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Abstract 

We present sequential and parallel algorithms to construct binary trees with almost optimal 
weighted path length. Specifically, assuming that weights are normalized (to sum up to 
one) and error refers to the (absolute) difference between the weighted path length of a 
given tree and the optimal tree with the same weights, we present: an O(logn) rime and 

nlollogn £REW processor algorithm which constructs a tree with error less than 0.172; an 
ogn 

O(klogn log*n) time and n CREW processor algorithm which produces a tree with error at 

most 
1
k, and an O(k2logn) time and n2 CREW processor algorithm which produces a tree 

n 

with error at most 
1
k. As well, we present two sequential algorithms: an O(kn) time 

n 

algorithm which produces a tree with error at most n;k and O(kn) time algorithm which 

produces a tree with error at most 
2

~
2
k .The last two algorithms use different computation 

models. 

1. Introduction 

One of the classical problems in communication is the construction of an optimal 

code. Let V={ v1, ... ,vn} be a set of letters and w(vi) be the frequency of the occurrences of 

letter vi in a word. The goal is to find a binary code for every letter of V, such that no code 

is a prefix of any other code and the average word length, defined as I,l(v)w(v), where 
veV 

l(v) denotes the length of code of letter v, is minimized. Equivalently, one can search for a 

binary tree T whose set of leaves is equal to V and which minimizes the following cost 

function c(T)= ~.')T(v)w(v) where lT(v) denotes the length of the path from the root to the 
veV 

leaf v in the tree T. We call such a tree an optimal tree. The notion of an optimal tree 
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extends in an obvious way to the case when w is a weight/unction such that w: V->R+. 

However in this case the problem can be reduced to our initial problem by dividing the 

weight of each element v, w(v), by W= r,w(v). So hereafter we assume W=l. Note that 
veV 

this does not imply that the cost of an optimal tree is bounded by a constant. In fact it may 

achieve logn (for lower bounds on a weighted tree path see for example [M85]). 

An optimal tree can be constructed in O(nlogn) sequential time by an algorithm due to 

Huffman ([Huff52]). It can be shown (see [H73]) that an optimal search tree (i.e. a tree 

which minimizes the cost function over all binary trees whose leaves occurs in a fixed 

order) whose leaves occurs in the order of increasing weights is also an optimal tree. This 

observation together with the parallel dynamic programming algorithm of Miller, 

Ramachandran and Kaltofen [MRK85] leads to an O(log2n) time n6 processor parallel 

algorithm for construction of an optimal binary tree (see [T87] for a detailed description). 

An improved algorithm has been proposed by [AKLMT89] where the special structure of 

the dynamic programming problem has been used to produce a polylog algorithm using n2 

processors. This algorithm still does not achieve an optimal speedup, that is, the processor

time product does not match time complexity of the best known sequential algorithm. The 

question (cf. [AKLMT89]) of whether there exists a parallel algorithm which constructs an 

optimal tree in polylogarithmic time using n2-e processors remains open. In the same paper, 

an approximate solution to the problem is proposed. Let T*v be an optimal tree for set V 

and T be an arbitrary tree with leaves equal to V. The error of tree T, ll. T, is defined as 

c(T)-c(T*v ). A tree is called almost optimal if its error is small. In [AKLMT89] an 

algorithm is presented which produces a tree T with /l. T~l in O(logn) time using n/logn 

processors if the input sequence is soned according to the weights. Also the parallel 

algorithm to produce an almost optimal binary search tree presented in the same paper can 

be used to construct a tree T with /l. T~l/nk in O(klog2n) time and with n2/log2n processors. 
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In this paper, we present a family of parallel and sequential algorithms to construct an 

almost optimal binary tree. Each of our algorithms is an interpretation of the General 

Construction S.cheme (GCS) defined section 4. One can think of GCS as an abstract algorithm 

whose meaning depends on an interpretation of basic functions used in its formulation. We 

present a general theorem which allows to estimate the error obtained when constructing a tree 

using an interpretation of GCS. 

In the second section, we present the Basic Construction S.cheme (BCS) which defines a 

family of bottom-up tree constructions. This scheme leads to efficient algorithms provided that 

there do not exist elements of very small weight. We prove that an algorithm which is an 

interpretation of BCS cannot produce a tree with error greater than 1. We also present a 

modification of BCS which reduces the maximal error to 0.172. In the third section, we define 

approximate sorting, merging of approximately sorted sequences, and approximation of a 

sequence by a sequence. Those notions are very helpful in estimating the error produced by 

some of our algorithms. In the fourth section, we define GCS which is a modification of BCS. 

This scheme leads to efficient algorithms for sets including elements of arbitrarily small weight. 

In the sixth section, we present a number of parallel interpretations of GCS. In particular.we 

give an O(logn) time and n
10

1~~!n EREW processor algorithm which constructs a tree with 

error at most 0.172 an O(klogn log*n) time and n CREW processor algorithm which produces 

a tree with error at most nt' and an O(k2logn) time and n2CREW processor algorithm which 

produces a tree with error at most ±,. The algorithm obtained as the result of the second 
n 

parallel interpretation of GCS achieves almost optimal speedup over the Huffman algorithm 

and produces a tree with a very small error. This result has been achieved by applying a 

cascading sampling technique - a new technique related to that used in Cole's merging sort 

algorithm [C86]. In the seventh section, we present two sequential algorithms which are also 

interpretations of GCS. The first of them produces a tree with error at most n;k and runs in 

O(kn) time assuming a RAM model with bounded register capacity. The second algorithm 
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produces a tree with error at most 
2

~
2

k and also runs in O(kn) time but it uses an integer sorting 

algorithm which assumes a RAM model of computation with unbounded register capacity. 

2. Basic Construction Scheme (BCS) 

An optimal tree can be constructed by the following simple algorithm due to 

Huffman: 

While IVI > 1 do 
Let v1,v2 be the pair of elements from V of smallest weight. Construct internal 
node u with v1 and v2 as children and define w(u)=w(v1)+w(v2). 

V:=V-{v1,v2}u{u}. 

The Huffman algorithm, as described above, is highly sequential. We start by 

presenting an alternative way of constructing a tree isomorphic to the Huffman tree. Our 

algorithm produces the tree in a bottom-up fashion. At each stage of the algorithm we are 

dealing with sequences of roots of disjoint subtrees of the constructed tree. Each subtree 

has associated weight equal to the sum of weights of the elements in its leaves. If an 

element v belongs to a sequence X then pred(X,v) (resp., succ(X,v)) denotes the element 

which precedes v (resp., which occurs after v) in the sequence t and dist(X,v) denotes the 

number of elements (including v) which precede v in the sequence t. If u is an internal node 

of the constructed tree then left(u) (resp., right(u)) denotes left (resp., right) child of u and 

parent(u) denotes the parent of u. 
1 

For every ve V define rank(v) to be the integer such that 
2

rank(v)-l > w(v) ;;:: 

2
~(v)" If rank(v) = i then we also say that element v belongs to level i. Let l=max{i I 

IVil>-0 }. By convention, we think of a tree as having its root at the top and leaves at the 

bottom so a higher level is a level of elements of smaller rank. Let sort be an increasing 

sorting procedure, and merge be a procedure which given two sorted sequences produces 

a sorted sequence containing all elements from both sequences. Let pair_ elements be a 

procedure which given a sequence U of even length produces a sequence C defined as 
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follows: Create a common father u for every pair of elements u 1, u2 such that 

u2=succ(U,u1) and such that the value dist(U,u1) is odd (define w(u)=w(u1)+w(u2) and 

left(u)=ui, right(u)=u2). The order of elements in sequence C corresponds to the order of 

their children in sequence U. We use# to denote the concatenation operation on sequences. 

As we prove later, the following algorithm constructs a tree isomorphic to the Huffman 

tree: 

1. Divide elements of V into sets V 1,V2,••··such that. ve Vi iff rank(v)=i; 

2. For every i do sort(Vi); 
3. Let Yii,•·•.ViL (ir<ir+l• iL =l)be the list of nonempty sets; i:=iL; j=2i; Uf=V1; k:=L-1; 

- - - i is the index of currently processed level, ik is the index of 
- - - the closest nonempty level to be processed 

4. while k>O or IUj I > 1 do 

5.1. if IUjl = 1 then U2ik:=Uj#Vik; i:=ik; j:=2i; k:=k-1; 

5.2. 
5.3. 

5.4. 

5.5. 

5.6 

5.7. 

- - - put the only element of Uj to the closest nonempty level 

else c:=pair _ elements(first(Uj),succ(first(Vj) ); 

Uj-l :=merge( c, Ur {first(Uj),succ(first(Uj)} ); j:=j-1; 

- - - the parent ,c, of two first elements may have rank equal to i or i-1 
- - - so it is initially inserted into the sequence of elements of rank i; 

if IUjl is even then c:=pred(last(Uj))#last(Uj) else c:=last(Uj); 

½-l :=merge(pair _ elements(U ·-c),V i-1); 
- - - pair elements of u1 except for the last element ( or last two 
- - - elements); the last element may have rank equal i-1 (compare 
- - - step 5.3) so should not be paired at this point; 
- - - merge the resulting sequence with the elements of Vi-1 

Uj-1:=merge(Ci-1,c); j:=j-1; 

- - - merge the remaining ( one or two) elements 

i:=i-1; if IVil > 0 then k:=k-1. 

