
A Data Management Strategy
for Transportable Natural Language Interfaces

by

Julia Ann Johnson1

Technical Report 89-23

Computer Science Department

University of British Columbia

Vancouver, B.C. V6T 1W5 Canada

© I ulia Ann Johnson, 1989

1 A thesis was submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Abstract. This thesis focuses on the problem of designing a highly portable domain in­

dependent natural language interface for standard relational database systems. It is argued

that a careful strategy for providing the natural language interface (NLI) with morpholog­

ical, syntactic, and semantic knowledge about the subject of discourse and the database is

needed to make the NLI portable from one subject area and database to another. There

has been a great deal of interest recently in utilizing the database system to provide that

knowledge. Previous approaches attempted to solve this challenging problem by capturing

knowledge from the relational database (RDB) schema, but were unsatisfactory for the fol­

lowing reasons: 1.) RDB schemas contain referential ambiguities which seriously limit their

usefulness as a knowledge representation strategy for NL understanding. 2.) Knowledge

captured from the RDB schema is sensitive to arbitrary decisions made by the designer of

the schema. In our work we provide a new solution by applying a conceptual model for

database schema design to the design of a portable natural language interface. It has been

our observation that the process used for adapting the natural language interface to a new

subject area and database overlaps considerably with the process of designing the database

schema. Based on this important observation, we design an enhanced natural language

interface with the following significant features: complete independence of the linguistic

component from the database component, economies in attaching the natural language

and DB components, and sharing of knowledge about the relationships in the subject of

discourse for database schema design and NL understanding.

ii

Contents

Abstract ii

List of Tables ix

List of Figures X

Acknowledgements xiv

1 Introduction 1

2 Background and Thesis Overview 9

2.1 Important Linguistic Problems 9

2.2 Terminology . . 14

2.2.1 Domain 15

2.2.2 Dictionary . 15

2.2.3 Language . 16

2.2.4 Knowledge Representation . 19

2.2.5 Portability • • • I I I O • O 21

iii

2.3 Background .

2.3.1

2.3.2

2.3.3

2.3.4

A Typical Architecture for a Natural Language Interface .

Semantic Relatedness Measures in Relational DB Schemas .

Data Models .

An Architecture for a Current Database System

2.4 Knowledge Sharing for DB Schema Design and NL Understanding

2.4.1 A Semantic Relatedness Measure in SET Schemas

2.5 Using the Database Extension to Provide Knowledge .

2.6 A Portable Natural Language Interface.

2.6.1 The Data Management Strategy

2.7 Summary

3 Portable Natural Language Interfaces

3.1 Types of Portabilities ...

3.1.1

3.1.2

Domain Portability .

Database Portability .

3.2 Portability through Simplicity .

3.3 Portability through Generality

3.4 Portability through Modularity

3.4.1

3.4.2

Semantic Portability .

Syntactic Portability .

3.5 Tools for Customization ...

iv

22

22

24

28

38

43

44

47

47

49

55

56

57

57

58

60

61

64

66

67

68

/f

3.5.1 ASK - A Simple Knowledgeable System

3.5.2 LDC-l(Layered Domain Class)

3.5.3 TQA - Transformational Question Answering

3.6 Using the Database to Achieve Portability

3.6.1 Using the Database as a Definition of World Knowledge

3.6.2 Using the Database as Part of the Lexicon

3.7 TEAM (Transportable English Database Access Medium)

3.8 Summary

4 A Measure of Semantic Relatedness for Resolving Ambiguities in Natural

Language Database Requests

4.1 Introduction

4.2 The Relationship between Min/Max Values and Word Meanings

4.3 A Heuristic for Measuring Semantic Relatedness

4.3.1 What is a Word Meaning? .

4.3.2 Query Graphs

4.3.3 Complementary Heuristics .

4.4 Use of Min/Max Values for Resolving Ambiguities

4.4.1 The University Domain

4.4.2 The Library Circulation Domain

4.4.3 The Medical Domain .

4.4.4 Analysis

V

. . . ' . .

68

70

72

76

76

78

83

86

88

88

92

94

94

96

99

103

103

111

115

121

4.5 Confirmation of the Heuristic . 124

4.5.1 Sensitivity of the Heuristic to SET Schema Design Alternatives . 125

4.5.2 Varying the Parameters of the Heuristic 143

4.5.3 The Relationship between Distance in Relational and SET Schemas 14 7

4.6 Related Work .

4.7 Summary . ..

I> Design Strategy

5.1 Overall Design

5.1.1

5.1.2

The Natural Language Interface

Data Management Strategy ...

5.1.3 Interfaces between the NLI and the DMS

5.1.4 Formulating the Internal Representation .

5.2 Using the Database as Part of the Lexicon

5.2.1

5.2.2

5.2.3

The Requirements of an NLI for Membership Information

A Construction for Providing Membership Information .

Distinguishing between 'No' and 'Null' Answers.

5.3 Portability Issues

5.3.1

5.3.2

Domain Portability .

Database Portability

5.4 Heuristics for Linguistic Applications .

5.4.1 Preliminaries

vi

159

160

162

163

163

165

168

170

172

173

174

176

178

178

179

182

184

5.4.2 Word Sense Disambiguation .

5.4.3 Semantic Ambiguity .

5.4.4 Modifier Attachment .

5.5 Summary

6 Using the Metadatabase to Provide Semantic Knowledge

6.1 Introduction . ,.

6.2 The N F 2 Object Model

6.3 Deficiencies of the Metaschema

6.4 The Extended Metaschema . .

6.4.1 Operations in the Extended Metaschema

6.5 Example .

6.6 Summary

7 Conclusions and Further Research

7.1 Knowledge Associated with the DB that is Useful for Natural Language Un­

derstanding

7.1.1 What is it Useful for?

7.2 The Design of a Portable Natural Language Interface.

7 .3 Suggestions for Further Research

7.3.1 Temporal Knowledge for NL Understanding .

7.3.2 Conjunctions of Database Values

7.3.3 Ellipses

vii

.

185

189

189

197

201

201

203

205

207

209

213

213

218

219

220

221

223

223

223

225

7.3.4 Violations of the Min/ma.x Values

7.3.5 Automatically Generating the Formal Database Query .

7.4 Main Contributions of the Thesis

A Internal Representation of Sentences and Noun Phrases

B Procedural Semantics for the University Domain

B.1 Defined Sets Referenced by Semantic Rules

B.2 Semantic Rules for the University Domain .

C A Transportable Natural Language Interface

viii

226

233

234

236

242

243

244

257

List of Tables

2.1 Common Mapping Types Specified Using Min/Max Values 31

3.1 Primitive Constituents and Their Shape Descriptors 73

5.1 A Fragment of the ORACLE Metadatabase 176

ix

List of Figures

1.1 Question/ Answering in a Typical NLI .

1.2 Knowledge Acquisition in a Typical NLI

1.3 A Data Management Strategy for Portable NLI

3

3

6

2.1 Partial Parse Trees for the NP "the book on the table with a red cover" 11

2.2 Parse Tree for the Sentence "Jack slept on the table." 18

2.3 A Possible IR for the Request "Print employees who live in Vancouver" 19

2.4 The Association between a Schema and Raw Data

2.5 A Typical Natural Language Interface

2.6 Relational Database Schema for the University Domain

2. 7 An N F 2 Data Relation .

2.8 An N F 2 Object Relation

2.9 The Core Metaschema

2.10 Insertion into relation

2.11 The SET Schema - a Bridge between the NLI and the RDB

20

22

27

36

38

39

42

43

2.12 Capturing Knowledge from the SET Schema to Solve Linguistic Problems 45

X

2.13 An Enhanced Natural Language Interface

2.14 A Layering of Schemas to Support SET Schemas • I • • •

2.15 Partial SET Schema for the University Domain

2.16 Partial N F 2 Object Schema for the University Domain

2.17 Partial N F 2 Data Schema for the University Domain.

2.18 Partial Relational Schema for the University Domain . •••••••••• t •

3.1 Pruning Down a Broad Coverage Grammar

3.2 Knowledge Acquisition in ASK

3.3 Domain Structures and Vocabulary Acquisitions in LDC-1 .

3.4 Employee Relation

3.5 Index on DEPT . .

3.6 Index on ADDRESS

4.1 Classes of Ambiguities in Natural Language Requests

4.2 A Complete Domain Graph for the University Domain

49

50

51

53

53

54

63

69

70

79

79

79

91

95

4.3 Application of Semantic Relatedness Measure to "Dr. Lee's students" 105

4.4 Application of Semantic Relatedness Measure to "Jones' Courses"

4.5 Query Graphs for "a professor for a course with no students"

4.6 Domain Graph for the Library Circulation Domain

4.7 Analysis of "Does the main library have Joseph Conrad? .

4.8 Domain Graph for the Hospital Domain

4.9 Resolution of Semantic Ambiguity in "a patient in a hospital" .

xi

107

110

112

114

116

117

4.10 Attachment of Modifiers in "a patient in a hospital with tests"

4.11 Marriage as an Entity and a Relationship

4.12 Association X Treated as a Set of Pairs .

4.13 Association X Treated as a Set of Pairs and as a Primitive Set

4.14 Schemas Augmented with Primitive Sets ..

4.15 Association X Defined from Schema (b) .

4.16 Association AX' Defined from Schema (a)

4.17 Association ABC Treated as a Set of Triples

4.18 A Ternary Association Treated as Three Binary Associations

4.19 A Ternary Association Treated as a Collection of Associations of Arity Less

Than Three

4.20 Definition of ABC? from Schema (b) .

4.21 Definition of ABC from Schema (b + c + d)

4.22 Varying the Parameters for "Dr. Lee's students"

119

125

128

130

131

132

132

134

135

138

139

140

144

4.23 The Relationship between Distance in Relational and SET Schemas 149

4.24 Use of Min/Max Values for Designing the Database Schema 152

4.25 The Relationship between the Domain Graph and a Corresponding Rela-

tional Schema . 155

5.1 Proposed Design for an NL Interface

5.2 Relational Representations for an Animal Taxonomy

5.3 Interfaces between the NL! and DMS

xii

164

167

169

5.4 Schema for a Suppliers Database . 177

5.5 Sources of Ambiguities in Translating an NL Request to a DB query 183

5.6 Domain Graph Descriptions of the Marriage Relationship 186

5. 7 Ambiguous Parse Trees for the NP "the book on the table with a red cover" 191

5.8 A Query Graph Determined by {A, B, C} 194

6.1 A Tuple of Column DEPARTMENTS

6.2 The Extended Metaschema

204

207

6.3 Extended Meta.schema Description Stored in Metaschema Extensions . 208

6.4 Inclusion Constraints Stored in Class Extension

6.5 Insertion into Column

6.6 Deletion from Column

6. 7 Insertion into Nest .

6.8 Deletion from Nest .

6.9 N F 2 Schema for the Projects Data.base

6.10 Projects Schema Description Stored in Meta.schema Extensions

208

209

210

211

212

214

215

6.11 Projects Schema Description Stored in Extended Meta.schema Extensions 216

B.1 Partial Tree Structures for Use by S-rules

B.2 Partial Tree Structures for Use by D, N, and R-rules

B.3 Parse Tree for the Sentence "Every student in the computer science depart-

245

246

ment takes a computer science course." . 255

xiii

Acknowledgements.

Thanks to the members of my thesis committee, Richard Rosenberg, Paul Gilmore, Bob

Goldstein, Carson Woo, and David Poole for their significant contributions to the content

and organization of my thesis.

Special thanks to my research supervisor, Richard Rosenberg, with whom progress really

started and without whose guidance I would never have been able to complete this work.

Thanks to my mother Emily, my sister Genevieve, and my best girl friends Agnes, Terry,

and Amanda for their constant faith in me.

Thanks to my friends at UBC Andrew Csinger, Nou Dadoun, Teresa Przytycka, Heidi

Dangelmaier, John Demeo, Herbert Kreyszig, Rick Morrison, Marc Majka, Ron Rensink,

George Tsiknis, Esfandiar Bandari, Barry Brachman, and Brent Boerlage who have made

my work fun and contributed to my thesis either directly or indirectly.

xiv

•

Chapter 1

Introduction

Permitting the user of a database (DB) to ask questions in his or her own natural language

(e.g., English) is a highly desirable goal. Systems that provide natural language access to

databases are usually called natural language interfaces (NLI). An NLI accepts a user's

questions expressed in natural language, understands the questions, and responds to them

by extracting answers from the DB and presenting them to the user.

The domain1 of a.n NLI is the subject about which users of the interface may ask

questions. For commercial viability an NLI must be useable on more than one domain and

on more than one database. Natural language systems of the 1970s (the LUNAR system,

Woods [98], domain: lunar rocks, task: analysis ofrock characteristics; the PLANES system,

Waltz (90], domain: military airplane repairs, ~ask: airplane performance recording) were

1 We are using the term domain u it is ased in the area of natural language systems. The term domain is

also used in the area of relational DB systems to mean "a set of values". The reader is referred to Section 2.2

for a full definition of the term domain and for clarification of its use in the areas of relational DB systems

and NL systems.

1

database and domain specific. By the late 1970s Hendrix et al. built a system (LADDER

[45)) that could be customized to a new domain and database by the system designer who

would be required to have considerable knowledge about the system and about linguistics.

The prohibitive cost of the initial customization a.nd further work if the user requirements

change prevented natural language interfaces from becoming widespread. In recent years

research has focused on providing an interface that can be customized by a typical database

administrator (DBA) who does not have knowledge in linguistics but is an expert on the

database. Examples include the PRE system [23] transported from one office domain to

another, the Linguistic String Project [64] transported from a medical to a Navy domain,

and the Datalog system [39] transported from an office to a housing information domain.

A large amount of domain and database specific information is required for a computer

to understand natural language requests for information from a database. The system

usually operates in two different modes: the question/answering mode in which a user asks

questions in natural language and the NLI provides answers, and the knowledge acquisition

mode in which the DBA provides information to the NLI about the domain and database.

Figures 1.1 and 1.2 illustrate, respectively, the question/answering mode and the knowledge

acquisition mode for a typical natural language interface. The lines preceded by the symbol

'>' are input by the DBA or the user. The others a.re output by the NLI. For ease of

illustration we have assumed in Figure 1.2 that there is at most one type of relationship

between any two types of entities.

The transportability of a natural language interface is the ease with which it can be

adapted to a new domain or database. Henceforth, the term transportable will be abbre-

2

I

·1

> Who are the professors in the computer science department?
P. Jones
L.A. Lawrence
J. Smith
> Does Professor Jones teach a math course?
No
> Print the courses ta.ken by Bill Black.
Number Name
CPSCl00 Programming and Problem Solving
Mathll5 Calculus II
Chem201 Chemistry of the Non-transition Elements

Figure 1.1: Question/ Answering in a Typical NLI

For which database is knowledge to be acquired?
> university
What are the entities of interest in the university database?
Separate names of different entities by blanks.
> students departments professors courses .
What English words and phrases a.re used to refer ~o "students"?
Enclose phrases in quotations.
> pupil
What entities a.re related to "students"?
> courses professors departments
What English words and phrases are used to refer to the relationship
between "students" and "courses"
> take "are enrolled in" study
What English words and phrases are used to refer to the relationship
between "students" and "professors"
> "are supervised by" "a.re advised by"

What adjectives are used to describe "students"?
> graduate good "first class" "computer science"

Figure 1.2: Knowledge Acquisition in a Typical NLI

3

viated to portable. There have been several ways in which researchers have improved the

portability of a.n NLI:

1. The language that the system can understand is restricted [23). The description of

a restricted language (using a traditional grammar, for example) is expected to be

simpler than for non-restricted languages, and therefore, the job of providing the

grammar is simpler. Item (2) below describes a competing approach.

2. A grammar is used that generates a large class of natural language requests [64]. If

a grammar generates a small class of requests, then it will be unlikely to apply to

more than one domain. Therefore, a different grammar will be needed for each new

domain.

3. The NLI is designed in a modular fashion [39]. For example, the classical approach

of separating syntax from semantics results in a syntactic component that is largely

domain independent.

4. A customization program is provided that interacts with the OBA in a user friendly

way prompting him or her for information about the domain and database [82, 3, 19].

Portability is achieved in Harris' INTELLECT system [41] (commercially available NLI

for retrieval of office information) by exploiting knowledge that is already available in the

database. Harris proposed the idea of obtaining membership information from the DB

(information about which database values are located in which columns). This information

is needed by the NLI for understanding natural language requests and is typically provided

4

by the DBA during customization. Portability is improved because less information must

be provided by the DBA.

Although Harris' results are worthwhile, further work is needed on exploiting the ca­

pabilities associated with the DB to obtain portable natural language interfaces. In this

thesis we expand Harris' results by applying the SET conceptual model, introduced in [32)

for database schema design,2 to the design of a natural language interface. Portability is

enhanced because much of the same information caµ be used for both purposes.

A picture of the overall design of our proposed system is given in Figure 1.3. The box

labeled DMS denotes software and a schema for the metadatabase3 (a metaschema) that

implement a data management strategy to obtain transportable NL interfaces. The DMS

includes tables for storing SET schemas, and operations for adding, deleting and changing

SET schemas. The arrows in the figure denote data flow. The natural language interface

(NLI) transforms the NL input to a query formulated in terms of the SET schema. The DMS

transforms that query to a relational database (RDB) query. The RDB query is executed

against the RDB and the result (a set of zero or more tuples) is returned to the DMS. In this

thesis, we focus on the process of formulating a database query that answers the natural

language input request. However, for completeness, a brief description of the process of

formula.ting a natural language response follows: The DMS reformulates the tuples returned

from the RDB query to conform to the view of the domain expressed by the SET schema.

~ A DB achema describes a. particular organization of the data in the database. A function required to

get the DB operational is to construct or deaign the DB schema..
3The metadataba/Je of a DB system is part of the DB that records knowledge about the DB itself. In

particular, it contains the DB schema.

5

In the case of an empty result (zero tuples), the DMS searches the meta.database passing to

the NLI information needed for formulating an informative natural language response. An

informative response to the request 'Which students passed CPSCl0l', in the event that

the course is not offered, would be 'CPSC101 is not offered this term. The next offering is

Fall 1990'. In contrast, an uninformative answer would be 'none'.

- NLI__.I• 1 ~
Figure 1.3: A Data Management Strategy for Portable NLI

Our work differs substantially from previous work (40, 51, 93, 55] in which knowledge

for NL processing is captured directly from the RDB schema. SET schemas are a refined

version of Entity-Relationship diagrams [12] which have become part of common practices

for database schema design. Methods exist for translating a SET schema to a relational

schema with additional integrity constraints as suggested by the following diagram [33):

I SET schema 1-1 Relational schema + integrity constraints I

Existing relational database systems do not support the additional integrity constraints

generated by even a moderately complex SET schema. One kind of constraint, referential

integrity constraints, are important for formula.ting a precise statement of the meaning of

an NL database request and, whereas SET schemas capture this kind of constraint, RDB

schemas do not. Therefore, the SET schema. is a more useful source of knowledge for NL

6

processing than the RDB schema. Furthermore, as will be shown in Section 4.5.1, the

information is invariant to the arbitrariness of the design of the SET schema, whereas the

information extracted from RDB schemas is sensitive to arbitrariness of the design of the

RDB schema.

Thesis Overview

Chapter 2 introduces important terminology, and presents background concepts that are

important for understanding the need for a DMS. Specific linguistic problems are introduced

that are shown (later in the thesis) to benefit fr.om knowledge that is applied for designing

the relational database (RDB) schema.

Chapter 3 introduces a taxonomy of ways in which an NLI can be portable with respect

to the domain and database. The taxonomy is used as a framework within which previous

approaches to obtaining portable NLI are examined. In addition, Harris' ideas for using the

DB system to provide knowledge for natural language understanding are reviewed.

Chapter 4 describes knowledge available from the SET schema that is useful for natural

language understanding. It shows how the approaches which capture knowledge from the

RDB schema are inferior to the new one of capturing knowledge from the source used to

design the RDB schema. This is the main thesis being defended in my dissertation. The

chapter also presents examples from three different domains (a university domain, a hospital

domain, and a library circulation domain) which illustrate how the knowledge can be used

to solve the linguistic problems introduced in Chapter 2.

Chapters 5 and 6 discuss some of the issues associated with the implementation of

7

our design strategy. They include an overall design for a transportable natural language

interface, specification of the interfaces between the NLI and the OMS, heuristics for solving

the linguistic problems previously introduced, and expansion of the metadatabase of a

standard ROB system to perm.it it to describe the knowledge needed for natural language

processing.

Chapter 7 presents conclusions and directions f~r further research.

Appendix 1 provides examples of the represeO:tation of the meaning of NL database

requests using the language DEFINE (introduced by Gilmore in [31]). This language has

been selected in the design of a. portable NLI because it perm.its an intermediate represen­

tation of the NL request that is independent of the DB structure, a feature that is widely

understood to be important for portability.

Appendix 2 illustrates a procedure for translating an NL request to a representation

of the meaning of the request expressed using the language DEFINE. The formalism for

the translation is Woods' Procedural Semantics [95), and the contribution here has been to

adapt the formalism to the new target language DEFINE.

Appendix 3 describes a natural language interface (ALPS [93)) that has been designed

to be portable, and that we ta.ke as a starting point from which additional portability is

provided by exploiting data.base facilities.

