties of space curves 
during evolution and arc length evolution. 

Lemma 1. Evolution and arc length evolution of a space curve are invariant 
under rotation, uniform scaling and translation of the curve. 

Lemma 2. A closed space curve remains closed during evolution and arc length 
evolution. 

Lemma 3. A connected space curve remains connected during evolution and arc 
length evolution. 

Lemma 4. The center of mass of a space curve is invariant during evolution and 
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arc length evolution. 

Lemma 5. Let r be a closed space curve and let G be its convex hull. r remains 
inside G during evolution and arc length evolution. 

The following theorem also appeared in Mokhtarian [1989]. It concerns the 
uniqueness properties of the torsion scale space representations. 

Theorem 1. Let r be a space curve in C3• Let r( u) and ,c( u) represent the tor
sion and curvature functions of r respectively. A single point on one torsion 
zero-crossing contour in the regular, resampled or renormalized torsion scale 
space image of r determines function /3( u) = r( u)1e2( u) uniquely modulo a scale 
factor ( except on a set of measure zero). 

The following theorem makes explicit the conditions under which new torsion 
zero-crossmgs will not be observed at the higher scales of torsion scale space 
images. 

Theorem 2. Let r be a space curve in C3• If all evolved and arc length evolved 
curves r <1 are in C3 and torsion is bounded at every point of r during evolution, 
then all extrema of contours in the regular, renormalized and resampled torsion 
scale space images of r are maxima. 

Theorems 3 and 4 first appeared in [Mokhtarian 1988b). They concern the local 
behaviour of space curves just before and just after the formation of cusp points 
during evolution. 

Theorem 3. Let r = (x(w),y(w),z(w)) be a space curve in C1 and let x(w), y(w) 
and z( w) be polynomial functions of w. Let r <1 = (X( W,a), Y( W,a),Z( W,a)) be an 
evolved or arc length evolved version of r with a cusp point at W0. There is a 
8>0 such that either r <1---6 intersects itself in a neighborhood of point W0 or two 
projections of r <1---D intersect themselves in a neighborhood of point W0 . 

Theorem 4: Let r = (x( w), y( w), z( w)) be a space curve in C1 and let x( w), y( w) 
and z( w) be polynomial functions of w. Let r u = ( X( W, o-), Y( W, o-), Z( W, o-)) be 
an evolved or arc length evolved version of r with a cusp point at W0, then 
either r <1+6 has two new torsion zerercrossings in a neighborhood of W0 or a tor
sion zero-crossing point exists at W0 on r <1-6 and r <1+6· 

The last theorem defines other conditions under which new torsion zero-crossings 
can appear on a space curve. 
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Theorem 5: New torsion zero-crossings can appear on a smooth space curve dur
ing evolution or arc length evolution in a neighborhood of a point of zero curva
ture. 

F. Examples, experiments and discussion 

This section presents a number of space curves during evolution and the tor
sion scale space representations of those curves. It also presents a number of 
experiments to demonstrate the stability of the proposed representations under 
various noise conditions and contains a discussion of the practical significance of 
the lemmas and theorems of section E. 

Figure 2 shows a space curve depicting a fork. Figure 3 shows several evolved 
versions of the fork and figure 4 shows the torsion scale space image of the fork. 
Note that as a, the width of the Gaussian function, increases, small-scale features 
on the curve disappear but the more basic features are preserved. Figure 5 shows 
a space curve depicting a bottle-opener. Several evolved versions of the bottle
opener are shown in figure 6 and its torsion scale space image is shown in figure 
7. 

The third example is the curve shown in figure 8. This curve depicts an 
armchair. Figure 9 shows several evolved versions of the armchair and figure 10 
shows the torsion scale space image of the armchair. Figure 11 shows the curva
ture scale space image of the armchair without any noise. The renormalized tor
sion scale space image of the armchair is shown in figure 12. Note that since the 
fork, the bottle-opener and the armchair are all depicted by symmetric curves, 
their torsion scale space images are all symmetric as well. 

Experiments were also carried out to examine the behaviour of the proposed 
torsion scale space representations when input curves are corrupted by noise. Fig
ure 13 shows the armchair with a significant amount of noise added to it. The 
direction as well as the magnitude of the noise is random. Figure 14 shows the 
torsion scale space image of armchair with noise. It can be observed that despite 
the addition of a considerable amount of noise, the torsion scale space image 
retains its basic structure very well. Figure 15 shows the armchair corrupted with 
severe random noise. The torsion scale space image of armchair with severe noise, 
shown in figure 16, no longer matches well with the torsion scale space image of 
the original armchair shown in figure 10. However, the resampled torsion scale 
space image of the armchair, shown in figure 17, and the resampled torsion scale 
space image of the armchair with severe noise, shown in figure 18, show a very 
good degree of match which is quite remarkable. 

In general, it can be said that the regular torsion scale space image is suit
able for use as a representation when the input curve has undergone transforma
tions consisting of uniform scaling, rotation and translation and/or has been 
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corrupted by uniform noise. However, when non-uniform noise and/or local shape 
changes have altered the shape of the input curve, the renormalized or resampled 
torsion scale space images are better choices. The resampled torsion scale space 
image is the most robust one with respect to non-uniform noise and local shape 
changes and is rather insensitive towards small-scale differences in shape which 
may be an undesirable feature. The renormalized scale space image is more sensi
tive towards those small-scale shape differences but can only be computed for 
closed curves and requires more computation time. 

The following is a discussion of the practical significance of the lemmas and 
theorems of section E. 

Lemma 1 showed that evolution and arc length evolution of a space curve 
are invariant under rotation, uniform scaling and translation of the curve. This 
shows that the regular, renormalized and resam.pled torsion scale space images of 
a space curve have the invariance property [Mokhtarian & Mack-worth 1986). The 
invariance property is essential since it makes it possible to match a space curve 
to another of similar shape which has undergone a transformation consisting of 
arbitrary amounts of rotation, uniform scaling and translation. 

Lemmas 2 and 3 showed that connectedness and closedness of a space curve 
are preserved during evolution and arc length evolution. These lemmas show that 
evolution and arc length evolution of a space curve are physically plausible opera
tions. Consider a closed, connected space curve that represents the boundary of a 
three-dimensional object. If such a curve is not closed or connected after evolu
tion or arc length evolution, then it can no longer admit a physically plausible 
interpretation. 

Lemma 4 showed that the center of mass of a space curve does not move as 
the curve evolves and lemma 5 showed that a space curve remains inside its con
vex hull during evolution and arc length evolution. Together, lemmas 4 and 5 
impose constraints on the physical location of a space curve as it evolves. These 
constraints become useful whenever the physical location of curves in a scene or 
their locations with respect to each other is important. A possible application 
area is stereo matching in which it is advantageous to carry out matching at 
coarser levels of detail first and then match at fine detail levels to increase accu
racy. 

Theorem 1 shows that a space curve can be reconstructed modulo the class 
represented by function /3( u) = r( u) 1e2( u), where r( u) and ,c( u) are the torsion 
and curvature functions of the curve, from its torsion scale space image. Two 
space curves of different shapes are unlikely to belong to the same class 
represented by function /3( u) and therefore their torsion scale space images will 
usually be different. 
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Theorem 2 shows that if a space curve remains smooth during evolution and 
torsion remains bounded at each of its points, then no new torsion zero-crossings 
can exist at the higher scales of its torsion scale space image. Theorem 3 shows 
that space curves are very likely to remain smooth during evolution. 

Theorems 3 and 4 locally characterize the behaviour of a space curve during 
evolution just before and just after the creation of a cusp point. Theorem 3 shows 
that a space curve either intersects itself or two of its projections intersect them
selves just before the formation of a cusp point during evolution, in a neighbor
hood of the cusp point. These conditions are usually not satisfied during evolu
tion of a space curve and therefore cusp points are unlikely to occur on space 
curves during evolution. 

Theorem 4 shows that new torsion zero-crossings can indeed occur after the 
formation of a cusp point during evolution. This theorem complements the fact 
stated by theorem 2. 

Theorem 5 showed that new torsion zero-crossings can indeed occur on a 
space curve that remains smooth during evolution at points of zero curvature. 
Together, theorems 4 and 5 describe all situations that can lead to creation of 
new torsion zero-crossings on a space curve during evolution. This enables one to 
make inferences about a space curve when new torsion zero-crossings are observed 
in its torsion scale space image. 

We now present an evaluation of the curvature and torsion scale space 
representations according to the criteria proposed in section A. 

Criterion a: Efficiency 

The computation of the representations proposed here calls for evaluation of 
a large number of convolutions. This process can be rendered efficient usmg one 
or more of the following techniques: 

i. Fast Fourier transforms 
ii. Parallelism 
iii. Expression of convolutions involving Gaussians of large widths m terms of 

convolutions involving Gaussians of small widths only. 

Furthermore, curvature and torsion scale space representations can be stored 
very efficiently as binary images. 

Criterion b: Invariance 

Translation of the curve causes no change in the curvature and torsion scale 
space representations proposed here. Rotation causes only a horizontal shift in 
the curvature and torsion scale space representations and uniform scaling causes 
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the torsion scale space representation to undergo uniform scaling as well. If the 
represented curves are closed, then their torsion scale space representations can 
be normalized and invariance with respect to uniform scaling will also be 
achieved. If the represented curves are open, changes due to uniform scaling can 
be handled by the matching algorithm. 

Criterion c: Sensitivity 

Small changes to the shape of the curve usually result in small changes in its 
representation since smaller values of the scale parameter will be sufficient to 
smooth out the change. 