Theorem 1. The above algorithm produces a tree isomorphic to the Huffman tree. 

Proof: Assume that in the above algorithm we replace the procedure pair elements with 

a procedure which pairs elements of a sequence pair after pair from left to right. It suffices 

to prove that during such a pairing step we always pair two smallest elements (i.e. roots of 

two subtrees of smallest weight obtain a common parent). Note that all sequences occurring 
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in the algorithm are sorted and that for any i<k elements in Vi are greater than elements in 

Vk. Note also that the following statement is an invariant of "while" loop: For any i<f}l 

elements in Vi are greater than elements in Uj. This is certainly true before the_ first 

iteration. So in step 5.2 we pair two smallest elements. After step 5.3, for any i<f ½l all 

elemen~s of Uj except, possibly, the last one are smaller than any element of Vi. Also for 

any i<f ½ l the last element of Uj is smaller than any element of Vi-l · Since the last element 

does not take part in the pairing step in line 5.5 so also in this step the smallest possible pair 

of elements is paired. After step 5.5 elements of q_1 are smaller than elements of Vi_2. So 

elements of the sequence Uj-l created in step 5.6 are also smaller than elements of Vi-2· 

From this follows the invariant of "while" loop and consequently the fact that we always 

pair the smallest possible pair of elements. ■ 

Consider the above algorithm from a more general point of view. Replace the sorting 

procedure by a procedure ORDER which defines some (not necessarily sorted) order and 

the procedure merge by a procedure MERGE which given two sequences V, C produces a 

sequence of elements in VuC with the property that it is sorted according to ranks (but not 

necessarily within the ranks). This produces a general scheme called the Basic ,Construction 

S.cheme (BCS). One can think of BCS as an abstract algorithm (i.e. an algorithm whose 

meaning (interpretation) depends on the definitions of procedures ORDER and MERGE. 

We fix an interpretation by defining a representation of sequences and giving an 

interpretation for procedures ORDER, MERGE. Different interpretations define different 

tree construction algorithms. (We identify the algorithm defined by an interpretation of 

BCS with the interpretation itself.) In particular our initial algorithm is an interpretation of 

BCS. We call this interpretation the Huffman tree algorithm and denote by H. Note that 

although pair_ elements has a fixed meaning, its implementation depends on the 

representation of sequences so, for consistency, we replace pair_ elements by a 

procedure PAIR_ELEMENTS depending on the interpretation. When we refer to a 
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sequence (Vi• Ci or Ui) obtained by preforming BCS in interpretation A we use A as a 

superscript in the name of the sequence (ViA, CjA or UiA respectively). Note that in fact we 

can use different interpretations of procedure MERGE and PAIR_ELEMENTS in different 

steps of an interpretation of BCS. If that is the case, then we indicate this by adding a 

subscript equal to the number of the substep of step 5 to the name of the corresponding 

interpretation. For example, MERGE3 denotes an interpretation of the MERGE procedure 

used in step 5.3. 

We define the level of a sequence Uj to be equal to r ½ 7. Elements of Uj whose rank is 

equal to the level of Uj form the main subsequence of the sequence Uj. Elements of Uj 

whose rank is less than the level of Uj form the head of the sequence Uj. Elements of Uj 

whose rank is greater than the level of Uj form the tail of the sequence Uj. 

Lemma 2: Sequences Uj satisfy the following properties: 

(i) if j is even then Uj has empty tail, 

(ii) if j is odd then Uj has empty head, 

(iii) there is at most one element in a tail, 

(iv) there are at most two elements in a head, 

(v) the element in a tail of a sequence has rank smaller by one than the level of the 

sequence, 

(vi) if j is even and IUjl > 1 then the element whose weight is equal to the sum of the 

weights of two first elements in the sequence has rank equal to or smaller by one than 

the level of the sequence. 

Proof: The proof follows by induction on the level of a sequence. Consider first a 

sequence Uj of level I such that j = 21. The sequence Uj has empty tail and head and all 

elements in Uj have rank equal to the level of Uj so (i) - (vi) are obviously true. Consider 

now sequence U21-l• If such a sequence is constructed then it is obtained from the sequence 
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U21 by pairing two first elements and merging the resulting element with the rest of the 

elements in the sequence. It is obvious that U21_1 has empty head and has a one-element 

tail. The rank of the element in the tail is equal to I-1. So (i)- (vi) hold also for j=21-1. 

Assume that (i) - (vi) hold for all sequences Uj of level less than i. Let Uj be a 

sequence of level i such thatj=2i. We have to show (i), (iv), and (vi) in this case. To show 

point i) note that if sequence Uj+l has not been constructed then sequence Uj contains 

elements from Vi and the only element of the last nonempty sequence U2k (k>i). If Uj+l 

has been constructed then Uj contains elements from Vi, q and at most two elements form 

Uj+l · Since elements in Vi and q have rank equal to i and by inductive hypothesis point v) 

elements in Uj have rank at most i so point i) follows. To show points (iv) and (vi) note 

that the elements in head may came either from the sequence Uj+l or, if Uj+l has not been 

constructed, from the last nonempty (one element) sequence U2k (k>i). In the first case iii) 

follows from the fact that Uj+ 1 has no head and in the second case it follows form the fact 

that in this case there is only one element in the head. 

Assume now that j=2i-1. We have to show points (ii), (iii), and (v). Point ii) follows 

form the facts (iv) and (vi) which have been proven above. Point (iii) follows from point (i) 

by construction of BCS. Point v) follows from point (vi) by construction of BCS.■ 

Lemma 3: The cardinalities of all sequences occurring in the description of BCS and the 

number of iterations performed by an interpretation of BCS does not depend on the 

interpretation. 

Proof: Note that in any interpretation of BCS we start with the sequences V 1, ... ,V1 such 

that for each i=l, ... ,I the cardinality of Vi does not depend on the interpretation. The 

cardinality of any sequence constructed by an interpretation of BCS depends only on 

cardinalities of the sequences used for the construction and therefore, by induction, is 

independent of the interpretation. Similarly the number of iterations depends only on the 

cardinalities of the sequences and therefore is independent of the interpretation. ■ 
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An important consequence of the above lemmas is that if Tis a tree constructed by an 

interpretation of BCS then fl T can be expressed in the following way: 

Lemma 4: Let T be a tree obtained by some interpretation, A. of BCS and let 

0 -if Uj has not been constructed or j is even and IU}= 1 
or j is odd and IU/Q 

w(first(V/) )+w(succ(first(VjA)) )-w(firsr(U t) )-w(suci;(first(Ul)) 

flj= -if IUjl> 1 and j is even 
w(/ast(UjH))-w(/ast(U/)) -if IUjl is odd andj is odd and greater than 1 
w(last(Vl))+w(pred(lasr(UjH)))-w(last(U/))-w(pred(last(UjA))) -otherwise 

21 

then .1 T = Li\j. 
j=l 

Proof: At any stage of the algorithm we are dealing with the forest of the subtrees 

constructed so far. The roots of the subtrees belong either to recently constructed sequence 

Uj or to sequences Vi (i<f"½ 7). Let c(TjH) (resp .• c(T/ )) be the cost of the forest such that 

the roots of the trees in this forest belong to sequence UrH (resp .• UrA) where UrH (resp., 

UrA) is the last constructed sequence such that r>j. By definition of flj we have for j<2I: 
21 

c(TjA}---c(TjH) = c(Tj+IA}---c(Tj+IH)+llj+l· So flT = iflj. ■ 
J'=l 

We use the above lemmas to prove: 

Theorem 5: If Tis a tree obtained by an interpretation of BCS then fl T <l. 

Proof: Let di=fl2i+ll2i-l · Let UA2i =uAi,uA2,···uAk be the sequences constructed by an 

interpretation. say A. and uH2i =uH1,uH2, ... uHk be the sequence produced by the 

interpretation H (the Huffman tree algorithm). Note that if U2i is not constructed then U2i-l 

is also not constructed and then di=()· Alternatively consider the following four cases: 
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1) Neither of the interpretations creates a tail. Then by Lemma 2 point (vi) we have~ s; 
21 

1 1 1 1 2 
w(uA1)+w(uA2) s;----:-

1 
and --:-s; w(uH1)+w(uH2) S----:-1 . Then Li2is; --:- and Li2i-l s; --:-. 