8

Chapter 2

Background and Thesis Overview

This thesis focuses on identifying knowledge associated with the DB that would be useful for

automatically understanding natural language and on designing a portable natural language

interface that takes advantage of that knowledge. This chapter provides background for

understanding our design strategy and it points out the main results of the thesis. In

Sections 2.1-2.3, terminology and background concepts are introduced which leads into a

discussion in Sections 2.4-2.6 of the significant contributions of the research.

2.1 Important Linguistic Problems

We are concerned with facilitating communication with a database because the common

database query languages such as SQL are inadequate. They have an awkward syntax that

makes it difficult for a naive user to communicate his or her request, and they are artificial

languages requiring an initial start up time for learning them. Both of these problems would

9

be alleviated if we could communicate with a database using our own natural language.1

In this section five specific linguistic problems that must be handled by any reasonably

robust NLI are presented. They are modifier attachment, semantic ambiguities,word sense

disambiguation, ellipsis, and conjunction scoping. In Chapter 4 we concentrate on how

knowledge associated with the DB can be used to solve three of the given problems, and in

Chapter 7 we consider how our methods might be extended to handle the remaining two.

Modifier Attachment {MA)

There are a variety of situations in natural language where one sentence constituent modifies

another. Consider the noun phrase "the book on the table with a red cover". There are two

possible parses for the phrase as illustrated in Figure 2.1. In the figure nonterminal symbols

NP, DET,PP, N, and PREP stand for noun phrase, determiner, prepositional phrase, noun,

and preposition, respectively. In Pl the phrases "on the table" and "with a red cover"

both modify the head noun "book". In P2 the phrase "with a red cover" modifies the noun

"table", and the phrase "on the table" modifies the head noun "book".

The sentence constituent being modified is called the referent, and the one doing the

modification the modifier.

The MA problem is to select the most appropriate attachment for the modifiers.

1 An alternate view [23] that will be discussed in detail in Section 3.2 holds that artificial languages a.re

easier to learn than natural languages, and further tha.t the precision of artificial languages leads to the

formulation of correct queries for the problem at hand. The thesis advanced in Chapter 4 holds that the

SET schema. is a. superior source of knowledge over the relational schema. for processing natural language

requests, and this thesis applies equally well to both natural and artificial languages.

10

Pl: P2:
NP NP

DE~ DE1\ I N pp PP

the 6 /\
on the table LJ

IN pp

with a red cover
th

e I \
book PREP N

book

on D!~p
J I~ red covec

the table
Figure 2.1: Partial Parse Trees for the NP "the book on the table with a red cover"

Semantic Ambiguities (SA)

The term internal representation is defined in Section 2.3 of this chapter, but for now

we will say that it is a formal representation of the meaning of a sentence. Semantic

ambiguities arise when a single syntactic structure (parse tree) maps into more than one

internal representation. For example, in a university domain a request such as "Dr. Lee's

students" could have any of the following meanings:

1. Students in the same department as Dr. Lee

2. Students enrolled in courses taught by Dr. Lee

3. Students supervised by Dr. Lee

The SA problem is to select the most appropriate meaning for a natural language request.

11

Word Sense Disambiguation (WSD)

Word sense ambiguity arises when a word in a sentence has more than one meaning. Given

the sentence "Students run programs", for example, the noun program might mean either

a computer program or a recreational program, in which case there would also be two

senses for the verb run : to execute a computer program, and to administer a recreational

program. The WSD problem is to select exactly one meaning for each word in the sentence.

Ellipsis (E)

An ellipsis is an utterance in which one or more of the phrases have been omitted. Consider

the following pairs of requests (from [10]):

1. Who are the professors of Computer Science?

of Mathematics?

2. Who are the students who passed Computer Science?

The failures?

Ellipses are typically handled by finding a syntactic or semantic parallel between the

request in which one or more phrases have been ellided and a previous request in the

dialog. A syntactic method for handling ellipses is illustrated by the first pair of requests.

The second request of the pair can be interpreted by substituting "of Mathematics" for "of

Computer Science" in the parse tree for the first request. Neither a syntactic nor a semantic

method has permitted the type of ellipsis illustrated by the second pair of requests to be

adequately handled. In the second pair of requests there is neither a syntactic nor a semantic

12

parallel. The collection of objects retrieved by the second request is the mathematical

complement of that retrieved by the first. The E problem has at least three subproblems:

First, the request must be recognized as an ellipsis. Second, it must be decided which of

the various types of ellipses has occurred. Third, the elliptical fragment must be completed

by filling in missing phrases. The resulting sentence can be processed like a normal (non­

elliptical) request.

Conjunction Scoping (CS)

The scope of a conjunction is a specification of the arguments of the conjunction. Consider

the following example from [56]:

1. Which presidents visited New York and New Jersey after leaving office?

2. Which presidents died in New York and New Jersey after leaving office?

Our knowledge that two different cities may be visited by a president at two different

times leads use to admit as a possible meaning of (1) the narrow scope reading

Which presidents visited both New York and New Jersey after leaving office?

Our knowledge that presidents die at most once and that they are not omnipresent leads

us to exclude the narrow scope reading of (2) in favor of the wide scope reading

Which presidents died in New York after leaving office, and

which presidents died in New Jersey after leaving office?

13

In the wide scope reading the word "and" is being used to express logical disjunction.

The complexity of the problem of conjunction scoping increases rapidly as the natural

language request containing a conjuction becomes more complex. The request

Which departments have employees who drive red and blue cars?

has the following possible readings:

Rl: Which departments have employees who drive cars that are both red and blue?

R2: Which departments have employees who drive both a red car and a blue car.

R3: Which departments have both employees who drive a red car and employees who drive

a blue car.

The CS problem is to define the scope of conjunctions in the NL request.

2.2 Terminology

The above discussion has described important linguistic problems which demand solutions

from the area of database systems. To provide solutions we must first introduce some

terminology. Unfortunately, many terms have previously been used in both areas (natural

language and database), but with different meanings. For purposes of clarity we will keep

terminology in the two areas separate, and where necessary to avoid confusion, introduce

our own terms.

14

2.2.1 Domain

In the area of relational database systems the term domain means a set of values associated

with a column of a relation. All values in a column are constrained to be members of its

domain.

In the area of natural language understanding the term domain is taken to mean the

subject that forms the content of the dialog between a person who formulates natural

language requests and the system that understands and responds to those requests. The

domain of a natural language interface comprises a collection of facts from which answers

to database requests are drawn.

To avoid confusion we use the term domain in the sense that it is used in the area

of natural language understanding, and we use the term value set to mean domain in the

relational database sense.

2.2.2 Dictionary

In the area of database the term data dictionary refers to a database that records information

about the database system. In modern database systems the data dictionary is "integrated"

into the database, which is to say that it forms part of the database, and that both the data

dictionary and the database are queried through the same interface (the query language

provided by the database system). In earlier systems the database and the data dictionary

were separate, each requiring its own interface for access.

In the area of natural language understanding the term dictionary (sometimes "linguistic

dictionary" or "lexicon") is used to mean a repository of syntactic and semantic information

15

about words that is used for automatic understanding of natural language sentences. An

NLI comes with an initial dictionary containing descriptions of words that are common

across domains. The initial dictionary is usually extended for use in a particular domain

by adding domain specific words and domain specific definitions of words.

To avoid confusion we will use the term metadatabase to refer to the data dictionary used

by the database system and the term lexicon to refer to the lexical dictionary used by the

NLI. The meta.database and the lexicon are different entities that have arisen independently

in the two different areas, although as we shall see they could well be integrated into one

source of information for the NLI.

2.2.3 Language

The term language is potentially confusing because we have a query language that is

used by the database system to access the database, a natural language in which humans

communicate with each other, and finally a sublanguage (of a natural language) in which

the user of an NLI formulates requests of a database. In this thesis the unqualified term

language will never be used to mean query la.ngu~ge of a database system or full natu­

ral language used by humans for communicating ~ith each other. The unqualified term

language will be used only when the term sublanguage is intended.

The subla.nguage of an NLI is a subset of the sentences of some natural language. The

user of an NLI does not know its sublanguage but interacts with the system as if it is

operating in full natural language. A formal language is characterized by a grammar, but

the processes involved in natural language understanding (reference resolution, word sense

16

disambiguation, handling ellipsis, to name a few) and in forming appropriate responses

(correcting false user presuppositions, making scalar implicatures) are hard to characterize

using a grammar. Every NLI has an implicit sublanguage even though we are not able to

explicitly generate its sentences.

Knowledge about the structure of a sentence is represented in a parse tree (also called

a phrase marker because it serves to mark the phrases of the sentence). A sentence

constituent is any subtree of the sentence's parse tree. A parse tree for the sentence "Jack

slept on the table" taken from [11) is given in Figure 2.2. The sentence constituents are

"the table", "on the table", "slept on the table" and the complete sentence "Jack slept on

the table". In addition, each of the words "Jack", "slept", "on", "the", and "table" are

sentence constituents. A sentence constituent that appears in the parse tree as a terminal

node is called a primitive constituent. Primitive constituents a.re not necessarily single

English words. For example, the adjective "Computer Science" is a multiple word primitive

constituent in the university domain.

The term deep structure comes from Chomsky's transformational grammar formalism

[13) for describing the structure of English language. A transformational grammar includes

a base component that generates certain basis sentences, and a transformational component

that generates sentences that are derived from the basic ones. Deep structure phrase markers

are those generated by the base component [14).

A natural language database request has one of the following forms:

1. a yes/no question (e.g., Does Jones take CPSC 101 ?)

17

s

----- ----NP VP

I~
Pr_Noun V pp

~
PREP NP

Jack slept I A
on DET N

I I
the table

Figure 2.2: Parse Tree for the Sentence "Jack slept on the table."

2. a print question (e.g., Print (Show me) (Who are) the professors in the computer

science department.)

3. a question that requests the application of a function (e.g., count, average, sum) to the

results of a database query (e.g., How many (Count the) professors in the computer

science department.)

An NL DB request specifies three things: the type o~ the objects to be retrieved, conditions

that must be satisfied by the objects, and an operation (e.g., print, test, count) that tells

how the objects should be processed upon their retrieval. For each of forms (1), (2), and (3)

the NL DB request could be a fragment which omits one or more of the object, operation,

or condition (e.g., professors in the computer science department).

An internal representation (IR) for a natural language request is a statement of the

conditions under which the NL request is satisfied [1]. A possible IR for the request "Print

18

(3x)(Employee(x) & Lives(x, Vancouver))

/~
count(x) print(x)

t e or
false

Figure 2.3: A Possible IR for the Request "Print employees who live in Vancouver"

employees who live in Vancouver" is illustrated in_ Figure 2.3. The IR does not specify

whether the result should be counted, evaluated as· true or false, or printed.

2.2.4 Knowledge Representation

A knowledge representation strategy (KRS) is a way of representing knowledge about the

real world. A model, for our purposes, is a KRS in which knowledge is represented as a

collection of primitive objects and complex objects constructed from the primitive ones.

For example, in the relational model virtual relations are constructed from more primitive

base relations, and base relations from more primitive value sets.

Initially, let us assume that we are able to freeze the world in time. A schema is a

particular organization of raw data into a meaningful description of some part of the real

world. A relational schema, for example, comprises a particular collection of value set names

V, relation names R, and a function F: R - v• 2 which associates with each relation name

a tuple of value set names. A schema is based on a model which is to say that the KRS of

2V" is the set of all tuples of a.ny length over V. If I V I denotes the cardinality of V a.nd V" is the set of

all n-tuples over V, then v· = u~Jl V". For example, if V = {1, 2, 3} then

V" = {l, 2, 3, (1, 2), (1, 3), (2, 3), (2, 1), (3, 1), (3, 2), (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 2, 1), (3, 1, 2)}.

19

the model has been used for constructing the schema. The association between a schema

and the raw data provides an interpretation. For example, in a relational schema each

name in Vis implicitly associated with a set of data values in the raw data, and each name

in R with a subset of the Cartesian product (in the order given by F) of the value sets of

the relation named. For example, if F('Q') =(Vi, ... , Vn) then an interpretation associates

with the relation whose name is 'Q' some subset of Vi x ... x Vn, Figure 2.4 depicts the

relationship between the concepts of data, schema, and interpretation. An arrow from A

to B labeled by the name of a process illustrates that the input to the process is A and the

output is B.

world
repre$ented freeze

DY data +---•
the wor

world at
time t

1

schema

associate interpretation

Figure 2.4: The Association between a Schema a.nd Raw Data.

A metaschema is a description of the characteristics of schemas. In current database

systems the meta.schema. M is itself a schema., and the model upon which M is based is

the same as that upon which the schemas described by M are based. If the meta.schema.

is itself a schema, then the data interpreted by the meta.schema are called metadata. The

repository of all metadata is called the metadatabase.

Human beings also associate schemas with ra.w data in the world to permit them to

20

understand the world. A schema (whether in the head of a human or represented using a

computer) together with its raw data is called knowledge. Similarly, a meta.schema together

with its metadata is called metaknowledge. The terms knowledge and information will be

used interchangeably.

Semantic knowledge is knowledge that is useful for automatically interpreting and

responding appropriately to NL requests. It need not come from the database. For example,

a method for helping to resolve modifier attachment involves examining semantic categories

associated with the modifier and each possible referent. A modifier may be attached to a

given referent if their semantic categories overlap. Semantic categories provide semantic

knowledge which in this example comes from the knowledge acquisition phase.

To assist the user in understanding how to use the KRS of a model a variety of concepts

may have to be introduced on top of the model. A schema design methodology for a given

model is a collection of techniques for constructing schemas based on that model. A schema

design methodology may also be concerned with constructing schemas that will guarantee

efficient use of storage space when the database is operational.

2.2.5 Portability

Domain portability of a.n NLI is the ease with which it. can be adapted to a new domain.

Database portability of a NLI is the ease with which it can be adapted to a new database.

21

2.3 Background

Now that important terminology from the areas of natural language understanding and

database systems has been introduced, we are in a position to discuss a number of back-

ground topics: In Section 2.3.1 a general paradigm for the modular structuring of an NLI

is presented. Later, in Chapter 5, we extend this architecture by providing a more detailed

specification of the database components and their attachment to the database. Previous

methods which capture knowledge from the structure of the database (as opposed to the

approach introduced here of capturing it from the source used to design the structures) are

reviewed in Section 2.3.2. In Section 2.3.3 three different strategies for organizing data. are

presented which are used in Section 2 and in Chapter 5 as a basis for the logical structuring

of knowledge associated with the DB that is useful for natural language understanding.

Finally, Section 2.3.4 describes an architecture for_ a standard relational database system

that has been proposed by the American National Standards Committee (ANSI [86, 9]),

and that we take as the database system upon which the NLI is built.

2.3.1 A Typical Architecture for a Natural Language Interface

A typical architecture for a natural. language interface (one that is adopted in this thesis)

consists of four main components as illustrated by Figure 2.5 from (54):

natural lengWU11 pare~ aemantic Internal .. query formal databll;!8

Input
.... parser

tree- nlerpreter representation generator -query

query outpu
nterpreter anewe

Figure 2.5: A Typical Natural Language Interface

22

The separation between the syntactic and semantic components is motivated by the

view that there is a level of structure in natural language that is independent of semantics

(Chomsky 1965 - Aspects of the Theory of Syntax [14]). Semantically similar sentences

may vary significantly in their word order. Syntactic analysis removes some of the variation

between sentences that is not due to semantic differences. Although this model has been

superseded by more recent models [71, 76], it still provides a useful characterization of the

natural language phenomena that are of interest in this thesis. An alternate approach (the

LADDER system [45]) is the use of a semantic grammar which results in the integration

of the syntactic and semantic components. A semantic grammar is based on categories

that include semantic information about the domain as opposed to the syntactic categories

(noun phrase, verb phrase) of a traditional grammar.

A description of the NLI of Figure 2.5 follows: The parser produces a parse tree for the

NL input. The semantic interpreter transforms the parse into an internal representation

(IR).

The designers of the TEAM system [36) argue that the language for internal represen­

tation should be independent of any particular organization of the database. A database

query language represents the meaning of a natural language request in a way that directly

reflects the structures of the database schema. Two different databases expressing the same

information but organized according to two different schemas may use two different database

queries for the same natural language request. For example consider a database of employee

information. One data.base schema. might distinguish between male and female employees

by using two relations, one to describe female employees and the other to describe male

23

employees. A different database schema may represent all employees in one relation and

use a column that contains 'M' or 'F' to distinguish between tuples of male and female

employees. A database query such as one to retrieve all male employees will look quite

different for the two different databases.

The query generator transforms the IR to a database query expressed in a standard

query language. This query is called the formal database query. The actual database query

(not shown in the figure) is a query expressed using the query language of the available

database system that has the same meaning as the formal database query. The query

interpreter transforms the formal database query to the actual database query, uses the

database system to execute the actual database query, and returns the results to the natural

language interface.

2.3.2 Semantic Relatedness Measures in Relational DB Schemas

The approach of capturing knowledge for natural language understanding from the DB

schema is reviewed here as background for Chapter 4 where we introduce the new approach

of capturing knowledge from the source used to design the schema. The latter approach is

superior because the knowledge is explicitly available and more accurate than when it is

captured indirectly from the structures of the DB.

Semantic relatedness between constituents is the closeness in meaning between the con­

stituents, and it is dependent on the domain of discourse. For example, the nouns dog

and bone may be more semantically related than the nouns dog and computer in a domain

that is concerned with the care and feeding of dogs. H, however, the domain is concerned

24

with communication patterns, then the nouns dog and computer may be more semantically

related because humans can communicate with dogs and computers, but not bones.

In natural language interfaces to database systems the denotational part of the meaning

of a constituent (as opposed to the procedural part) is typically [36, 53, 21) an object·in the

database schema. The object may be simple or complex (defined in terms of other objects).

Semantic relatedness between constituents is typically estimated by measuring the distance

through the database schema between the objects denoted by the constituents. Distance

between two relations in a relational schema is measured by counting the number of links

required to join the relations together.

In a relational database there may be more than one way of joining two relations to-

gether. For example, relations P and Q may be joinable through relations X and Y and

also through relations R1 , R2, and R3. The sequence of relations from P to Q is called a

join path. In mapping a natural language question to a corresponding relational database

query a decision must be made on which join path to follow when there is more than one

possibility. Each join path determines a possible internal representation for the request.

The problem of resolving ambiguity is to determine for each interpretation the likelihood

that it is the one intended by the user. The likelihood of an interpretation is measured

relative to the other interpretations, rather than in absolute terms.

The solution based on link counts is to select the join path that requires the fewest

links. 3 For example, to join relations P and Q together through relations R1, R2, and R3

3 A link corresponds to a join condition in the relational query that produces the join. A join condition

is a statement R.A = S.B in the query that links relations R and S together by specifying a. join of R on

25

requires four links. In general, the join of relations R1 and Rn, n ~ 2, through relations

R2, ... ,Rn-1 requires n - 1 links.

The solution based on link counts is based on two assumptions: first, that the con­

stituents in a sentence tend to refer to semantically related objects and, second, that se­

mantically related objects appear close to each other in the database schema where distance

between objects is measured by the number of links between them. In Chapter 4 of this

thesis, the notion of a link between relations is expressed in terms of more fundamental

concepts which permits a better understanding of what is being measured by semantic

relatedness measures based on links.

To illustrate the heuristic based on links consider the example (adapted from [93]) which

has been previously introduced in Section 2.1: The phrase

Dr. Lee's Students.

can have at lea.st three different meanings in a university domain. To illustrate the heuristic,

we will focus on two of them:

1. Students supervised by Dr. Lee

2. Students taught by Dr. Lee

A partial schema for the university domain is given in Figure 2.6: The Student relation

records for each student the student identifier and the student name. The Professor

relation records for each professor the professor identifier and the professor name. The

column A with Son column B .

26

Student Professor
I SID ! SName I I PID I PName I

Supervise
I SID I PID I Funds I

Student_Course CourseYrof
I SID I CID I Grade I I CID' PID I

Figure 2.6: Relational Database Schema for the University Domain

Supervisor relation records for each graduate student, the professor that supervises the

student's research, and the type of funding the student receives. Student_Course records

which courses are ta.ken by which students, and the grades obtained by students in courses.

CourseYrof records which courses are taught by which professors.

Interpretation 1 will require the Student and Professor relations to be joined through

the Supervisor relation. Interpretation 2 will require the Student and Professor relations

to be joined through the Student_Course and Cours.eYrof relations. For the given domain

the heuristic based on link counts rates (2) more favorable than (1) as the interpretation

intended by the user.

A measure of semantic relatedness based on the domain (which is described by the

database schema) is an important part of a natural language interface to a database system,

but other measures are needed as well. In particular, a measure of semantic relatedness

based on the context in which the natural language dialog occurs is needed. The subject of

context is addressed in Chapter 4 where we present a measure of semantic relatedness based

on the SET schema. For more information, the reader is also referred to [20] in which the

context of a conversation is modeled by a sequence of queries corresponding to the sequence

27

of previous requests in the dialog, and to work in ai:tificial intelligence [37, 38] in which, for

task-oriented domains, context is modeled by the structure of the task and its subtasks.

2.3.3 Data Models

Four different data models are of concern in the thesis. They are the SET Conceptual model

[31], a model that has been specified as pa.rt of the thesis and that we refer to as the N F 2

object model, the N F 2 data model [75, 49, 50], and the relational data model [15]. The

reader is assumed to be familiar with the relational model. The other three are described

here as background for understanding our data management strategy.