Criterion d: Uniqueness 

As argued earlier, theorem 1 shows that function /3( u) = r( u) ,c2( u) can be 
reconstructed from any of the torsion scale space representations of a space curve 
and therefore the torsion scale space representations nearly satisfy the uniqueness 
criterion. 

Criterion e: Detail 

Since the curvature and torsion scale space representations combine informa
tion about the curve at varying levels of detail, criterion e is also satisfied. 

Criterion f: Robustness 

The only arbitrary choice to be made when computing the curvature and 
torsion scale space representations is the starting point for parametrization on a 
closed curve. This only causes a horizontal shift in the curvature and torsion scale 
space representations but no structural change. 

Criterion g: Local support 

All convolutions are carried out using Gaussian filters therefore criterion g is 
also satisfied. 

Criterion h: Ease of implementation 

The procedures needed to compute the curvature and torsion scale space 
images are quite straightforward to implement. All that is needed is to prepare 
masks approximating derivatives of Gaussians and to convolve those with the 
coordinate functions of the input curve. Curvature level-crossings and torsion 
zero-crossings are then readily located and their locations stored in two
dimensional arrays. Hence criterion h is also satisfied. , 
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Criterion i: M atchability 

Curvature and torsion scale space images consist of contours which can be 
matched in a straightforward way to contours in other such scale space images. 
For a scale space matching algorithm, see [Mokhtarian & Mackworth 1986]. 

It follows that the curvature and torsion scale space representations satisfy 
the necessary criteria for shape representation methods better than shape 
representation techniques previously proposed. 

G. Conclusions 

This paper introduced a novel shape representation technique for space 
curves and proposed a number of necessary criteria that any useful shape 
representation scheme should satisfy. Those criteria are: efficiency, invariance, 
sensitivity, uniqueness, detail, robustness, local support, ease of implementation 
and matchability. 

Three different ways of computing the representation were described. Each 
method relies on extracting features of the curve that are invariant under shape 
preserving transformations at varying scales. These methods result in: the curva
ture and torsion scale space images, the renormalized curvature and torsion scale 
space images and the resampled curvature and torsion scale space images. It was 
shown that each of those representations is suitable for a specific application. 

A number of theoretical properties of those representations were also investi
gated. These properties together provide a sound foundation for the representa
tions proposed in this paper. It was argued that each of the properties described 
in this paper has significant practical applications. Finally, it was shown that the 
proposed representations satisfy the criteria introduced earlier better than previ
ously proposed shape representation techniques for space curves or those shape 
representation techniques which have been proposed for planar curves and can be 
extended to apply to space curves. 
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Appendix 

Proof of lemma 1: It will be shown that arc length evolution is This 
appendix contains the proofs of the lemmas and theorems of section E. The 
proofs of the lemmas have been given for arc length evolution only since the 
proofs for regular evolution are similar and simpler. Theorems 1 and 2 have been 
shown to hold for regular, renormalized and resampled torsion scale space images. 
Theorems 3,4 and 5 have been shown to hold for both regular and arc length evo
lution. 

invariant under a general affine transform. Let r o- = (X( W,u), Y( W,a),Z( W,a)) be 
an arc length evolved version of r = (x(w),y(w),z(w)). H ro- is transformed 
according to an affine transform, then its new coordinates, X 1, Y1 and Z1 are 
given by 

X1(W,u) = aX(W,u) + b Y(W,a) + cZ(W,u) + d 

Y1 ( W,a) = e X( W,u) + f Y( W,a) + g Z( W,u) + h 

Z1( W,a) = iX( W,u) + j Y( W,a) + kZ( W,a) + l. 
Now suppose r is transformed according to an affine transform and then evolved. 
The coordinates X 2, Y2 and Z2 of the new curve are 

X2(W,u) = (ax(W) + by(W) + cz(W) + d)@g(W,u) 

YiW,u) = (ex(W) + fy(W) + gz(W) + h)@g(W,u) 

Z2( W,u) = (ix( W) + jy( W) + kz( W) + Q @g( W,a). 

Since the convolution operator is distributive [Kees 1982], it follows that 

X2( W,a) = X1( W,a) 

YiW,u) = Yi(W,a) 

Z2(W,u) = Z1(W,u) 

and the lemma follows. □ 

Proof of lemma 2: Let r = ( x( w), y( w) ,z( w)) be a closed curve and let 
r o- = (X( W,u), Y( W,u),Z( W,a)) be an arc length evolved version of r. On r: 

( x(O), y(O), z(O)) = ( x(l ), y( 1 ), z(l) ). 
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(X(O,a), Y(O,a), Z(O,a)) = (X(l,a), Y(l,a), Z(l,a)). 

It follows that r (J' is closed. □ 

Proof of lemma 3: Let r = (x( w),y( w),z( w)) be a connected planar curve and 
r <T = ( X( W,a ), Y( W,a) ,Z( W,a)) be an arc length evolved version of that curve. 
Since r is connected, x( w), y( w) and z( w) are continuous functions and therefore 
X( W,a ), Y( W,a) and Z( W,a) are also continuous. Let W0 be any value of param
eter W and let x0 , Yo and z0 be the values of X( W,a), Y( W,a) and Z( W,a) at W0 

respectively. ff W goes through an infinitesimal change, then X( W,a), Y( W,a) 
and Z( W,a) will also go through infinitesimal changes: 

X( W0,a) --+ x0 + 8 

Y( Wo,a)--+ Yo+ e 
Z( W0 ,o-) --+ z0 + €. 

As a result, point P(x0,y0) on r(J' goes to point P'(x0 +8,y0 +e,zo+€). Let the dis
tance between P and P' be D. Then 

D = ✓ 82 + e2 + €
2 ~ 8V2 

assuming 181 is the largest of 181, lel and 1€1. It follows that an infinitesimal 
change in parameter W also results in an infinitesimal change in the value of the 
vector-valued function r <T' Therefore r <Tis a connected curve. D 

Proof of lemma 4: Let M be the center of mass of r = (x(w),y(w),z(w)) with 
coordinates (xM,YM,zM)· Then 

1 

Jx(w)dw 1 
0 

xM = - 1-- = f x( w)dw. 

fdw 
0 

0 

Let r <T = (X( W,a), Y( W,a),Z( W,a)) be an arc length evolved version of r with 
N = (XN, Y N,ZN) as its center of mass. Observe that 

1 loo oo 1 

XN= f x(W,a)dW= ff g(v,a)x(W-v)dvdW= f g(v,a)(fx(W-v)dW)dv. 
o o~ ~ o 

W covers r <T exactly once. Therefore 
I 

So 

Jx( W-v)dW = xM. 
0 
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Similarly 

and 

ZN= ZM· 

It follows that Mand N are the same point. □ 

Proof of lemma 5: Since G is simple and convex, every plane P tangent to G 
contains that curve in the left ( or right) half-space it creates. Since r is inside G, 
r is also contained in the same half-space. Now rotate P and r so that P 
becomes parallel to the YZ-plane. P is now described by the equation x = c. 
Since P does not intersect r, it follows that x( w0) ~ c for every point w0 on r. Let 
rube an arc length evolved version of r. Every point of r u is a weighted average 
of all the points of r. Therefore X( W0 ,a )~c for every point W0 on r u and r u is 
also contained in the same half-space. This result holds for every plane tangent to 
G therefore r u is contained inside the intersection of all the left ( or right) half
spaces created by the tangent planes of G. It follows that r u is also inside G. □ 

Proof of theorem 1: The proof will first be given for the regular torsion scale 
space of r, then the modifications needed to apply the same proof to the resam
pled and renormalized torsion scale space of r will be explained. 

Section i shows that the derivatives at a point on a torsion zero-crossing con
tour provide homogeneous equations in the moments of the coordinate functions 
of the curve. Section ii shows that the moments are related to the coefficients of 
expansion of the coordinate functions of the curve in functions related to the Her
mite polynomials. Section iii shows that the moments at one torsion zero-crossing 
point can be related to the moments at other torsion zero-crossing points. Section 
iv shows that the cubic equations obtained in section i can be converted into a 
homogeneous linear system of equations which can be solved uniquely for func
tion r( u) 11: 2( u). 

i. Constraints from the torsion zero-crossing contours 

Let r = (x(u),y(u),z(u)) be the arc-length parametrization of the curve with 
Fourier transform I'= (x(w),y(w),z(w)). The Fourier transform of the Gaussian 

filter G( u, t) = ~e-u2/4t is G(w) = e4 t. 
v2t 

Let r to = ( x( u, t0), y( u, t0), z( u, t0)) be a curve obtained by convolving x( u ), 
y( u) and z( u) with G( u, to). Assume that r to is in C00 • Such a to exists since r is 

in C1. Assume that 11:( u, t) -/= 0 on the torsion zero-crossing contours in a 
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neighborhood of "to· It follows that the torsion zero-crossings are given by solu
tions of /3( u, t) = 0 where [Goetz 1970] 

( 4) 

where . represents derivative with respect to u. Note that on r ( t = 0 ), /3( u, t) is 
given by 

/3( u, t) = r( u, t) ~2
( u, t). (5) 

Using the convolution theorem, x( u, t), y( u, t) and i( u, t) can be expressed as 
following: 

and therefore 

x( u, t) = J e4 t eil,.,u ( ~ 2) x( W) dw 

y( u, t) = J e-w2t eii,.,u(~2) y(w) dw 

z(u,t) = J e4 teil,.,u(~2)z(w)dw 

x· ( u, t) = J e--i,h eii,.,u (-iw3) x( w) dw 

'y'(u,t) = J e-w
2
tei:.Ju(-iw3)fi(w)dw 

z' ( u, t) = J e..J,;)
2
t eil,.,u(-iw3) z(w) dw. 

