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ABSTRACT 

Model-based recognition and tracking from 2-D images depends upon the ability to 
solve for projection and model parameters that will best fit a 3-D model to matching 
image features. This paper extends current methods of parameter solving to handle 
objects with arbitrary curved surfaces and with any number of internal parameters 
representing articulations, variable dimensions, or surface deformations. Numerical 
stabilization methods are developed that take account of inherent inaccuracies in the 
image measurements and allow useful solutions to be determined even when there 
are fewer matches than unknown parameters. A standardized modeling language 
has been developed that can be used to define models and their internal parameters 
for efficient application to model-based vision. These new techniques allow model­
based vision to be used for a much wider class of problems than was possible with 
earlier methods. 
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1. Introduction 

Model-based vision allows prior knowledge of the shape and appearance of specific 
objects to be used during the process of visual interpretation. Reliable identifica­
tions can be made by identifying consistent partial matches between image features 
and the models, therefore allowing the system to make inferences about the scene 
that go beyond what is explicitly available from the image. By providing this link be­
tween perception and prior knowledge of the components of the scene, model-based 
recognition is an essential component of most potential applications of vision. 

One important component of model-based vision is the ability to solve for the 
values of all viewpoint and model parameters that will best fit a model to some 
matching image features. This is important because it allows some tentative initial 
matches to constrain the locations of other features of the model, and thereby 
generate new matches that can be used to verify or reject the initial interpretation. 
The reliability of this process and the final interpretation can be greatly improved 
by taking account of all available quantitative information to constrain the unknown 
parameters during the matching process. In addition, parameter determination is 
necessary for identifying object sub-categories, for interpreting images of articulated 
or flexible objects, and for robotic interaction with the objects. 

In most cases, it is possible to solve for all unknown parameters for a 3-D 
model from matches to a single 2-D image. However, in some circumstances­
such as when both the size and distance of the model is unknown-the accuracy 
of parameter determination can be significantly improved by simultaneously fitting 
the model to images taken from more than one viewpoint. The methods presented 
here can be used in either situation. 

Most previous work in model-based vision has been based upon rigid models 
that are built out of polyhedral or other restrictive modeling primitives. However, 
if model-based vision is to serve as a general method for visual recognition, it is 
necessary that it be able to deal efficiently with objects of arbitrary shape and 
with any number of internal parameters specifying articulated or flexible compo­
nents. Therefore, the first topic of this paper is the development of general modeling 
methods that can be applied efficiently to the problems of vision. The methods that 
have been chosen are based on the experiences of the computer graphics commu­
nity in using linear approximations of curved surfaces. However, model-based vision 
requires that substantially more information be retained in the model description 
than is needed for computer graphics applications. Therefore, we have developed a 
new modeling system that is specifically designed for the efficient representation and 
calculation of the quantities used during matching and parameter determination. 

Our solution for unknown viewpoint and model parameters is based on New­
ton's method of linearization and iteration to perform the non-linear minimization. 
This is augmented by a stabilization method that incorporates a prior model of 
the range of uncertainty in each parameter and estimates of the standard deviation 
of each image measurement. This allows useful approximate solutions to be ob­
tained for problems that would otherwise be underdetermined or ill-conditioned. In 
addition, the Levenberg-Marquardt method is used to always force convergence of 
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the solution to a local minimum. These techniques have all been implemented and 
tested as part of a system for model-based motion tracking, and have been found 
to be reliable and efficient. 

2. Previous approaches 

Attempts to solve for viewpoint and model parameters date back to the work of 
Roberts [26). Although his solution methods were specialized to certain classes 
of objects, such as rectangular blocks, Roberts clearly understood the value of 
quantitative parameter determination for making vision robust against missing and 
noisy data. Unfortunately, there were few attempts to build upon this work for 
many years following its initial publication. 

In 1980, the author [14) presented a general technique for solving for viewpoint 
and model parameters using Newton's method for nonlinear least-squares mini­
mization. Since that time the method has been used successfully in a number of 
applications, and it also provides the basis for the work presented in this paper. The 
application of the method to robust model-based recognition has been described by 
Lowe [15, 16, 17], Mcivor [21], and Worrall, Baker & Sullivan [29]. Ishii et al. [9] 
describe the application of this work to the problem of tracking the orientation and 
location of a robot hand from a single view of LED targets mounted on the wrist. 
Their paper provides a detailed analysis that shows good accuracy and stability. 
Goldberg & Lowe [5) describe the application and testing of a number of more ad­
vanced numerical methods for this problem, which also provide a basis for some of 
the results in this paper. 