The SET Conceptual Model

The SET Conceptual model [31, 32] is intended to provide a single model for what is usually

a two step process in the design of a database schema:

1. Enterprise modeling in which knowledge is captured and recorded about the information

and processes important to the enterprise, as well as the information exchanges between

different functioning subunits of the enterprise.

2. Database schema design for whatever database management system is to be used to

record the information obtained in the first step.

For simplicity we will abbreviate the name SET Conceptual model to SET model. It is illus­

trated in (31], that the SET model can be used to automatically design relational database

schemas from the information in (1). The broader purpose of the model is emphasized in

that report and especially in the paper (32].

28

Fundamental Concepts

The fundamental notions in the SET model are those of set and ordered pair. The concept

of set is used in other models such as the Entity-Relationship (ER) model [12], however, in

the ER model the notion of set is an intuitive one. In the SET model the notions of set and

ordered pair are based on the provably consistent set theories of [30] and, hence, a sound

foundation is provided upon which the richer models of data. needed for NL applications

can be built.

The intension of a set is a property that determines membership in the set. The exten­

sion of a set is the membership of the set (the collection of objects that satisfy the intension

of the set). The notion of membership is a relation between objects and set extensions.

When we say that object x is a member of set A, we mean that x is a member of the

extension of A.

The extension of a set changes with time. Given that, the notions of subset and Cartesian

product need to be clarified. We understand these notions as they apply to set extensions.

If set Sl is a subset of set S2 then at every time instance t the extension of Sl at time t is a

subset of the extension of S2 at time t. Similarly, at every time instance t the extension of

the Cartesian product (S1 x S2) of sets S1 and S2 is the Cartesian product of the extensions

of Sl at time t and S2 at time t.

Binary Associations

A binary association is a subset of the Cartesian product (L x R) of two sets L and R. L

is called the left parent and R the right parent. The extension of an association with left

29

parent L and right parent R is a mapping from the extension of L to the extension of R.

In the following discussion the names A and B refer to set extensions. A mapping in

addition to being one-to-one, one-to-many, or many-to-many may be either in or on the

source extension a.nd either into or onto the target extension. In a mapping from A to B

the source extension is A, and the target extension is B. The mapping is on A if every

member of A occurs in the mapping, and it is in A otherwise. The mapping is onto B

if every member of B occurs in the mapping, and it is into B otherwise. Each of the 16

possible combinations will be referred to as a mapping type.

Min/max values provide a notation for specifying the mapping type. Associated with

each of the source and target extensions of a mapping is a pair of values (p, q) where p has

the value either O or 1, and q the value either 1 or n. p is called the min value a.nd q the

max value.4 A min value of O specifies an in or into mapping, and a min value of 1 an on or

onto mapping. A max value of 1 specifies a one mapping on the source or target extension,

and a max value of n a many mapping. Table 2.1 shows some of the common mapping

types and their specification using min/max values:· The source extension is assumed to be

'The standard values for min are O and 1 and for max are 1 and n. More than the standard values ma.y be

obtained during data.hue conceptual modeling to serve a.s design para.meters for data.hue implementations.

For example, Kumar and Stonebraker (58] use statistics on the sizes of relations to choose the best plan for

processing an incoming data.hue query. As a. second exa.mple, Smith and Genesereth use information about

set sizes for estimating the cost of solving a conjunctive problem. The authors state that " a. conjunctive

problem is a set of propositions which share va.ria.bles a.nd must be solved simultaneously". A gain in

efficiency can be realized if the set of conjuncts is ordered for the problem solving system. Assuming the

availability of knowledge about sizes of sets, methods for ordering conjuncts a.re developed and the overall

efficiency of including conjunct ordering in a. problem solver is considered.

30

((1, 1), (0,n)) a function on A into B,
((1, 1), (0, 1)) a one-terone mapping on A into B,
((1,n), (0,n)) a relation on A into B,
{(0,n),(0,n)) a relation in A into B,
((0, 1), {1,n)) a relation in A onto B.

Table 2.1: Common Mapping Types Specified Using Min/Max Values

A and the target extension B. The min/max values associated with the source extension of

the mapping are given first, and those for the target extension second.

The min/max values of an association apply to its extension at every instance in time.

That is, at every instance in time the extension of the association is a mapping of the type

specified by the association's min/max values.

m-ary Associations

An m-ary association Sis a subset of the Cartesian product (S1 x ... x Sm) of not necessarily

distinct sets S1, ... , Sm, Each of the sets S1, ... , Sm is called a parent set of S and each

may itself be an association. For example, the Manager association is a binary association

which is a subset of the Cartesian product (Employee x Employee) where Employee is a

set of employees. The Manager association has one distinct set Employee which plays a

role as two different parent sets. Since the parent roles cannot be distinguished by the name

Employee, they are referred to as the left and right parent sets.

A tuple (s1, . .. , Sm) E S is called an association entity. An entity e E S1 participates in

association entity (a1, ... ,am) ES as the i-th component if and only if e = a1• IT both a and

b are members of Employee, and a manages b, then the pair (a, b) will be an association

entity in the Manager association. a participates in (a, b) as the left component, and b

31

participates as the right component.

For each parent set Si the min/maz value of Son Si is a pair of values (p,q) where p

is the minimum and q is the maximum number of association entities in S in which any

given entity in Si participates. An m-a.ry association has m min/max values. Usually only

the values O and 1 are used for the min value and 1 and n for the max value. A max

value of n means 'one or more'. A min/max value of (0, n) for the Manager association on

the left parent set states that there may be employees who are not managers, and that a

manager manages one or more employees. The min/max values have been widely studied

with respect to their role in database schema design. They receive the name least and

maximum participation in (57], lower and upper degree in (32], minimum and maximum

cardinality in (84], and min/max value in [79].

The SET Schema

Every set must be explicitly declared which involves giving it a name and supplying other

information such as its intension and min/max values. Primitive sets are those whose

members are not drawn from some previously declared set. Every non-primitive declared

set is a subset of the Cartesian product of one or more previously declared sets. The SET

schema comprises all the declared sets of an enterprise.

For each primitive set there exists a set of computer representable surrogates and a

one-to-one correspondence between the surrogate set and the primitive set. Members of

the surrogate set rather than the entity set appear in the database. For sets of computer

representable entities the set itself can serve as the surrogate set. Such sets are called value

32

sets, and those that need a surrogate set different from themselves for representating their

members are called non-value sets.

The intension of a set may be expressed either in a natural language intended to be read

by humans or in a formal language that can be interpreted by a machine. Sets with the

former type of intension are called base sets and with the latter type are called defined

sets. Value sets such as those usually provided by a programming language (integer, real,

character) are assumed to be pre-declared and each is considered to be a defined set. The

language DEFINE is introduced in [31] as part of the SET model for expressing the inten­

sions of non-primitive defined sets. The key point to recognize about base sets is that they

cannot be defined in terms of other declared sets. The parent sets of a base set may be

defined sets, but the selection of its members fr~m the Cartesian product of its parents sets

requires human intervention. All non-value primitiye sets are base sets.

The language DEFINE is reviewed in Appendix A and used there to represent different

types of noun modifiers. The method assumed for translating the parse tree for a request

to its internal representation (IR) is Wood's procedural semantics [95], but adapted to use

a new target language (the language DEFINE rather than the functional calculus used by

Woods).

The advantage of the language DEFINE over the functional calculus is that it permits

new sets to be defined in terms of previously declared ones. The advantage of defined

sets for portable natural language interfaces is a greater simplicity in the semantic rules

used for building the internal representations of requests, and hence, an enhancement in

portability. The semantic rules are simplified because the name of a defined set and not its

33

full definition, appears in every rule which uses the set. If the full definition must appear,

then the rules are longer and they contain redundant segments.

An example of the application of Wood's framework to a particular domain is given in

Appendix B, and examples of IRs expressed in the language DEFINE appear throughout

Chapters 4 and 5.

The Domain Graph

A collection of sets and associations can be represented as a directed graph in the following

way: The nodes of the graph are labeled with t~~ names of sets and associations. An

association X with left parent L and right parent R is denoted by a pair of directed edges

as illustrated by the following figure:

L R

~/
X

For the examples given in the thesis the left parent always appears on the page to the

left of the right parent. Min/ma.x values for the association a.re given as labels on the edges.

Min/ma.x values associated with the left pa.rent label the left edge and those associated with

the right pa.rent, the right edge. For example, the following min/max values for association

X state that the extension of X is a function from the extension of L to the extension of R

and that it is an on and into mapping.

34

L R

~ (1,1y
(0, .• , ~ /

X

A domain graph [31] is "a graphic representation for the inclusion relationships that

exist between sets a.nd their subsets, a.nd between subsets of cartesian products of sets and

the sets forming the product."[33] The origins of the domain graph are to be found in

the entity relationship diagrams of the entity relationship approach to database conceptual

modeling[12].

The domain graph (DG) is a directed-acyclic graph. Association S with parent sets

S1, ... , Sm is denoted by m + 1 vertices labeled S, S1, ... , Sm a.nd m directed edges

(S1, S), ... ,(Sm, S). Direction on a.n edge indicates the parentage of sets. The edge (Si, S)

directed from Si to S indicates that Si is a pa.rent set of S. A directed edge (Si, S) of the

DG is labeled with the min/max value of Son Si,5 A DG for the University domain appears

at the end of this chapter as Figure 2.15.

6 A notation similar to the domain graph appears in [16) where it is called the association graph a.nd in

[88] where it is called the database graph. The association graph of [16] is represented as a first normal

form binary relation AG. A pair (e, a) belongs to AG if e names a primitive set and a names a.n association

for which e is a parent set. The aaaocia.tion graph is a restriction of the domain graph because parent sets

of &BBOciations cannot themselves be ueociations. No such restrictions are imposed in the data.base graph

of (88}. Although the data.base graph is an undirected graph, different types of vertices are distinguished

(entity set, &BBOciation) which permits the edges to be treated as if they are directed. In contrast with the

domain graph, the &BBOcia.tion graph has no edge labels, and the edges of the database graph are labeled

with ma.x values but not min values.

35

DEPARTMENTS
DNO MGR PROJECTS

PNO PNAME MGR CITY
314 516 17 CGA 582 VAN

23 HP 621 LA
29 AB 582 LA

218 713 18 NBX 582 WA
37 NFL 621 LA

Figure 2.7: An N F 2 Data Relation

Assumptions

It is assumed that min/max values a.re available for labeling the edges of the DG. A second

assumption is that the min/max values assigned to the edges of the DG are consistent; that

is, that extensions exist for the sets named in the DG for which the constraints expressed

by the min/max values are satisfied.

The N F 2 Data Model

The Non-First Normal Form (N F 2) data model [75, 49, 50] is obtained by extending the

relational model by permitting elements of relations to themselves be relations. In the exam-

ple of Figure 2.7 the DEPARTMENTS relation has columns DNO, MGR, and PROJECTS.

The PROJECTS column in its role as a relation h'.a.s columns PNO, PNAME, MGR, and

CITY. An N F 2 relation is a hierarchy of relations. The relation at the top of the hierarchy

is called the root relation and the others are called subordinate relations. A relation with

no column whose elements may also be relations is called a leaf relation.

Column names a.re unique within the immediate subordinates of any relation. Full path

names for columns are obtained by naming all the relations in the hierarchical pa.th starting

36

at the root and moving to subordinate relations. The name R[A] references column A of

relation R. If A is itself a relation then the notation can be used again to reference a column

(say B) of A. R[A][B] parses as (R[A])[B].

The first normal form requirement of the relational model imposes on relations the

condition that column values are indivisible. An N F 2 relation is not in first normal form

because column values may have a substructure: Such relations are said to be unnormalized.

The N F 2 Object Model

The N F 2 object model is an expansion of the N F 2 data model to include the concept of

an entity. In the N F 2 data model the user must define his or her own keys. In the N F 2

object model, user defined keys are permitted but, in addition, the system implements a

key for each non-leaf relation by associating with each a set of surrogates used to denote

entities.

A relation is viewed as describing one type of entity. In the N F 2 data model, if the name

R[A] references a column which is itself a relation, then an inclusion constraint involving

R[A] (e.g. R[A] s; ...) is not meaningful. In the N F 2 object model, inclusion constraints

of this form are meaningful because the name R[A] refers not to the column A of R but to

the set of entities describe by that column.

Figure 2.8 illustrates the N F 2 object relation that corresponds with the N F 2 data rela,..

tion of Figure 2. 7. The columns Dept and Proj contain surrogates which denote department

and project entities, respectively. The entity surrogates are generated and maintained by the

system. They are not part of the users view of the database, which is to say that the columns

37

DEPARTMENTS
Dept DNO MGR PROJECTS

Proj PNO PNAME MGR CITY
dl 314 516 pl 17 CGA 582 VAN

p2 23 HP 621 LA
p3 29 AB 582 LA

d2 218 713 p4 18 NBX 582 WA
p5 37 NFL 621 LA

Figure 2.8: An N F 2 Object Relation

Dept and Proj are actually hidden from the user. The user references column Dept by the

name DEPARTMENTS, and column Proj by the name DEPARTMENTS[PROJECTSJ.

Suppose that the schema includes a name COMPANIES[PROJECTS]. The following state-

ment is an example of an inclusion constraint, and this particular one states that (in the

database associated with the schema) every entity described by the DEPARTMENTS[PROJECTSJ

column is also described by the COMPANIES[PROJECTS] column:

DEPARTMENTS[PROJECTS] ~ COMPANIES[PROJECTS]

The inclusion constraint is meaningful only if the columns referred to on either side of the

symbol ~ describe the same types of entities (e.g., projects). The N F 2 object model is

described in greater detail in Chapter 6.

2.3.4 An Architecture for a Current Database System

We ta.ke as a. current architecture for database systems the one described in [63]. The m<>-

tivation for choosing this one is that it is a standard architecture, a.nd we wish to assume

only standard database capabilities to support the natural language interface. The architec-

38

ture is ba.sed on one that has been accepted by ANSI/SPARC and that is being considered

by ISO as a reference model for database systems. ANSI is the American National Stan-

dards Committee on Computers and Information Processing, and ISO is the International

Standards Organization. The relevant reports are (86] and (9) .

rein

rel

rel

valueset

val

The Core Metaschema

rdas

val

... -~ ... "'
/~olumn\
~ \

nam1f ...
coin

column

col

col

►

val

◄ ~- ►

relation[rel] = reln[rel)

column[col] = coln[col]

valueset[val) - vset[val]

rdas[rel] = relation[rel)

rdas[val] = valueset[val]

rdas[col] = column[col]

Figure 2.9: The Core Meta.schema

The core meta.schema is a schema for a relational database that records information about

relational database schemas. Figure 2.9 adapted from [63] illustrates the core meta.schema

for a self-describing data.base system. The inclusion constraints have been added for clarity.

Broken circles denote primitive value sets and full circles primitive non-value sets. A box

39

denotes a column, and a contiguous string of boxes denotes a relation. The value set of a

column is indicated by connecting the circle that denotes the value set with the box that

denotes the column.
y

Double headed arrows point out columns the values of which uniquely identify tuples in

the relation. For example, each value of the column col of relation rdas occurs in at most

one tuple of the relation. Such a column is called a key. The notation can also be used to

point out compound keys. In this case the double headed arrow will span multiple columns

of the relation.

The unary relations relation, valueset, and column represent relations, value sets, and

columns in existence. The columns reln[mame], coln[cname], and vset[vname] associate

relation names, column names, and value set names with existing relations, columns, and

value sets. The relation rdas gives the value set and relation associated with each column.

Every column in existence is associated in rdas with a value set and a relation. Every

value set in existence and every relation in existence is associated in rdas with at lea.st one

column.

Operations in the Metaschema

Insert and delete operations are defined in [63] on each of the relations relation, column,

reln, and rdas. The operations are specified in a Prolog like language and they enforce

the inclusion and key constraints that are stated in Figure 2.9. An operation comprises

a collection of assertions called update dependencies. The language for writing update

dependencies is briefly described here, and the insert operation on relation is provided for

40

illustration.

Primitive operations and predicates are those provided by the language. The primitive

predicate var(x) is true if variable x is uninstantiated and false otherwise. Primitive

predicate non var(x) is the negation of var(x). The primitive operations are assert, retract,

read, write, new, and break. assert(r(t)) adds tuple t to relation r, and retract(r(t)) deletes

t from r. read(x) reads a value from the screen and binds it to x, and write(x) writes the

value bound to x to the screen. new(r(x)) with r a unary relation defined on non-value set

D, binds a new entity surrogate of D to x. All of the primitive operations evaluate to true.

Each update dependency has the form < op >-+< cond >, < op1 >, ... , < OPn >

where < op > is the operation being defined, < cond > is a condition which may be

either one of the primitive predicates or a predicate of the form < relationJiame > (<

variable/constantJist >) where variable/constantJist is a list of variables or constants

(e.g., rdas(x, y,c)), and each< OPi > is either an operation, itself defined by a collection of

update dependencies, or one of the primitive operations. Each < opi > is referred to as an

implied operation.

< op > has the form < op_name > (< relationJiame > (< variableJist >)). For the

existing operations {the ones that have been defined in [63] as part of the core meta.schema)

< op_name > is one of insert, delete, or modify, and < relation-name > is the name of a

core meta.schema relation. All variables in < variableJist > a.re assumed to be universally

quantified. All variables in the variable lists of the < opi > which do not appear in

< variableJist > of< op> a.re assumed to be existentially quantified. All variables range

over primitive sets.

41

insert(relation(R))
-+ var(R),

new(relation(R)),
insert(relation(R)).

-+ nonvar(R) A relation(R).

-+ nonvar(R) A -,(relation(R))
assert(relation(R)),
insert(rdas(R,-,-),
insert(reln (-,R)).

Figure 2.10: Insertion into relation

Figure 2.10 illustrates the insert operation on the relation relation of the core metaschema.

The first update dependency is read as follows: If .the variable R is uninstantiated, then

a new relation surrogate is created and inserted into relation relation. The second is read

as follows: If R is instantiated and R is already in relation relation then do nothing. The

operation succeeds with the DB unchanged. The third update dependency is read as fol-

lows: If R is instantiated and R is not in relation, then insert it into relation. The insertion

triggers insertions into relations rdas (because every relation has at lea.st one column) and

rein (because every relation has a name). Insertion of the tuple (R,-,-) into relation rdas,

for example, will result in a prompt to the user to provide values for the missing entries

denoted by '_,.

This concludes oUl' coverage of background concepts needed to understand the thesis.

In the remainder of this chapter the significant contributions of the research are outlined.

42

2.4 Knowledge Sharing for DB Schema Design and NL Un-

derstanding

Different demands are imposed on a knowledge representation strategy by the NLI and

the DB system. The NLI needs a language for representing the meaning of NL requests

that is independent of the structures of the DB. The DB system, on the other hand, is

concerned with structures for representing data efficiently. To solve this dilemma, it is of

great importance to choose the appropriate knowledge representation strategy.

Noticing that Gilmore's SET model [31] provides a suitable knowledge representation

strategy both for NL processing and for constructing the DB schema, it was natural to

choose this model as the basis for our design strategy. Figure 2.11 gives an overall design of

our proposed system. Here the arrows denote information flow. It is particularly noteworthy

that the SET schema not only provides knowledge for constructing the relational DB schema

(previously researched by Gilmore [31] and Storey and Goldstein [80]) but more significantly

provides knowledge for the purpose of adapting the natural language interface (NLI) to a

new domain.

Knowledge ----­
for

Knowledge ------....
NL

for
SET Schema +--la.I Relational DB

Interface NL

processing -----

schema------....

design

Figure 2.11: The SET Schema - a Bridge between the NLI and the RDB

43

Portability is the ease with which an NLI can be adapted to a new domain and database,

and the enhancement of portability is a result of our design strategy. Capturing knowledge

from the SET schema reduces the amount of work required for adapting the NLI to a new

domain because the same work has previously been.carried out for the purpose of designing

the DB schema.

2.4.1 A Semantic Relatedness Measure in SET Schemas

A measure of semantic relatedness in relational schemas and its application for resolving

semantic ambiguity have been illustrated in Section 2.3.2. In this approach, the relational

schema is represented as a graph G whose nodes denote relations of the schema. An arc

(Rl, R2) is an arc of G if the relations denoted by Rl and R2 are allowed to be joined.

The edges of G are undirected and each has a weight of 1. A join path for set of vertices

V is a subtree of G that contains the vertices in V and each of whose leaf nodes is in V.

If a natural language data.base request has more than one possible join path, the minimum

weight one is taken to be the best one for the request.

A semantic relatedness measure (SRM) in Entity-Relationship (ER) [12] schemas has

been proposed by Wald and Sorenson [89, 88, 87] to solve the query inference problem.6

The ER-schema. is represented a.s a. graph the nodes of which denote entity sets, relationship

sets, and attributes a.s defined in [12]. The weight of a.n edge is dependent on the direction

9 A goal in designing a query language (QL) is that the QL should free the user from concerns about the

structure of the database (eg., which relations are used to store the data, which types of data are stored in

each of them). A QL query may map to more than one DB query. The query inference problem is to choose

the best DB query from among the p088ible ones for a given QL query.

44

in which it is traversed (e.g. If it is traversed from the entity set to the relationship set it

may have a different weight than if it tranversed from the relationship set to the entity set.)