Note that the moment of order k of the function f(w) = e4 te"'u(iw)x(w) 1s 
defined by: 

00 

-00 

the moment of order k of the function f'( w) = e-,,it eii,.,u ( iw) ii( w) is defined by: 
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-00 

and the moment of order k of the function f"( w) = e4 t eiwu ( iw) z( w) is defined by: 
00 

-00 

Therefore equation (5) can be written as: 

The Implicit Function Theorem guarantees that the contours u( t) are 000 in a 
neighborhood of t0• Let e be a parameter of the torsion zero-crossing contour. 
Then 

d du 8 dt 8 
d[ = -;J{ 8u + d[ 8t · 

dk 
On the torsion zero-crossing contour, f3 = 0 and ---;;/3 = 0 for all integers k. 

de 
Furthermore, since the torsion zero-crossing contour is known, all the derivatives 
of u and t with respect to e are known as well. We now compute the derivatives 
of /3 with respect to e at ( Uo, t0 ). The first derivative is given by: 

.l:... /3( t ) = !::!!:.. 8/3( Uu, t0) dt 8(3( Uu, t0) 

df. uo, 0 de 8·u + d[ 8t (6) 

where 

and 

and the second derivative is given by: 

E:P_ = d2u .2f!_ + d2
t .21!_ + (du) 2 ~ + 2~J:!:....ff:J!_ + (~) 2 ~ ( 7) 

ae de2 OU de2 8t de au2 de de 8u8t de 8t2 
where 
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&2(3 M 1111 M' M'M"M. M' ll M" M"M'M. M"M'M M M"M' - = 4..tV..lO 1 + 2 3 0 - 4iV..lO 1 - 2 3 0 - 4 0 1 - 2 3 0 &u,2 

&2(3 M"M M' ll M"M' M' ll M" ll M'M" M"M'M M'M"M 8u{)t = 5 0 1 + 1r1 2 3 1 - 5..1v1 0 1 - 1r1 2 3 1 - 5 0 1 - 2 3 1 

and 

a2(3 - M'M M" + 2M"M'M + M"M. M' + ll M"M' M"M M' 2M'M"M. [)t,2 - 5 0 2 4 3 0 6 0 1 ..IV..l2 4 1 - 5 0 2 - 4 3 Q 

+ MM' M" + M'M M" + 2M"M M' + M"M' M + M M"M' + 2M'M M" 601 241 340 502 502 430 

Since the parametric derivatives along the torsion zero-crossing contours are zero, 
equation (6) is equal to zero. Note that equation (6) is in the first five moments 
of functions f(w), f'(w) and J"(w) and equation (7) is in the first seven moments 

of those functions. In general, the k+ 1st equation, ~: fl( u, t) = 0 is a cubic 

equation in the first 2k+3 moments of each of the functions f(w ), f'(w) and f"(w). 

It follows that the first n+ 1 equations at ( Uo, t0) are in a total of 
3(2n+3) = 6n+9 moments. Our axes are again chosen such that 11.o = 0. The next 
section shows that the moments of f(w), f'(w) and f"(w) are the coefficients ak, bk 

and ck in the expression of functions x(u), y(u) and z(u) in functions <f>iu,u) 
related to Hennite polynomials. Therefore we have n+l equations in the first 
6n+9 coefficients ak, bk and ck. To determine the ak, bk and ck, we need 5n+8 
additional and independent equations which can be provided by considering six 
neighboring torsion zero-crossing contours at ( u1, t0), ( 1£.i, t0), ( Ua, "to), ( u4, t0 ), 

( u5 , t0 ) and ( ¾, t0 ). 

ii. The moments and the coefficients of expansion of i:( u), y( u) and i( u) 

This section shows that the moments and the moment-triples in equations 
dk 

--k (3( u, t) are related respectively to the coefficients of the expression of the 
di. 
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functions x( u), y( u) and .i( u) and function /3( u) in functions related to the Her
mite polynomials. 

Expand function 

x( u) = -J;x( u) 

in terms of the functions <Pk( u, u) related to the Hermite polynomials Hk( u) by 

k uk-1 u 
</>k(u,u) = (-1) (...f2)1+I..;;Hk( u.../2) 

.} dk 2 
Hk(u) = (-l)ke - e-u 

duk 

x(u) = :E aiu)</>iu,u) 

The coefficients ak( O') of the expansion are given by 

ak(u) = <wk(u,a),x(u)> 

where <, > denotes inner product in L2 and { wk( u, u)} is the set of functions 
biorthogonal to { </>i u, u)}. The { ¢>k( u, u)} are given explicitly by 

and the wi u, O') by 

Since 

the ak are given by 

.; .; 
(J'2A>---1 -2 dk --2 

<Pk( u, u) = - ......... - e 2o- - e 2o
k! /ii; duk 

.; 
1 J dk -- · aiu) = ~(-l)k <-k e 2o-2, eiwu> (iw)i(w) dw 

V27r du 

The inner product is just the inverse Fourier transform of wkC u,a). Therefore 
40'2 

ak(u) = Jcu.vt e-2-(iw)i(w) dw 

which is equal to Mk modulo a factor eiwu, since t = a 2 /2. 

Similarly, the functions 
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y(u) = :u y(u) 

z(u) = :u z(u) 

can be expanded in terms of the functions <h( u, a) by 

ii( u) = :E bia) </>k( u, a) 

.i( u) = :E ck( a) </>k( u, u) 

and it again follows that 
-w2q2 

bi a) = f ( iw l e-2- ( iw) fj( w) dw 

-l.<?a2 

cia) = j(iwle-2-(iw) z(w) <U.v 

which are equal to M,. and M;: respectively modulo a factor eiwu. 

Furthermore, afiu), bi(a) and ci(u), the coefficients of expansion of functions 
i( u), y( u) and z( u) in <h( u, a) respectively, can be seen to be related to ai a), 
bi u) and ck( a) according to the following relationships: 

a,._1(u) = ak(u) 

b,._1( u) = bi a) 

c,._1(u) = cia) 

(8) 

and a;;(a), b;;(u) and c;;(a), the coefficients of expansion of functions :i:'(u), 'ii(u) 
and ·z· ( u) in </> k( u, a) respectively, can be seen to be related to ak( a), bk( a) and 
ci u) by the following relationships: 

a;;_2(u) = aia) 

bk--ia) = biu) 

c;;_2(a) = ck(a). 

Now observe that the function r( u) 1e2( u) can be expressed as: 

r( u) ,c2( u) = :i:( u)(y( u)z' ( u) - y' ( u)z( u)) 

- Ji( u) ( x( u y.i· ( u) - x' ( u) z( u)) 

+ z( u) ( x( u) :.v· ( u) - x· cu) y( u)) 

(9) 
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= x( u)y( u)'i"( u) - x( u)'ii ( u)zt u) - ii( u)ii( u)"i' ( u) 

+ y(u)x'(u)z(u) + z(u)x(u)y'(u) - .i(u)x'(u)y(u) 

= :E a.( a)</>;( u, o-) :E b;( o-)</>i( u, o-) :E c;'( o-)</>.( u, u) 

- :E a,{ o-)</>,{ u, u) :E b;'( u )</>i( u, u) :E cl( u )</>i( u, u) 

- :E bi(u)</>;(u,11):E a,tu)</>.{u,u):E c;'(a)</>;(u,u) 

+ :E b;(u)</>.{u,o-):E a;'(o-)</>;(u,11):E c:(11)</>;(u,u) 

+ :E c,{11)</>.(u,11):E a;(u)</>.(u,u):E b;'(u)</>,{u,o-) 

- :E ci( o-)</>,{ u, a) :E a;'( o-)</>;( u, o-) :E bl( u )</>i( u, a) 

= :E :E :E a,{ u )b;{ u)c'·/l o-)</>,{ u, u)</>,( u, a )</>i u, a) 

- :E :E :E ai( o-) b;'( a )ck( u )</>;( u, u )</>,{ u, a )</>k( u, a) 

- :E :E :E b,( u)a;{ a)c'/;( o-)</>;( u, u)</>1( u, o-)</>i u, u) 

+ :E :E :E b;( u )a;'( u )ck( u )</>;( u, a)</>,{ u, a )</>i u, a) 

+ :E :E :E c;( o-) a;{ u )b1:( u )</>;( u, o- )</>1( u, u )</>i u, u) 

- :E :E :E c;( o-) a;'( u )bfc( o- )</>;( u, o-)</>1( u, o- )<Pk( u, u) 

= :E :E :E (a;(u)b;{u)ck(u) + b;(u)a](a)ci(o-) + ci(u)a;(o-)bk(o-) 

-a.{o-)b;'(u)ck(o-) - b;(o-)a;{o-)ck(u) - c,{a)a;'(o-)bi(u)) 

</>,( u, O" )</>,( u, O" )</>k( u, O"). 

Using (8) and (9) we obtain 

-r( u) K
2(u) = :E :E :E (a;(u)b;+1(u)ck+2(o-) + b;(u)a;+i(u)ck+i(u) + c;(a)a;+iCu)bk+iu) 

- a.(u)b;+2(u)ck+l(o-) - b1(11)a;+1(u)ck+2(u) - c.{u)a;+2(u)bk+1(u)) 

</>,{ u, (1 )</>,( u, O" )¢,k( u, O" ). 