Recently, Liu et al. [13] and Kumar [10) have examined alternative iterative 
approaches to solving for the viewpoint parameters by separating the solution for 
rotations from those for translations. However, Kumar shows that this approach 
leads to much worse parameter estimates in the presence of noisy data. Therefore, 
he adopts a similar simultaneous minimization as is used in the work above. A 
somewhat different approach based on the use of elimination methods to provide 
the initial problem formulation has been proposed by Ponce and Kriegman [25]. 
This also uses Newton's method for the final parameter determination based on 
least-squares minimization. 

2.1 The problem of multiple solutions 

Much work has been published on characterizing the minimum amount of data 
needed to solve for the six viewpoint parameters (assuming a rigid object) and on 
solving for each of the multiple solutions that can occur when only this minimum 
data is available. Fischler and Bolles [4] show that up to four solutions will be 
present for the problem of matching 3 model points to 3 image points, and they give 
a procedure for identifying each of these solutions. A solution for the corresponding 
4-point problem, which can also have multiple solutions under some circumstances, 
is given by Horaud et al. [7]. Huttenlocher and Ullman [8] show that the 3-point 
problem has a simple solution for orthographic projection, which is a sufficiently 
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close approximation to perspective projection for many applications. They use the 
term "alignment" to refer to the solution for viewpoint parameters during the model 
fitting process. Dhome et al. [3] give a method for determining all solutions to the 
problem of matching 3 model lines to 3 image lines. 

While this work on determining all possible exact solutions will no doubt be 
important for some vision applications, it is probably not the best approach for 
practical parameter determination in model-based vision. One problem with these 
methods is that they do not address the issue of ill-conditioning. Even if a problem 
has only one analytic solution, it will often be sufficiently ill-conditioned in practice 
to have a substantial number and range of solutions. Secondly, all these methods 
deal with specific properties of the six viewpoint parameters, and there is little 
likelihood that they can be extended to deal with an arbitrary number of internal 
model parameters. Finally, these methods fail to address the problem of what to 
do when the solution is underconstrained. The stabilization methods described in 
this paper allow an approximate solution to be obtained even when a problem is 
underconstrained, as will often be the case when models contain many parameters. 

Possibly the most convincing reason for believing that it is not necessary to 
determine all possible solutions is the fact that human vision apparently also fails 
to do so. The well-known Necker cube illusion illustrates that human vision easily 
falls into a local minimum in the determination of viewpoint parameters, and seems 
unable to consider multiple solutions at one time. Rock [27, pp. 22ff] summarizes 
the way in which human perception seems to always adopt one particular percep­
tion at any time even in the face of completely indeterminate continuous variables. 
The perception can suddenly change to a new stable position in the face of new in­
formation, which may come internally from other components of the visual system 
(attention ) as well as from the external stim ulus. This behavior is consistent with 
a stabilized minimization approach for determining the parameter values, in which 
the process can be initiated from new starting points as new information becomes 
available. The extremely good performance of human vision in most recognition 
problems, in spite of its potential for getting stuck in false local minima, indicates 
that local minima may not be· a major problem when determining model param­
eters. In general, if there is enough information to hypothesize the presence of a 
particular object, there is likely to be enough to indicate an appropriate global 
mm1mum. 

3. Object and scene modeling 

Most research in model-based vision has been based on models of simple polyhedral 
3-D objects. While they are simple to work with, they are clearly inadequate for 
representing many real-world objects. Some research has been based on models built 
from certain classes of volumetric primitives, most notably generalized cylinders [1, 
2) and superquadrics [22). While these are attractive because of their ability to 
capture common symmetries and represent certain shapes with few parameters, 
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they are ill-suited for modeling many natural objects that do not exhibit the set of 
regularities incorporated into the primitives. 

The field that has most thoroughly examined the problem of representing the 
visual appearance of arbitrary objects is computer graphics. The lessons from de­
velopments in that field are quite clear: complex analytic representations have given 
away to very simple local approximations as the most cost-effective solution in al­
most every case. The most common forms of local approximation now used in 
computer graphics for model representation prior to projection are polygonal sur­
face patches, with the appropriate linear interpolation in the various parameters 
of interest for display. Since an arbitrary function can be approximated to any 
desired degree of accuracy by llSing enough simple local approximations, the only 
important issue at this level of representation is one of efficiency. Experience in 
computer graphics has tended to show that the increased number of approximating 
patches required for simple linear approximations is more than compensated for by 
the speed with which they can be manipulated. Of course, more complex splines 
and volumetric primitives may still be used for model input or other higher-level 
reasoning. 