Certain QL queries called tree queries can be represented as subtrees of the ER-graph.

The weight of a subtree is measured with respect to a target graph TG which is the set

of vertices referenced by the query. The weight relative to a vertex v E TG is the sum

of the weights of the edges as they a.re traversed starting at v. The weight of a subtree is

the minimum of the relative weights over all v E TG. When a given QL query must be

represented by more than one subtree, the minimum weight subtree determines the best

database query for the QL query.

In this thesis a measure of semantic relatedness in SET schemas is proposed as a basis

for resolving other types of ambiguities in natural language requests, specifically, word sense

ambiguities, semantic ambiguities, and post noun modifier attachment. The overall process

is illustrated in Figure 2.12 where the arrows indicate data flow. The possible interpretations

ET
Schema

semantic
relatedness measure

solutions to
linguistic problems

Figure 2.12: Capturing Knowledge from the SET Schema to Solve Linguistic Problems

for a request are ordered by the semantic relatedness measure from most likely to least likely,

with some interpretations ruled out completely.

Wald and Sorenson's measure uses knowledge expressed by the max value, but not the

min. Our SRM in SET schemas is similar to Wald and Sorenson's, but more general because

45

it uses knowledge expressed by both the max and the min.

An SRM in SET schemas (and ER-schemas) is better than one in relational schemas for

the following reasons:

1. The arbitrariness of the relational schema design affects the results of the measure. A

common way for two relational schemas to differ is that one relation is used in one

schema to express some information while two relations are used in the other schema to

express the same information. The join path consisting of the one relation and the join

path consisting of the two relations will have different weights. In contrast, our SRM in

SET schemas is very insensitive to the arbitrariness of the design of the SET schema. In

Section 4.5.1 we investigate the sensitivity of our heuristic to variations in the schema.

2. Distance in relational schemas is based on the structure of the database. Although

knowledge expressed by min/max values is used to make decisions about DB structure,

we cannot get back from the structure, all of the knowledge that was used for designing

it. To illustrate, consider the following domain graph and the relational schema designed

from it which describes relations Prof JJept and Dept. Some of the information in the

domain graph is lost in the process of designing the database schema. Whether the

min value of PD on Dept is 1 or O, the given relational schema is a correct design. It

is not possible to determine from the relational schema whether the min value of PD

on Dept is 1 or 0. The information that every department has at least one professor

is available in the domain graph but is lost in the process of designing the relational

schema.

46

Professor--+ PD - Dept

(1, n) (1, n) or (0, n)

Prof _Dept Dept
Pro/id Deptid Deptid Name

2.5 Using the Database Extension to Provide Knowledge

A central problem in translating a natural language request into a relational database query

is that of associating primitive constituents in the input request with names of columns in

the formal query. Consider the natural language request "List all the red cogs". The

information is not available in the request that red is a color and cog is the name of a part.

The problem is typically solved by storing the information in the lexicon. Sample entries

in the lexicon of an NLI to a relational database system follow:

(cog (coln (pn~e of part)))

(red (coln (color of.part)))

The entry for red states that red is a member of the color column of the part relation,

and similarly for the entry for cog. Using the database to provide column information [41]

is useful for improving portability. A method of capturing this knowledge from a current

database system is described in Chapter 5.

2.6 A Portable Natural Language Interface

Current database systems are designed to be extendable to support a variety of applications

each of which may use a different knowledge representation strategy. In this thesis, a

47

new architecture for natural language interfaces is proposed that takes advantage of the

extensibility features of a standard RDB system to permit the NLI to be easily ported

between domains and databases. Figure 2.13 illustrates an architecture for an enhanced

NLI, denoted NLJ+. Previous portable natural language interfaces can be logically separated

into a linguistic core [72) and a database component. The DB component is involved with

fitting the NLI to the available database system. An NLJ+ is an NLI enhanced with a

component that is involved with Jitting the database system to the NLI. We will refer

to this new component as the data management strateg11 (DMS), and its purpose is to

enhance portability. 7

A relational meta-DB describes relational schemas, but we wish to capture knowledge

for natural language understanding from SET schemas. To fulfill our goal, we had to

make the following additions to a standard RDB system. We added new relations to the

meta.database, added corresponding operations for updating those relations, and extended

operations used for updating the existing meta.database relations. These additions are part

of the DMS which provides the NLI with a richer source of knowledge than would be

available from the RDB alone, while making use of knowledge that is already available as a

result of the DB schema design process.

Chapter 5 presents a.n overall design for an NLI+, outlines the interfaces between the

NLI and the DMS, and introduces heuristics for using the knowledge in SET schemas to

7The euential difference between fitting an NLI to the DB system and fitting a DB system to the NLI

is that capabilities of the DB system are used to fit the DB system to the NLI, whereas in the other case

programming language a.nd other more general capabilities are used. The two are complementary rather

than competing approaches for interfacing a natural language understander with a database.

48

resolve ambiguities in the meaning of NL requests. Chapter 6 describes the DMS in more

detail. A preview of the DMS is given in Subsection 2.6.1 that follows:

LC

NLI

cc

~

Legend
LC - linguistic core

DC - database component

OMS - data management
strategy

NLI - natural language
Interface

+ NLI - enhanced natural
language interface

Figure 2.13: An Enhanced Natural Language Interface

2.6.1 The Data Management Strategy

Figure 2.14 illustrates a layering of schemas each one based on a different data model

which we use as a basis for structuring the DMS. The problem of mapping between a SET

schema and a relational schema structures naturally in this fashion. The arrows indicate the

association of a schema with raw data which yields an interpretation a.s defined in Section

49

2.2. However, the raw data may itself be a schema. The process of describing the different

schemas moves in a direction opposite to that indicated by the arrows, because knowledge

needed for the design of the N F 2 object, N F 2 data, and relational schemas is provided by

the SET schema.

relational
schema

raw i
data_. relations

Ni=2 data NF2 object
schema schema

i Non-First i Non-First
_. Normal Form _. Normal Form

relations e.ntity-relations

SET
schema

i sets and
_. associations

Figure 2.14: A Layering of Schemas to Support SET Schemas

An Example from the University Domain

This subsection gives an example of the relationship between the different types of schemas

illustrated in Figure 2.14. A SET schema for the university domain is illustrated using a

graphical notation in Figure 2.15.

The entities of interest in the university domain are students, courses, professors, and

departments. When reading the SET schema, we can think of the sets Student, Course,

Prof, and Dept as containing these entities, but when the SET schema interprets a collec­

tion of data it is necessary for each entity to be denoted by a data object. The associations

of interest are as follows:

SC associates with a student the courses that he or she is taking

50

SCG Course

_ / " (O,n) / "'(1,n) (07 (1,1)"' / ~
Grade SC GP / ~•)

SN ame Student Dept Prof P Name

(0~ /'~ 7 ~ ~I~ /'n)
SN SD PD PN

Figure 2.15: Partial SET Schema for the University Domain

CP associates with a course the professor who teaches the course

SD associates with a student the department in which he or she is registered

PD associates with a professor the department in which he or she works

The sets Student, Dept, Prof, and Course are sets of entities that exist in the world, and

the sets SN ame, P Name, and Grade are value sets. An attribute is a binary association

with one parent an entity set and the other a value set. The attributes in the university

domain (illustrated in Figure 2.15) are as follows:

SCG associates with a student s and course c the grade obtained by s in c

SN associates with a student his or her name

PN associates with a professor his or her name

The min/max value of SC on Course is (O,n) which states that there are at least zero

and at most any number of students registered in a course. This is to say that there is no

51

constraint expressed by the min/max value of SC on Course. The min/max value of SD on

Dept is (1, n) which states that there is at least one student registered in every department.

The remainder of this example illustrates the N F 2 object, N F 2 data, and relational

schemas for part of the SET schema for the university domain.

The ma.ny-to-ma.ny association between Student and Prof through Course is repre­

sented by three N F 2 object relations, one for Student, one for Prof, and one for Course,

a.nd a pair of inclusion constraints to link the courses taken by students with the courses

taught by professors. The names of columns serve no purpose in specifying the types of

objects that may appear in columns. The term type will be used to refer to the primitive

sets in the domain which, for the university domain, include the value sets SN ame, Grade,

and Pname and the non-value sets Student, Course, Prof, and Dept.

An on or onto association is represented by a pair of inclusion constraints. In the N F 2

object schema the following inclusion constraint states that every course is taught by at

least one professor:

COURSES ~ PROFESSOR[COURSES]

In transforming the object schema (Figure 2.16) to a corresponding N F 2 dtta schema

(Figure 2.17), columns must be introduced to explicitly represent entities. In the example,

(Figure 2.17) the columns that have been introduced for this purpose are STUDENTS[SID],

STUDENTS[COURSES][CID], PROFESSORS[PID], PROFESSORS[COURSES][CID], and

COURSES[CID].

The mapping from a.n N F 2 data schema to .a cqrresponding relational schema involves

52

STUDENTS
SNAME I COURSES

I CNAME I GRADE

PROFESSORS
PNAME I COURSES

I CN AME I TIME

COURSES
CNAME

STUDENTS[COURSES] ~ COURSES

PROFESSORS[COURSES] ~ COURSES

COURSES ~ PROFESSORS[COURSES]

Figure 2.16: Partial N F 2 Object Schema for the University Domain

STUDENTS
SID I SNAME I COURSES

I CID I GRADE

PROFESSORS
PID I PNAME I COURSES

I CID I TIME

COURSES
CID CN.AME

STUDENTS[COURSES][CID] ~ COURSES[CID]

PROFESSORS[COURSES][CID] ~ COURSES[CID]

COURSES[CID] ~ PROFESSORS[COURSES][CID]

Figure 2.17: Partial N F 2 Data Schema for the University Domain

53

STUDENTS
SID SNAME

PROFESSORS
PID PNAME

COURSES
CID CNAME

STUD_COUR PROF_COUR
SID CID GRADE PID CID TIME

STUD_COUR(SID] ~ STUDENTS[SID]

STUD_COUR(CID] ~ COURSES(CID]

PROF _COUR(PID] C PROFESSORS(PID]

PROF _COUR(CID] ~ COURSES(CID]

COURSES(CID] ~ PROF _COUR(CID]

Figure 2.18: Partial Relational Schema for the University Domain

for each root N F 2 data relation. The relational schema corresponding to the previous N F 2

object schema is illustrated in Figure 2.18

The N F 2 relational, N F 2 data, N F 2 object and SET schemas are redundant descrip-

tions of the same knowledge. The additional storage requirement is not a significant dis­

advantage. However, it would be a significant disadvantage if the database administrator

(DBA) had to design each schema and record it in the metadatabase. Fortunately, we can

make use of the results of a large body of research aimed a.t automating this process. In

particular, work has been done on generating a relational schema that expresses the same

knowledge as a given SET schema [31, 80] and, further, on generating an N F 2 data schema

that expresses the same knowledge as a given relational schema [73].

The advantage of our approach lies in the conceptual clarity that it introduces to the

database component of the natural language interface. It is easier to translate the internal

representation of a natural language request (expressed in the context of a SET schema) to

54

an N F 2 object query and the N F 2 object query to a relational query than it is to go di­

rectly from the internal representation to a relational query. Furthermore, knowledge about

how the objects in one schema correspond to those of another is useful for automatically

generating the formal DB query.

2.7 Summary

This chapter has introduced terminology and background concepts, and summarized the

research contributions of the thesis. As part of the background concepts, five linguistic

problems and four data models have been described.

The five linguistic problems serve as a focus for designing an NLI that is portable from

one domain to another. Knowledge is captured from the SET schema to solve the given

problems. Domain portability is enhanced because the SET schema is already available as

a result of designing the relational database schema.

The four data models serve as a basis for designing an NLI that is portable from one

database to another. Knowledge about the mappings between schemas based on the dif­

ferent data models is useful for translating the internal representation of a request to a

relational database query. Knowledge about the mappings is generated as a result of de­

signing the relational database schema. If that knowledge can be automatically provided to

the NLI, then the ease with which it can be adapted to a new database will be enhanced.

55

Chapter 3

Portable· Natural Language

Interfaces

This chapter provides a survey of approaches to achieving portable NL interfaces. In Section

3.1 a classification of the ways in which a.n NL interface can be portable between domains and

databases is given. In Sections 3.2-3.5 previous approaches to achieving the various types

of portabilities identified in Section 3.1 a.re examined. Section 3.6 includes an examination

of some ideas proposed by Harris and implemented in the ROBOT system (now called

INTELLECT) for using the database to achieve portability. The chapter concludes with a

description of the TEAM system (Transportable English database Access Medium). TEAM

is a very ambitious project that began in 1980. A detailed description of the system has

recently appeared in the literature[36].

56

3.1 Types of Portabilities

3.1.1 Domain Portability

Eskelin said "99 per cent of the calls

PTL received in response to Bakker's

resignation were favorable."

The Vancouver Sun, March 21, 1987

Knowledge about the domain is probably necessary for a human to understand am­

biguous sentences such as the one above. Similarly, a natural language interface must be

provided with knowledge about the domain before it is capable of understanding natural

language database requests. The process of providing that knowledge is said to be the pro­

cess of adapting the NLI to a new domain. The term domain portability has been defined

in Section 2.2. Within domain portability we distinguish between syntactic and semantic

portability as in (39].

Syntactic portability of an NL interface is the ease with which the syntactic component

(parser) can be adapted to a new domain. A high degree of syntactic portability can be

achieved by using a traditional grammar (rather than a semantic grammar) because it is

more domain independent. The major disadva.ntag~ of a: semantic grammar is that it tends

to be domain specific. In order to adapt the NL interface to a new domain the grammar

must be rewritten.

Semantic portability of a.n NL interface is the ease with which the semantic component

(semantic interpreter) can be adapted to a new domain. A high degree of semantic porta­

bility can be achieved by isolating domain specific semantic information within a separate

57

module of the system.

3. 1.2 Database Portability

The term database portability has been defined in Section 2.2. Within database portability

we distinguish several types of portabilities.

Data Model Portability

A data model is a set of rules for structuring data together with a set of operations that

are permitted on those structures. For example, th~ structures of the relational model are

relations and the operations typically permitted are.join, project, and select. By data model

portability of an NL interface I mean the ease with which the interface can be adapted to

a· new data model.

The usual solution to achieving data model portability is illustrated by the architec­

ture of Figure 2.5. (However, this approach does not solve the problem completely.) An

internal representation is constructed from each natural language input expression. The

internal representation is data model independent in the sense that it can be mapped to

the constructs of various data models. The query generator and query interpreter require

modification to adapt the system to a new data model but the syntactic and semantic

components remain unchanged.

58

Schema Portability

Two different databases may use different schemas even if they describe the same domain

and are based on the same data model. By schema portability of an NL interface I mean

the ease with which the interface can be adapted to a new database schema.

The usual approach to improving schema portability is to use a language for internal

representation that is independent of any particular database schema. In this way the

syntactic and semantic components of the interface do not require modification to adapt it

to a new database schema. This approach can be improved as in the TEAM system (36].

Here the need for modification of the query generator is avoided as well. A distinction is

made between the conceptual schema in which the internal representation (IR) is expressed

and the database schema. A definition of each object in the conceptual schema in terms

of database relations is supplied by the DBA as part of the customization process. The

system uses the definitions to convert the IR of a request to a database query. In the

previous approach, knowledge about how to translate the IR for a particular conceptual

schema to a database query is built into the query generator. This approach used in the

TEAM system can still be further improved.

Database System Portability

By data.base system portability of an NL interface I mean the ease with which the interface

can be plugged in to the database system. Database system portability is concerned with

issues such as the following:

59

1. Translating the formal database query produced by the NL interface to a query ex­

pressed in the query language of the available database system.

2. Translating between the data structures by which metadata in the available database

system are organized and the structures that are expected by the NL interface.

3. Adapting the NL interface to the physical files of a new domain.

3.2 Portability through Simplicity

One way to achieve portability of an NL system is to restrict the language that the system

can understand. The term habitable was introduced in [92]. A language is habitable if

• Users are able without conscious effort to construct statements in the language.

• Users are able without conscious effort to avoid constructing statements that are not

in the language.

The PRE (Purposefully Restricted English) system described in [23] is intended to

provide a habitable subset of English for database access with linguistic coverage broad

enough to satisfy a large proportion of user requests. Every PRE expression is of the

following form: "a.ny number of attributes in a projection at its beginning, any number of

links in its middle, and any number of conjoined selection conditions at its end" [23].

An example of a PRE expression follows:

Wha.t a.re the names, ids, and categories of the employees who a.re assigned

to schedules whose items include appointments that are executions of orders

60

whose addresses contain "maple", whose dates are later than 12/15/83, and

whose statuses are other than "comp" .[23)

PRE expressions are processed from end to beginning. Thus, every PRE expression

corresponds to a database navigation which begins by selecting a collection of records from

a file, follows links from those records through arbitrarily many files, and projects the

records in the final file on a subset of its fields.

Ambiguity is avoided in PRE (rather than resolved) by restricting the possible interpre­

tations of expressions. Every PRE expression has exactly one interpretation, even when its

English equivalent has multiple readings.

Epstein hypothesises that the PRE language is habitable. Porting PRE to a new domain

requires the filling in of tables that capture domain information. No new grammar is

required because PRE does not use a grammar. A high degree of syntactic portability

is trivially provided. Epstein argues that the simplicity that results from restricting the

language permits the system to be portable, and that if the restricted language is habitable

it will be adequate for database access.

3.3 Portability through Generality

Marsh and Friedman [64], on the other hand, argue that a broad coverage grammar is crucial

for portable NL systems. They report on the Linguistic String Project (LSP) system which

processes Navy equipment failure messages. An example of such a message follows [64):

Request NAVSTA Guantanamo Bay Cuba coord SRD assist for repair of KW-7.

61

Door adjustments made without success. Unable to make contact at center of

door. Door possibly warped. Ships force technicians unable to determine exact

cause of failure or make repairs. Failure of one of four KW-7's has minimal

impact on training.

The objective of the LSP system is to represent the information content of the messages

in a form that can be automatically processed. The LSP system was originally used in

a. medical domain for representing the information in patient records and journal articles.

Both types of messages are characterized by their terseness because in both domains the

messages are written under space and time constraints.

The system includes a broad coverage grammar'. The collection of messages in each of

the medical and Navy domains is referred to as a sublanguage. The LSP system permits

productions of the broad coverage grammar to be overwritten with sublanguage specific

productions. In this way the broad coverage grammar can be tailored to different sublan­

guages.

In both domains it was necessary to extend the grammar to handle sentence fragments.

Figure 3.1 from [64] illustrates the mechanism. The figure provides sample productions from

the full and subla.nguage grammars of the medical and Navy domains. In each domain a

subla.nguage specific production for FRAGMENT and a.n updated production for CENTER

(center string of sentence) are provided.

The LSP system executes the grammar in the following way: New productions occurring

in the sublanguage gramma.r (eg. FRAGMENT) are added to the full grammar. For

rules that occur in different forms in the full grammar and the sublanguage grammar (eg.

62

<CENTER>

General English Productions

::= <ASSERTION>/<QUESTION/
<PROSENT> /<PERMUTATION>/
-<ASSERTION>/ <IMPERATIVE>.

Medical Productions

<CENTER> ::= <ASSERTION>/<FRAGMENT>/
<IMPERATIVE>

<FRAGMENT> ::= <SA>/<VINGSTG>/<TOVO>/
<TVO> / <SOBJBESHOW> /
(<NSTG>/<ASTG>/<PN>)/<SA>/
<VENPASS>).

Navy Productions

<CENTER> ::= <ASSERTION>/<FRAGMENT>/
<QUESTION>

<FRAGMENT> ::= <SA>/<TVO>/<SOBJBESHOW>/
<VINGO> / <VENPASS>)/(<NSTG> /
<ASTG> /<PN>)<SA>).

Figure 3.1: Pruning Down a Broad Coverage Grammar

63

CENTER), the sublanguage rule takes precedence.

The authors maintain that a broad coverage grammar is required for syntactically

portable NL systems. Their argument is that it is easier to prune down a large gram­

mar for a particular sublanguage than to build up a grammar that has been developed for

a very restricted domain.

3.4 Portability through Modularity

A recursive transition network is a formalism for specifying language structure that is equiv­

alent in generative power to a context free grammar. An augmented transition network

(ATN) (99, 96) is a recursive transition network augmented with a potentially infinite num­

ber of registers which renders it equivalent in power to a Turing machine. The augmentation

permits the ATN to handle transformational rules which cannot be expressed using a con­

text free grammar.

In the classical architecture for ATN-ba.sed NL interfaces (illustrated in Figure 2.5),

the syntactic and semantic components are implemented as separate modules that run in

series. The syntactic component(parser) produces a collection of parse trees from NL inputs.

The semantic interpreter reads the parse trees rejecting meaningless ones and producing

interpretations for the ones that are meaningful.

The classical approach leads to inefficiencies because the parser spends time generating

parse trees which are later rejected.1 However, the classical approach provides a high degree

1There is a trade-off, however. As pointed out by Harris [41] and Woods [95], doing semantic proce&11ing

during the parse also leads to inefficiencies because the semantic processor spends time generating meanings

64

of syntactic portability.

The use of a semantic grammar provides an alternate architecture for NL interfaces

(PLANES [90], LADDER (45]). The grammar includes both syntactic and semantic in-

formation which results in the integration of the semantic and syntactic components into

one module. Such an architecture for an NL interface provides efficient processing but at

a cost in portability. Porting the interface to a new domain requires that the gram.mar be

rewritten.