It follows that if the triples a1(u)b,{o-)ck(11) in the equation above are all known, 
the function /3( u) = -r( u) K2

( u) can be reconstructed. 
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iii. Combining information from more than one contours 

To solve the system of equations obtained in section i, we need to obtain 
additional equations from other points of the torsion scale space image and relate 
them to the equations obtained from the firs..:fto~nt,. Suppose addi~io?al equations 
are obtained in the moments of functions e teiwu(iw)x(w), e-w2teiwu(iw)y(w) and 
e--w

2
teiwu'(iw)z(w) at point (u', "to), We have 

x(u+u') = J ei.Jueiwu'(iw)x(w)dw = ~ dk</>iu) 

y( u+u') = J eiwueiwu'( iw )y(w )dw = ~ ek<f>i u) 

and 

Now observe that 

~ dk<f>i u) = ~ ak<Pi u+u') 

~ ek<Pi u) = ~ bk<Pi u+u') 

and 

~ A</Ji u) = ~ ck<Pk 

That is, ¢k( u+u') can be expressed as a linear combination of ¢,( u) with j-5:_ k as 
has been shown in [Yuille and Poggio 1983]. 

iv. Reconstructing the function r( u) K2( u) 

It was shown in section i that seven points from seven torsion scale space 
contours give us 6n+9 cubic equations in the first 2n+3 moments of each of the 
functions J(w), f'(w) and f"(w). Section iii showed that the moments of order k of 
any function at u+u' can be expressed as a linear combination of the moments of 
order less than or equal to k of that function at u. Therefore we obtain a system 
of homogeneous cubic equations in the first 6n+9 coefficients of functions x( u), 
ii( u) and .i( u) using seven points from the torsion scale space image of r (Note 
that only three equations from the seventh point need be used). That system has 
at least one solution since the moments of order higher than 2n+2 of f(w), f'(w) 
and J"(w) are assumed to be zero. However, the solution obtained from a cubic 
system of equations is in general not unique. 

Equations ( 6) and (7) can be converted into homogeneous linear equations 
by assuming that each moment-triple appearing in those equations is a new vari
able. Tables 1-7 show the moment-triples in equations (6) and (7). The + signs 
designate the moment-triples in equation (6) and the + and the x signs together 
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designate the moment-triples in equation (7). Each table shows those moment
triples which share the same M;:, 0::; k ::;6. 

Mo M1 M2 Ma Ml Ms M~ Mo M1 M2 Ma M4 Ms M~ 

Mo Mo + + X X 

M1 + + X X M1 
M2 + X M2 X X 

Ma + + X Ma + X 

M4 + X M4 + X 

Ms X X Ms X 

M6 X M6 X 

Table 1. Moment-triples sharing M0' Table 2. Moment-triples sharing M1' 

Mo M1 M2 Ma M4 Ms M~ Mo M1 M2 Ma M4 Ms M~ 

Mo + X Mo + + X 

M1 X X M1 + X 

M2 M2 + X 

Ma + X Ma 
M4 X M4 X 

Ms X Ms 
M6 M6 

Table 3. Moment-triples sharing M; Table 4. Moment-triples sharing Mi 

Mo M1 M2 Ma M4 Ms M~ Mo M1 M2 Ma M4 Ms M~ 

Mo + X Mo X X 

M1 + X M1 X 

M2 X M2 X 

Ma X Ma 
M4 M4 
Ms Ms 
M6 M6 

Table 5. Moment-triples sharing M; Table 6. Moment-triples sharing M; 
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M~ M1 M~ M3 Ml M~ M~ 

Mo X 

M1 X 

M2 
Ma 
M4 
Ms 
M6 

Table 7. Moment-triples sharing M6 

Note that all other moment-triples in tables 1-7 can be computed from the exist
ing ones using the following relationships: 

MiMJ_1M;;. Mi+iMJMi: 
M-M'.Mk - --.a....-----"'---

• 3 - M;+i M;_1 Mi; 

Mj_}MjM'k· MiM1-1-1Mk 

Mi-1M1+1Mk 

M;MJ_1M,;. M;MJM,;_1 

MiMj-1M1L1 

M;MJ_1M;:. MiMiMi+i 

M;Mj-IMk+I 

MiMiMi:-1 • M._1 M1M;: 

Mt--1MjM1L1 

M;MjMk+l · M;+1M#i: 

M;+1MjMk+I 

MiM;_.1M;;. M._1M1M;: 

Mi-1M1-1Mk 

M;+1M;M;:. MjMJ+1Mk 

M;+1M1+1Mk 

M;M1+1M,;. MiM';Mf:_1 

M;M1+1Mk-1 

M;MjMk+I. MiMJ+IMk 

MjMj+IMk+I 

Mi-1M;J;:. MiMjMk+1 

Mi-IMjMk+I 

Mi+1M1Mf:. MiM1M,L1 

Mi+lMjMk-1 

Again we proceed to compute the first n derivatives at point ( u0, t0) on one 
of the torsion zero-crossing contours. We now obtain n+l homogeneous linear 
equations in some of the moment-triples MiM1M;: by assuming that each 
moment-triple is a new variable. 

Since this system is in terms of the first 2n+ 3 moments of functions f(w), 
f'(w) and f"(w), it will contain O(n3

) moment-triples. Therefore additional equa
tions are required to constrain the system. To obtain those equations, we proceed 
as follows: 

Assume that moments of order higher than 2n+ 2 are zero. Compute derivatives 
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of order higher than n at ( Uo, f.o) but set moments of order higher than 2n+ 2 to 
zero in the resulting equations. If a sufficient number of derivatives are computed 
at ( 'I.to, t0 ), the number of equations obtained will be equal to the number of 
moment-triples and our linear system will be constrained. 

It follows from an assumption of generality that the system will have a 
unique zero eigenvector and therefore a unique solution modulo scaling. Once the 
moment-triples in the system are known, all other moment-triples can be com
puted from the known ones using the relationships given above. Since all the 
moment-triples M;MJMk together determine function of (3( u), it follows that func
tion (3( u) can be determined modulo constant scaling. 

Yuille and Poggio [1983] have shown that a 1-D signal can be reconstructed 
using two points from its scale space image. Note that our result implies that 
only one point is sufficient for the reconstruction of that signal. 

The theorem has now been proven for the regular torsion scale space image. 
To prove the same result about the resampled torsion scale space image, recall 
that derivatives at one point ( at any scale) on any torsion zero-crossing contour 
in the torsion scale space of r were computed and it was shown that the resulting 
equations can be solved for the coefficients of expansion of the function (3( u) in 
functions related to the Hermite polynomials. 

As before, we choose a point on a zero-crossing contour at any scale of the 
resampled curvature scale space image of r and compute the necessary deriva
tives. The value of a in the resulting equations is then set to zero. Consequently, 
the arc length evolved curve r u, where a corresponds to the scale at which the 
derivatives were computed, is reconstructed modulus uniform scaling, rotation 
and translation. 

The next step is to recover the original curve r modulo function (3( u). This is 
done by applying reverse arc length evolution to r u· Let the arc length evolved 
curve rube defined by: 

ra = {(X(W,a), Y(W,a),Z(W,o-)IWE [0,1]} 

A reverse arc length evolved curve r is defined by: 

r = {(x( w), y( w), z( w))lw E [0,1]} 
where 

x(w) = X(w,o-)@Drv(w,a) 

y( w) = Y( w,o-) @Drv( w,o-) 

and 

z( w) = Z( w,o-) @Drv( w,o-) 
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where DN is a deblurring operator defined in [Hummel et al. 1987) and 
t w 

w( W,t) = J J K-
2

( w,t)dw dt. 
0 0 

where t= a2 /2. As a result, r is recovered modulo function /3( u). 

To prove the same result about the renormalized torsion scale space image, 
evolved curve r a is again reconstructed, then each of its coordinate functions is 
deblurred by convolving it with the deblurring operator DN- Once again r is 
recovered modulo function /3( u). □ 

Proof of theorem 2: Since by assumption all evolved and arc length evolved 
curves r a are in C3, the conditions of the implicit function theorem are satisfied 
on contours r( u,a), r( w,a) and r( W,a) = 0 in the regular, renormalized and 
resampled torsion scale space images of r. Since the proofs are identical, the 
theorem will be proven here for the regular torsion scale space image. 

The torsion of each evolved curve ru = (x(u,a),y(u,a),z(u,a)) is given by: 

u a _ ·z· x y - ·z· iJ x + 'ii i 'i - 'ii x 'i + x· y z· - x· Z 1i 
r( ' ) - ( · .. .. ')2 ( .. · .. ')2 ( · .. .. ')2 yz-zy + zx-xz + xy-yx 

where . represents derivative with respect to u. On any contour in the torsion 
scale space image of r: 

r( u,a) = 0. 

It follows from the assumption that all r a are in C3 that: 

/3(u,t) = 'ixy- 'i/yx + 'iiix - 'iix'i + x'i;'i- x'iy 

where again . represents derivative with respect to u and t = a2 /2. The functions 
x( u, t) , y( u, t) and z( u, t) satisfy the heat equation: 

xuu( u, t) = xi._ u, t) 

Yui u,t) = yl._ u,t) 

zuu( u,t) = zl._ u,t). 

Since evolved curves r u are all in C3, the conditions of the implicit function 
theorem are satisfied on contours /3( u,t) = 0: 

t = t( u) 
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· dt -f3u 
t(u) = - = -. 

du f3t 

The theorem will be proven if it _i_s shown that if t( u) = 0 at any point. on a tor
sion zero-crossing contour, then t( u) < 0 at that point .. Observe that t( u) = 0 if 
and only if (3u( u,t) = 0. It follows that at a point where t( u) = 0: 

Therefore it must be shown that if (3( u,t) = f3u( u,t) = 0 then f3uuf f3t > 0. 