As with computer graphics, vision is based upon the art of approximation. Of 
course, it is important to approximate the appropriate measurements, as otherwise 
an approximation in one quantity may introduce unwanted errors in its derivatives 
or other functions that depend upon it. In model-based vision, we are concerned 
with correctly approximating those functions that will be matched with image mea­
surements. In the case of edge-based matching, this will include the projected 
locations, tangents, curvatures, and discontinuities of edges. If shading or surface 
properties were being matched, then surface curvatures must also be approximated. 
We have developed a modeling system that allows these quantities to be modeled 
as a function of viewpoint and internal model parameters to any desired degree of 
accuracy and used for efficient parameter solving. 

3.1 Modeling arbitrary parameterized objects 

Although model-based vision can learn much from computer graphics, the modeling 
requirements also have important differences. In model-based matching to 2-D 
images, the models are matched to derived image features rather than being used 
to generate dense surface descriptions. For example, it is important to be able to 
directly calculate the positions of occluding contours, which is not possible in many 
modeling systems developed for computer graphics. Since the models are projected 
and manipulated in the inner-loop of the matching process, it is important that 
all possible sources of efficiency particular to the vision domain be exploited. In 
addition, certain quantities that do not occur in graphics applications, such as 
derivatives with respect to model parameters, must be efficiently represented and 
computed. For all these reasons, it is necessary to develop a modeling system aimed 
at vision rather than adopting existing systems developed for graphics. 

We have developed a specific modeling language that can be used to describe 
arbitrary models and their internal parameters for use in model-based vision. We 
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; Define a variable HEIGHT which can have any 
; value in the range (4, 10]. 
(variable HEIGHT 4.0 ~0.0) 

; Define a coordinate frame FRAMEl that represents 
; a variable translation in the z direction. 
(translation FRAMEl base 0.0 0.0 1.0 HEIGHT) 

; Create and name the 5 points that define the 
; corners of the pyramid. The top point depends 
; on FRAMEl. 
(point LEFT-BACK 
(point RIGHT-BACK 
(point LEFT-FRONT 
(point TOP 

0.0 8.0 0. 0) 
8.0 8.0 0. 0) 
0.0 o.o 0. 0) 
4.0 4.0 0.0 FRAMEl) 

(point RIGHT-FRONT 8.0 0.0 0.0) 

; Define the faces of the pyramid. 
(polygon polyl LEFT-FRONT TOP RIGHT-FRONT) 
(polygon poly2 RIGHT-FRONT TOP RIGHT-BACK) 
(polygon poly3 RIGHT-BACK TOP LEFT-BACK) 
(polygon poly4 LEFT-BACK TOP LEFT-FRONT) 
(polygon poly5 RIGHT-FRONT RIGHT-BACK 

LEFT-BACK LEFT-FRONT) 

HEIGHT = 10.0 

HEIGHT= 4.0 

Figure 1: A simple example of a low-level ModelScript specification for a parameter­
ized pyramid model with variable height. Two views of the pyramid generated from this 
specification are shown on the right. 

have named this language ModelScript, because it fulfills exactly the same role 
for 3-D parameterized models as does PostScript [24] for 2-D page layouts. As 
with PostScript, ModelScript is an interpreted device-independent language that 
provides an interface between user-oriented interfaces for creating the specification 
and the systems that make use of the specified models. Rather than adopting 
PostScript's postfix notation, ModelScript uses the syntax of Lisp. This is far easier 
for the human reader to parse, yet adds almost no extra overhead or complexity for 
the program interpreter (in fact, our implementation is in C and makes no use of a 
Lisp interpreter). 

Rather than give a detailed specification of the language, a very simply example 
of the definition of a model is given in Figure 1. This illustrates the ability· to 
define and name 3-D points. Each point is a leaf in a tree of coordinate "frames" 
that represent any combination of previous rotations and translations specified by 
different parameters. When an, internal model is built from this input, a dense 
pointer network is constructed that links each edge element to its adjoining surface 
patches and endpoints. A caching mechanism is used so that the visibility of each 
surface polygon and the projection of each point is calculated only once, unlike in 
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Figure 2: An example of a more complex model with curved surfaces and an internal 
parameter specifying rotation of the handle. The underlying approximating patches are 
shown on the left, and the generated contours for matching are shown on the right. 

most graphics modeling systems. Because each endpoint of a line segment may 
move independently by being attached to different frames, it is possible to specify 
arbitrary flexible motions of models. If a motion is not a translation or rotation, 
then these can be splined together to produce more complex motion paths. 