An intermediate approach between the syntactic grammar and the semantic grammar

is the cascaded ATN grammar formulated by Woods in 1980 [97]. In the cascaded ATN

approach the syntactic and semantic components run in parallel communicating information

back and forth during the parse.

Both efficiency and portability are provided within the cascaded ATN architecture. Since

the syntactic and semantic components can communicate, meaningless parse trees can be

rejected early in the process. The syntactic and semantic components can be implemented

as separate modules providing the same portability as the classical approach.

The Datalog system [39) is based on a cascaded ATN architecture. The parser invokes

the semantic interpreter to add a constituent of the current clause or phrase to its inter­

pretation. The semantic interpreter passes back a T or NIL, T if the constituent makes

sense and is consistent with previous semantic assignments, and NIL otherwise. If NIL is

returned the parser must back up and try another path;

for parses that will eventually fail syntactically.

65

3.4.1 Semantic Portability

Datalog's semantic component is separated into two parts: general semantics and domain

semantics. General semantics comprises a collection of semantic procedures which provide

interpretations for phrases.2 Domain semantics comprises a base lexicon, an application

lexicon, and a semantic network of domain specific information. The base lexicon contains

syntactic and semantic definitions for general vocabulary. The application lexicon contains

syntactic and semantic definitions for domain specific vocabulary.

To adapt the system to a new domain, the semantic network must be constructed, and

the application lexicon must be updated to include domain specific vocabulary. In addition,

the base lexicon must be updated to reflect nonstandard interpretations for general words.

This is done by setting a pointer in the lexicon entry for the word to point to a semantic

procedure other than the standard one required for its interpretation.

The separation between general semantics and domain semantics provides the basis

for Datalog's semantic portability. The semantic procedures manipulate concepts such as

entity, class, subclass, and a variety of link types in the semantic network. Given that

these concepts a.re general, the general semantics component of Datalog will not have to be

changed very often in adapting the system to a new domain.

3 An interpreta.tion of a claWJe or phrase is expressed in terms of entities, a.ttributes, restrictions on

attributes, and actions such a.a DISPLAY and TEST. An interpretation in Da.talog serves the function of the

atanda.rd query representation of [93] and the internal representa.tion of [10]. It is a da.ta. model independent

statement of the mea.ning of the na.tural la.ngua.ge input expression.

66

3.4.2 Syntactic Portability

The separation between syntax and semantics provides the basis for Datalog's syntactic

portability. Syntactic portability is usually tested by applying the system to a new domain

and checking whether the syntactic component runs without requiring modification. An

alternate test is used in [39).

The authors report on an extension to the system to permit it to interpret a new type

of noun phrase. The new type of noun phrase is characterized by a head noun which

represents an informational object such as average or data. An example of such a noun

phrase is "the average salary of mathematicians". The system was able to answer a question

such as "List the average of mathematicians' salaries", but not "List the average salary of

mathematicians". In the first case the head noun of the noun phrase is the informational

object average. In the second case the head noun is salary.

Extension of the system to handle the new type of noun phrase constitutes a test of

syntactic portability because the new type of noun phrase fa.ils semantically not syntacti­

cally. The new category of head noun was represented in the general semantics component

of the system and semantic procedures were written to interpret noun phrases of the new

type. The authors were gratified and surprised to find that no changes to the syntactic

component were required.

67

3.5 Tools for Customization

NL systems typically require a large amount of information to be supplied to adapt them

to a new domain. A customization program assists the DBA by prompting for the required

information, by making sure that the information provided is consistent, and by deciding,

based on its knowledge of the domain so far, what further information should be provided.

The customization program provides automation of some of the DBA functions thus reduc­

ing the size of the task of porting the system to a new domain or database. In this section

the customization programs of three different NL systems are described.

3.5.1 ASK - A Simple Knowledgeable System

In the ASK system [82) (domain: shipping and cargo information) natural language is used

for retrieving as well as adding to the knowledge base. The addition of new vocabulary,

attributes, and classes of objects is illustrated by the sample session of Figure 3.2 taken from

[82]. The lines preceded by the symbol'>' are input by the DBA or the user.3 The others

are output by the NLI. In the first four commands the DBA creates a class named person,

creates a particular person named Capt. Ahab, creates an attribute captain, and attributes

to Capt. Ahab the property of being captain of the Karlgren. The first four commands

result in the NLI acquiring knowledge about the domain, and hence the system is operating

in knowledge acquisition mode. The final command is a. question from the user about what

31n the ASK system the user interface for question answering and for knowledge acquisition are the same,

but this is not generally the case. See Section 3.5.2 of this chapter for a description of the LDC-1 system [3]

which provides separate interfaces for knowledge acquisition and for question/answering.

68

> Create the class named person
The class named person has been added.

> Create a person named Capt. Ahab
Capt. Ahab has been added as a member of the class person.

> attribute: captain
The attribute captain has been added.

> The captain of the Karlgren is .Capt. Ahab.
Capt. Ahab has been added as the, captain of the Karlgren.

> What person is the captain of eacll ship?
SHIP CAPTAIN
Karlgren Capt. Ahab

Figure 3.2: Knowledge Acquisition in ASK

information is in the database, and hence the system is operating in question/answering

mode.

In adapting the system to a new domain, it is assumed that data from the new domain

exist in formated text files. A program for bulk data input is provided which engages in

a dialogue with the user to obtain specifications of the format and content of the input

files. The content specifications provide the relationship between conceptual objects of the

domain and fields of the physical files. For example, a statement such as "< 1, 2 > is a ship"

where ship has been previously defined as a class and < 1, 2 > identifies a particular field

in the file(the second field of record one) associates the field < 1,2> with the conceptual

object ship.

Once the format and content specifications have been obtained, the bulk data program

adds new vocabulary a.nd data from the input files to the knowledge base. The motivation

for providing such an interface is to permit the NL system to be adapted to physical files

with a variety of formats.

69 ·

3.5.2 LDC-l(Layered Domain Class)

LDC-1 [3]is a natural language interface to domains in which the primary structuring re­

lation is that of decomposition. Such domains are referred to by the authors as layered

domains, and hence the name for the system.

The authors provide a useful classification of the types of knowledge required to adapt

an NL system to a new domain. They distinguish the following:

• domain structures and vocabulary

• semantics for verbs, adjectives, and other modifiers

• information about the physical data files

Domain Structures and Vocabulary

ENTITY NAME? section
SYNONYMS: class
TYPE (PERSON,NUMBER,LIST,PATTERN,NONE)? pattern
GIVE TWO OR THREE EXAMPLE NAMES: cps51.12, cps212.2, rel34.1
NOUN SUBTYPES: none
ADJECTIVES: large, small
NOUN MODIFIERS: none
COMPOSES INTO: course
DECOMPOSES INTO:
MULTIPLE ENTITY? yes
ORDERED ENTITY? no

Figure 3.3: Domain Structures and Vocabulary Acquisitions in LDC-1

Figure 3.3 (adapted from [3]) illustrates a terminal session in which the system acquires

knowledge about a particular entity. Synonyms fo'r the entity name are requested. The

system then asks the user for the entity type. If the type PATTERN is given, the system

70

asks for some examples and infers a pattern based on the examples. For the examples given

in the figure the inferred pattern will be three letters followed by some digits followed by a

dot followed by some digits. When a string belonging to the inferred pattern is encountered

in an input query the system will deduce that it is a section entity without referring to the

database.

The DECOMPOSES INTO and COMPOSES INTO fields provide the decomposition

relation for layered domains. The section entity is part of (COMPOSES INTO) the higher

level entity course, and does not decompose into lower level entities. The MULTIPLE

ENTITY field tells whether the entity is a single object or a class of objects. For a class

the system asks whether the objects are considered as ordered within the class.

Semantics Acquisition

A language is provided for describing verb and adjective meanings. For example, a desirable

instructor might be defined as an instructor who gives a grade of B or above to more than

half his students. The language perm.its this statement to be expressed and associated with

the term desirable instructor. In a natural language request for desirable instructors, only

those instructors who satisfy the meaning of desirable will be retrieved.

Information about the Physical Files

LDC-1 was designed for small databases (on the order of hundreds of records). Efficient

retrieval and data integrity were not of concern to the designers. The primary focus was

on providing simple file formats so that the database could be maintained by office workers

71

without help from programmers or database administrators.

The customization program permits the relationships between fields of the physical files

and conceptual objects of the domain to be specified. Both ASK and LDC-1 are addressing

the data independence problem which is one of the fundamental problems solved by a

database system. They are also providing the standard solution to this problem as proposed

by the ANSI/X3/SPARC Study Group [83]. Data model portability was not a design goal

of either ASK or LDC-1. Both systems interface to a file system rather than a database

system.

3.5.3 TQA - Transformational Question Answering

TQA [19] is an NL interface to IBM SQL-based program products. A design goal was to

reduce the linguistic information which must be supplied so that database administrators

could customize the system to their own databases without help from linguistic experts.

A customization program is supplied which engages in a dialogue with the DBA to obtain

domain information. The TQA customization program differs from those of ASK and LDC-

1 in that it analyses the database to determine what information should be requested from

the DBA.

Automatic Association of Lexicon Information. with Primitive Constituents

in the Input Request

Primitive constituents appear as leaf nodes in the parse tree, and are recognized by the NL

interface using rules that are built into it (e.g. rules of morphology) and information in the

72

Primitive
Constituent
88-H04
81-T14
29-211
27-125
89-R07
BERNEN
18-138
36-068
07-059
71-Dl9
SJ-028

Descriptor

D02-L01D02
D02-L01D02
D02-D03
D02-D03
D02-L01D02
106
D02-D03
D02-D03
D02-D03
D02-L01D02
D02-D03

Table 3.1: Primitive Constituents and Their Shape Descriptors

lexicon. Some primitive constituents appear as values in the database.

The shape of a primitive constituent is the format of the primitive constituent. TQA

uses a limited language for describing formats. Presumeably the term "shape" rather than

"type" as used in programming languages has been used by the author to reflect this

limitation.

A variety of primitive constituents and their. associated shape descriptors are illustrated

in Table 3.1 taken from [19]. The shape descriptor specifies the number of consecutive

digits, the number of consecutive letters, a.nd the relative ordering of these substrings in

the entry. For example, the shape descriptor D02-L01D02 for entry 88-H04 says that it

contains two digits {D02) followed by a. dash (-) followed by one letter {101) followed by

two digits {D02).

When the NL system is in knowledge a.quisition mode, the NL interface automatically

analyses non-numeric data.base columns to obtain shape descriptors for the column entries.

73

For each different shape descriptor the names of columns that contain entries of the given

shape are recorded in a master table of shapes.

When the system is in question/answering mode the shapes of primitive constituents in

the input request are computed using the same algorithm for computing shapes that was

used for creating the master table of shapes. The master table of shapes is interrogated for

the resulting descriptors and their associated column information.

Automatic Entry of Information in the Lexicon

The TQA grammar includes semantic categories such as human, organization, and place.

A table of redundancy rules associates with each semantic category, the names of columns

whose entries belong to that category. For example, the entry

(HU (=COLN (EMP# PHONE)))

in the table states that the entries of the EMP# column in the PHONE relation denote

humans. Common words such as 'who', 'where', and 'person' which do not occur as column

entries in the data.base are associated with column information by means of redundancy

rules. For example, the common word lexicon may contain an entry (=ADDCOLS (HU))

associated with the word 'person' which states that objects denoted by the word 'person'

are human. The customization program will add to the lexicon entry for 'person' all of the

column names associated by the redundancy rules with the category human.

74

Customization of Output

Values in the database are commonly coded to save space. For example, an employee

database might use codes for employee departments (eg. 021 for the Finance department).

The customization program guesses the columns that contain coded values by comparing

the number of distinct entries in the column with the number of tuples in the relation.

If the number is small the DBA is asked to supply the name of a table that decodes the

values. For example, the department code table may contain department codes together

with department names.

The customization program does a word frequ~ncy ·analysis on columns whose entries

comprise multiple words. For words that occur frequently (inc., co., corp.) the DBA is

asked to provide synonyms (incorporated, company). The DBA is also asked whether these

words serve to mark words preceding or following them in the input request as coming from

the same column. For example, if all of the entries in the COMPANY column are names

of companies (ACME BRO Inc., B.C.L.M. Enterprises Inc.) the word 'incorporated' marks

the preceding words (ACME BRO, B.C.L.M. Enterprises) as coming from the COMPANY

column.

The features of TQA for customization of the output are particularily interesting because

the system uses knowledge of its own knowledge. It finds out what information it needs by

analysing the data.base and it prompts the DBA for the required information.

The customization programs of three natural language systems have been described in

this section. All three assist the DBA by prompting for the information required to adapt the

75

NL system to a new domain. The customization program contributes to semantic portability

because it eases the task of providing knowledge required by the semantic processor such

as domain structure information and semantics for adjectives and verbs.

3.6 Using the Database to Achieve Portability

Two ideas for achieving portable NL systems originate in the ROBOT system developed

by Harris in 1978 and now commercially available from Artificial Intelligence Corporation

as the INTELLECT system [41, 43]. First, Harris recommends using the database as a

definition of world knowledge. Second, he recommends using the database as if it were part

of the lexicon. These two uses of the database for achieving portable NL interfaces are

examined in this section.

3.6.1 Using the Database as a Definition of World Knowledge

World knowledge is " ... any piece of information available to the system, distinct from the

sentence itself, that aids in the understanding of the sentence" [41]. To help illustrate the

usefulness of world knowledge for answering NL requests, we will use a database which

comprises two relations that record information about ca.rs. The first one has columns

CAR, COLOR, and MANUFACTURER that together specify the color and manufacturer

for each car. The second one has columns CAR and OWNER that together specify the

owner of each car.

Consider the request "Tell me about green ford cars". If 'green' appears in both the

COLOR and OWNER columns, and 'ford' in both the OWNER and MANUFACTURER

76

columns, then the sentence will have four interpretations.

1. color = green and manufacturer = ford

2. color = green and owner = ford

3. owner = green and manufacturer = ford

4. owner = green and owner = ford

Harris uses the following heuristic for selecting the interpretation intended by the user:

A search is performed for each of the possible interpretations. If all of the searches fail then

the answer to the question is none:' If only one search succeeds then the interpretation

associated with that search is selected as the one intended by the user. If more than one

search succeeds, then the heuristic is of no help. In this case the user is asked to select an

interpretation from among the possible ones.

The heuristic is based on the premise that users tend to ask questions about entities

that a.re described in the current extension of the database. A disadvantage of using the

given heuristic is that, since the extension of the database changes with time, the interpre­

tation selected today for an input request may differ from that selected tomorrow for the

same request. For example, if no green cars are described in the database today, then the

interpretation in which the primitive constituent 'green' is understood as a color will not

be considered, even though tomorrow it will be considered, if in the intervening period the

database is updated with the description of a car that is green in color.
4The NL eyetem ehould report on the preeuppoeitione of the NL input& (66]. Here the preeuppoeition is

that there a.re colore, ownere, and manufacturer• in the data.hue.

77

A better approach would be to use constraints that hold in the domain (eg., A car cannot

have two owners.) as a source of world knowledge. Harris apparently did not have available

a database system which was capable of recording such constraints. The advantage of using

the constraints rather than the database extension to constrain the possible interpretations

of an NL request is that a set of interpretations is obtained that is independent of time.

3.6.2 Using the Database as Part of the Lexicon

Any values that occur in the database are expected to occur in natural language requests.

Harris recommends using the database to provide the associations between column names

and primitive constituents in the input request that appear as entries in the given columns.

Harris reports on the general concepts but not the mechanism as this information is pro­

prietary to the Artificial Intelligence Corporation.

Consider the EMPLOYEE relation of Figure 3.'4 and the request "List the employees

who live in Vancouver and work in the finance department?" An internal representation

for the request is produced that has holes in it corresponding to information that is to be

obtained from the database:

(relation (EMPLOYEE))

(print (name EMP#))

(search (unknown...column = 'finance')

and (unknown...column = 'Vancouver'))

A complete representation can be generated when the facts that 'finance' appears in the

DEPT column and 'Vancouver' appears in the ADDRESS column are obtained from the

78

EMP# NAME DEPT SALARY ADDRESS
E72 Smith personnel 10000 Vancouver
E89 White purchasing 10000 Vancouver
E799 Black finance 20000 Vancouver
E900 Jones personnel 30000 Ottawa
ElO0l Lakes finance 50000 Ottawa

Figure 3.4: Employee Relation

DEPT PTRl PTR2 PTR3 PTR4
personnel 0 480 I I
purchasing 160 I I I

finance 320 640 I I
Figure 3.5: Index on DEPT

ADDRESS PTRl PTR2 · PTR3 PTR4
Vancouver 0 160 320 I

Ottawa 480 640 I I
Figure 3.6: Index on ADDRESS

database. This approach contributes to domain portability because it relieves the DBA of

the task of providing column information for primitive constituents that appear as values

in the database. Since the database may contain thousands of primitive constituents, a

substantial saving in the time required to adapt the NL interface to a new domain is gained.

Column information must be obtained from the lexicon for primitive constituents in the

input request which do not appear as values in the database. For the given request if the

primitive constituent 'Vancouver' does not appear in any database column, then an internal

representation for the request cannot be constructed by relying on column information from

the database.

In the INTELLECT system the answer 'none' is given for requests for which column

information cannot be obtained from either the lexicon or the database. Such a solution

79

does not permit the distinction between the answer 'No' and an answer which reports on

the system's lack of knowledge. For example, if values in the ADDRESS column of the EM­

PLOYEE relation are drawn from the domain CITIES of names of cities, and 'Vancouver'

is not a member of CITIES, then a more appropriate answer to the given request (rather

than 'none') is "I don't know of any city named Vancouver".

In the CO-OP system [56) the problem of unknown primitive constituents is treated as a

special case of word sense disambiguation. A lexicon entry is constructed for the unknown

primitive constituent which designates each of the character columns in the database as

a column in which the primitive constituent occurs as a value. During word sense dis-

ambiguation one of the columns is selected for the unknown primitive constituent using a

number of different heuristics. The advantage of this approach over Harris' is that column

information is provided for input primitive constituents using the same method whether or

not the primitive constituents appear as values in the database.

For efficiency Harris uses indices on relations rather than the relations themselves as

a source of column information. Indices are maintained by a database system to provide

efficient processing of queries.

Assume that the EMPLOYEE relation is indexed on DEPT and on ADDRESS. Rela-

tions for storing the indices are illustrated in Figures 3.5 and 3.6. The columns contain

addresses of tuples in the EMPLOYEE relation. Consider the request "List the employees

who live in Vancouver and work in the finance department?". The information needed

for constructing the internal representation is available from the indices. For example, the

primitive constituent 'finance' appears in the DEPT column of the index on DEPT which

80

I
I·

indicates that the primitive constituent 'finance' is a member of the DEPT column of the

EMPLOYEE relation. The efficiency advantage that is realized in the INTELLECT system

is presumably a saving in disk accesses because the indices are more likely to be in main

memory than the indexed relations.

It ie important to distinguish between the efficiency of obtaining information about

membership in columns using the indices, and the efficiency obtained in query processing

by using the indices. As an illustration of the latter, consider the steps that would be

required for answering the database query corresponding with the given request:

1. From the first index the set of addressee for EMPLOYEE tuples with 'finance' in their

DEPT column ie determined. For the given database this set is {320, 640}.

2. From the second index the set of addresses of EMPLOYEE tuples with 'Vancouver'

in their ADDRESS column is determined. For the given database this set is {O, 160,

320}.

3. The intersection of the two sets of addressee gives the set of addresses of EMPLOYEE

tuples for emplyees who live in Vancouver and work in the finance department. For

the given database this set is {320} indicating that there ie only one such employee.

The EMPLOYEE relation will he accessed to retrieve information on the given employee

which if all contained in one page of storage will require only one disk access. If only

sequential access of the EMPLOYEE relation is permitted then ma.ny more disk accesses

can be expected to process the query.

The designers of the LADDER system (45] argue against Harris' idea based on efficiency

81

concerns. A second concern expressed by the designers of LADDER in disfavor of Harris'

idea is that their databases contain mostly coded abbreviations. The coded abbreviations

are unsuitable as entries in the lexicon because they are unlikely to occur in natural language

requests.

More recent systems (LDC-1 [3] and TQA [19] which have been describel in Sections

3.5.2 and 3.5.3, respectively) employ alternate approaches to automatically providing col­

umn information. In LDC-1 a pattern for the values in an entity set5 is determined by the

system based on a few examples given by the user. In TQA shape descriptors for column

values are automatically computed by analysing the database. The two systems provide

heuristics for computing column information which provide an improvement in efficiency

over Harris' algorithm.