21- 21 21- 21 21 
1 1 

So dis;""""l"'"":'1 +--:-. 
21- 21 

2) Both interpretations create a tail. We can interpret this case as a case when in both 

interpretations all but at most one (last) elements are paired. Since unpaired elements 

have rank equal to i it follows that dis; ~ . 
21 

3) Interpretation H creates a tail and interpretation A does not create a tail. Then~ S 
21 

w(uA1)+w(uA2) s-4- and -~- s; w(uH 1)+w(uH2) s; -4-. Assume that 
21-l 21-l 21-2 
1 1 1 1 

w(uH1)+w(uH2)= ----:-1 +z. Then Li2is;-z and Li2i 1s --:-+ --:- +z. So dis-. -
1
. 

21- - 21 21 21-

4) Interpretation A creates a tail and interpretation H does not create a tail. Then ~ S 
21 

1 1 1 
w(uH1)+w(uH2) S:-.- and -.- s; w(uA1)+w(uA2) s;~. Assume that 

~l ~1 ~ 
1 1 1 1 

w(uA1)+w(uAi)= ----:-1 +z. Then Li2is;--:-+z and Li2i ls; --:- -z. So dis;---:--1. 
21- 21 - 21 21-

Note that the most expensive case is case 1. However if in this case IUA2il is even 

then Li2i-l S ~i. If IUA2il is odd (and greater than 2) then this step is followed by step of 

1 
type 1 such that Li2i-l = -Li2i-2. So generally we can assume that dis;-. -1 + zi+l - zi where 21-

Zi=Li2i-l if U2i-l has even number of elements and 1) holds and zi=O otherwise. So we 
I I 

have LiT =idi = ~ 
2

;_1. It remains to show that d1=-z2. It is obvious that Li 1=0. If n=2 
1=1 £..i 

i=l 

then obviously LiT = 0. So assume that n>2. Then V1 has at most one element. If V1 has 

one element then U3 has at most 2 elements neither of them being in a tail (otherwise the 

sum of the weights would be greater than one). So in this case d1=-z2. If V 1 has zero 

elements then U3 either has four equal elements (then the result is obvious) or at most 3 

elements. If it has 3 or fewer elements then U2 has two elements and therefore Li2=0. If 
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U3 has 2 elements then one of them must be a tail so z2=0. If it has 0,1 or 3 elements then 

1) does not hold and zi=O as well. ■ 

From the proof of the above theorem it follows that vertices of higher level may 

potentially contribute more to the total error. So it is natural to ask, how far we can reduce 

the error if we run an approximate algorithm until we reach some level, say t, and then use 

the Huffman tree algorithm (i.e. when we reach level t we sort all sequences on levels t or 

higher and for the remaining iterations interpret MERGE as an exact merging procedure). 

To see how much we can reduce the error using this approach consider first the 

following problem: 

Let W=w1,w2,••··•wk where k<n and w1+w2+ .... +wk<l. Let l-(w1+w2+ .... +wk) 

= L. Consider a sequence w1,w2,••··•wk,wk+l•····•wn such that wk+l•····•wn=L. 

Elements wk+l•····•wn are calledflexible elements. Let u be the heaviest flexible element. 

The sequence wi,w2,····,wk,wk+l•····•wn is called afeasible extension of the sequence W 

if, for every i,j such that wi,wj~u, wi~2wj. Denote by ff' (W) the set of all feasible 

extensions of W. Assume that ff' (W) is nonempty. Two feasible extensions of W with the 

same set of flexible elements are considered to be equal. Let we ff' (W). By C(w) we 

denote the cost of an optimal tree for the sequence w. Let~ W= max C(u)-C(w). We 
u we!r(W) 

are going to estimate the value ~ W. 

Lemma 6. Let w: NxN->R be a function defined as w(r1 ,r2) 2 ~ . Then there exists 
r1 r2 

such pair of integers r 1 .r2 such that r1 +r2 =n-k and the sequence 

w*= w1, w2,••··,wk,fw(r1 •_;2), ... ,2w(r1 ,r2),~(r1 ,r2), ... ,w(r1 ,r2), 
r1 • r2 

belongs ton:' (W) and satisfies C(w*)= min C(w). Furthermore there exists an optimal 
we!r(W) 

tree T* for the sequence w* in which all flexible leaves of weight w(r1,r2) occur on one 

level, say h, and all flexible leaves of weight 2w(r1,r2) occur at level h-1. 
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Proof: Let w = w1,w2,,, .. ,wk,wk+l•"··•wn be a sequence which satisfy C(w) 

= min C(w). Let T by an optimal tree for w. Let u be the maximal flexible element of w. 
we~(W) 

First we show that there is an optimal tree in which all elements less than or equal to u 

occur on two consecutive levels. Assume that there are two elements wi,Wf~ u such that wi 

belongs to level h and wj belongs to level h-s (s> 1). Then the parent of wi , say x, has 

weight at least twice as big as the weight of the smaller of its children. Since w is a feasible 

extension of W=w1,w2, .... ,wk it follows that x ~ wj. Therefore we can switch Wj with x 

without increasing the cost of the tree. So there is an optimal tree for the sequence w, say 

T, in which all flexible elements occur at two consecutive levels. 

Let the number of flexible elements on level h-1 of tree T' be equal to r1 and the 

number of flexible elements on level h be equal to r2. We do not increase the weight of the 

tree if we assign to flexible nodes on level h-1 weight 2w(r1 ,r2) and to flexible nodes on 

level h weight w(r1,r2). In this way we obtain tree T* which satisfies the conditions stated 

in the lemma. ■ 

In Lemma 6 we have constructed a sequence w* such that C(w*) = min C(w). 
we~(W) 

Now we are going to construct a sequence w' (which is not necessarily a feasible extension 
of W) such that C(w')~ max C(w). Let u,we ~ (W) be such a pair of sequences such 

we~(W) 

that u is obtained from w by reducing the value of a flexible element of w, say wi, by some 

value x and increasing the value of another flexible element of w, say Wj, where wlwi by 

the same value x. Then we say that u is obtained from w by an elementary shift of weight. 

Lemma 7: If u is obtained from w by an elementary shift of weight then C(u):5C(w). 

Proof: Assume that u is obtained from w by reducing the value of a flexible element of w, 

say wi, by some value x and increasing the value of another flexible element of w, say wj, 

where wlwi, by the same value x. Let T be a tree which is optimal for the sequence w. Let 

T' be a tree obtained from T by changing weights of leaves corresponding to wi and wj by 
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subtracting and adding x respectively. Since lT(wj)SlT(wi) it follows that c(T)~c(T). 

Furthermore the cost of T is greater than or equal to the cost of an optimal tree for u. ■ 

Lemma 8. Let w(r)-n~k. Then the sequence w'=w1,w2,····•wk,w(r),w(r), .... ,w(r) 

satisfies C(w') ~ max C(w). 
wefF(W) 

Proof: We show that for any feasible extension w=w1,w2,••··•wk,wk+l• .. ··•wn, there 

exists a sequence of elementary shifts of weight leading from w' to w. We define this 

sequence inductively. Let Wi = w1,w2,••··•wk,wk+li, .... ,wni be the sequence obtained 

after ith elementary shift of weight (W0 = w' = w1,w2,••··•wk,w(r),w(r), .... ,w(r) = 

w1,w2, .... ,wk,wk+lo, .... ,wnO). If Wi ':I: w then preform the following shift of weight: 

Let w/ be the first flexible element such that w/<wj and wti be the last flexible 

element such that wi >wt'Then define Wi+l as follows: 

for s':l:j,t wi+1=wi; 

w/+I=w/+min(wrw},wtLwt); 

whi+l=whLmin(wrw/,wtLwt); 

(shift min(wk+i-wti,wi-wn) weight from whi tow/). It is obvious that a finite number of 

such steps convert w" into w. So by Lemma 7 C(w')~C(w). ■ 

Now we are ready to prove the following theorem: 

Theorem 9: For any sequence W=wi,w2, .... ,wk where k<n and l-(w1+w2+ .... +wk) = 

L>0 holds 6. W S L(3-2.../2). 

Proof: Let T* be the optimal tree from Lemma 6 and let T" be a tree obtained from T* by 

replacing all flexible vertices with vertices of equal weight (- Lk). Of course c(T") ~ c(T') n-

where T is an optimal tree for the sequence where all flexible vertices are equal. So 
11 (L L \ r2L n-k-r2 

6. W S c(T )-c(T*) = r2 r- 2r
1 
+ri°' = n-k . 2(n-k)-r2 
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Consider I!,,. W as a function on r2. This function achieves its maximum, equal to L(3-2-{2) 

< 0.1716L, for r2=r(2-"'J'2).So I!,,. W S L(3-2-{2).■ 

Corollary 10: If BCS is interpreted in such a way that an approximate construction is 

carried until some level t and the exact construction is carried for all levels greater than or 
1 

equal tot, then I!,,. TS 
2

t-l 1 0.1716. 

Proof: Let W=wi, ... ,wk be the sequence of weights of elements of rank smaller than t. 

Then for any interpretation of BCS sequence U2t-l is a feasible extension of W. By the 

proof of Theorem 5 and Theorem 9 it follows immediately that I!,,. TS 
2

~_ 1 + 0.1716.■ 

Note that from the above corollary it follows that if we start the exact construction 

from level 10 then I!,,. T S 0.172. 