Therefore, ModelScript allows for the specification of any model shape and any 
parameters influencing that shape to whatever degree of approximation is desired. 
The representation is particularly efficient for determining the projected locations 
of curves or occluding boundaries for an object. Figure 2 illustrates the generation 
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of occluding bonndaries for a more complex curved object. The locations of the 
occluding boundaries and surface discontinuities can be generated very efficiently 
even when there are large numbers of underlying polygons. Later, we will describe 
how the model representation enables the efficient computation of partial derivatives 
of image features with respect to all parameters. 

4. Solving for viewpoint and model parameters 

Projection from 3-D to 2-D is a non-linear operation. Fortunately, however, it is 
a smooth and well-behaved transformation. Rotation in depth prior to projection 
transforms the projected points as a function of the cosine of the rotation angle. 
Translation towards or away from the camera introduces perspective distortion as 
a function of the inverse of the distance. Translation parallel to the image plane 
is almost entirely linear. Translations and rotations associated with internal model 
parameters have effects that are identical to the viewpoint parameters, but applied 
to only a subset of the model points. All of these transformations are smooth and 
well behaved. 

Therefore, this problem is a promising candidate for the application of Newton's 
method, which is based on assuming that the function is locally linear. While this 
does require starting with an appropriate initial choice for the unknown parameters 
and faces the risk of converging to a false local minimum, we will see below that 
stabilization methods can be used to make this method highly effective in practice. 

4.1 Newton's method and least-squares minimization 

Rather than solving directly for the vector of non-linear parameters, p, Newton's 
method computes a vector of corrections, x, to be subtracted from the current 
estimate for p on each iteration. If p(i) is the parameter vector for iteration i, then, 

Given a vector of error measurements, e, between components of the model 
and the image, we would like to solve for an x that would eliminate this error. 
Based on the assumption of local linearity, the affect of each correction, Xi, on the 
error will be Xi multiplied by the partial derivative of the error with respect to that 
parameter. Therefore, we would like to solve for x in the following matrix equation: 

Jx= e 

where J is the Jacobian matrix: 

Each row of this matrix equation states that one measured error, ei, should be equal 
to the sum of all the changes in that error resulting from the parameter corrections. 
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If all these constraints can be simultaneously satisfied and the problem is locally 
linear, then the error will be reduced to zero after subtracting the corrections. 

If there are more error measurements than parameters, this system of equations 
may be overdetermined (in fact, this will always be the case given the stabilization 
methods presented below). Therefore, we will find an x that minimizes the 2-norm 
of the residual rather than solves for it exactly: 

min l!Jx - ell 2
• 

Since l!Jx - eJJ 2 = (Jx - e)T(Jx - e), it can be shown that this minimization has 
the same solution as the normal equations, 

(1) 

where JT is the transpose of J. This minimization is making the assumption that 
the original non-linear function is locally linear over the range of typical errors, 
which is true to a high degree of approximation for the projection function with 
typical errors in image measurements. 

Therefore, on each iteration of Newton's method, we can simply multiply out 
JT J and JTe in the normal equations (1) and solve for x using any standard method 
for solving a system of linear equations. Many numerical texts criticize this use of 
the normal equations as potentially unstable, and instead recommend the use of 
Householder orthogonal transformations or singular value decomposition. However, 
a close study of the trade-offs indicates that in fact the normal equations provide 
the best solution method for this problem. The solution using the normal equations 
requires only half as many operations as the Householder algorithm ( and an even 
smaller fraction with respect to SVD), but requires a precision of twice the word­
length of the Householder algorithm in order to solve problems that are equally 
ill-conditioned [6, 11]. Given the stabilization methods described below, the normal 
equations are never sufficiently ill-conditioned to require more than single-precision 
floating point arithmetic, and therefore are more efficient in practice than any of 
the competing methods. Even if higher precision were required, the trade-offs for 
single versus double precision computation on modern hardware would likely favor 
the normal equations. 

4.2 Efficient computation of partial derivatives 

One of the most expensive aspects of implementing this solution method is cal­
culating the Jacobian matrix of partial derivatives. Therefore, we have developed 
methods for using precomputation and shared data structures to reduce these costs. 
In addition, a special technique is used to handle derivatives with respect to full 3-D 
rotations in order to eliminate singularities and increase the rate of convergence. 

As described earlier in the section on model representation, all model points are 
leaves in a tree of "frame" data structures. Each frame represents a single rotation 
or translation with respect to its parent. Therefore, by simply tracing back to the 
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root of the tree from each model point, it is possible to identify the set of variable 
transformations that influence that point. Each frame data structure also contains 
precomputed results that can be used by all points which depend on that frame in 
order to compute their partial derivatives with respect to that frame,s parameters. 
As there are usually many points influenced by each frame, any precomputation of 
results for the frame is far more efficient than computing them for each point. 