We will now derive explicit expressions for f3uu and fit• Differentiating the 
expression for (3( u, t) with respect to u and simplifying yields: 

f3u( u,t) = ZttXuYt - ZttYuXt + Yttzuxt - YtiXuZt + XttYuZt - XttzuYt· 

Differentiating the expression for f3u with respect to u and simplifying yields: 

f3uu = W1 + 'V2 

where 

and 

W2 = YtuZtiXu - XtuZttYu + XtuYttzu - ZtuYttXu + ZtuXttYu - YtuXttzu· 

Differentiating the expression for (3( u, t) with respect to t and simplifying yields: 

f3t = W1 - W2, 

Let P be a point on an evolved curve r u where /3( u,t) = /Ju( u,t) = 0. The 
coordinate functions of r u can be locally approximated at P using polynomial 
functions. Furthermore, assume that u=0 at point P. It follows that ( um,u",uP) is 
a local approximation to r u around P where m, n and p are the lowest non-zero 
powers of the polynomials approximating functions x( u, t), y( u, t) and z( u, t) 
respectively. Also assume without loss of generality that p> n> m. Observe that 

and that 

Xu= mum-1 

Xt = m( m-1) um-2 

Xtu = m(m-l)(m-2) um-3 

Xtt = m(m-l)(m-2)(m-3) um-4 

xttu = m(m-l)(m-2)(m-3)(m-4) um-5 
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Y - nun-1 
u-

Yt = n( n-1) un-2 

Ytu = n(n-l)(n-2)un-3 

Ytt = n( n-1)( n-2)(n-3) u"-4 

Yttu = n( n-1)( n-2)( n-3)( n-4) un-5 

and that 

z - puP--1 
u-

Zt = p(p-1) uP--2 

Ztu = p(p-1 )(p-2) uP--3 

Ztt = p(p-l)(p-2)(p-3) up-4 

Zttu = p(p-l)(p-2)(p-3)(p-4) uP--5• 

It now follows that at point P: 

where 

3 1 = (p-l)(p-2)(p-3)(p-4)(n-1) - (p-l)(p-2)(p-3)(p-4)(m-1) 

+ ( n-1)( n-2)( n-3)( n-4)( m-1) - ( n-1)( n-2)( n-3)( n-4)(p-1) 

+ (m-l)(m-2)(m-3)(m-4)(p-l) - (m-l)(m-2)(m-3)(m-4)(n-1) 

and 

3 2 = (p-l)(p-2)(p-3)(n-l)(n-2) - (p-l)(p-2)(p-3)(m-l)(m-2) 

+ ( n-1)( n-2)( n-3)( m-1 )(m-2) - ( n-1)( n-2)( n-3)(p-l)(p-2) 

+ (m-l)(m-2)(m-3)(p-l)(p-2) - (m-l)(m-2)(m-3)(n-l)(n-2). 

It can be shown that: 

3 1 = (p-n)(p-m)(n-m)(p2 + (n+m-lO)p + n2 + m2 + mn - lOn- 10m + 35) 

and that: 

3 2 = (p-n)(p-m)( n-m)(p( n+m) - 3( n+m) - 3p + mn + 7). 

It can now be concluded that to prove the theorem, it must be shown that: 
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or 

where 

and 

~ 2 = np+mp+mn-3p-3n-3m+7. 

We shall now use a case analysis to prove that the inequality above holds for all 
valid triples of values of m, n and p. The analysis below shows that only triples of 
values which satisfy the inequality: 

p > m+n 

are valid: 

Recall that ( um,un,uP) was used to approximate the curve around point P. It fol
lows that in a neighborhood of P, torsion is given by: 

AuP+n+m-6 

7( u) = ). u2(p+n--3) + ). u2(p+m-3) + ). u2(m+n-3) 
1 2 3 

where >., >.1, >. 2 and >. 3 are constants. The expression above is ambiguous at u=O. 
To resolve the ambiguity, l'Hopital's rule can be applied repeatedly. Since both 
the numerator and the denominator are polynomials, to have 7( u) = 0 at U=O, 
repeated application of l'Hopital's rule should result in: 

. 'I/; ui 
hm 7( u) = l f ( ) 
U-+0 + U 

where 'I/; and e are constants, i > 0 and f ( u) = 0 at u = 0. This can only happen 
when one of the following three conditions are met: 

a. p+ n+ m-6 > 2(p+ n-3) 

b. p+n+m-6 > 2(p+m-3) 

c. p+n+m-6 > 2(m+n-3). 

Conditions a and b are not possible since they violate the assumption that 
p > n > m. However, condition c is possible. It follows from this condition that: 

p > m+n. 

We can now proceed with the case analysis. All triples of values for m, n and 
p in which m is even correspond to cusp points which are excluded by the 
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assumption that all evolved curves r u are in C3• Therefore we will consider only 
odd values of m. 

Case 1. Suppose m2 7. Recall that p>n>m. It is easily seen that both A1 and 
A 2 are positive. So the absolute value signs can be dropped and the ine
quality: 

A1 2 A2 

can be simplified. As a result, we must now show that the following ine
quality holds: 

p2+n2+m2 2 7p+7n+7m-28. 

Note that m227m, n2>7n and p2>7p. It follows that the inequality does 
hold. 

Case 2. Suppose m= 5. Again, it can be seen that both A 1 and A2 are positive. 
We must again show that: 

p2+n2+m2 2 7p+7n+7m-28. 

Substitute m=5 in the above inequality. We now have: 

p2+n2 2 7p+7n-18. 

Since n26, n227n-18 and since p>ll, p2>7p. Hence the inequality 
again holds. 

Case 3. Suppose m= 3. Substitute this value for m m A1. As a result, A1 
simplifies to: 

p2+n2+np-7p-7n+14. 

Note that n24 and p28. So p2>7p. Hence to show that A 1 is positive, it 
is sufficient to show that: 

n2+nir7n+14 > 0. 

Since p28, np28n. Therefore: 

n2+nir7n+14 2 n2+8n-7n+14 = n2+n+14 > 0. 

Now substitute m= 3 in A 2• As a result A 2 simplifies to: 

np+3p+3n-3p-3n-9+ 7=np-2 

which is always positive. Therefore we must again show that: 

p2+n2+m2 2 7p+7n+7m-28. 

Substituting m= 3 in the above inequality yields: 
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p2+n2 2 7p+ 7n-l6. 

Since p28, p2>7p and it is sufficient to show that: 

n2 2 7n-16. 

It is easily seen that this inequality is satisfied for n24. 

Case 4. Suppose m= 1. Substituting this value in il1 simplifies it to: 

p2+n2+np-9p-9n+26. 

Since p24, p2-9p 2 -20. Hence to show that il1 is non-negative, it is 
sufficient to show that: 

Again since p24: 

n2+np-9n+6 2n2+4n-9n+6 = n2-5n+6 

which is non-negative for n22. Now substitute for m= 1 m il2 to 
obtain: 

pn-2p--2n+4 = p( n-2)-2n+4. 

Since p24 

p( n-2)-2n+4 2 4( n-2)-2n+4 = 4n-8-2n+4 = 2n-4 

which is non-negative since n22. So Ll2 is also non-negative. Therefore 
we must again show that: 

p2+n2+m2 2 7p+7n+7m-28 

Substitute for m= 1 in the above expression to obtain: 

p2+n2 2 7p+7n-22 

which is equivalent to: 

(p2-7p) + (n2-7n)+22 2 0. 

If n=2, then n2-7n = -10 and p24, It follows from p24 that 
p2-7p 2 -12. As a result, the inequality above is satisfied. If n>2, then 
n2-1n 2 -12 and p25. It follows from p25 that p2-1p 2 -10. There
fore, the inequality above is again satisfied. 

This completes the case analysis. We have shown that the inequality: 

lil1I 2 lil2I 
and therefore the inequality: 
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is satisfied for all valid triples of values of m, n and p. Therefore f3uu/ f3t is always 
positive. Hence all extrema of contours in all torsion scale space images of r are 
maxima. D 

Proof of theorem 3: It will be shown that this theorem holds for an arbitrary 
parametrization of r ,r Therefore it must also be true of arc length parametriza
tion or close approximations. 

Let ( X( u, o-), Y( u, u ), Z( u, o-)) be an arbitrary parametrization of r with a 
cusp point at '11.o· It has been shown by [Hummel et al. 1987) that the class of 
polynomial functions is closed under convolution with a Gaussian. Therefore 
X( u, u), Y( u, O') and Z( u, O') are also polynomial functions: 

X(u,u) = a0 + a1u + a2u2 + a3u3 + 

Y(u,u) = b0 + b1u + b2u2 + b3u3 + 

Z(u,<7) = c0 + c1u + c2u2 + c3u3 + 
Let r u go through the origin of the coordinate system at 'IJ.o=O. It follows that 
a0=b0=c0=0. Every cusp point is also a singular point of the curve. Therefore r u 

has a singularity at '11.o· Now observe that 

Xu( u, u) = a1 + 2~u + 3a3 u2 + 4a4 u3 + 

Yu( u, u) = b1 + 2b2u + 3b3u2 + 4b4u3 + 

Zu( u, u) = c1 + 2c2u + 3c3u2 + 4c4u3 + 
Xu(u,u), Yu(u,o-) and Zu(u,u) are zero at a singular point. It follows that 
a1=b1=c1=0. As a result, all powers of u in X(u,u), Y(u,u) and Z(u,u) are larger 
than one. 