3. Approximate sorting and merging of approximately sorted 

sequences 

A sequence u1,u2, .. ,uk is e-sorted if and only if max(max.(w(uJ·)-w(ui))SE. 
1 J<l 

A sequence u1,u2,••·uk is an e-approximation of the sequence v1,v2, .. ,vk if for every i 

w(ui)+E~w(vi)~w(ui)-E. Note that if u1 ,u2,, .. uk is a permutation of a sorted sequence 

v1,v2, .. ,vk and is E-sorted then it is also an E-approximation of the sequence v 1,v2, .. ,vk. 

A procedure performs e-merging if given two E-sorted sequences produces an E

sorted sequence. 

Example 11. Consider the standard merging procedure applied to two E-sorted 

sequences C = c1,c2, .. ,ck and V = v1,v2,, .. vr (i.e. the procedure which inductively 

compares the first elements of the input sequences, removes the smaller of them, makes it 

the next element of the output sequence, and so on). Let U=u1,u2, ... uk+r be the resulting 

sequence. To see that this procedure is E-merging note that for any two elements uie V, 
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uje C (resp., uie C, UjE V) if i<j then there exist an element ute V (resp., ute C) such that 

iSt<j and w(ut)~w(ui). Since V (resp., C) is £-sorted it follows that w(ut) S w(uj) - E. So 

W(Uj) s w(uj) - E. 

Example 12: Consider a merging procedure which first divides input sequences V and C 

into m subsequences V 1 ,V 2•··· V m and C1,C2,• .. Cm respectively (some of them possibly 

empty) such that ith subsequence contains elements whose weights are the interval [,l ,i-l~ 
mm 

(recall that all elements are from the interval [0,1]). The merged sequence is equal to 

V1,C1,V2,C2,••·•VmCm. It is easy to see that this procedure first constructs~ - sorted 

sequences and then performs ~ -merging of those sequences. 

An important property of an £-merging procedure is given in the following lemma: 

Lemma 13: Let cA = cA 1,cA2, ... cAk and VA = vA 1,vA2, ... vA1 be two £-sorted 

sequences. Assume also that VA is an £-approximation of a sorted sequence yH and that 

CA is an £-approximation of a sorted sequence CH. Let uA be a sequence obtained by 

merging of VA and cA by an £-merging procedure and let UH be a sequence obtained by 

(exact) merging of yH and cH. Then uA is a 2£-approximation of UH. 

Proof: Let uA and uH be two elements with the same index in uA and UH respectively. 

Assume without loss of generality that the number of elements form cA in the sequence uA 

which precede element uA is less than or equal to the number of elements from cH which 

precede element uH in uH. Then there exists j such that the jth element of list VA (v/) 

occurs in uA before uA or is equal to uA and the jth element of list yH (vjH) occurs in 

uH after uH or is equal to uH. But yA is £-approximation of yH so w(v/) ~ w(vjH)-E. 

However w(vjH) ~ w(uH) and (since UA is £-sorted) w(uA) ~w(v/)-E. So w(uH)-w(uA) S 

2£. ■ 

4. General Construction Scheme (GCS) 
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Note that if set V contains elements of very small weights then computing ranks may 

become a bottleneck for any interpretation of BCS. To obtain efficient implementations we 

divide all elements into two groups : heavy elements and light elements. More precisely let 

K(n) be an integer function of n. An element whose rank is greater than or equal to K(n) is 

called a heavy element and an element whose rank is less then K(n) is called light element. 

We assume that K(n) is chosen in such a way that it is easy to decide whether a given 

element is light or heavy and that it is easy to compute ranks of heavy elements. Denote the 

set of heavy (resp., light) elements of V by Vh (resp., V1) and let V'= Vhu {u} where u is 

an arbitrary element of V 1 • 

The General ,Construction ,S.cheme (GCS) is a modification of the basic construction 

scheme. Roughly speaking, we use BCS for the set of heavy elements and then add to the 

resulting tree a subtree of light elements. (A similar approach was also taken in 

[AKLMT89] for the algorithm to construct an almost optimal binary search tree.) 

GENERAL CONSTRUCTION SCHEME (GCS) 

1. Divide set V into sets Vh and v,. 
2. Divide elements of V h into sets V 1 ,V 2•···· V K(n) according to ranks 

3. For every i compute ORDER(Vi). 
4. Choose an arbitrary light element u and add it at the beginning of the sequence VKn (let 

VK(n) be the resulting sequence) 

5. Perform steps 3-5 of the BCS for set V'= V h U { u}; 

6. Replace u by an almost full binary tree1 composed of all light elements. 

Similarly to BCS, GCS can be treated as an abstract algorithm. Furthermore, every 

interpretation of BCS leads to an interpretation of GCS. Note that the error of a tree 

constructed by an interpretation of GCS is composed of two factors: the error resulting 

from an interpretation of BCS and the error from the light elements. We call the first 

1 An almost full binary tree is a tree whose leaves occurs on at most two different levels 
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component construction error and the second component truncation error. The total error 

can be approximated with the help of the following lemma: 

Lemma 14: Let T' be an approximation of an optimal tree for V' and let T be the tree 

obtained from T' by replacing u by any binary tree of all light elements. Then 
n2 

.1 T=.1 T' I 2K(n) . 

Proof: Since every leaf has depth at most n in T we have: 
n2 n2 

c(n :S c(T') + n LW(V) S c(T') + 2K(n) :S c(T*v•)+ .11"+ 2K(n) 
vev, 

n2 
so c(T) S c(T*v) +.1 T + 

2
K(n) . ■ 

5. Parallel interpretations of GCS 

As we have mentioned before, GCS presented in the previous section can be divided 

into two parts: computing a tree for heavy elements and modification of the resulting tree 

with a subtree of light elements. The second part can be implemented in O(logn) time with 

n/logn EREW PRAM processors independently of the choice of K(n). The first part 

involves O(K(n)) iterations of step 5 of BCS so in order to obtain an efficient parallel 

algorithm it is natural to chose K(n)=kf logn l where k is some integer constant. With this 

definition of K(n), truncation error is bounded by nL
2

• So we concentrate on an 

interpretation of the first part (i.e. on an interpretation of the BCS for heavy elements). 

. loglogn 
5.1. O(logn) time n fogii EREW processors parallel interpretation of 

GCS with construction error bounded by 0.172 

By Theorem 5, any interpretation of BCS gives a construction error bounded by I. 

By Corollary 9 any interpretation of BCS in which starting from level t we apply the 

Huffman tree algorithm leads to a construction error bounded by 
2

~_ 1 + 0.1716. So, in 
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particular, we can start with arbitrarily ordered sequences and for sequences on levels 

smaller than t interpret MERGE as concatenation of two sequences. Then sort all sequences 

and finish the construction interpreting MERGE as an exact merging procedure. We can 

compute ranks for heavy elements in O(loglogn) time with O(n) EREW processors by a 

binary search or ( simulating l~;fc;gn processors by one processor ) in O(logn) time with 

n l~~l;!n EREW processors. A concatenation step and a pairing step can be implemented in 

0(1) time with n processors or in O(logn) time with l~n EREW processors (by applying 

Brent's scheduling principle; since we can mantain information about the position of every 

element within a list, the processors allocation is not a problem). Since there are at most 21 

elements on levels t or higher the "exact" part of the algorithm can be implemented in 

O(tlogt) time using Cole's parallel merge sort and Valiant's parallel merging procedure. 

Therefore the entire algorithm can be implemented in O(logn+tlogt) time with n 
10

1~~gn 

EREW processors. In particular if we assume t=k=l 1 we obtain: 

Corollary 15: A tree whose cost differs at most 0.172 by from the cost of an optimal 

tree can be constructed in O(logn) time with n
1~~1:° EREW processors. 

5.2 A O(klogn log*n) time n processor parallel interpretations of GCS with 

zero construction error 

We represent sequences in the form of lists such that for every element its position 

within the list is known. To achieve zero construction error we can implement ORDER 

with Cole's parallel sorting algorithm [C86] which runs in O(logn) time using n CREW 

processors and MERGE with Valiant's merging algorithm ([V75],[BH86]) which merges 

two sorted arrays of sizes n 1 ,n2 (n 1 ~n2) in O(loglogn 1) time with n 1 +n2 CREW 

processors. This permits a straightforward implementation of step 5 of BCS in O(loglogn) 

time with n processors. By the definition of heavy elements, we have O(klogn) iterations. 

So this implementation runs in O(klogn loglogn) time using n processors. 