It is possible that the same parameter will appear in more than one frame 
along a path through the tree (e.g., the last 2 joints of a human finger do not move 
independently, but depend on a single parameter of tendon contraction). This case 
is easily handled by simply summing all of the partial derivatives for a particular 
parameter. 

Each type of frame transformation requires different precomputed results, so 
these are described individually as follows. 

Translation. Each variable translation frame contains a 3-D vector giving the di­
rectional derivative in camera-centered coordinates with respect to that frame's 
variable. As all points depending on that frame will have this same directional 
derivative, no further computation is required. 

Rotation about one axis. Each variable rotation frame contains the 3-D angular 
velocity vector and the origin of rotation for the current viewpoint. The directional 
derivative of each point that depends on the frame is computed by taking the cross 
product of the angular velocity vector with the vector from the origin of rotation 
to the point. 

Rotation about three axes. If we compose three rotations about individual axes in 
order to compute an arbitrary 3-D rotation, singularities can easily result where the 
sequential composit ion of the three rotat ions fail to specify in dependent directions 
of rotation. Therefore, we represen t full th ree-degree-of-freedom rotations with a 3 
by 3 rotation matrix, and compute corrections about each of the coordinate axes t o 
be composed with this rotation. This also has the benefit that the derivatives can 
be computed in an extremely efficient form. For example, the directional derivative 
of a point with respect to an incremental rotation about the x-axis is the vector 
(0, -z, y), where z and y refer to the coordinates of the vector from the origin of 
rotation to the point. 

Once the directional derivatives of each model point have been computed, it 
is simply a matter of projecting these into image coordinates ( u, v ). Perspective 
projection of a model point (x, y, z) in camera-centered coordinages to produce an 
image point ( u, v) is given as follows: 

-fx 
U=-­

z 
and 

-afy 
v= -­

z 

where f is a constant proportional to the focal length of the camera lens. We 
include another constant, a, specifying the width-to-height aspect ratio of each 
pixel in the original image, as most current video standards have non-square aspect 
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ratios. Taking the partial derivative of each of the above functions with respect to 
a parameter p, we get 

and 
8v -af (oy y oz) 
op = -z- op - -; ap 

Here the partial derivatives of x, y and z with respect top are simply the components 
of the directional derivatives calculated earlier. 

4.3 Measuring perpendicular errors for curves 

The methods above would be sufficient if we had matches between points on the 
model and points in the image. However, in most cases the matches will actually be 
between projected contours of the model and partial edges in the image. Since the 
precise position of the endpoints of image edges are unknown ( and may be displaced 
due to occlusion), it is necessary to minimize only the perpendicular distance from 
points on an image edge to the projected model curve. 

It might be thought that self-occluding edges of curved surfaces would require 
special treatment, as the actual model edge that forms such an occluding contour 
will shift with changes in viewpoint. In fact, the surface normal at such on occluding 
point is exactly perpendicular to the viewing direction, and therefore the instanta­
neous motion of the contour projected into the image is zero as nearby points on 
the surface replace it. For finite rotations, the error introduced by non-linearity is 
quite small and is easily handled through the same iterations that compensate for 
other non-linearities. 

In order to measure the perpendicular distance from an image point to a pro­
jected 2-D model line, it is useful to express the projected model line in the following 
form: 

x sin 0 - y cos 0 = d 

where 0 is the orientation of the line with respect to the x-axis and d is the signed 
perpendicular distance of the line from the origin. If we substitute an image point 
(x', y') into the left side of this equation and calculate a new d', then the signed 
perpendicular distance of this point from the line is d' - d. The partial deriva­
tive of this perpendicular error measure is just a linear combination of the partial 
derivatives of x and y: 

8d . 8x 8y 
-=sm0--cos0-op ap ap 

In practice, we calculate sin 9 and cos 9 from 2 points, ( x 1 , yi) and ( x2 , y2 ), on the 
line. Let L be the length of the line between these points: 

L = ✓(x2 - x1)2 + (Y2 - Y1)2 

then 
n x2 - x1 and cosu = ---

L 
· n Y2 - YI s1nu = ---

L 
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4.4 Determining a starting position for convergence 

Worrall, Baker & Sullivan [29] have studied the range of convergence for the author's 
earlier version of this algorithm using Monte Carlo techniques. They found that the 
algorithm would converge to the correct solution in virtually every case for rotation 
errors ofless than 90 degrees (translation errors have almost no effect). The number 
of iterations rises with increasing errors up to an average of about 6 iterations at 90 
degrees. With the stabilization methods described in the next section, convergence 
is significantly improved over even these levels. 