The following case analysis identifies the cases in which the singular point at 
Uo is also a cusp point. Since r u is examined in a small neighborhood of point 
'IJ.o=O, it can be approximated using the lowest degree terms in X( u, u ), Y( u, u) 
and Z( u,u): 

r u = ( Um, Un, uP) 

Assume without loss of generality that p>n>m. Observe that 

ru(u,<7) = (Xu(u,u), Yu(u,u),Zu(u,u)) = (mum-1,nun-I,puP--1) 

Therefore 
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and 

ru(-e, u) = ( m(-e)m-l, n(-e)"-1,p(-e)P-1) 

Since m, n and p can be odd or even, the singular point at 'I.to must be analyzed in 
each of eight possible cases: 

1. m, n and p are even. 

m-1, n-l and 'Jr l are odd. So 

ru(-e,u) = (-mem-1,-nen-1,-peP-1) = -fm-1(m,nen-m,peP-m) 

Comparing ru(e,u) to ru(-e,u) shows that an infinitesimal change in parameter u 
in a neighborhood of the singular point results in a large change in the direction 
of the tangent vector. Therefore this singularity is a cusp point. 

2. m and n are even, pis odd. 

m-1 and n-1 are odd and 'Jr 1 is even. Therefore 

ru(-e,u) = (-mem-1,-nen-1,peP-1) = Em-1(-m,-nen-m,peP-m) 

A comparison of r u( e, u) and r u(-e, u) again shows that an infinitesimal change in 
u causes a large change in the tangent direction. Hence this singular point is also 
a cusp point. 

3. m is even, n is odd and p is even. 

m-1 is odd, n-1 is even and p-1 is odd. Hence 

ru(-c,o-) = (-mcm-1,ncn-1,-pcP-1) = Em-1(-m,nEn-m,-pEP-m) 

An infinitesimal change in u again results in a large change in the tangent direc
tion. This singularity is a cusp point as well. 

4. m is even, n and p are odd. 

m-1 is odd, n-1 and 'Jrl are even. So 

ru(-c,a) = (-mcm-1,ncn-1,pcP-1) = cm-1(-m,ncn-m,pcP-m) 

A large change in the tangent direction is caused by an infinitesimal change in u. 
Therefore this singularity also corresponds to a cusp point. 

5. mis odd, n and pare even. 

m-1 is even, n-l and p-1 are odd. Therefore 

ru(-c,u) = (mcm-1,-nc"-1,-pcP-1) = €m-1(m,-ncn-m,-pcP-m) 

A comparison of r uC c, a) and r uC -€, a) now shows that an infinitesimal change in u 
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in the neighborhood of the singular point also results in an infinitesimal change in 
the tangent direction. Hence, this singular point is not a cusp point. 

6. m is odd, n is even, p is odd. 

m-1 is even, n-1 is odd and p-1 is even. So 

ru(-E,u) = ( mEm-1,-nEn--1, pEP--1) = Em-l( m,-nEn--m, pEP--m) 

The tangent direction changes only infinitesimally in the neighborhood of the 
singular point. Therefore this singularity is not a cusp point either. 

7. m and n a.re odd, p is even. 

m-1 and n-1 a.re even and ~ 1 is odd. Hence 

ru(-E,u) = (mEm-1,nEn--1,-pEP--1) = Em-l(m,nEn--m,-pEP--m) 

This singularity is again not a cusp point since the tangent direction changes only 
infinitesimally in its neighborhood. 

8. m, n and p are odd. 

m-1, n-1 and ~1 are even. Therefore 

ru(-E,u) = (mEm-1,nEn--1,pEP--1) = Em-l(m,nEn--m,pEP--m) 

The last singular point is not a cusp point either since the changes in the tangent 
direction are again infinitesimal. 

It follows from the case analysis above that only the singular points in cases 
1-4 are cusp points. We next derive analytical expressions for the curve r <T-D so 
that it can be analyzed in a small neighborhood of the cusp point. 

To deblur function/( u) = uk, a rescaled version of that function is convolved 

with the function J;-e-u
2
(1-u2). This function is an approximation to the deblur-

ring operator derived in [Hummel et al. 1987] and is good for small amounts of 
deblurring. The convolution can be expressed as 

00 

(Dtf)( u) = J J;-e-v'l(l-v2)J( u+ 2vvt)dv 
-00 

or 
00 

-00 

where t is the scale factor and controls the amount of deblurring. Solving the 
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integral above yields 

(Dtf)(u) = t 1.3.5 ... (p-1) (2t)Pf2 k(k-1),· . . (k- p+l ) (1-p)uk-p 
p=O p. 

(p even) 

(10) 

r u-6 can now be analyzed in each of the cases 1-4: 

Case 1: r u is approximated by ( um, u", uP) where m, n and pare even. 

To obtain analytical expressions for r u---6, we deblur each of its coordinate 
functions: 

m--2 m 

(Dtx)(u) = um - c1tum-2 - • • • - c m-Z t 2 u 2 - cm t 2 

- -2 2 

n-2 n 

( D t y )( u) = u" - c i tun-2 - • · • - c ',._2 t 
2 u 2 - c 'n t 2 

- -2 2 

tl 1?.. 
- c " 2 t 2 u2 - c " t 2 

p- 1!.. 
2 2 

Note that all powers of u are even and all constants are positive. It follows that 
m--2 

(Dtx)(u)=mum-1 -(m-2)c1tum-3 _ ... -2cm-2t 2 u 
2 

n-2 

(Dtil)( u) = nun-1 - ( n-2)c i tun-3 - · · · - 2c 'n-2 t 2 u 
2 

p-2 

( Dt z)( u) = puP-1 - (p-2) c i'tup-3 - · · · - 2c ';,.-2 t 2 u 
2 

contain only odd powers of u and (Dtr)(e) = -(Dtr)(-e). Hence there is also a 
cusp point on r 17---6 at Uo· Since that cusp point is of the same kind as the cusp 
point on r 17 , it follows that a cusp point must also exist on r. This is a contradic
tion of the assumption that r is in C1. Therefore r 17 can not have a cusp point of 
this kind at u0. 

Case 2: r 
17 

is approximated by ( um, u", uP) where m and n are even and pis odd. 

r 17_ 6 is obtained by deblurring each of its coordinate functions: 
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m-2 m - -
(Dtx)(u) = um - c1tum-2 - • • • - c m--2 t 

2 u2 - cm t 2 

- -2 2 

n--2 n - -
(Dty)(u) = un- c~tun-2 - • · • - c'n-2 t 2 u2 - c'nt 2 

- -2 2 

1::!. 
(Dtz)(u) = uP- c'~tuP--2

- • • • - c'_,~=!.t 2 u 
2 

Note that (Dtx) and (Dty) contain even powers of u only, (Dtz) contains odd 
powers of u only and all constants are positive. 

The deblurred curve intersects itself if there are two values of u, u1 and Ui, 
such that 

x( u1) = x( Ui) 

y( u1) = y( u2) 

z( u1) = z( Ui) 

It follows from the first two constraints above that u1 = -Ui· Substituting for u-i 
in the third constraint and simplifying yields: 

p--1 

II t 2 0 
- C _E---1 Ul = 

2 

Now let t = 8 to obtain 
p--1 

II C 2 0 
- C p--1 V Ul = (11) 

2 

The LHS of (11) is negative for very small values of u1 since the first term will be 
smaller than all other terms, which are negative. As u1 grows, the first term 
becomes larger than the sum of all other terms and the LHS of (11) becomes 
positive. Therefore there is a positive value of u1 at which (11) is satisfied. Hence 
r <T-6 intersects itself in a neighborhood of Uo· 

Case 3: r u is approximated by ( um, un, un) where m 1s even, n is odd and p is 
even. 

As in the previous case, we obtain analytical expressions for r u--l,: 
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m-2 m 

(Dtx)(u) = um- c1tum-2 _ • • • - cm--2 t 2 u2 - cmt 2 

2 2 

n-1 

(Dty)(u) = un- c~tun-2 - · · • - c'n-1 t 
2 u 

2 

1!:1. .E. 
-c" 2 t 2 u2 -c" t 2 

p- .E. 
2 2 

In this case, (Dtx) and (Dtz) contain only even powers of u and (Dty) contains 
only odd powers of u. Again, r u-6 can be shown to intersect itself if there are two 
values of u, u1 and Ui, such that 

x( u1) = x( Ui) 

y( u1) = y( u2) 

z( u1) = z( Ui) 

It now follows from the first and third constraints above that u1 = -Ui· Substitut
ing for Ui in the second constraint, letting t = 8 and simplifying yields 

n-1 

U n C , cu n-2 . . . C , c 2 U 0 
1 - 1° 1 - - n-1 ° l = (12) 

2 

An argument similar to the one used in the previous case shows that there exists 
a positive value of u1 at which (12) is satisfied. Therefore r u-6 again intersects 
itself in a neighborhood of u0• 

Case 4: r u is approximated by ( um, un, uP) where mis even and n and pare odd. 