- 18 -



To reduce the running time to O(logn log*n) we introduce a cascading sampling 

technique. The main idea is to precede the sequence of mergings performed by the 

algorithm by a preprocessing step. The preprocessing step consists of log*n sampling 

steps. Informally, in the ith sampling step every (2i)th element from every level is divided 

by half and sent to the level below. Then, among the elements which arrived at given level 

every second element is divided by half and sent down another level, and so on until a level 

which is r1og(i)n l levelsl below is reached or no elements are left. Formally, let yki be the 

sorted sequence of elements on level i after the kth sampling step. Initially yki=VP=Vi· For 

every sequence yki define a family of sorted sequences Ski,1,Ski,2, ... in the following 

way: 

Ski,t={xl 3ve yk-li s.t. w(x)=;w(v) and dist(Vk-li,v)=2i+t-l m for some integer m}; 

Then yk. is defined as yk-1.u Us k. 
1 1 ~t 

1s;r{;~(f>nl 

Elements produced in the sampling process are called sampling elements. All other 

elements are called real. To simplify the description we assume that we add sampling 

elements at the beginning and at the end of every list. For each sampling element, x, there 

is a unique element in the next higher level whose weight has been divided by half to obt.ain 

x. This element is called the source element for element x. A source element may also be a 

sampling element. For any sampling element, x, define source(x) to be equal to the source 

element of x. Sampling elements which have been generated in the same sampling step 

form, using pointer source, sequences. The element generated in a different sampling step 

which is pointed by the pointer source of the last element of such a sequence is said to 

originate the given sequence. Let u 1, u2, be a pair of sampling elements from the same level 

such that there are no other sampling elements between them. The subsequence of elements 

which lies between u1 and u2 is called a basic sequence. The sequence of elements from 

the higher level which lies between the source of u1 and the source of u2 is called a gap. 

1 log(i)n denotes loglog ... .Iogn (talcing i times log) 

- 19 -



We say that the gap defined by u 1 and u2 corresponds to the basic sequence defined by u 1 

and u2. Note that to merge two sequences on successive levels it suffices to merge each 

basic sequence with its corresponding gap. The number of elements in a gap is called the 

size of the gap. Two important properties of the sampling process are given by the 

following lemmas. 

Lemma 16. After log*n sampling steps, each gap size is bounded by 2Iog*n+2. 

Proof: In the proof of the lemma we use the following simple facts: 

Fact 1: a) LxJ:s;l~J m+m ; b) r x l s L~J m+m + 1. 

Consider an interval [a,b] where a,be (--:L.-1,~]. Let us restrict our attention only to 
2J+ 2J 

those elements whose samples may belong to this interval. So we consider only elements v 

from levels i=l,2, ... ,j such that ve Vj-t and w(v)e [2la,2lb] We call those elements interval 

elements. Let nki be the number of interval elements on level i after k sampling steps (for 

simplicity we assume that nki is also defined for i less than 1 and then it is equal to 0). The 

proof of the lemma is based on the following fact: 

Fact 2: nki S 2knki+l + 3r logCk)n l+2k+l. 

Proof of Fact 2: We prove Fact 2 by induction on k. For k=l we have: 

n1i S nOi+ 1½nOi-1 l+ .... +f I l fOi.flogn 11 and 
21ogn 

1 1 
n1i+l 2! n°i+t+ L-r1°iJ+ .... +½fiogn f 0i.flogn 1+1J 

so n1i-21ni+l S (nOi-21,½noib + o,½noi-1 l-2L¼nOi-tJ) + ... + r 
I 

l fOi~logn 71 S 
2 logn 

S(2+1flognl+r 
I 

l foi.flognll (byFactl) 
2 logn 

S 3r logn 7+ 1. 

Assume now that nk-li S 2k-lnk-li+l + 3f log(k.-l)n l+2k. But 

nki s nk-li+ I ~k-li-1 l+ .... +r 2kt.f 1o~Ck)n 1-t"k-li.flog(k)n 11 and 

1 1 
nki+ 1 2! nk-1 i+ 1 + L2ic°k-1 d+ .... +½k+f log(k.)n l-1 nk-1 i.flogCk)n 7+ 1 J. 
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But by the inductive hypothesis we have: 
k-1 nk-li-flogCk)n 7-f log(k-l)n l-2k 

n i-flogkn l+l ~ 2k-l 

So 2k-IL 2k+r1o~)n 1-i"k-li-flogCk)n l+ij 

L 
____ nk-1..r1 (k) 7-3f logCk-l)n l-2k 

~ 2k-l I og n J 
2k+r1og(k)nl-1 2k-l 

> L nk-li-flog{k)n 7 -3r logCk-l)n l-2kJ- 2k-l (by Fact l(a)) 
- 2k+r logCk)n l-I 

r 1 k-1 7 r3r logCk-l)n l+2kl k-1 
;;:: I k+r (k) l- n i-f log(k)n l 1 - I 1,.r (k) 1- - 2 - 2. 2 log · n 1 2"+ log n 1 

Therefore 
r3f logCk-1)n l+2k7 

nl'-2kni+Ik ~ 2k+ 3f logCk)n l-2 + 1-------- + 2k-l + 2 ~ 24 3f logCk)n l +1+ 2k-I 
2k+r logCk)n l-1 

Now we can continue the proof of the Lemma 16. Let a,b be the real numbers which bound 

weights of elements in a gap, say on level j. Consider the last sampling step. In this step 
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level j receives only elements from level j-1. After the last sampling step in any gap on level 

j there are at most 2Iog*n elements from level j. By Fact 2, level j-1 has at most 221og*n+ 

3f log(log*n)n l+2Iog*n+1<22Iog*n+l interval elements. Every 2Iog*n of them is sent to level 

j. So in a gap on level j there are at most 2Iog*n+l elements originated at level j-1 and 

2Iog*n elements from level j. So the number of elements in the gap is bounded by 2Iog*n+2. 

■ 

Lemma 17: After log*n sampling steps the total number of elements is bounded by 3n. 

Proof: Let ai be the number of elements after ith sampling step. Obviously: 

ao = n and 
ai-1 1 

ai s; ai-1 7= ai-1(1 1
2i) 

But it is easy to check (by induction) that ai s; 3n(l - ~i). ■ 

Now we show how to implement a sampling process in O(log*n logn) time with n 

processors. By Lemma 16, the gap size is bounded by 210g*n+2. Since to merge two 

sequences it suffices to merge every basic sequence with the corresponding gap, we can 

implement one iteration of step 5 of BCS in O(log*n) time using Valiant's merging 

algorithm. This allows the entire algorithm to be implemented in O(logn log*n) time on a 

CREW PRAM using n processors. The details of such an implementation are given below. 

IMPLEMENTATION OF SAMPLING PROCESS: Since, by Lemma 17, in any sampling 

step we have at most 3n elements we have one processor per constant number of elements. 

However, we must perform some computation which assigns elements to processors. 

Initially we have one processor per real element. Inductively assume that that processors 

1, ... ,j have been assigned r elements and processors j+ 1, ... ,n have assigned r-1 elements. 

In the kth sampling step the processor associated with a given element checks whether this 

element originates a sequence of sampling elements and if so, how long this sequence is. 
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(Note that in the kth sampling step the /th element in a sequence originates a chain of 

length ~{l is divided by 2k+i-1 }). Since the length of a sampling sequence is bounded by 
I 

logn the generation of such a sequence can be done in O(logn) time using one processor per 

sequence. 

To assign processors to new sampling elements we number those elements in such a 

way that if v and u are two sampling elements and v is originated at level higher than u, or 

v and u are originated at the same level but the element which originated v proceeds the 

element which originated u, then v receives smaller number than u. If u and v are originated 

by the same element and u is on higher level than v then u receives smaller number than v. 

Note that every "old" element knows the number of new sampling elements it has 

originated. So using prefix sum computation we can compute for every "old" element 

number of new sampling elements preceding it. Since for every new sampling element its 

position in the sequence of new sampling elements originated by the same element, say x, 

is known in order to obtain the number of given new sampling element, it suffices to add 

this position number to the number of new sampling elements preceding x. After 

numbering all new sampling elements element numbered m is assigned to the processor 

numbered (j+m)modn. This solves the problem of processor allocation. 

It remains to insert new sampling elements into proper position of the sequences 

produced in the previous sampling step. This can be done by a global sorting algorithm. 

Note that it is important that the sorting procedure which we are using is stable. If it is not, 

we can number all elements (in a way similar to the way we have numbered all new 

sampling elements) and sort lexicographically pairs (number of the element, its value). 

Since the number of sampling steps is O(log*n), the whole sampling process can be 

implemented in O(log*n logn) time with n processors. 

To implement efficiently the rest of the algorithm we represent the sequences that 

result from the sampling phase in the following way: 
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REPRESENTATION OF SEQUENCES: Each sequence is represented by a list formed by 

pointers succ. Also for every element of a sequence the following information is given: 

nr sa 

nr r 

left_sa 

left r 

left_so 

nr so 

- number of sampling elements in the sequence which precede given element, 

- number of real elements in the sequence which precede given element, 

- pointer to the sampling element closest to the left, 

- pointer to the real element closest to the left, 

- pointer to the element closest to the left which is a source element, 

- number of sampling elements in the sequence which precede given element. 

and for every sampling element we have: 

source - pointer to the source of the given element. 