Therefore, the accuracy requirements for determining the initial starting posi­
tion are quite minimal. For the motion tracking problem which serves as our initial 
focus, the problem is quite trivial as we can simply use the parameter estimates 
from the previous frame. Of course, these could be augmented by the velocity and 
acceleration estimates to more accurately predict values for the subsequent frame. 
For a general recognition problem, properties of the image matches that are being 
fitted can be used to determine initial parameter estimates. For rotation in depth, 
each match can vote for a mean direction from which it is visible ( very few model 
features are visible from all viewpoints) and these direction vectors can be averaged. 
For rotation in the image plane, we can project the model from the estimated rota­
tion in depth and take the average image rotation between projected model edges 
and the matching image edges. Estimates for translation can be made by matching 
the centers of gravity and standard deviations from the centers of gravity for the 
projected model features and image features. See [16] for an example of calculating 
initial estimates for a recognition problem. 

5. Stabilizing the solution 

As long as there are significantly more constraints on the solution than unknowns, 
Newton's method as described above will usually converge to a stable solution from 
a wide range of starting positions. However, in both recognition and motion tracking 
problems, it is often desirable to begin with only a few of the most reliable matches 
available and to use these to narrow the range of viewpoints for later matches. Even 
when there are more matches than free parameters, it is often the case that some of 
the matches are parallel or have other relationships which lead to an ill-conditioned 
solution. These problems are further exacerbated by having models with many 
internal parameters. 

5.1 Specifying a prior model 

All of these problems can be solved by introducing prior constraints on the desired 
solution that specify the default to be used in the absence of further data. In 
many situations, the default solution will simply be to solve for zero corrections to 
the current parameter estimates. However, for certain motion tracking problems, 
it is possible to predict specific final parameter estimates by extrapolating from 

12 



velocity and acceleration measurements, which in turn imply non-zero preferences 
for parameter values in later iterations of non-linear convergence. 

Any of these prior constraints on the solution can be incorporated by simply 
adding rows to the linear system stating the value that we wish to assign each 
parameter: 

(2) 

The identity matrix I adds one row for specifying the value of each parameter, and 
di specifies the desired default value for parameter i. 

The obvious problem here is that there is no specification of the trade-offs 
between meeting the constraints from the data versus those of the prior model. 
The appropriate solution is to weight each row of the matrix equation so that each 
element of the right-hand side has the same standard deviation. Therefore, as 
we minimize the error vector, each constraint will contribute in proportion to the 
number of standard devi,ations from its expected value. 

We will normalize each row of the system to unit standard deviation. If the 
image measurements are in pixels, then leaving these with a standard deviation of 
1.0 is already a good first estimate for the error in measuring the position of image 
features. In our matching algorithm, we also take account of potential ambiguities 
in the match to increase the standard deviation (i.e., reduce the weighting) for 
matches that exhibit more than one nearby alternative, so that uncertainties in the 
correct match for nearby alternatives translate into the appropriate uncertainties 
in position. 

The more important normalization is to weight the prior model according to 
the standard deviations in the prior estimates for each parameter. This is relatively 
straightforward in the case of motion tracking, where limits on the acceleration of 
each parameter from frame to frame can be expressed as a standard deviation. How­
ever, in the case of model-based recognition from any viewpoint, it may seem that 
the range of expected values is infinite. In fact, each parameter is limited during 
convergence because we are assumed to be starting from some initial approxima­
tion to the viewpoint. Therefore, the rotation parameters will have a standard 
deviation of at most 1r /2, and the translations will be limited to maintaining the 
position of the object within the image frame. Internal model parameters will have 
standard deviations corresponding to a large fraction of their valid range of move­
ment. These deviations may be large in comparison to those arising from the image 
measurements, but they still play a substantial role in stabilizing the solution for 
ill-conditioned problems. In fact the standard deviations can be made several times 
smaller without an adverse effect on the degree to which the solution fits the data 
measurements, because the non-linear iterative solution can reset the starting point 
of the prior model to the results of each previous iteration. 
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li.2 Efficient computation of stabilization 

The prior estimates of the parameter values will be weighted by a diagonal matrix 
Win which each weight is inversely proportional to the standard deviation, ui, for 
para.meter i: 

This matrix is used to scale each row of the prior model in the lower part of equation 
(2). We assume that the constraints based on image measurements in the upper 
part of the equation are already scaled to have unit standard deviation. 