In spite of arguments in disfavor of Harris' approach and recent improvements in ef­

ficiency that have been realized by the use of heuristics, we adopt Harris' approach and

provide an expansion of it, motivated by the following observations: 1.) The LADDER sys­

tem [45] uses a semantic grammar approach within which it would be prohibitively expensive

to query the DB during the parsing process. Within a.n architecture for NL interfaces that

separates between syntax and semantics, the efficiency problem is of lesser concern. 2.) If

the DB contains mostly coded values that are not ,eferenced in NL requests, then a table

for encoding a.nd decoding such as that used in the TQA system [19] can help. The table

needs to be set up once. If the DB con ta.ins thousands of primitive constituents, which is the

usual case, the work required to set up the table would be substantially outweighed by the

6 LDC-1 does not distinguish between value and non-value sets as do the Entity-relationship based models.

82

work needed to provide column information for primitive constituents that appear as DB

values. 3.) The heuristics of LDC-1 and TQA do not guarantee that all columns of which

a given primitive constituent tis a member will be identified by the heuristic, nor that the

columns identified do, in fact, contain t as a member. This is to say that the heuristics are

not guaranteed to work in every case.

3. 7 TEAM (Transportable English Database Access Medium)

The TEAM system is a very ambitious project. It is an experiment in the design of portable

natural language interfaces. A major hypothesis underlying the experiment is stated in the

designers' words as follows: "A major hypothesis underlying TEAM is that, if an NLI

(Natural Language Interface) is constructed in a sufficiently well-principled manner, the

information needed to adapt it to a new database and its corresponding domain can be

acquired from users who have general expertise about computer systems and the particular

database, but who do not possess any special knowledge about natural-language processing

or the particular NLI" ([36], page 175).

In natural language it is common to use a property of an object to refer to the object,

especially when a single object in the domain has the given property. For example, if there

is only one secretary, then the phrase 'the secretary' refers to the person who possesses the

property of having the job of secretary.

In TEAM the DBA must identify the columns in the database that represent properties

that may be used for referring to objects. The DBA also identifies the type of objects

represented by each column and each relation. The properties represented by a column a.re

83

assumed to be possessed by the entities represented by the relation of the column. Columns

that are of the value set name are automatically assumed to represent properties that may

be used to refer to objects (i.e., The DBA need not specifically identify columns which

represent names).

TEAM distinguishes between a name and the object named. If no such distinction is

made, then it is difficult to handle requests in which the primitive constituent 'name' is

being used as a verb uniformly with those in which a name is being used to refer to an

object. For illustration consider the following two requests:

1. "Which books belong to John?"

2. "Which books belong to the person named John?"

If 'John' denotes a person in request (1) and a name in request (2) then different mechanisms

will be required to understand the two requests. In TEAM a. process called coercion permits

the above requests to be handled uniformly. Argument restrictions for the verb 'belong'

require that the prepositional phrase following the verb denote a person and not a proper

noun. The conflict is resolved by coercing the proper noun 'John' into an entity that denotes

the person named 'John'. The coerced value will agree with the argument restrictions on

the verb, and an interpretation for the question will be formed.

TEAM uses information about database keys to determine which columns of a relation

contain entries that may be coerced into entities of the type represented by the relation.

This is a particularly interesting feature of TEAM, for our purposes, because the system uses

information about the database (intensional information) for interpreting natural language

84

requests.

The need for coercion is recognized by conflicting type requirements within a sentence.

Conflicting type requirements between sentences are not considered. In fact, in TEAM the

interpretation of a natural language request is not influenced in any way by the context in

which the natural language dialog occurs. The system will give an inappropriate response

to a pair of requests such as the following:

Show me the students with an A average in computer science.

Which students are computer science majors?

Most people will recognize that the second request refers to students who have been retrieved

by the first request. For the second request TEAM will retrieve all computer science majors

rather than all computer science majors that have an A average in computer science.

For each relation the DBA must explicitly identify the columns that denote modifiers

of objects of the type represented by the relation. In this way some ambiguities that arise

when more than one column of a relation is defined on the same type are ruled out. For

example, in the ship relation if the word 'US' occurs in both the destination and registry

columns, but only the registry column has been identified as a modifier, then the potential

ambiguity for the phrase 'US ships' is ruled out.

Among all the systems that are examined in this chapter, only the TEAM system

provides an internal representation that is independent from concerns about how the result

should be presented. In the Datalog system [39] the language for the internal representation

includes the operations DISPLAY and TEST. Similarly, the semantic primitives proposed

85

by Wood's [95] include the commands TEST a.nd LIST. The system ALPS [93] permits the

internal representation to specify which columns should be printed and whether duplicates

in the answer should be removed.

The TEAM system determines when it has acquired the minimum amount of knowledge

needed to answer questions. The system is in control of the acquisition in the sense that it

prompts the DBA for information and stops when it has acquired a sufficient amount. The

DBA can provide information beyond the minimum by his or her own initiative.

The characteristic of control of the acquisition appears to be unique to TEAM. A number

of natural language systems are compared in [36] on characteristics which include control

of acquisition. For the systems reviewed there, as well as for all of the ones that have been

examined in this chapter (except for TEAM), the system designer or a superuser decides

when enough knowledge has been acquired.

Since TEAM is such an ambitious and recent project, and since the major hypothesis

underlying TEAM is the same as that which underlies the research reported in this thesis,

the subject of similarities and differences between the TEAM approach and our approach

will be addressed later in the thesis in Appendix C.

3.8 Summary

In this chapter different types of portabilities have been identified, and a number of portable

natural language interfaces have been examined. For each one the examination has focused

on a particular way of obtaining portability that is illustrated by the given system. The

approaches used in TQA (19], INTELLECT [41], and TEAM [36) are most relevant to the

86

problem addressed in this thesis - that of using the database system to improve portability

of the interface. In the TQA system the databas~ is accessed during the customization

process to determine what knowledge should be requested from the DBA. In the INTEL­

LECT system the inverted indices of the database system are accessed to obtain semantic

information required for understanding natural language requests. In the TEAM system

information about database keys is used for the same purpose.

87

Chapter 4

A Measure of Semantic

Relatedness for Resolving

Ambiguities in Natural Language

Database Requests

4.1 Introduction

A measure of semantic relatedness based on distance between objects in the relational

database schema has previously been used as a basis for solving a variety of natural lan­

guage understanding problems including word sense disambiguation, resolution of semantic

ambiguities, and attachment of post noun modifiers. The use of min/max values which are

usually recorded as part of the process of designing the database schema is proposed as a

88

basis for solving the given problems as they arise in natural language database requests.

The min/max values provide a new source of knowledge for resolving ambiguities and a

framework for understanding what knowledge has previously been captured by distance

measures in relational database schemas.

Figure 4.1 illustrates general classes of ambiguities that arise in natural language re­

quests. The outermost circle denotes all possible internal representations (IRs) for a given

request. The white area denotes IRs that express interpretations that are inconsistent with

the constraints1 in the domain. The middle circle denotes IRs that express interpretations

that are consistent with the constraints in the domain, but not acceptable by humans as

possible interpretations for the request. For example, in the university domain, possible

interpretations for the request "Dr. Lee's students" (an obvious favorite) are as follows:

1. Students in the sa.me department as Dr. Lee

2. Students taught by Dr. Lee

3. Students supervised by Dr. Lee

A human understander of natural language who is familiar with the university domain will

exclude (1) as a possible interpretation, whereas (2) and (3) would be considered as possi­

bilities. The inner most circle denotes IRs that express interpretations that are considered

by humans as possibilities for the request. Interpretations (2) and (3) above fall into this

class.

1 A (static) conatraint is a condition in the domain that is invariant over time [60].

89

The line between the inner most circle and the middle one is actually quite blurred.

Different humans will admit different interpretations as possible ones. In this chapter a

heuristic is presented which orders the interpretations denoted by the two inner circles from

most likely to least likely, with some interpretations being ruled out completely.

A great deal of research has been done to automatically generate interpretations for

natural language requests that would be considered by humans to be possible in the given

domain. Examples include case grammars (Filmore [26]), semantic grammars (Hendrix et

al. [451), and Woods' ATN grammar coupled with a taxonomic lattice [99]. Each uses some

source of knowledge about the domain for determining likely interpretations. Here, the

SET schema is used as a source of knowledge, the advantage being that the knowledge is

already available as a result of designing the DB sc~ema. In the methods cited above, the

knowledge must be explicitly provided as part of the customization process.

The remainder of this chapter is organized as follows: In Section 4.2 we examine the

relationship between the min/max values and the meanings of words. In Section 4.3 our

heuristic is presented, and in Section 4.4 it is applied to the problems of post noun modifier

attachment (MA), word sense disambiguation (WSD), and semantic ambiguities (SA). In

Section 4.5 we establish that the heuristic works well for resolving ambiguities: First, we

show that the heuristic is unaffected by the arbitariness of the design of the SET schema

(Section 4.5.1). Second, we show that the parameters of the heuristic can be varied without

affecting the outcome of the heuristic (Section 4.5.2). Finally, we show that previous heuris­

tics that capture knowledge from relational schemas for resolving ambiguities are actually

using knowledge expressed by the min/max values (Section 4.5.3). Related work is reviewed

90

Internal __.
represent-

ations

inconsistent
with constraints

In domain

admitted by humans
as possible

interpretations

constraints In
domain but not
admitted by
by humans as
possible
interpretations

Figure 4.1: Classes of Ambiguities in Natural Language Requests

91

in Section 4.6, and a summary of the results of the chapter is presented in Section 4. 7.

4.2 The Relationship between Min/Max Values and Word

Meanings

We will focus on disambiguating prepositional phrase (PP) attachments that use the prepo-

sitions "with" and "in" and on choosing the most appropriate meaning for pre-noun modi­

fiers (in particular, possessives).

The preposition "with" ha.s many different mean.ings. The heuristic developed here deals

with only one of them - the part of relationship which involves an "inseparable possession",

or "possession by nature, not accident" [52]. Examples include "fish with bones", "vase with

handles", "man with sinister expression", and "holiday with all expenses pa.id". Note that

fish bones do not exist without the fish and the bones belong to no fish other than the given

one, the handles belong to the vase and no other, the sinister expression exists as part of

the man and the same expression will not exist as pa.rt of any other man, and the pa.id

expenses are not relevant except with respect to the holiday.

The min/max values represent the part of relationship by what ha.s become known as

an existence dependency association. Given an association X between A and B, the set B

is said to be existence dependent on A if an entity in B cannot exist independently from

an entity in A. (e.g., a volume of a book is existence dependent on the book, a ward of

a hospital is existence dependent on the hospital). If X with pa.rent sets A and B is an

existence dependent association, then the min/max values of X on the dependent set B are

92

(1,1). Note that not all associations with min/max values (1,1) are existence dependent

associations. Existence dependency between 2 sets is easily generalized to an existence

dependency among m sets, m ~ 2. In this case, the existence dependent set is dependent

on the remaining m - 1 sets. If R is an m-ary set and S is an existence dependent parent

set of R, then it is always possible to define a binary association T ~ R x S such that Sis

existence dependent on R.

A weaker form of relationship is the exclusive association. Given an association X

between A and B, the set Bis exclusively associated with A if the min/max value of X on

Bis (0,1).

Pre-noun modifiers that indicate possession (e.g., Dr. Lee's students) are described by

an exclusive association between the sets denoted by the noun and the modifier. (The

set denoted by the noun is exclusively associated with the set denoted by the modifier.)

The most likely meaning for the phrase "Dr. Lee's students" is the one in which a given

student belongs to Dr. Lee, and no other. Weaker forms of pre-noun modifiers (e.g.,

Jones' courses) are possible. In the interpretation "courses taken by Jones", although Jones

takes the courses, they may also be taken by others. However, if there are two possible

interpretations, and one of them denotes an exclusive association, then that one is the most

likely.

The preposition "in" according to the Oxford dictionary [81] means "inclusion or po-

sition within limits of space, time, circumstance, etc.". The favored interpretation for the

preposition "in" is an existence dependency between the modifier and the referent. The

second choice is an exclusive relationship between the two.

93

.
4

4.3 A Heuristic for Measuring Semantic Relatedness

Knowledge expressed by the min/max values is available as a result of the analysis of the

domain that is undertaken for the purpose of designing the database schema. A product

of that analysis is a description of the domain in terms of sets and associations among sets

called the SET schema. A domain graph (DG) is a graphical representation of the SET

schema.

To facilitate our presentation of a heuristic for measuring semantic relatedness, an

expanded version of the DG that appeared in Chapter 2 is given in Figure 4.2. The

sets C Name and D Name a.re sets of course names and department names, respectively.

CPSC_Course is the set of courses offered by the computer science department. The new

associations are defined as follows:

Sup associates with a student the professor who supervises the student's research

DN associates with a department the name of the department

CN associates with a course the name of the course

4.3.1 What is a Word Meaning?

The primitive constituents of a request map to vertices in the DG. The mapping is specified

as pa.rt of the process of adapting the natural language interface to a new domain, and it

gives the meanings (denotations) of the primitive constituents. Some primitive constituents

do not denote vertices in the DG. Examples include noise words ("please" and "quickly",

as in "Please print the good students quickly") which can be ignored without changing

94

CPSC_Course

(O,n)f CN

7~
Course CN ame

/~
Grade SC GP

(O,n1/ (~ Sup ~O,n) / /'!. ·~
SN ame Student Dept . Pro J P Name

~ (1,lVt~ (1,n¼ I ~,n) / ~,1) /4,
(0, .• , ~ / (1,1, ~ / (l,l~N ~ / (1,1) ~ / (O,n)

SN SD (O,n)r PD PN

Dname

Figure 4.2: A Complete Domain Graph for the University Domain

the meaning of the request a.nd determiners ("a", "the", "some", "all") which map into

restrictions on vertices. Some primitive constituents denote more than one vertex, and this

is the source of word sense ambiguities in natural language database requests.

In the examples given here, the following rules govern the assignment of meanings to

primitive constituents.

1. Database values ("CPSC101", "computer science", "Dr. Lee") denote value sets (C Name,

DName, PName, respectively)

2. Nouns (student, course, department) denote non-value sets (Student, Course, Dept).

3. Verbs (take, teach, receive) denote associations (SC, GP, SCG).

95

4.3.2 Query Graphs

To provide a measure of relatedness between primitive constituents of a natural language

request we use the notion of a query graph which has previously been used as a means of

representing database queries [88, 6). Here the query graph is used as a means ofrepresenting

natural language requests. Since NL requests are far more complex than DB queries, it is

necessary to restrict the complexity of the NL requests under consideration.

A natural language request is simple if it requests information about a collection of

related entities. Examples of simple requests in the university domain are:

1. a professor in a department with a student who takes a course named CPSC101

2. a student who received a grade of 'B' in CPSC101

In request (1), for example, a relationship exists between professors and departments,

departments and students, students and courses, and courses and course names. An example

of a request that is not simple is the conjunction of the above two requests:

a professor in a department with a student who takes a course named CPSClOl

and a student who received a grade of 'B' in CPSC101

The student referred to in the left piece of the request bears no relationship to the student

referred to in the right piece. Simple requests are the building blocks for more complex

requests.

The target graph for a simple request Q, TG(Q), is the set of vertices denoted by

primitive constituents of Q. A query graph for Q is any subgraph of the DG that

96

1. is a tree each leaf node of which is contained in TG(Q)

2. contains the vertices in TG(Q).

Not every simple request can be represented by a tree. For example, the following request

would be represented by an undirected-cyclic subgraph of the university domain graph

(Figure 4.2).

a student in a course taught by a professor

who is the student's research supervisor

Such requests are referred to as cyclic requests. A cyclic request is represented as a collection

of trees by removing for each cycle one of the edges that creates the cycle. Since there is

for each cycle more than one edge whose removal will break the cycle, there will be more

than one possible resulting tree. A cyclic request is represented by the collection of all such

possible trees (a forest).

Each edge of a query graph is labeled with a min/max value from which a weight for

the edge and, therefore, a weight for the query graph can be computed. The weight of an

edge labeled with min/max value (p, q) is calculated as follows:

1. If p = q = 1, then the weight is 0.

2. If p = 1 or q = 1, then the weight is 1.

3. If p = 0 and q = O, then the weight is some large value such as the number of vertices

in the query graph.

97

This extends the work of Wald and Sorenson in which the weight of a query graph is based

solely on the max value.

Given a tree with root v and directed edges, the forward edges relative to v are the

edges that point away from v.

The weight of a query graph G relative to v E TG(Q) is the sum of the weights on forward

edges relative to v. The absolute weight (or simply the weight) of G is the minimum of the

relative weights over all v E TG(Q).

Example 4.1. Given the University DG, a query graph for TG(Q) = {Student, Prof}

is (Student --+ SC +-- Course --+ C P +-- Prof). The forward edges relative to Student

are (Student, SC) and (Course,CP). The weight relative to Student is the sum of the

weights on the two forward edges relative to Student (5+ 1) = 6. (The number of vertices in

the query graph is 5.) The forward edges relative to Prof are (CP,Prof) and (SC, Course).

The weight relative to Prof is (5 + 5) = 10. The absolute weight is the minimum of the

weights relative to Student and relative to Prof. Therefore, the weight of the query graph

is 6.

The weight of a cyclic query graph is the weight of the minimum weight tree among those

in the forest trees that represent it.

Let us refer to an edge in the DG labeled with min/max value (p, q) as a (p, q)-edge.

Query graphs are compared by comparing their absolute weights. A query graph with many

(0, n)-edges will have a large weight. If all of the edges are (0, n)-edges, then the weight

will be a x b where a is the number of edges and b is the number of vertices. The semantic

98

relatedness measure (SRM) introduced here requires knowledge to be useful. If all of the

query graphs to be compared have many (0, n)-edges, then the SRM provides little basis

for comparison.

4.3.3 Complementary Heuristics

Hirst (47] points out five information sources or mechanisms that are necessary for resolving

word sense ambiguities. They a.re:

1. a knowledge of context

2. a mechanism to find associations between nearby words

3. a mechanism to handle syntactic disambiguation cues

4. a mechanism to handle selectional restriction negotiations between ambiguous words

5. inference, as a last resort

This thesis investigates the use of min/max values to accomplish items (2), (3), and (4). A

knowledge of context figures in a number of the examples to be presented in Section 4.4. In

preparation for those examples, context analysis (item (1)) will be discussed in greater detail

here. A method similar to one presented in [37, 38] which applies contextual information

to the problem of resolving word sense ambiguities is described. Our aim is not to provide

a general method for using knowledge about context for resolving ambiguities, but simply

to illustrate that context alone is not in practice sufficient.

Context is defined as that pa.rt of the database that is in the current focus. The current

focus is a subgraph of the domain graph determined by the vertices that have been referenced

99

in previous requests in the dialog. The focus changes with time. If the focus gets too big,

then it isn't very useful for resolving ambiguities. In the case of word sense ambiguities,

for example, if the current focus is too big then a given word may refer to more than one

vertex in the current focus. Context analysis on the current focus will be needed to resolv~

that ambiguitiy. On the other hand, the current focus cannot be too small because it will

not contain the contextual information needed for resolving ambiguities.

The focus changes during the course of the dialog in the following way: At the start of

the dialog the focus is empty. When a request is processed, a new focus is constructed which

is the union of the current focus and the minimum weight query graph for the request. If

the request contains word sense ambiguities then it will determine more than one target

graph and, hence, more than one query graph.

Knowledge about context is used for resolving word sense ambiguities in the following

way: Only those vertices in the current focus that are denoted by an ambiguous word are

considered as possible meanings for the word.

Once ambiguities are resolved in the request, the unique query graph for the request

can be added to the current focus. To ensure that the query graph does not get too big,

vertices must be dropped from the current focus. For the purpose of the examples, however,

it will suffice to ignore this step.

Example 4.2. Given the request "Which students run programs", assume that the

noun "program" can mean either a computer program or a recreational program, and that

there are two senses for the verb run, one for each sense of the noun "program". A possible

DG for this situation follows:

100

(1,1) (0, n) (0,1) (O,n)

(C _program - Runl -- Student - Run2 -- R_program)

The min/max values state that a computer program is run by exactly one student, a

student runs any number of computer programs, a student runs at most one recreational

program, and a recreational program is run by any number of students.

If the noun "program" denotes the vertices CYrogram and RYrogram, the noun

"student" denotes Student, and the verb "run" denotes vertices Runl and Run2, then the

possible target graphs and their associated query graphs for the request are:

1. TG1 : { C _program, Run 1, Student}

QG1: C_program - Runl -- Student

2. TG2 : {R_program, Run2, Student}

QG2 : Student - Run2 - R_program

3. TGa : { C Yrogram, Student, Run2}

QGa : C _program - Runl -- Student - Run2

4. TG4: {RYrogram,Student,Runl}

QG4: Runl +-- Student - Run2 - R_program

QGa has a weight greater than or equal to that of QG1 because QG1 is a subgraph of

QG3 • QG4 has a weight greater than or equal to that of QG2 because QG2 is a subgraph

of QG4.

101

The weights of QG1 relative to C Yrogram, Student, and Runl are, respectively, 0, 0,

and 3. The weights of QG2 relative to RYrogram, Student, and Run2 are, respectively,

3, 0, and 1. The weights of QG3 and QG4 are both 1, and of QG1 and QG2 are both 0.

The interpretations "Which students execute recreational programs" and "Which stu-

dents administer computer programs" (query graphs QG3 and QG4) are least favored be­

cause the weights of the corresponding query graphs are high.2 The heuristic does not help

to resolve the ambiguity in the meanings of the words "program" and "run", because the

remaining query graphs QG1 and QG2 have identical weights.