To simplify the description we will also assume the following pointers (these pointers can 

be computed in parallel using the information provided by the pointers defined above): 

right _r -points to the real element closest to the right, 

pred - is the reverse of succ pointer, 

source-I - is the reverse of pointer source, 

dist - is the sum nr so+nr r. - -

INITIALIZATION: Pointers source are build in the sampling process. All the other 

information can be computed by applying the parallel prefix technique. 

PAIR ELEMENTS: We should pair every real element x with even value nr J with the 

element pointed by left_ r(x). However between such a pair of real elements there can occur 

sampling elements. We first rearrange the sequence (not changing the relative order of real 

or sampling elements) in such a way that real elements which are going to be paired occur 

as consecutive elements. Furthermore positions of sampling elements are chosen in such a 

way that the list obtained by pairing real elements and doubling of weights of sampling 

elements is sorted. The details are as follows: 

1. For every sampling element x compute yl(x):=left_r(x); y2(x):=right_r(x); 

Every sampling element x for which yl(x) and y2(x) are non none checks parity of 

nr _r(left_r(x)) If it is odd then x appears between two real elements which should be 

paired. Such a sampling element is called skipped. For every skipped element the 

following two tests are performed: 

AFTER(x) # 2w(x) ~ w(yl(x))+ w(y2(x)) 
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INSERT(x) # AFfER and ( w(yl(x))+ w(y2(x)) < 2w(succ(x)) 

or succ(x) =right_r(x)) 

The first test says whether the two real elements should be inserted somewhere after x 

and the second test says whether the two real elements should be inserted immediately 

after x. However it may happened that the pair of real elements should be inserted before 

all sampling elements which occur between them. To detect this case every real element 

y performs the following test: 

FIRST(y) # nr _r(y) is odd and w(y )+ w(rig ht_ r(y)) < 2w(succ(y)) 

2. For every skipped element x update left _r and nr _r : 
if AFTER(x) then left r(x):=left r(left r(x)); nr r(x):=nr r(x)-1 - - - - -
otherwise left_ r(x):=y2(x); nr _r(x):=nr _r(x)+ 1 

3. Rearrange the elements on the list: 

For every skipped element x for which INSERT(x) is true do: 

succ(pred(y 1 (x))) :=succ(y 1 (x ) ); succ(pred(y2(x))) :=succ(y2(x)); 

succ(yl(x)):=y2; succ(y2(x)):=succ(x); succ(x):=yl(x); 

For every real element y for which FIRST(y) is true do: 

succ(right _r(y ):=succ(y );succ(pred(rig ht(y)) ):=succ(rig ht(y) ); succ(y ):=rig ht _r(y) 

4. For every real element which changed its place compute left _sa, nr _sa: 

Let x be a skipped element for which INSERT was true then 

left _sa(succ(x)), left _sa(succ(succ(x))):=x; 

nr _sa(succ(x)), nr _sa(succ(succ(x))) :=nr _sa(x); 

(we don't need pointer left _so for the list which is currently at the lowest level) 

For every real element y do for which FIRST(y) is true do 

left_sa(succ(y)):=left_sa(y); nr _sa(succ(y)):=nr _sa(y) 

5. Form a new sorted list by pairing real elements and doubling weights of sampling 

elements. Elements obtained from pairing real elements are considered as real. All the 

functions (nr _r, nr _sa, left_r, left_sa, succ, precl) can be easily computed from the 

corresponding functions of the old list 

MERGEk(C,V) for k=3,6 is implemented as one or two insertion steps (we use concurrent 

read facility to find the proper place for the inserted element). 

MERGE5(C,V) is implemented as follows: 

1. For every element of V decide (basing on left _so) to which gap it belongs. 
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2. For every real element of C decide (basing on left_sa) to which basic subsequence it 

belongs. 

3. Merge every basic subsequence with corresponding gap using Valiant's merging 

algorithm. (Existing information allows us to treat gaps and basic sequences as arrays). 

Let x be an element from a merged list and let d(x) be the number of elements in a 

merged list which precede x which are from sequence other than the sequence to which x 

belonged before merging. This value can be computed as the difference between the 

current position in the (merged) subsequence and the previous position in the gap or 

basic subsequence. 

4. Compute functions nr _r, nr _sa, left _sa Since we know position of every element in V 

we may assume that we have an immediate access to every element of V. Denote by V(i) 

ith element of sequence V. 

For every xe V: 

nr _sa(x), left _sa -remains unchanged, 

nr _ r(x):=d(x)+nr _ r(x)+nr _r(source-1 (left _so(x)); 

For every xe C: 

y:= V(dist(source(left _sa(x)) )+d(x) ); 

- - - find the closest element from V preceding x in the merged sequence 

nr _sa(x) :=nr _sa(y); left_sa(x):=left_sa(y);nr _ r(x):=nr _r(x)+nr _r(y)); 

5. For every x: dist(x):=nr _sa(x)+nr _r(x) 

6. Computing of left_r: Let R be an auxiliary array. For every real element x do 

R(nr _r(x)):=x (assume R(0)=null). If xis a real element then left_r(x):=R(nr _r(x)-1) 

otherwise left _r(x):=R(nr _r(x)) 

The remaining functions can be easily computed in 0(1) steps. 

This finishes the description of the algorithm. We can summarize the main result of 

this section in the following theorem: 

Theorem 18: A tree whose cost differs at most :k by from the cost of an optimal tree 

can be constructed in O(logn log*n) time using n CREW processors. 

1 
5.3.0(k2Iogn) time n2 processor parallel interpretation of GCS with -

nk 

construction error 
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In this interpretation we use an approximate merging algorithm which combines two 

sequences in a constant time. The idea of the merging algorithm is taken from Example 11. 

First we describe an algorithm which works in O(klogn) time with n6k processors and then 

we show a hierarchical data structure which allows an O(k2logn) time n2flogn processors 

implementation. 

The idea is to partition main subsequences (i.e. sequences with tails or heads 

excluded) into n6k subsequences s.t. element x belongs to the subsequencej iff w(x)~e 
21 

[j-6lk .!.. , l6. k .!..) where i is the level of the subsequence (we treat heads and tails 
n 21 n 21 

separately). If an element, say x, belongs to the jth sublist we say that its subrank is equal 

to j (denote subrank(x)=j). In order to merge two sequences of the same level we 

concatenate corresponding subsequences (cf. Example 11). To allow fast implementations 

of MERGE and PAIR_ELEMENTS we represent the sequences in the following way: 

REPRESENTATION OF SEQUENCES: 

For every element, x, we have: 

dist(X,x) 

succ(X,x) 

- position of element x in the sequence X, 

- successor of element x in the sequence X, 

If Xj is a subsequence of a basic sequence X then 

SUCC(Xj) 

FIRSTCXj) 

LAST(Xj) 

- the closest nonempty subsequence following Xj . 

- the first element of the subsequence Xj_ 

- the last element of the subsequence Xj_ 

(If a subsequence j is empty then FIRST(),))=LAST(Xj)=O. 

INITIALIZATION: It is not difficult to construct the above data structure in O(klogn)time 

with n6k processors. 

PAIR_ELEMENTS: First we show how to compute subrank of the parent, say u, of two 

elements u1, u2 in time lrank(u2)-rank(u1)1. We assume that for every element u we know 
1 1 

the boundary values 2rank(u) and 2rank(u)-l . If u 1, u2 have the same rank then 
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We can compute in 0(1) time the boundary values of the two possible subranks of element 

u and in this way determine one of two possible values. So assume that rank(u1)-rank(u2) 

= fir > 0. In this case we normalize the subrank of the smaller element by dividing it by 

2llr. Note that u has rank equal to rank(ui) or rank(ui)-1. In the first case we have 

L
subrank(u1} b k( _ ')J b ank( ) Lsubrank<u1} b ank( ))J 1 +su ran uv S: su r u S: +su r u2 + 

2llr 2llr 

and in the second case we have: 

L
subrank<u1} subrank(u2). 1 b ank( ) Lsubrank{u1} subrank(u2):J 1 A- + 2 J S: su r u S: + 2 + 

2=+1 2llr+l 

so again we have to determine one of two possible values. To be able to do this we shall 

compute the boundary values of the two subranks possible for u. We can compute them 

from the boundary values of subranks of elements u1, u2 using a method similar to the one 

described above. 

Procedure PAIR_ELEMENTS2 has only two elements to pair. We simply create a common 

parent for both of them and compute the subrank of the new element. Procedure 

PAIR_ELEMENTS5 can be implemented as follows: 

1. Create a common father u for every element u1 whose value dist(V,u 1) is odd and the 

element u1=succ(U,u1), 

2. For each element v, dist(C,v):= f dist(U,left(v))/27. 

3. For every element v from the resulting list C compute its subrank (i.e. divide C into 

sublists). 

4.To compute FIRST and LAST decide for every element of list C if it is the first and/or the 

last element of this subrank by comparing the subrank of the given element with 

subranks of its neighbors. 