We will minimize this system by solving the corresponding normal equations: 

Which multiplies out to 

Since Wis a diagonal matrix, WTW is also diagonal but with each element on the 
diagonal squared. This means that the computational cost of the stabilization is 
trivial, as we can first form JT J and then sim1 ly add small constants to the diagonal 
that are the inverse of the square of the standard deviation of each parameter. If d 
is non-zero, then we add the same constants multiplied by d to the right hand side. 
If there are fewer rows in the original system than parameters, we can simply add 
enough zero rows to form a square system and add the constants to the diagonals 
to stabilize it. 

5,3 Forcing convergence 

Even after incorporating this stabilization based on a prior model, it is possible 
that the system will fail to converge to a minimum due to the fact that this is a 

linear approximation of a non-linear system. We can force convergence by adding a 
scalar parameter ,\ that can be used to increase the weight of stabilization whenever 
divergence occurs. The new form of this system is 

This system minimizes 

IIJx - ell 2 + A2 IIW(x - d)l1 2 
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Many people in the vision community will recognize this as an example of regu­
larization using a Tikhonov [28] stabilizing functional, as has been applied to many 
areas of low-level vision (Poggio et al. [23]). In this case, the parameter .A controls 
the trade-off between approximating the new data, IIJx - ell 2 , and minimizing the 
distance of the solution from its original starting position, d, prior to non-linear 
iteration, ..\2 IIW(x - d)ll 2 , 

The use of this parameter .A to force iterative convergence for a non-linear sys­
tem was first studied by Levenberg [12] and later reduced to a specific numerical 
procedure by Marquardt [19]. They realized that as the parameter ..\ is increased, 
the solution would increasingly correspond to pure gradient descent with smaller 
and smaller step sizes, along with its properties of guaranteed (but slow) conver­
gence. For decreasing..\, the problem instead moves over to Newton's method, with 
its fast quadratic convergence near the solution but the possibility of divergence 
when starting too far away. Therefore, Marquardt suggested the simple solution 
of monitoring the residual of each solution and increasing >. by factors of 10 until 
the residual decreased; otherwise, >. is decreased by a factor of 10 on each itera­
tion. This does not guarantee any particular rate of convergence and can, of course, 
converge to a local rather than global minimum. However, it has proved highly 
effective in practice and is probably the most commonly used method for non-linear 
least-squares. 

Marquardt did not assume any prior knowledge of the weighting matrix W, but 
instead estimated each of its elements from the euclidean norm of the corresponding 
column of JT J. In our case, the availablity of W allows the algorithm to perform 
much better when a column of JT J is near zero. It also gives the stabilization a 
much more predictable behavior. Increasing the value of .A will essentially freeze the 
parameters having the lowest standard deviations and therefore solve first for those 
with higher standard deviations. For our problem, this implies that convergence for 
difficult problems will proceed by solving first for translations and then proceeding 
on subsequent iterations to solve for rotations and finally short-range internal model 
parameters. 

6.0 Results of implementation 

All of the methods for object modeling and parameter solving described above have 
been implemented in about 4000 lines of C code. Although earlier versions of these 
techniques were implemented by the author in LISP, the desire for efficient, real­
time performance made it worthwhile to undertake the extra effort required for a 
C implementation. 

A very simple example of model :fitting is shown in Figure 3. The pyramid 
model with variable height from Figure 1 was projected from one particular set 
of parameter values, and random intervals of some of the projected segments were 
chosen for matching. The model parameters were changed to produce the initial 
parameter estimates shown in Figure 2(b). In this figure, the perpendicular errors 
being minimized are displayed as heavy black bars between the projected model 
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-

(a) Partial image segments (b) Initial parameter estimates 

( c) First iteration of convergence ( d) Second iteration 

Figure 8: Two iterations of convergence for determining viewpoint and model parame­
ters from partial matches to image segments. Perpendicular errors being minimized are 
displayed as heavy black bars between model and image edges. 
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segments and the matching image segments. Figures 2(c) and 2(d) show the output 
following the first two iterations of the stabilized algorithm presented above. This 
fast rate of convergence within a couple of iterations is typical over a wide range 
of initial parameter values ( up to at least 60 degree errors in rotation parameters). 
See Worrall, Balcer & Sullivan [29] for a systematic exploration of convergence over 
a wide range of errors, even prior to the addition of the stabilization and Levenberg­
Marquardt methods. In fact, divergence is relatively rare, so it is uncommon for 
the Levenberg-Marquardt method to talce effect; however, its computational cost is 
also low, so it is probably of practical value. 