An analytical expression for r u-6 in a neighborhood of Uo is given by 

m-2 m 

(Dtx)(u) = um - c1tum-2 - · · · - c m-2 t 
2 u2 - cm t 2 

2 2 

n--1 

(Dty)(u) = un - c~tun-2 - · · · - c'n--1 t 
2 u 

2 

tl 
( D t z) ( u) = uP - c '~ tuP-2 - · · · - c ~ t 2 u 

2 

All powers of u in (Dtx) are even and all powers of u in (Dty) and (Dtz) are odd. 
As before, r u-6 intersects itself if the three constraints 
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x(u1) = x(u.i) 

y( u1) = y( u.i) 

z( u1) = z( u.i) 

are satisfied simultaneously. It follows from the first constraint that u1 = -'!½· 
Now substitute for u.i in the second and third constraints, let t=S and simplify: 

n-1 

U n C ' cu n-2 . • • c ' c 2 U 0 1 - 1u 1 - - n-1 u 1 = (13) 
2 

p-1 

ul - c '1b'u1Ir2 - · · · - c '~1 6 2 u1 = 0 (14) 
2 

Each of the equations (13) and (14) is satisfied at a positive value of u1 but, in 
general, the same value of u1 will not satisfy both. It follows that, in this case, 
r o--.5 does not intersect itself. However, an argument similar to the ones in the 
previous two cases shows that the planar curves defined by (Dtx) and (Dty) and 
by (Dtx) and (Dtz), that is, the projections of r o--.5 on the XY and XZ planes 
respectively, do intersect themselves in a neighborhood of 'Uo· 

This completes the proof of theorem 3. □ 

Proof of theorem 4: It will be shown that this theorem holds for an arbitrary 
parametrization of r o-· Therefore it must also be true of arc length parametriza
tion or close approximations. 

Let (x(u),y(u),z(u)) be an arbitrary parametrization of ro- with a cusp point 
at 'Uo· Using a case analysis similar to the one in the proof of theorem 3 to 
characterize all the possible singularities of r o- at u0, we again conclude that only 
the singular points in cases 1-4 are cusp points. 

We now derive analytical expressions for r 0+6 so that it can be analyzed in a 
neighborhood of u0• To blur function J( u) = uk, we convolve a rescaled version of 

that function with the function 1e-u2, the blurring operator, as follows: 

00 

F(u) = f 1e-Jf(u+2vvt)dv 
-00 

or 
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00 

F(u) = J; J e-u'\u+2vvtldv 
--00 

where t is the scale factor and controls the amount of blurring. Solving the 
integral above yields 

F(u) = t 1.3.5 ... (p-1) (2t)Pf2k(k- 1) . . . (A>-p+ l) uk--P 
p=O p! (15) 

(p even) 

An expression for r t1+6 in a neighborhood of the cusp point can be obtained by 
blurring each of its coordinate functions. Furthermore, expressions for r t1-6 in a 
neighborhood of the cusp point can be obtained by deblurring each of its coordi
nate functions according to (10). 

Each of the cases 1-4 can now be analyzed in turn: 

Case 1: r a is approximated by ( um, un, uP) where m, n and pare even. 

An argument similar to the one used in case 1 of theorem 3 shows that this 
kind of cusp point can not arise during evolution of r. 

Case 2: r a is approximated by ( um, un, uP) where m and n are even and pis odd. 

or 

Observe that 

x( u) = mum-I x( u) = m( m-l)um-2 

y( u) = nun-I y( u) = n( n-1 )un--2 

i( u) = puP--I z( u) = p(p-l)uP--2 

Torsion on r a is given by: 

i'( u) = m(m-l)(m-2)um-J 

'.fi( u) = n( n-1)( n-2)un--3 

z'( u) = p(p-1)(p-2)uP--3 

r u _ -z· x 1i - z· it i + 'ii z i - 'ii x z + x· it z· - x· i u 
( ) - ( · .. .. ')2 ( .. · .. ')2 ( .. · · · ')2 yz- zy + zx- xz + xy- yx 

1\ u)= mnp((p-l)(p-2)( n-m)+( n-l)(n-2)( m-p)+(m-1)( m-2)(p-n)) uP+n+m-6 (l6) 
A+B+C 

where 

A= ((np(p-1) - pn(n-l))uP+n--3)2 

B = ((pm(m-l) - mp(p-1)) uP+m-3)2 



52 

C = (( mn( n-1) - nm( m-1)) um+n-3)
2 

At u = 0 ( cusp point), r is undefined. When u is positive or negative, the sign of 
r( u) depends on the sign of the coefficient of the numerator. Let K be that 
coefficient divided by mnp. Observe that 

K = (p---l)(p---2)( n-m) + ( n-1)( n-2)( m-p) + ( m-1)( m-2)(p--n) 

= (p2-3p+2)(n-m) + (n2-3n+2)(m-p) + (m2-3m+2)(p--n) 

= np2 - mp2 - 3pn + 3pm + 2n - 2m + mn2 
- 3mn + 2m - pn2 

+ 3pn - 2p + pm2 - 3pm + 2p - nm2 + 3mn - 2n 

= (n-m)p2 + (m2-n2)p + mn2 
- nm2 

= (n-m)p2 + (m+n)(m-n)p + mn(n-m) 

= (n-m)(p2 - (m+n)p + mn) 

= ( n-m) (p-m) (p--n) 

which is positive because of the assumption that p > n > m. Since p+n+m-6, the 
power of u in the numerator, is odd, it follows that r( u) is positive for positive u 
and negative for negative u. 

We now investigate r( u) on r o+o· It follows from (15) that r a-+o is given by: 
m--2 m 

X( u) = um+ c1 tum-2 + · · · + c m-2 t 
2 u2 + cm t 2 

2 2 

n-2 n 

Y(u) = u"+ c{tun-2 + · · · + c'n-2 t 2 u2 + c'nt 2 

- -2 2 

p--1 

Z(u) = uP + c'1tuP--2 + · · · + c"P--1 t 
2 u 

2 

where all constants are positive, all powers of u in X( u) and Y( u) are even, all 
powers of u in Z( u) are odd and t equals 8, a small constant. Note also that the 
last terms in X( u) and Y( u) do not contain any positive powers of u b~~ all t~rms 
in Z( u) contain positive powers of u. It follows that the last terms in X( u), Y( u), 
~( u) an~ .z' ( u)._ do not c~ntain positive powers of u whereas all terms in X( u), 
~ ( u), Y_(~), Y ( ~) and ?,( u) con_t_ain positive powers of u. Therefore, at u = 0, 
~(u) .. X(u) ... Y(u) = ~.(u) = .. ~(u) . 0 8-?.d T = O .... As u grows, the terms in 
X(u), X(u), X(u), Y(u), Y('u) Y(u), Z('u), Z(u) and Z(u) with the largest power 
of u (which a.re also the only terms without 6) become dominant and torsion is 
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again given by (16). It follows that r( u) is positive for positive u and negative for 
negative u on r cr+o5· Since r is zero at u = 0, r cr+o5 has a torsion zero-crossing 
point at u = 0. 

We next investigate r( u) on r cr-6· From (10) it follows that r 0'-6 is given by: 
m-2 m -- -

(Dtx)(u)=um-d1tum-2 - ••· -dm-2 t 2 u2 -dmt 2 

2 2 

n--2 n 

(Dty)(u) = u"- d{tun-2 - • • • - d'n--2 t 2 u2 - d'nt 2 

- -2 2 

p-1 

(D,z)(u) = uP- d'1tuP-2 - · · · - d''i>.-1 t 
2 u 

2 

where all constants are positive, all powers of u in Dtx and DtY are even, all 
powers of u in Dtz are odd and t equals 8, a small constant. It again follows that 
r = 0 at u = 0, r is positive for positive u and negative for negative u. Therefore 
there is also a torsion zero-crossing point at u = 0 on r u-o5· It follows that there is 
a torsion zero-crossing point at Uo on r cr-o5 before the formation of the cusp point 
and on r u+o5 after the formation of the cusp point. 

Case 3: r u is approximated by ( um, un, uP) where m 1s even, n is odd and p is 
even. 

The proof is analogous to that of case 2, and the same result follows. 

Case 4: r er is approximated by ( um, un, uP) where m is even, and n and p are odd. 

At u = 0, the cusp point, r is undefined. At all other points, -r( u) is given by 
(16). Since the coeffici nt of the numerator of (16) is positive (as shown in the 
proof of case 2) and p+n+m-6, the power of u in the numerator, is even, r( u) is 
positive for positive and negative values of u in the neighborhood of u0 on r u· 

Therefore there are no torsion zero-crossing points in the neighborhood of u0 on 

r q• 

We now investigate -r( u) on r u+o5· It follows from (15) that r u+o5 is given by: 
m-2 m 

X( u) = um + c1 tum-2 + · · · + c m-2 t 
2 u2 + c m t 2 

--2 2 

n-1 

Y(u) = u" + c1tun-2 + · · · + c'n-1 t 2 u 
2 
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p-1 

Z( u) = uP + c '{ tuP-2 + · · · + c '~1 t 2 u 
2 

where all constants are positive, all powers of u in X( u) are even, all powers of u 
in Y( u) and Z( u) are odd and t equals 6, a small constant. Furthermore, note 
that the last term in X( u) does not contain a positive power of u but all te~s in 
Y( u) and Z( u) contain positive powers of u. Therefore the last terms in X( u), 
Y( u)., f ( u ).? Z( u) -~d z' ( u) 1.o not contain positive powers of u whereas all terms 
in X( u), X ( u), Y( u) and Z( u) contain positive powers of u. Hence at u= 0, 
X( u) = .f ( u) = Y( u) = Z( u) = 0 and 

T(u) = Y(u)Z(u)X(u) - Z(u)Y(u)X(u) 
( Z( u)X( u) )2 + ( Y( u)X( u) )2 

i(u)(Y(u).i(u) - z·(u)Y(u)) 
- (Z( u)X( u))2 + ( Y( u)X( u))2 

Since the denominator is positive and X( u) is positive, to determine the sign of 
T(u), we must determine the sign of the expression: }:'(u)Z(u) - Z(u)Y(u). At 
u= 0, using (15) we conclude that the non-zero term of Y( u) is: 

n--1 
n--1 2 n--1 n-1 
- (2t) n' - -

c 'n--1 t 
2 = 1.3.5 · · · ( n-2) ( )' · = 1.3.5 · · · n 2 2 t 2 

-
2
- n-1 . 