5. To compute PRED and SUCC: 

If FIRST(Ci)~ 

then PRED(ci):=IN(parent(prec(U,left(FIRST(Ci)))) 

else PRED(d):=IN(parent(LAST(PRED(Uj)))) 

where IN(x) is a function which returns the pointer to the subsequence containing 

elementx 
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Function SUCC can be computed similarly. 

So the time to implement the above procedure with n6k processors is O(Ari+ 1) where 

Ari is equal to the difference of ranks of the first two elements on list U2i• But 

I 

L,Ari=()(K(n)) so the total time spent on pairing step is O(K(n)). 
j=l 

MERGEk(C,V): For k=3,6 this procedure is implemented as one or two insertion steps. If 

the inserted element has rank greater or smaller than the level of the sequence then it forms 

tail or head of the sequence and is treated separately. For k=5 procedure MERGEk(C,V) can 

be implemented as follows. 

1. Obtain the resulting list U by putting, for every j, elements of subrank j from list C before 

elements of subrank j from list V. 

2. For each element v of subrank j in list U compute dist(Ui,v) as follows: 

if v is an element from list C then: 

dist(U,v) = dist(C,v) + dist(V, LAST(PREC(Vj)) 

else if FIRST(d)~ 

then dist(U,v) = dist(V,v) + dist(C,LAST(O)) 

else dist(U,v)= dist(V,v)+dist(C,LAST(PREC(O))). 

3. Compute functions FIRST, LAST, PRED, SUCC for list U: 

if FIRST(d);tO then FIRST(Uj) :=FIRST(d) 

else FIRST(Uj):=FIRST(V,j); 

PRED((Uj):=max(PRED(d),PRED((Vj) ); 

ifLAST(d)=O then LAST(Uj):=LAST(d) 

else LAST(Uj):=LAST(Vj); 

SUCC((Uj):=min(SUCC((d),SUCC((Vj) ). 

It is easy to see that procedure MERGE can be implemented in 0(1) time with n6k 

processors. This leads to the following lemma: 

Lemma 19: A tree whose cost differs at most by )_
3 

from the cost of an optimal tree can 

be constructed in O(klogn) time using n6k CREW processors. 
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Proof: The processor and time bounds follow directly from the description of the 

algorithm. The truncation error is n~-2. We will show that the construction error is bounded 

by 
8
k. Let di=.l\2i+.l\2i-l· We prove that di~ ~k which, by Theorem 5, implies the result. 

n 21n 
. . . 2 25(1-i) 2 25(I-i)+2 

More precisely we show, by mductton, that .l\2i ~ --:--k 5kl and .l\2i-l ~ --:--k Skl . 
21n 2 ogn 21n 2 ogn 

For every j the sequence uAj constructed by the algorithm is an approximation of the 

corresponding sequence uHj constructed by the Huffman tree algorithm. It suffices to 

h h A · l 25(1-i) · · f th uH d uA . l s ow t at U 2i 1s a -:--k 5k1 - approximatton o e sequence 2i an 2i- l 1s a --:--k 
21n 2 ogn 21n 

25
(I-i)+

2 · · h uH F uH h. f . b . F h Ski - approx1mat1on oft e sequence 2i-1· or 21 t 1s act 1s o v1ous. or ot er 2 og-o 

values of i note that, by Lemma 13, each application of MERGE at most doubles the 

approximation error. Also each application of P AIR_ELEMENTS at most doubles the 

approximation error. Since in GCS between creation of a sequence U2i and U2i-l we have 

two calls of MERGE and PAIR_ELEMENTS and between creation of a sequence U2i-l 

and U2i_2 we have three calls of MERGE and PAIR_ELEMENTS the result follows. ■ 

Note that in the above algorithm the high number of processors follows from the fact 

that we use one processor for each subsequence. But in any sequence there are at most n 

nonempty subsequences. To avoid this inefficient utilization of both space and processors, 

we divide a sequence into subsequences in the following recursive way: A sequence is 

divided into n subsequences, then every nonempty subsequence is divided into n 

subsubsequences and so on (6k times). The partition of sequences is reflected by a 

hierarchical data structure. As we will see the number of subsequences at every level of the 

hierarchy is bounded by n2. To merge two sequences we concatenate corresponding 

subsequences. (Note that heads and tails of sequences have to be treated separately). More 

formally: 

Let X be a main subsequence of level i and let t=6k. Then 
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1. Xis divided into n subsequences X1, ... ,X0 (some of them may be empty) according to 
. 1 ·-1 1 . 1 

the weights such that XE XJ iff w(x) 2f [~ 
2
i , ½ 

2
i) · 

2. Each nonempty sequence xi1i2 .... ik, where, k<t is divided into n subsequences 
· · · 1 · · · · · · · 1 i 1 -1 i2- l Xi1112· .. ·1k ... ,Xj1112 .... lkil such that XE Xj1112 .... lkJ iff w(x) - ~1 + -+ -2 + ... + 

21 n n 
i!.) [.H.... 1 _l_.!..) 
nk E nk+l 21' nk+l 2i . 

We say that xa is a kth order subsequence iff a is a sequence of k indices. If xE xa and 

a is a sequence of k indices such that a=~j then we say that subrankk(x)=j. We maintain 

the subsequences of each order in lexicographical order of their upper index. The 

sequences are represented by the following data structure: 

REPRESENTATION OF SEQUENCES: 

For each element, v , from the sequence X we have 

dist(X,v) - position of v in the sequence X 

Let X be the main subsequence of the sequence X. 

For every subsequence xa we have: 

FIRST(X<l) - a pointer to the first element of the subsequence. 

LAST(X<l) - a pointer to the last element of the subsequence. 

(If subsequence is empty then FIRST(X<l)=LAST(X<l)=O). 

For a each subsequence xa of order t we have: 

SUCC(X<l) - a pointer to the closest nonempty subsequence of order t following xa. 
PRED(X<l) - a pointer to the closest nonempty subsequence of order t preceding xa. 
The subsequences which differ only by last index are kept in an array (called block) 

ordered according to the last index. 

For each subsequence of order smaller than t we have: 

OOWN(X<l) - a pointer to the block of subsequences into which xa is divided 

For each subsequence X a of order greater than zero (where zero is the order of whole 

sequence) we have: 
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UP(X<l) - a pointer to the subsequence of one order lower than order of xa which 

contains given subsequence. 

For every element we know its t subranks. 

INITIALIZATION: Assign n processors to every element. We sort the input sequence 

using Cole's parallel merge sort. For every element compute all its subranks. This can be 

done in O(klogn) time using n processors by k applications of binary search (performed for 

every element in parallel). Use the first subrank to divide sequences into first order 

subsequences. To compute functions FIRST and LAST it suffices to compare the subrank 

of every element with the subranks of its neighbors. Compute (using prefix sum 

computation) the number of nonempty subsequences preceding a given subsequence. 

Divide every nonempty first order subsequence into second order subsequences according 

to the value subrank2 and construct pointer DOWN. So we obtain, for every nonempty 

subsequence, n second order subsequences (some of them possibly empty). Assign one 

processor for every n elements of the second order subsequence (say one of n processors 

associated with the first element of the subsequence of first order). For every second level 

sequence construct pointer UP (we can do it in 0(1) time time with n2 processors). Since 

the number of first order subsequences preceding a given subsequence is known and 

every first order subsequence is divided into exactly n second order subsequences, we can 

treat second order subsequences as consecutive elements of some array. (We can compute 

the position of every second level subsequence in such an array in 0(1) time) So we can 

use a prefix sum computation to compute, for every second order subsequence, the number 

of nonempty subsequences preceding it. Similarly we compute subsequences of next 

orders, corresponding functions FIRST, LAST, UP, DOWN, and the number of 

nonempty subsequences of given order preceding given subsequence. From the last 

information we can compute PRED and SUCC for subsequences of order tin the following 

way: Use an array, say A, and assign to A(i) ith nonempty subsequence. For a 

subsequence X with indexj in A do PRED(X):=A(j-1); SUCC(X):=A(j+l). 

The initialization step can be implemented in O(klogn) time with n2 CREW 

processors. 

PAIR_ELEMENTS: To show the implementation of this procedure we first show how to 

compute in O(t lrank(u1)-rank(ui)I )for any two neighboring elements u1, u2 the subranks of 
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their parent, say u. But it is easy to compute in O(t) time the value subrank(u) from the 

sequence subrank1 (u), subrank2(u), .... ,subrankt(u) and the opposite. So we can use the 

method presented for n6k algorithm. 

PAIR_ELEMENTS2(U): In this case we have only two elements to pair. We simply create 

a common parent for both of them and compute all subranks of the new element 

PAIR_ELEMENTS5(U): 

1. Create a common father u for every element u1 whose value dist(U,u1) is odd and the 

element u1=succ(U,u1), Let C be the resulting list. 

2. For each element v in list C: dist(C,v):= r dist(U,left(v))/2 l. 
3. Let u1 and u2 be a pair of elements which obtain a common father, say u. To construct 

the data structure of the new sequence C modify the data structure of sequence U by 

removing elements u 1 and u2 and inserting element u. To do this first compute all 

subranks of every newly created element u. 