6.1 Application to motion tracking 

One initial application of these methods has been to the problem of motion tracking. 
A Datacube image processor is used to implement Marr-Hildreth [20] edge detection 
in real time on 512 by 485 pixel images. The image containing these edge points 
is transferred to a Sun 3/260, where the edges are linked into lists on the basis of 
local connectivity. A fairly simple matching technique is used to identify the image 
edges that are closest to the current projected contours of a 3-D model. The few 
best initial matches are used to perform one iteration of the viewpoint solution, 
then further matches are generated from the new viewpoint estimate. Up to 5 
iterations of this procedure are performed, with a gradually narrowing range of 
image locations which are searched for potential matches ( this helps to eliminate 
any false outlier matches). For simple models with straight edges, all of these steps 
can be performed in less than 1 second, resulting a system that can perform robust 
but rather slow real-time motion tracking. We have run this system for thousands 
of frames at a time by holding an object in front of the video camera and slowly 
moving it. Correctness of the motion tracking can be easily judged in real-time by 
watching a wire-frame model superimposed on the image from the current set of 
parameter estimates. We are currently exploring the use of parallel architectures 
that could greatly speed the operation of this system so that it performs at video 
rates. Full details of the components of this system other than parameter solving 
will be published in a separate paper. 

Figure 4 shows the operation of the system for one frame of motion tracking. 
However, due to the complexity of the model, this version requires about 6 seconds 
of processing per frame and does not operate in real time. Figure 4( a) shows an 
image of a hand drill from which edges are extracted with a simplified version of 
the Canny edge detector. The model is shown superimposed on this image from the 
previous best estimate of its current viewpoint. A simple matching algorithm is used 
to identify image edges that are close to the projected model curves. These matches 
are ranked according to their length and average separation, and the best ones are 
chosen for minimization. The selected matches are shown with heavy lines in Figure 
4(b) along with the perpendicular errors between model and image curves that are 
minimized. After one iteration of model fitting, the new model position is shown 
in Figure 4( c) along with a new set of image matches generated from this position. 
Note that the rotation of the handle is a free parameter along with the viewpoint 
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Figure 4(a,b): The original image from a motion sequence is shown in (a). The Canny 
edge detector is used to extract the edges in (b). Superimposed on these edges a.re the 
model from its previous estimated viewpoint, nearby matching edges, and perpendicular 
errors to be minimized. 
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Figure 4( c,d): After 1 iteration of model fitting, the new model position and handle 
rotation is shown in ( c ). Also shown are new matches to image edges. After the second 
iteration of convergence, the model is shown superimposed on the original image in (d). 
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parameters. After this second iteration of convergence, the final results of model 
fitting are shown superimposed on the original image in Figure 4(d). Note that due 
to occlusion and errors in low-level edge detection, this final result is based on only 
a. small subset of the predicted image edges. However, due to the overconstrained 
nature of the problem, in which far more measurements are available than unknown 
parameter1:1, the final result can be reliable and accurate. 

7 .O Conclusions and future directions 

This paper has presented general methods for fitting models with arbitrary curved 
surfaces and any number of internal parameters to matched image features. Con­
siderable attention has been given to issues of robustness and efficiency, and these 
techniques should serve as a practical basis for most applications of model-based 
vision. 

There are a number of directions in which these methods could be further 
improved. One is in dealing with objects that have very large numbers of variable 
parameters. Since the complexity of solving a linear system rises as O(n3 ) in the 
number of variables, it would likely be more efficient to partition problems with 
very large numbers of parameters into smaller subsets. The simultaneous solution 
method would be used for all parameters with large ranges of uncertainty, but the 
remaining ones would be solved for on the basis of local independent optimization. 
This would become particularly important if generic classes of objects are modeled, 
as was done in the ACRONYM system [2), in which almost every dimension of the 
object is variable. 

While this paper extends the modeling and parameter solving components of a 
vision system so that they can work with curved objects , there is still much research 
to be done regarding low-level curve segmentation and grouping. The author has 
developed some multi-scale curve smoothing methods [18] that would be suitable for 
the initial curve description, but much remains to be done at the level of grouping 
and indexing in order to prod~ce a fully general system for recognition of curved 
objects. 

Finally, one of the major bottlenecks for model-based vision will be in the 
acquisition and learning of the models. The simplest way to acquire the models 
would be do build them directly from images of the objects. One approach that we 
are pursuing is the design of a system in which a person can interactively build object 
models overlaid on multiple images taken from different viewpoints. A further goal 
is to introduce small parameters of variation to each model component, which can 
be adjusted slowly over the course of matching to many images so that the accuracy 
of the model is gradually improved. The same method can be used to build models 
of generic objects that would incorporate the measured standard deviations of each 
parameter across different instances of an object class. The combination of these 
techniques should greatly ease the task of model acquisition. 
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