Suppose that a selectional restriction3 on the adjective recreational lists RYrogram

as one of the possible vertices that the adjective could modify. If the request "List the

recreational programs", precedes the request "Which students run programs", then the

vertex RYrogram will be in the current focus, and if there has been no reference during

the dialog to computer programs, then the vertex C Yrogram will be absent from the

2 Usually the interpretations "Which students execute recreational programs" and "Which students ad­

minister computer programs" would be excluded by the use of selectional restrictions which in ea.ch case

state that the verb does not allow the given types of arguments.
3 Selectional restrictions are labels on the arguments of parts of speech. An example of the use of selectional

restrictions is illustrated by the following sentence:

My car drinks gasoline.

If the verb drink is restricted to have an animate subject and a liquid object, then the sense of drink in

which a liquid is consumed must be excluded for the a.bout sentence. Selectional restrictions need not be

absolute, but may express preferences. Thus, if drink prefers an animate object but accepts a machine,

then the metaphorical meaning of the above sentence is understood. The reader is directed to [47] for more

details.

102

current focus. The target graph for the request is

{R..program,Run2, Student}

which determines exactly one query graph.

This example has illustrated the use of context analysis for resolving word sense am­

biguities. The domain involved students, computer programs, and recreational programs.

The verb "run" is ambiguous as is the noun "program". For the request "Which students

run programs" the heuristic does not distinguish the interpretations "Which students run

computer programs" and "Which students run recreational programs". Context analysis

provides a complementary heuristic for resolving ambiguities. If "recreational programs"

have been previously referenced in the dialog, the interpretation "Which students run recre­

ational programs" would be favored.

4.4 Use of Min/Max Values for Resolving Ambiguities

In this section the use of the min/max values for resolving ambiguities in natural language

database requests is demonstrated by providing examples from three different domains. The

first one is the University domain which we have already seen. We also look at a library

circulation domain [34], and a medical domain [84].

4.4.1 The University Domain

The examples presented in this subsection refer to the domain graph of Figure 4.2.

103

Semantic Ambiguity

Let TG(Q) be the set of vertices referenced by simple request Q. The semantic ambiguity

(SA) problem is to select from among the query graphs determined by TG(Q) the one that

corresponds with the best interpretation for Q. The approach presented here, like that of

Wald and Sorenson but with a different weight measure, is to select the interpretation that

corresponds with the query graph of smallest weight where the weight of a query graph is

the minimum of the relative weights over all v E TG(Q).

Example 4.3. There are two interpretations in the university domain that would be

acceptable by humans for the phrase "Dr. Lee's Students" .4

1. "Students taught by Dr. Lee"

2. "Students supervised by Dr. Lee"

Internal representations for the two interpretations follow:

1. [For some x:Student] [For some y:Course][For some z:Prof]

(< x,y >:SC and< y,z >:GP and< z,"Dr.Lee">:PN)

2. [For some x:Student] [For some y:Prof]

(< x,y >:Sup and< y,"Dr.Lee">:PN)

~There are three paths between Student a.nd P Name, but only two of them correspond with inter­

pretations that a.re admitted by humans a.s pOBBibilities within the context of university administration. A

heuristic baaed on context may be useful here to rule out the interpretation "students in the same department

a.s Dr, Lee",

104

request: Dr. Lee's students
word assignments

"Dr. Lee" PName

"student" Student

1. Students in courses taught by Dr. Lee

Student--->SC<---Cou rse--->C P<---Prof--->P N<---P Name
(0,n) (0,n) (1,n) (0,n) (1, 1) (0,n)

7 nodes

weight rel. Student

weight rel PName
absolute weight

(7+1+0)=8

(7+7+7)=21
minimum(8,21)=8

2. Students supervised by Dr. Lee

Student --->Sup<---Prof--->PN<---Pnam e
(1,1) (0,n) (1,1) (0,n)

5 nodes
weight rel Student

weight rel PName
absolute weight

(0+0)=0

(5+5)=10
mlnimum(0, 10)=0

*** favored interpretation is 2 ***

Figure 4.3: Application of Semantic Relatedness Measure to "Dr. Lee's students"

105

TG(Q) = { Student, P Name} determines two query graphs. The path between Student

and P Name through Course and Prof corresponds with interpretation (1), and the path

between Student and P Name through Sup corresponds with interpretation (2). Figure 4.3

illustrates the calculations for choosing the best interpretation. Recall that (0, n)-edges have

a weight equal to the number of nodes in the query graph, and (0, 1) and (1, n)-edges have a

weight of 1. Only forward edges relative to vertex v are counted when computing the weight

relative to v. For computing the weight of the query graph for interpretation (1) relative to

Student, for example, there are three forward edges relative to Student with weights 7 (the

number of nodes in the QG), 1, and O in left to right order. In future examples, detailed

calculations of the relative and absolute weights will not be given, since the calculations are

straight-forward.

Word Sense Disambiguation

Each primitive constituent of a request denotes O, 1, or more vertices in the DG. For

request Q a target graph is obtained by selecting exactly one vertex from each nonempty

set of vertices denoted by primitive constituents of Q. Word sense disambiguation is the

problem of selecting the best target graph TG(Q).

Example 4.4. Consider the request "Jones' courses" and suppose that "Jones" could

be the name of either a student or a professor. Furthermore, assume that both Student and

Prof are in the current focus. In the university domain if "Jones" names a student, then

the request asks for the courses in which Jones is enrolled. Otherwise, it asks for the courses

taught by professor Jones. Figure 4.4 illustrates application of the SRM to choose the best

106

meaning for the ambiguous word "Jones". The SRM selects Prof as the best meaning for

"Jones" and, hence, the favored interpretation is "courses taught by professor Jones".

request: Jones courses
word assignments

"Jones" SName
"course" Course

1. Courses taken by the student Jones

SName--->SN<---Student--->SC<---Cou rse
(O,n) (1, 1) (O,n) (O,n)

5 nodes
weight rel. Course 5
weight rel SName 1 O
absolute weight 5

2. Courses taught by professor Jones

Course --->CP<---Prof--->PN<---Pnam e
(1,n) (O,n) (1,1) (O,n)

5 nodes
weight rel Course 1
weight rel PName 1 O
absolute weight 1

*** favored interpretation is 2 •••

Figure 4.4: Application of Semantic Relatedness Measure to "Jones' Courses"

107

Modifier Attachment

A modifying phrase or clause tends to be physically close to its head noun in a natural

language sentence. However, the linear structure of natural language sentences requires that

if a head noun has multiple modifiers, then the head noun must be physically separated

in the sentence from all but one of them. The process of attaching a modifying phrase or

clause to its head noun is called post noun modifier attachment.

Example 4.5. Consider the sentence fragment "A professor in a large department at a

major university with no graduate students". The phrase "with no graduate students" could

modify "university", "department", or "professor". The phrase "at a major university"

could modify either "department" or "professor".

Notation

The attachment of post noun modifiers is indicated using commas. No comma between

a noun and the modifying phrase or clause that immediately follows it indicates that the

phrase modifies the noun. The way the sentence fragment of Example 4.5 is written "in

a large department" modifies "professor", "at a major university" modifies "department",

and "with no graduate students" modifies "university". One comma between a noun and

the immediately following modifying phrase indicates that the phrase modifies the noun

that appears to the left of it in the sentence separated by one other noun. For the fragment

"A professor in a large department, at a major university", "at a major university" modifies

"professor", not "department". Two commas between a noun and the modifying phrase

indicates that there a.re two nouns separating the phrase and the noun that it modifies, and

108

so on.

Example 4.6. Consider the request "a professor for a course with no students". An in­

ternal representation (IR) for the interpretation "a professor for a course, with no students"

for the corresponding sentence fragment follows:

1. [For some x:Prof] [For some y:Course]

(< y,x >:GP and

[For all z:Student] not< z,x >:Sup)

An IR for the interpretation "a professor for a course with no students" follows:

2. [For some x:Prof] [For some y:Course]

(< y,x >:GP and

[For all z:Student] not< z,y >: SC)

The nouns "student", "course", and "professor" denote, respectively, the vertices Student,

Course, and Prof. To determine the best attachments for the modifiers, we again look at

the query graph. However, the target graph for the given request will be the same regard­

less of modifier attachments and therefore will determine the same query graphs for the two

interpretations. It is necessary to distinguish the different attachments of the modifiers.

We do this by adding vertices to the target graph (TG) to denote modifier attachments.

The TG for the request is {Prof,Student,Course}. The TG augmented with vertices

to denote the attachment of the phrase "with no students" to the noun "professor" is

TG1 = {Prof,Student,Course,Sup}.

109

Course

~)

GP
Sup ~ (O,n)

/ ·~
Student Pro J

"with no students" modifies "professor"

Course (/
SC GP

/ ~)

Student Prof

"with no students" modifies "course"

Figure 4.5: Query Graphs for "a professor for a course with no students"

110

The TG augmented with vertices to denote the attachment of the phrase "with no

students" to the noun "course" is

TG2 = {Prof, Student, Course, SC}.

A query graph for each target graph is given in Figure 4.5. The query graph for "a

professor for a course, with no students" has relati've weights 6 on Student, 6 on Course,

10 on Prof, and 5 on SC. The query graph for "a professor for a course with no students"

has relative weights 6 on Student, 6 on Course, 10 on Prof, and 1 on SC. The heuristic

favors the attachment of the phrase "with no students" to the noun "course".

It is not always possible to denote the attachment of a modifier to a referent by a

vertex that already exists in the DG. In general, a path between the vertices denoted by

the referent and the modifier must be added to the TG. The handling of the more complex

case is illustrated in Example 4.9 to follow.

4.4.2 The Library Circulation Domain

Our second source of examples is a library circulation domain which has been described

by Goldstein in [34]. The entities of interest are libraries, branches of libraries, books, and

borrowers. A domain graph for the library domain that is an expansion of an ER diagram

given in [34] to include min values for all of the associations is illustrated in Figure 4.6.

The domain contains a collection of libraries each of which consists of one or more

branches. A new borrower registers with a library rather than a branch which means that

the borrower's library card is valid at any of the branches of the library. There may be

several different copies of a book which may be distributed across different branches of

111 ·

Libr ~ Library (
1

) Borrower (
1

'
1 ~ Name ◄(O,n) BoName

t(O,n) !~ ~~,n)
LName (1,n) Membership Loan

Subsidiary I
(1,1)i (0,1)

Volume

Br~,n) '1y!
~ollection (1,1)

Copy

i (1,n)

Book

i (1, 1)

Title t (O,n)

BName

Figure 4.6: Domain Graph for the Library Circulation Domain

112

different libraries. The set Volume contains concrete physical objects called volumes which

are copies of a book. A volume belongs to at most one branch. The set Copy associates

with a book the volumes of the book. A volume is a copy of exactly one book, and every

book has at least one volume. The associations Name, Title, and Libr associate borrower

names, book titles, and library names with borrowers, books, and libraries, respectively.

Word Sense Ambiguity

Example 4.7. Figure 4.7 illustrates use of the SRM for resolving word sense ambiguity

in the request "Does the main library have Joseph Conrad?". The ambiguity arises because

the name "Joseph Conrad" could be either the name of a borrower or the title of a book.

The SRM favors the interpretation "Does the main library have a borrower named Joseph

Conrad?".

A proper noun denotes each value set of which it is a member. Assuming that the

possible value sets for the proper noun have been determined (a method for which is given

in Chapter 5), the SRM would be useful for ordering the presentation of alternate inter­

pretations to the user. For example, the system would respond "The main library has a

borrower Joseph Conrad, but Joseph Conrad is also the name of a book". The reverse order

of presentation would be "The main library has a pook titled Joseph Conrad, but Joseph

Conrad is also the name of a borrower."

113

-
request: Does the main library have Joseph Conrad?

1. Does the main library have a borrower named Joseph Conrad?

word assignments
"main" Lname
"library" Library
"Joseph Conrad" BoName

LN ame---> Libr <---Llbrary--->Mem bers hip<---Borrower--->N am e<---BoN am e
7 nodes
weight rel. LName 8
weight rel Library 1
weight rel BoName 8
absolute weight 1

2. Does the main library own a copy of the book titled Joseph Conrad?

word assignments
"main" Lname
"library" Library
"Joseph Conrad" BName

LName --->Libr<---Llbrary--->Subsidlary<---Branch--->Collectlon<---Vo I um e
. . I

BNam_e - - "' >TI t I e < - - -Book- - - >Copy < --

11 nodes

weight rel LName 13

weight rel Library 2

weight rel Bname 12

absolute weight 2

*** favored interpretation Is 1 ***

Figure 4.7: Analysis of "Does the main library have Joseph Conrad?

114

4.4.3 The Medical Domain

Our third source of examples is a medical domain that has been described by Tsichritzis

and Lochovsky in (84] and that is a scaled down version of a real application. The entities

of interest are hospitals, wards of hospitals, hospital staff, doctors, patients, labs, tests,

and diagnoses. The associations of interest are described in Figure 4.8 which also gives the

domain graph for the medical domain. Tsichritzis and Lochovsky give an ER diagram for

the medical domain and the given domain graph is an expansion of that one to include min

values for the associations.

Semantic Ambiguity

Example 4.8. Resolution of semantic ambiguity in the medical domain is illustrated

in Figure 4.9. The request "a patient in a hospital" 'has three interpretations in the medical

domain:

1. a patient who occupies a. bed in a. ward in a hospital

2. a patient who has a doctor on staff at a hospital

3. a patient who has an order for a test at a lab that does work for the hospital

Interpretation (1) is favored over the other two, and (2) is favored over (3).

Modifier Attachment

Example 4.9. Consider the request "a patient in a hospital with tests". The problem

here is to determine whether "with tests" modifies "hospital" or "patient". In either case

115

~spital (O,n)

ffN (1 ,n) l ~L ~n)

(1,~ Staff_Doc Lab

/ (1 1)t \{1,n)
Wa~ ' \ (1,t '{>,n) Doctor LT

(O,n) I 1'(1 1)
WS Occupancy ♦ Test '

f1,1) '-. ·- DPt /41)
Staff (0,1~'~ . _.,A PT

at1ent (O,n)

(O,n) l
PO

(1,1)t

Diagnosis

HW - associates the wards of a hospital with the hospital
WS - associates employees who work in a ward with the ward
Occupancy - associates with a ward the patients that occupy a

bed in the ward
PD - associates with a patient the medical diagnosis(ses)

reached for the patient

DP - associates with a patient his or her attending doctor(s)

Staff _Doc - associates with a hospital those doctors that are
on staff at the hospital

HL - associates with a hospital those labs that are doing work
for the hospital

LT - associates with a lab the medical tests that are to be
performed at the lab

PT - associates with a patient those medical test that have
been ordered for the patient

Figure 4.8: Domain Graph for the Hospital Domain
116

request: a patient in a hospital
word assignments

"patient Patient
"hospital Hospital

1 . a patient who occupies a ward of a hospital

Hospital---> HW <---Ward--->Occupancy, <---Patient

5 nodes
weight rel. Hospital 6
weight rel Patient 1
absolute weight 1

2 a patient who has a doctor on staff at a hospital

Hospital --->Staff_Doc<---Doctor---> DP <---Patient

5 nodes
weight rel Hospital 6
weight rel Patient 6
absolute weight 6

3 a patient who has an order for a test at a lab that does
work for a hospital

Hospital --->HL<---Lab--->L T <---Test--->PT <---Patient

7 nodes
weight rel Hospital 8
weight rel Patient 15

absolute weight 8

••• favored Interpretation is 1 ***

Figure 4.9: Resolution of Semantic Ambiguity in "a patient in a hospital"

117

the phrase "in a hospital" modifies the head noun "patient". There is semantic ambiguity

in the association between patients and hospitals .. For the purpose of the example, we

will assume that the ambiguity is resolved in favor of the interpretation "a patient who

occupies a bed in a ward of the hospital" based on application of the SRM which has been

illustrated in Example 4.8. U the phrase "with tests" modifies "patient", then the request

is for a patient who occupies a ward of a hospital and for whom medical tests have been

ordered. Otherwise, the request is for a patient who occupies a ward of a hospital which

has outstanding orders for tests at some lab. Application of the SRM to this problem is

illustrated in Figure 4.10.

The target graph for the interpretation "a patient in a hospital, with tests" is TG1 =

{Patient, Hospital, Test, PT}. The vertex PT has been added to the target graph to denote

the attachment of the phrase "with tests" to the head noun "patient".

The target graph for the interpretation "a patient in a hospital with tests" is TG2 =

{Patient, Hospital, Test, H osp..Test}. The vertex H osp..Test denotes the attachment of

the phrase "with tests" to the noun "hospital" which is represented by a set defined as

follows:

H osp..Test def
select h:H ospital, t:Test
where [For some l:Lab](< h,l >:HL

and < l, t >:LT)

H osp..Test is the set composition of H L and LT. Min/max values for H osp..Test are

(0, n) on Hospital and (0, n) on Test. These values· are computed by taking the product of

118

request: a patient In a hospital with tests
word assignments

"patient" Patient "hospital" Hospital "test" Test

1 . a patient who occupies a bed in a ward of a hospital and for whom
tests have been ordered

H Ospital---> HW<---Ward--->OCCU pancy<---P atient--->PT <---Test

7 nodes

weight rel. Hospital
weight rel Patient

15
8

absolute weight 1

weight rel Test
weight rel PT

1

1

2 a patient who occupies a ward of a hospital which has orders for
tests at some lab

nodes 10

Hospital --->HL<---Lab--->L T <---Test--->Hosp_ Test

I
--->HW <---Ward--->Occupancy<---P atient

weight rel Hospital 32

weight rel Test 31

absolute weight 22

weight rel Patient 22

weight rel HT

Hospital --->H L<---Lab--->L T <---Test

I I
I --->Hosp_ Test

I
---> HW <---Ward--->Occupancy <---Patient

31

weight rel Hospital 32
weight rel Patient 21

weight rel Test 31
weight rel Hosp_Test 31

absolute weight 21

... favored Interpretation is 1 ...

Figure 4.10: Attachment of Modifiers in "a patient in a hospital with tests"
119

min/max values on forward edges relative to Hospital (to get min/max on Hospital) and

similarly to get min/max on Test, as shown in Chapter 5.

A vertex labeled H ospJ'est is introduced to the DG which introduces a cycle. To avoid

cyclic query graphs we break the cycle thus generating a collection of minimal connected

acyclic subgraphs each of which contains the vertices in the target graph. There are two such

graphs for TG2 which are illustrated in part 2 of Figure 4.10. The query graph determined

by a target graph is the minimum weight subgraph among the ones that are obtained by

breaking cycles in this way.

The SRM favors the interpretation "a patient in a hospital, with tests" which is the most

appropriate one for the given domain based on the following reasoning: The association H L

specifies which labs are doing work for which hospitals. However, the work done by a lab

need not be for a patient who occupies a ward of the hospital nor for a patient of a doctor

on staff at the hospital.5 The tests carried out by a lab belong to that lab and no other

(as stated by the max value of LT on Test), however, we cannot determine from the set

composition H ospJ'est which tests are done for which hospital. If the max value of H L

on Lab had been equal to 1 (a lab does work for at most one hospital), then it would

be possible to determine from H ospJ'est which tests are done for which hospital. Our

semantic relatedness measure, by giving a lower weight to edges labeled with a max value

of 1, favors least the attachment of a modifier to a referent where the two are related in the

6 A query can be written to retrieve all hospitals h and labs l such that some patient who occupies a ward

of h ha.s an order for a teat carried out at l. The result of this query is a subset of H L. Therefore, H L is

partially derivable from the other sets in the domain. Using Codd's terminology (16) H L would be called a

semi-derivable set.

120

domain by a many-to-many association.

4.4.4 Analysis

We have seen a variety of examples from different domains that illustrate the use of min/max

values for resolving ambiguities in natural language requests. In this section the results of

the examples are analysed to gain an understanding of why the heuristic works. Here the

term association will have its mathematical meaning given in Section 2.3.3, and the term

relationship will be used informally to refer to connections between words in sentences or

objects in the domain. The examples have focused on disambiguating prepositional phrase

(PP) attachments that use the preposition "with", choosing the most appropriate meaning

for pre noun modifiers (in particular, possessives), and using the meaning of a verb to

disambiguate the subject and object of the verb.

Our heuristic is intended to be applied simultaneously to the problems MA, WSD, and

SA. The different components of the heuristic interact with each other producing better

results than if each individual component were to be applied separately. In the words of

Jensen and Binot [52] "The cumulative effect of many heuristics, and not the perfection of

each one taken separately, has to do the job".

For the purpose of analysis we can separate out the component of the heuristic that is

being used to solve post noun modifier attachment (MA). Each possible PP attachment is

represented as a set, and the possible attachments are ordered by the extent to which they

represent a set that is existence dependent on the set that represents the meaning of the

request as a whole. This is to say that the natural language request is conceived as a whole

121

and the attachment of a modifier as a part of the whole. A measure of the extent to which

the attachment of the modifier is part of the whole derives from the part of relationships

that build the whole.

Examples 4.6 and 4.9 address the problem of post noun modifier attachment. For

the request "a professor in a course with no students" (Example 4.6) we find that the

attachment of "with no students" to "course" is more part of the request than the alternate

attachment. In the university domain a student is existence dependent on the professor

who supervises his or her research, and one might think that the attachment of "with no

students" to "professor" would be indicated. However, our heuristic is concerned with the

extent to which the PP is part of the remainder of the request, and this occurs when the

PP modifies "course". In Example 4.9 the request is "a patient in a hospital with tests",

and the heuristic indicates that the best attachment of the PP "with tests" is to the noun

"patient". In the medical domain a test is existence dependent on the patient being tested,

whereas no relationship between hospitals and tests previously exists or can be derived.