4. Find, using pointers UP, the subsequence of the highest order, says, to which both of 

u 1, u2 belong. If u belongs to a subsequence of order k+ 1 which was previously empty 

then build subsequences on orders s+2, ... ,t (together with pointers UP, DOWN). Since 

the sequence is a one-element sequence we can do it, for every new element, in O(s) 

time with n processors (using information about subranks). 

6. Compute function FIRST and LAST for every level and every subsequence using a 

method similar as in the initialization step. 

7. For every subsequence check whether it is an empty subsequence. If yes and if the 

higher level subsequence containing the given subsequence is also empty then remove 

this subsequence from the data structure. 

8. Compute PRED and SUCC. Let INt(u) be the reference to the subsequence order t 

containing u. For any order t subsequence CW of the sequence C do 

If FIRST(Cai);tO then PRED(C00):=IN t(parent(prec(U ,left(FIRST(C00) )) 

else if the subsequence Uai was represented in the data structure for then 

then PRED(Cai):= INt(parent(LAST(PRED(Uai))) 

else there is exactly one element, x, of in the subsequence ca. Let xe caj_ 
if i>j then PRED(Cai)=INt(x) else PRED(CW)=INt(pred(C,x)). 

Function SUCC can be computed similarly. 
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MERGEk(C,Y) (for k=3,6): This procedure is implemented as one or two insertion steps. 

If the inserted element has rank equal to the level of sequence to which it is inserted then it 

is added to the hierarchical data structure. Since the ranks of the element are known it can 

be done in O(k) time. If the rank of the inserted element is smaller or greater than the level 

of the sequence then the inserted element is added to the head or tail of the sequence. (Note 

that we never have more than two elements in a head nor more than one element in a tail). 

MERGE5(C,Y): Note that at this step neither of merged sequences have nonempty tail or 

head. Let Ube the resulting sequence. We merge the sequences C and Yin a top-down 

fashion: 

1. Using n processors combine (for each j) yj with Ci. If one the subsequences is empty 

then Uj is represented by the nonempty one. If both yj and Ci are nonempty then we 

call Uj an active subsequence of level order 1. Note that we may have at most n active 

subsequences. 

2. current_order:=1; 

3. While current order<t do 

3.1. For each active subsequence of current order combine recursively (using n 

processors) subsequences of next order (use pointer DOWN to find the proper block 

of subsequences). Let ya. and ca. be the merged subsequences. If current _order+ 1 = 

t then put elements of ya. before ca. . If current_order+l <t and if one of the 

subsequences is empty then ua. is equal to the nonempty sequence otherwise ua. is 

an active subsequence of order current order+ 1. 

3.2. current_ order.=current _ order+ 1; 

4. Compute FIRST, LAST, PRED, SUCC for the lowest level as in step 4 of 

P AIR_ELEMENTS5. 

Theorem 20: A tree whose cost differs at most by ~ from the cost of an optimal tree can 
n 

be constructed in O(k2logn) time using n2 CREW processors. 

Proof: The algorithm is a modification of the n6k processor algorithm in which we use n2 

processors and the time of each call of MERGE or PAIR_ELEMENT is multiplied by the 

depth of the hierarchical data structure. So the time complexity is O(k2logn). The bound for 

the construction error follows from Lemma 19. ■ 
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6. Sequential interpretations of the GCS 

A natural sequential interpretation of the general construction scheme is to obtain an £

sorted sequence using an integer sorting algorithm and implement MERGE as standard 

merging procedure (recall Example 11). Since the cost of merging using the standard 

merging procedure is proportional to the sum of lengths of the merged sequences, the total 

time which is spent on merging is O(n). To obtain a linear time implementation of the 

general construction scheme we must be able to compute ranks in linear time. Assume that 

the ranks are bounded by cf(n) and that we can sort in linear time integers in range 

[0,2cf(n)]. Then we can compute ranks in O(nlolf~n)) time by the following algorithm: 

1. Sort the sequence according tor w(vi)2Cf(n)l , 

2. Merge the resulting sequence with the following sequence of elements 1, 

1r~ 2r~ nff~ 
2 n , 2 n , •.. , 2 n called boundary elements. Let X1 be the resulting 

sequence. 

3. i:=1; 

4. while i ~ log(ff~)7 c): 

4.1. Let X'i+l be the sequence obtained from Xi by removing those boundary elements 

which have immediately before it and immediately after them boundary elements; 

4.2. Each boundary element belonging to X'i+l which has immediately before it a real 

element defines a new boundary element equal to the geometric average of its value and 

the value of the closest boundary element which occurs in X\+i before the given 

boundary element. Denote by Bi+ 1 the sorted sequence of such defined new boundary 

elements; 

4.3. Obtain Xi+l by merging X\+1 and Bi+l; 

4.4. i:=i+ 1; 

5. Now every non-boundary element is between two boundary elements which are 

consecutive powers of two. Elements which are between 2i and zi+l have rank cf(n) - i. 

If we assume f(n)=logn and c=11·2k we can use integer sorting algorithm of 

Kirkpatrick and Reisch [KR84] which sorts integers in range [Q,nC] in O(n(l+logc)) time. 

As the result we obtain j_ -sorted sequence. If we apply GCS with K(n)=2klogn then we 
nc 
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can compute ranks of heavy elements in O(kn) time with the help of the algorithm described 

above. This interpretation leads to the following theorem: 

Theorem 21: A tree T such that fl T ~ 1 
k can be constructed in O(kn) time. 

n2 

Proof: It is obvious that the algorithm presented above runs in O(kn) time. The truncation 

error is at most+. It suffices to show that the construction error in this algorithm is at 
n2 -2 

most 
8 
k. Using the same technique as in the proof of Lemma 19 we can show that fl2i ~ 

n2 

2 2s(I-i) < 2 2s(l-i)+2 . . . 
---:---

2
k k and fl2i-l - . 

2
k----wh1ch 1mphes the result. ■ 

21n 210-2 logn 21n 210•2klogn 

If we assume as a computation model a RAM with unbounded register capacity then 

we can sort n integers in range [0,2c0 ) in O(n(l+logc)) time ([KR84]). If we assume 

c=7·2k, f(n)=n, and K(n)=2kn then we can use the algorithm described at the beginning of 

this section to obtain *-sorted sequence of heavy elements and to compute ranks of 

heavy elements in O(kn) time. This construction leads to the following theorem: 

Theorem 22: A tree T such that fl T s; ~ can be constructed in O(kn) time on a RAM is 
2n2 

unbounded register capacity. 

Proof: Using exactly same technique as in the proof of Theorem 21. ■ 

7. Conclusions 

We can summarize the results of this paper in the following corollary: 

Corollary 23: One can construct a binary tree T, such that fl Tis bounded by the sum of 

construction error and truncation error, in t(n) time using p(n) CREW processors where p(n), 

t(n), truncation error, and construction error are given in the following table: 
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t(n) p(n) construction truncation 
error error 

O(klogn) 
loglogn 

0.172 
1 

n logn nk-2 

O(klog*n logn) 0 
1 

n 
nk-2 

O(k2logn) n2/logn 
8 1 

nk nk-2 

O(kn) 1 
8 1 
2k -r 

n n2 -2 

O(kn)l 1 
8 1 

----:r k 
zn2 zn2 -2logn 

where k is an integer constant chosen by the algorithm. 

We can observe that neither of the proposed parallel algorithms achieves the optimal 

speedup. The sequential algorithms presented in the last section have linear running time and 

produce a tree with an error smaller than the error of any parallel algorithm presented in the 

paper (even when restricted to a realistic computation model). However we have an 

O(klognlog*n) time and n processor algorithm which realizes an almost optimal speedup over 

the Huffman algorithm and produces a tree with a very small error. In this case we have only 

one type of error, namely truncation error. So if the input sequence does not contain elements 

of weight less than :k then the algorithm produces an optimal tree. 

It would be interesting to see whether there exists an efficient parallel algorithm for 

construction of a binary tree with AT :5 ;Jc such that processor time product is linear in n. 

Also the question whether there exists an efficient parallel algorithm to construct an optimal 

binary tree such that processor time product is O(nlogn) remains open. 

One should be aware of another source of error which we have not addressed in this 

paper, namely the error resulting from representation of real numbers on a computer. Our 

algorithms use only comparison, addition, division by 2,mod, and fl, with the exception of 

the third parallel algorithm which uses also division by n. One can show that Huffman's 

1on RAM with unbounded register capacities 
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algorithm is numerically stable (i.e. a relative error of 6 in the input data causes a relative 

error of at most O(n)B in the cost of the constructed tree) Similarly our O(klognlog*n) 

algorithm is numerically stable. It is also worth noting that if the input sequence is given as a 

sequence of integers representing relative frequencies rather than probabilities then we can 

reformulate our algorithms (with the exception of the second integer sorting), so that they 

will perform only integer operations using words of size of the order of the size of maximal 

input element. 
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