Similarly, at u = 0, the non-zero term of Z( u) is: 
p-1 p-1 p-1 

C 
1
~1 i 2 = 1.3.5 ' ' ' p 2 2 t 2 

2 

Using (15), it follows that at u= 0, the non-zero term of Y ( u) is: 
n--3 

n-3 2 I n--3 n--3 
- (2t) n - -

6c'n--3 t 
2 = 6(1.3.5 · · · (n--4)) ( )l · = (1.3.5 · · · n)(n-1)2 2 t 2 

-
2
- 6 n- 3. 

Similarly, at u = 0, the non-zero term of Z ( u) is: 

~ ti. ti. 
6c~t 2 =(1.3.5···p)(p-1)2 2 t 2 

2 

Therefore 
n--3 n--3 p-1 p-1 

Y(u)Z(u) - Z(u)Y(u) = (1.3.5 · · · n)(n-1)2-2 t-2 (1.3.5 · · · p)2-2 t-2 

n--1 n--1 ti_ ti_ 

- (1.3.5 · · · n)2 2 t 2 (1.3.5 · · · p)(p-1)2 2 t 2 
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p-tn--4 

= (2t) 2 (1.3.5 · · · n)(l.3.5 · · · p)(n-p) 

... . ... . 
and it follows that Y ( u)Z( u) - Z ( u) Y( u) < 0 since n< p. Therefore r( u) is nega-
t.~ye at _u=O .~m I'u+6. _!!,-s u grows the terms in X(u), X(u), i'(u), Y(u), Y(u), 
Y ( u), Z( u), Z( u) and Z ( u) with the largest power of u (which are also the only 
terms without c5) become dominant and r( u) is again given by (16). Since 
p+n+m-6, the power of u in the numerator, in now even, r( u) becomes positive 
as u grows in absolute value. Therefore there exist two new torsion zero-crossings 
in a neighborhood of Uo on r o-+6· 

This completes the proof of theorem 4. □ 

Proof of theorem 5: It will be shown that this theorem holds for an arbitrary 
parametrization of r u· Therefore it must also be true of arc length parametriza
tion or close approximations. 

Let r = (x(u),y(u),z(u)) be a space curve and let x(u), y(u) and z(u) be poly
nomial functions of u. Let r u = (X( u,u), Y( u,u), Z( u,u)) be an evolved version of 
r with a point of zero curvature at u0• Assume without loss of generality that 
Uo = 0 and that at u0 r u goes through the origin of the coordinate system. It fol
lows that r u can be approximated in a neighborhood of Uo by: 

r -(mnp) u- u ,u,u (17) 

where um, u" and uP are the lowest degree terms in X( u,u), Y( u,u) and Z( u,u) 
respectively. Assume without loss of generality that p>n>m. 

Since m, n and p can be odd or even, point u0 must be analyzed in each of 
eight possible cases. The analysis in the proof of theorem 3 showed that when m 

is even, a cusp point exists on r u at Uo· We will therefore look at the remaining 
four cases in which m is odd: 

Case 1. m is odd and n and p are even. 

Torsion on r u is given by equation (16). Since p+n+m-6 is odd, torsion is 
positive for positive u and negative for negative u in a neighborhood of u0• We 
now investigate torsion on r o-+6 where c5 is a small, positive number. Expressions 
for X(u,i5ma), Y(u,u) and Z(u,u) can be obtained using equation (15). Note that 
all powers of u in X( u,u) are odd and all powers of u in Y( u,u) and Z( u,u) are 
even. It follows th~.t all J?OWer~ .. of u ip. .X( u), tc u), Y( u) and .Z( u) are even and 
all powers of u in X( u), Y( u), Y ( u), Z( u) and Z ( u) are odd. Note also that those 
terms in which all powers of u are odd, are equal to zero at u0• Therefore torsion 
is zero at u0 on r uH· As u grows, um, u" and uP, that is the terms in 
X( u,u), Y( u,u) and Z( u,u) with the largest powers of u, become dominant and 



56 

torsion is again given by equation (16). It follows that torsion is positive for posi
tive u and negative for negative u on r 0+6 in a neighborhood of 'Uo· Hence no new 
torsion zero-crossings have been created. 

Case 2. mis odd, n is even and pis odd. 

Torsion on r u is again given by (16). Since p+n+m-6 is even, torsion is posi
tive for positive and negative u on I' u· We now investigate torsion on I' u+6· Note 
that all powers of u in X( u,u) are odd, all powers of u in Y( u,u) are even and all 
powers of u in Z( u,u) are odd. It follows that all powers of u in .X( u), x' ( u), Y( u), 
Z( u) and z'( u) are even and all powers of u in .X( u), Y( u), Y( u) and .Z( u) are 
odd. Note also that those terms in which all powers of u are odd, are equal to 
zero at u0. It follows that torsion on r u+6 at u0 is given by: 

.... 
ZXY - XZY ~ZX-X~ 

r( u) = · .. 2 · ·· 2 = · ·· 2 · .. 2 · 
(ZY) + (XY) (ZY) + (XY) .. 

Since the denominator of the expression above is po~~~iye a.~~ Y is positive, the 
sign of r( u) is the same as the sign of the expression: Z X - X Z. At 'Uo, using (15) 
it can be shown that: 

P+m-4 

z'x - x'.i = (2t) 2 (1.3.5 · · · p)(l.3.5 · · · m)(p--m) 

which is positive at 'Uo· As u grows larger, torsion is again given by (16) in a 
neighborhood of u0 and is therefore positive in that neighborhood. Again no new 
torsion zero-crossings have been created. 

Case 3. m and n are odd and p is even. 

Torsion is again given by (16) on r u· Since p+n+m-6 is even, torsion is posi
tive for positive and negative u on I' u· We now investigate torsion on r u+.5· Note 
that all powers of u in X( u,u) and. Y( u,o) are ~dd a~~ all pow~:s of u in Z( u,u) 
are even. Hence all_powe~~ of u _in X( u), ~ ( u), Y( u), Y ( u) and Z( u) are even and 
all powers of u in X( u), Y( u), Z( u) and Z ( u) are odd. Note also that those terms 
in which all powers of u are odd, are equal to zero at 'Uo· Therefore torsion on 
r u+6 at Uo is given by: 

... . .. ... . .. . ... 
X YZ - Y XZ Z(X Y - Y X) 

r(u)= '"2 "·2 = " '2 "'2' 
(Y~ +(X~ (Y~ +(X~ .. 

Since the denominator of the expression above is positiv.~. ~nd .~ ~s positive, the 
sign of r( u) is the same as the sign of the expression: X Y - Y X. At Uo, using 
(15) it can be shown that: 

n+m-4 

x· y - f x = (2t) 2 (1.3.5 · · · n)(l.3.5 · · · m)(m-n) 
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which is negative since n>m. Therefore torsion is negative at Uo on M6A
11
+6• As u 

grows larger, torsion is again given by (16) in a neighborhood of Uo and is there
fore positive for positive and negative u. It follows that there are two new torsion 
zero-crossings in a neighborhood of Uo on r 11+6· 

Case 4. m, n and p are odd. 

Torsion on r 
11 

is again given by equation (16). Since p+n+m-6 is odd, tor
sion is positive for positive u and negative for negative u on r rr· We now investi
gate torsion on r 11+«5, Note that. all p~wers ?f u i~.~( u,<1 ).? Y( u,a) ~d Z( u,a) are 
odd. Hence all powers ~f u i~ X( u), ~( u), Z( u), X ( u), Y ( u) and Z ( u) are even 
and all powers of u in X( u), Y( u) and Z( u) are odd. Note also that those terms in 
which all powers of u are odd, are equal to zero at Uo· It follows that torsion is 
unbounded at Uo on r 11+6• As u grows larger, torsion is again given by (16) in a 
neighborhood of u0 and is therefore positive for positive u and negative for nega
tive u. Hence there are no new torsion zero-crossings in a neighborhood of u0 on 

~ □ 
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Figure 1. The Frenet trihedron for a space curve 
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Figure 2. A space curve depicting a fork 
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Figure 3. The fork during evolution 
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Figure 4. The torsion scale space image of the fork 
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Figure 5. A space curve depicting a bottle opener 
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Figure 6. The bottle opener during evolution 
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Figure 7. The torsion scale space image of the bottle opener 
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Figure 8. A space curve depicting an armchair 
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Figure 9. The armchair during evolution 
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Figure 10. The torsion scale space image of the armchair 



68 

Figure 11. The curvature scale space image of the armchair 
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Figure 12. The renormalized torsion scale space image of the armchair 
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Figure 13. The armchair with random noise 
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Figure 14. The torsion scale space image of armchair with noise 



72 

Figure 15. The armchair with severe random noise 
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Figure 16. The torsion scale space image of armchair with severe noise 
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Figure 17. The resampled torsion scale space image of the armchair 
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Figure 18. The resampled torsion scale space image of armchair with severe noise 