The results cannot be understood independently from other heuristics that are useful for

choosing the best interpretation for a request. However, an examination of the outcome of

the examples is useful for the given requests which exclude many of the linguistic problems

for which other heuristics would be needed. A complicating factor is that, since the heuristic

relies on global knowledge about the request, it is more useful for lengthy requests than the

simple fragments of requests that are illustrated in the examples.

Examples 4.3 and 4.8 illustrate how the heuristic is used to resolve semantic ambiguities.

For the request "Dr. Lee's students" the interpretation "students supervised by Dr Lee"

122

is favored over "students in Dr.Lee's courses" because the students supervised by Dr. Lee

are exclusively his, whereas students in Dr. Lee's courses may also be in courses taught by

professors other than Dr. Lee.

For the purpose of analysis we can distinguish a component of our heuristic that deals

with semantic ambiguity involving the preposition "in" when it is used in a PP that mod­

ifies a noun. The second example of semantic ambiguity features the request "patients in

hospitals". There were three different possible interpretations in the medical domain for the

request "patients in hospitals", and the one "patients who occupy a bed in a ward of the

hospital" is favored because a patient occupies at inost one ward and a ward is existence

dependent on a hospital. Weaker forms of relationships exist between patients and hospitals

for the other interpretations.

Two examples were given to illustrate use of the heuristic to resolve word sense ambi­

guities. Example 4.7 features the request is "Does the main library have Joseph Conrad?".

Ambiguity resides in the proper noun "Joseph Conrad". The heuristic does not distinguish

among the possible interpretations. A method of testing for membership of proper nouns

in value sets is needed as a basis for a complementary heuristic that reduces the number of

possible value sets that the proper noun may denote before the SRM is applied.

Example 4.4 illustrates the resolution of word sense ambiguity in a pre-noun modifier

that indicates possession. The request is "Jones' courses". We have assumed that ambiguity

remains in the proper noun "Jones" after application of context analysis. In that case, the

interpretation "courses taught by professor Jones" is favored over "courses taken by student

Jones" because in the University domain there is an exclusive relationship between courses

123

and professors, whereas there is no restriction on the relationship between courses and

students.

Based on the results of the examples we conclude that the min/max values model the

part of construction in the English language ("petals of a flower", "handles of a vase~',

"wards of a hospital", "copies of a book") as well as weaker forms of possessive relationships.

In fact, they provide a metric for measuring the strength of the possession (e.g., "petals of

a flower" is stronger than "a professor's students"). Our heuristic reformulates the part

of relationships that are referenced in a natural language request as a part of relationship

between the request itself and the ambiguous components of the request. The favored

interpretation is the one in which there is the strongest part of relationship between the

ambiguous components and the request itself.

4.5 Confirmation of the Heuristic

In this section we establish that the heuristic works well for resolving ambiguities. Section

4.5.1 shows that the heuristic is unaffected by the arbitrariness of the design of the SET

schema. Section 4.5.2 establishes that the parameters of the heuristic can be varied without

affecting its outcome. Finally, Section 4.5.3 shows that previous heuristics which capture

knowledge from relational. schemas for resolving ambiguities are actually using knowledge

expressed by the min/max values.

124

4.5.1 Sensitivity of the Heuristic to SET Schema Design Alternatives

In this subsection, we investigate the sensitivity of our heuristic to the arbitrariness of the

design of the SET schema. Three different ways in which schemas for the same domain may

differ while still expressing the same information are considered. The three different ways

applied in various combinations any number of times permit most of the usual changes in

the schema to be described. We find that the heuristic is very insensitive to the usual ways

in which schemas for the same domain may differ.

A pair (a, b) treated either as an entity or a relationship

Some objects in the real world can be treated either as entities or as relationships. An

example of such an object is a marriage. Schemas for the two alternatives are illustrated in

Figure 4.11.

Male Female

~ ~ (0,1) M . d (0,1) ame
(a)

Male
~ Married Female

(0,1)~ ~~ ~
Husband Wife

(b)

Figure 4.11: Marriage as an Entity and a Relationship

In schema (a), a marriage is considered to be a relationship. Association Married is

125

defined as a subset of the Cartesian product (Male x Female) of two sets Male and Female.

A male may not be married, but if he is, he is married to at most one female, and the same

holds for females. These constraints are expressed by the min/max values of Married on

Male and on Female.

In schema (b), a marriage is considered to be an entity. If male m and female / are

married and that marriage is represented by the entity mf, then the pair (m,mf) is a

member of Husband and the pair (mf,/) is a member of Wife. Since every marriage has

both a husband a.nd a wife, the min values of Married on Husband and on Wife are both

1. Since every marriage has at most one husband and at most one wife, the max values of

Marriage on Husband and on Wife are both 1.

Although they look different, the two schemas express the same information. Likewise,

the domain graphs (DGs) for the two schemas have the same weight. The two new edges

that are introduced in Schema (b) are both (1,1)-edges each of which has a weight of 0.

Otherwise, the edges in the two DGs are identical and their weights are identical because

the two new edges contribute nothing to the weight.

Schema Equivalence

A useful property of a heuristic that operates in SET schemas is that it gives the same

outcome in schemas that have been designed by different database designers for the same

domain. Although different schemas for the same domain may look different, they express

the same information. In order to determine when two schemas express the same informa­

tion, a notion of schema equivalence is needed. The definition presented here is intended

126

to provide a narrow definition for a very difficult concept. We show that under this narrow

definition, our heuristic in invariant to arbitrary decisions in the design of the SET schema.

For two schemas to be equivalent, they must contain the same sets in the sense that for

every set S1 in one there exists a set S2 in the other' such that S1 and S2 are intensionally

equal.6 An implicitly defined set is a set which is not a declared set of the schema but can

be defined in terms of the declared sets.

The following conventions will be adopted for naming sets:

1. Sets that a.re intensionally equal have the same names.

2. Two sets which are related to each other by the entities in one being treated as rela­

tionships in the other, have names of the form S and S'.

For illustration, consider the schema of Figure 4.12 which contains an association X

whose members are treated as pairs. Xis a base set, and AX and BX are defined sets whose

definitions are also given in the figure. Consider schemas (a) and (b) of Figure 4.13. Schema

(a) contains only the primitive and base sets of the schema of Figure 4.12, while schema

(b) contains the sets X', AX' and BX' whose names a.re intended to convey additional

information. In particular, the names indicate that there is a one-to-one correspondence

111£ S1 and S2 are intensionally equal, then at any instance in time the extensions of the two sets are

equal. Consider the converse. Suppose that every student enrolled in CPSC 504 must also be enrolled in the

lab for the course CPSC 504-LAB, and that no student takes the lab without being enrolled in the course.

The two sets "Students enrolled in CPSC 504" and "Students enrolled in CPSC 504-LAB" are extensionally

equal, but are they intensionally equal? We adopt the following view of intensional equality: Two ,et, are

intenaionally equal if and only if the databcue ,y,tem (or the wer of the databa,e system) never allow, them

to be uten,ionally unequal.

127

A B

(m1,n1)
X

(m2,n2)

AX

def AX

select x:A, <X,y>:X

def BX

select <X,y>:X, y:B

Figure 4.12: Association X Treated as a Set of Pairs

128

between X' and X deriving from the fact that the members of X, which are pairs, are

treated as entities of X'. A one-to-one corresondence between AX' and AX derives from

the correspondence between X' and X. The right elements of corresponding pairs of AX'

and AX are corresponding members of X' and X. Similar correspondences are indicated

for BX' and BX.

Definition 4.1. Two schemas are equivalent if

1. They contain the same primitive sets.

2. Every declared set in one can be implicitly defined from sets in the other, and vice versa.

Notice that schema (b) of Figure 4.13 includes a primitive set X' which does not appear

in schema (a) of the same figure. The two schemas are not equivalent by the above definition.

However, our knowledge of the correspondence between the sets X and X' can be used to

construct schemas that have the same primitive sets in the following way: An association

P ~Xx X' is introduced to schema (a) as illustrated in Figure 4.14. Min/max values for

P indicate the one-to-one correspondence. With the introduction of P, we can show that

the two schemas are equivalent. In particular, it must be possible to define every declared

set in (a) from sets in (b) and every declared set .in (b) from sets in (a). When a base

association R in one schema is defined from sets in the other, the defined association T will

have the same parent sets as R and min/max values identical to those of R.

In Figure 4.15, association X of schema (a) in defined in terms of the sets of schema

(b). It follows from the definition that the min/max value of X on A is (ml,nl) and of

X on B is (m2, n2). In Figure 4.16 , association AX' of schema (b) is defined in terms

129

A B

X

(a)

A B

X'

(m1 ,n1) (m2,n2)

(b)

Figure 4.13: Association X Treated as a Set of Pairs and as a Primitive Set

130

..

A B

X

(a)

A B

X'

(m1 ,n1) (m2,n2)

(b)

Figure 4.14: Schemas Augmented with Primitive Sets

131

of the sets of schema (a). A similar definition can be given for BX'. It follows from the

definition that the min/max value of AX' on A and on X' are, respectively, (ml, nl) and

(1, 1). Similar, correspondences between min/max values of the base set BX' of schema (b)

and the implicitly defined set BX' of schema (a) can be easily shown. The two schemas

are equivalent because they contain the same primitive sets and for every declared set Din

one there exists an implicitly defined set in the other which is intensionally equal to D.

def

select

where

X

x:A, y:B

[For some z:X']
(<X,Z>:AX' and <Z,y>:BX')

Figure 4.15: Association X Defined from Schema (b)

def

select

where

ft,X

a:A, z:X'

[For some b:B]
<<8,b>,Z>:P

Figure 4.16: Association AX' Defined from Schema (a)

We wish to show that the outcome of the heuristic introduced in Section 4.3 for mea-

suring semantic relatedness is the same whether it operates in schema (a) or schema (b).

Consider a natural language request with target graph TG1 whose vertices denote declared

132

or implicitly defined sets of schema S1. If two schemas S1 and S2 are equivalent, then for

every target graph TG1 in S1 there exists a target graph TG2 in S2 such that for every set

in TG1 there exists an intensionally equal set in TG2 and the converse. It is important to

permit target graphs to include implicitly defined sets. For the schemas of Figure 4.14 the

set X is a declared set in schema (a) and an implicitly defined one in schema (b).

Observe that if TG1 is a target graph containing any subset of the vertices denoting sets

of schema (a), and TG2 is the corresponding target graph in schema (b), then the minimum

weight query graph determined by TG1 in schema (a) and the minimum weight query graph

determined by TG2 in schema (b) have identical weights. For example, the weight of any

target graph containing X' is zero in both schemas.

An n-ary association treated as a collection of n binary associations

A ternary association ABC with parent sets A, B, and C is illustrated in Figure 4.17 (a)

while (b) illustrates the projections of ABC on each of its parent sets. The set AABC

consists of those pairs < a,< a, b, c > > for which < a, b, c > is a member of ABC, and

similarly for the sets BABC and CABC. It follows that the min/max value of AABC on

A is the same as that of ABC on A. Edges with identical min/max values are pointed out

in the figure by a corresponding numbers of eta.rs on the edges. Since every triple < a, b, c >

which is a member of ABC has exactly one A-component, the min/max value of AABC on

A is (1,1) and similarly for the sets BABC and CABC.

Consider schemas (a) and (b) of Figure 4.18. Schema (a) includes the sets of schema

(a) of Figure 4.17, while in schema (b) each of the defined sets of schema (b) of Figure 4.17

133

(a)
A · ► MBC ◄ (1

'
1 ksc (1

'
1

) ► BABC ◄ • • s . i (1,1)

CABC

t ...
C

(b)

Figure 4.17: Association ABC Treated as a Set of Triples

134

B
def ABC

A~\/~
select a:A, b:B, c:C
where [For some z:ABC'] (<a,z>:AABC' and

<b,z>:BABC' and <C,Z>:CABC'}

ABC
(1,1)/

I (a)
p

(1,1)/
A -•--.►AABC'◄' (1•

1~BC--' __ (1-'1
.... }___.►BABC'◄ fr fr B i (1, 1)

ABC'

def
select

AABC'
a:A,z:ABC'

where [For some b:B]
[For some c:C]
<Z,<a,b,C>>:P

CABC'

t ...
C

(b)

Figure 4.18: A Ternary Association Treated as Three Binary Associations

135

is represented as a base set. There is a one-to-one correspondence between the sets ABC

and ABC' because the members of ABC, which are triples, are treated as entities of ABC'.

The association P ~ ABC x ABC' of schema (a) indicates the one-to-one correspondence.

Proof of Equivalence:

(From (b) to (a)) In Figure 4.18, association AABC' of schema (b) is defined in terms

of the sets of schema (a). Suppose that the min/max value of ABC on A is (m,n). Thus,

every member of A appears as the left element of at least m and at most n triples of ABC.

For a given a E A, whenever there exist b and c members of B and C respectively, such that

< a,b,c >E ABC, there will exist a z E ABC such that< a,z >E AABC'. This follows

from the min/max values of P and from the definition of AABC'. Thus, the min/max value

of AABC' on A is (m, n). It also follows from the min/max values of P and the definition

of AABC' that the min/max value of AABC' on ABC' is (1,1).

(From (a) to (b)) In Figure 4.18, association ABC of schema (a) is defined in terms of the

sets of schema (b). Suppose that the min/max value of AABC' on A is (m,n). We wish to

show that for every a EA, whenever there exists a z E ABC' such that < a, z >E AABC',

there exist b EB and c EC such that< a,b,c >E ABC. This follows from the min/max

values of BABC' on ABC and CABC' on ABC which are both (1,1) and, therefore, the

min/max value of ABC of schema (a) on A is (m,n).

Note that the correspondences hold for the standard as well as general min/max values.

Now that it has been established that schemas (a) and (b) of Figure 4.18 are equivalent, let

us consider the outcome of our heuristic for measuring semantic relatedness in each schema.

Since the weight of a (1,1) edge is 0, the weights o'fthe edges (ABC', AABC'), (ABC', BABC'),

136

and (ABC', C ABC') are all zero. ff the target graph for a request is TG = { A, B, C} then,

although the query graphs for TG in the two schemas are different, their weights are the

same. The principle is easily generalized to n-ary associations, n ~ 2.

An n-ary association treated as a collection of associations of arity less than n

Consider the schemas (a) and (b) of Figure 4.19 . Note that the sets AB and (AB)C of

schema (b) are defined in that figure.

A pair < a, b > cannot be a member of AB without also being the left element of a

pair<< a,b >,c > of (AB)C. Therefore, the min value of (AB)C on AB is 1. The max

value of (AB)C on AB may be either 1 or n. If it is 1, then schema (b) expresses different

information from schema (a), and hence they are not equivalent schemas.

There are three possible alternate schemas for (a), which are illustrated in Figure 4.19

(b), (c) and (d). If any one of the max values of (AB)C on AB, (AC)B on AC, or (BC)A

on BC is 1, then the schema of Figure 4.19 (a) will express different information from the

schemas of (b), (c), or (d). Therefore, we will be concerned only with the case where all

three of the max values are n.

The min/max values of ABC on C and of (AB)C on C are identical since whenever

< a, b,c > is a member of ABC, << a,b >, c > is a member of (AB)C, and the converse.

The min value of ABC on A is equal to the min value of AB on A since whenever a member

a of A participates in a triple < a, b, c > of ABC, it also participates in a pair < a, b > of

AB, and the converse.

The max value of ABC on A and of AB on A are not necessarily equal. If the max

137

B

A r * C

\t/..
ABC

(a)

def AB

select <a,b>:(A X B)
where [For some c:C]

<a,b,c>:ABC

def (AB)C
s e I e Ct <a,b>:AB, c:C
where <a,b,c>:ABC

B C

\/
EC A

(1~/
(BC)A

(d)

A B

\/
AB C

(~/·
(AB)C

(b)

A C

\/
AC B

(~/
(AC)B

(c)

Figure 4.19: A Ternary Association Treated as a Collection of Associations of Arity Less
Than Three

138

value of ABC on A is 1, then the max value of AB on A is also 1, but not the converse. If

the max value of ABC on A is n, then the max value of AB on A may be either 1 or n.

The schemas are represented using the domain graph notation. Notice that for each

of the graphs (b), (c), and (d) one of the vertices A, B, or C is distinguished as having

at most one forward edge relative to it. Vertex C is so distinguished in (b), and the edge

C -----+ (AB)C is called a side edge starting at A.

If the max value of AB on A is 1, then schema (b) expresses different information from

schema (a). We will assume that the max value of AB on A is n. Since (b), (c) and (d)

are the same graph but with the vertices labeled differently, and furthermore the graphs

themselves are symmetric, a number of max values are being given by the above statement.

def

select

where

ABC?

a:A,b:B,c:C

<<a,b>,C>:(AB)C

Figure 4.20: Definition of ABC? from Schema (b)

The min/max values of ABC on A, on B, and on C are identical to the min/max values

on the side edges of (d), (c), and (b), respectively as indicated by the stars in the figure.

It is not possible to define a set on any one of (b), (c), or (d) that is intensionally equal

to ABC of schema (a). Consider the definition of ABC? given in Figure 4.20. The max

value of (AB)C on C is necessarily equal to the max value of ABC? on C. However, the

139

max value of AB on A is not necessarily equal to the max value of ABC? on A. A counter

example follows: If the max value of AB on A is 1 and of (AB)C on C is n, then the max

value of ABC? on A may be either 1 or n. An example where the max value of ABC? on A

is n follows: If a E A, b E B, c1 , c2 E C, then a possible extension for AB is { < a, b >} and

for (AB)C is{<< a,b >,c1 >,<< a,b >,c2 >}. By the definition of ABC?, the extension

of ABC? is { < a, b, c1 >, < a, b, c2 >} and, hence, the max value of ABC? on A is not equal

to 1.

One way to construct a. schema that expresses the same information as (a) is to combine

schemas (b), (c), and (d). Figure 4.21 gives a definition of the set ABC of schema (a) from

schemas (b), (c), and (d). The definition guarantees that the min/max values of the defined

set ABC are identical to the corresponding ones of .the base set ABC of schema (a).

A schema is a set of names of sets (together with other information about the sets such

as their in tensions and min/max values). The union of two schemas is the set of names

that appear in one or other or both of the schemas. Let (a+ b+ c) denote the schema which

is the union of schemas (b), (c), and (d).

def ABC

select a:A,b:B,c:C

where <<8,b>,C>:(AB)C
and <<8,C>,b>:(AC)B
and <<b1C>1a>:(BC)A

Figure 4.21: Definition of ABC from Schema (b + c + d)

140

The schemas (a) and (b + c + d) express the same information. Each of (b), (c), and

(d) is a query graph in (a+ b + c) for a request that references vertices A, B, and C. The

following observations leads us to conclude that the weights of the minimum weight query

graphs for target graph TG = {A, B, C} in (a) and in (a+ b + c) are identical.

Observation 1. The minimum weight query graph among (b), (c), and (d) has weight

equal to the weight of its side edge.

Proof (by contradiction): Suppose without loss of generality, that (d) is the minimum

weight query graph among (b), (c) and (d). Suppose contrary to Observation 1 that the

weight of (d) is determined by vertex C. There are two forward edges relative to Cone of

which is a (1,n) edge of weight 1 and the other a (0,n)-edge of weight greater or equal to

the weight of any other edge. If the weight of a (0, n)-edge is w, then the weight of (d) is

w + 1.

There is another query graph (b) with side edge starting at C whose weight is determined

by the single edge C--+ (AB)C. The weight of C--+ (AB)C and also of (b) is smaller or

equal tow. Since the weight of (d) is (w + 1), the weight of (b) is smaller than the weight

of (d), which contradicts the assumption that the minimum weight query graph is (d).

Since (b), (c), and (d) a.re the same graphs with the vertices relabeled, we could have

chosen any one of them as the minimum weight one. D

Observation 2. The minimum weight query graph among (b), (c), and (d) has weight

equal to the weight of (a).

Proof (::::}) Suppose that (b) is the minimum weight query graph. The side edge C --+

(AB)C of (b) is labeled with the same min/max value as the edge C-+ ABC of (a). If the

141

weight of a.ny other edge, say B -+ ABC of (a) is less than the weight of C -+ ABC, then

one of the query graphs (c) or (d) would have a side edge with that weight. It follows from

the previous observation that the minimum weight query graph would be (c) or (d) but not

(b), a contradiction of our initial assumption. Therefore, the weight of edges A -+ ABC

and B-+ ABC of (a) must be greater tha.n or eq~al to the weight of C-+ ABC. Since

the weight of (a) is equal to the weight of C -+ ABC, and the weight of (b) is equal to

the weight of the side edge C -+ (AB)C, and the min/max values of C -+ ABC and

C-+ (AB)C are identical - it follows that the weights of (a) and (b) are identical.

(~) If the weight of (a) is determined by the edge C ---+ ABC then the weight of that

edge is smaller or equal to the weights of the rema.ining edges.

For every edge of (a) there is a side edge in one of (b), (c) or (d) such that the min/max

values of the two edges are identical. The side edge corresponding to C -+ ABC is

C ---+ (AB)C. (b) must be the minimum weight query graph because, otherwise, one

of the query graphs (c) or (d) would have a side edge of weight less than the weight of

C ---+ (AB)C and also of C-+ ABC. This is a contradiction of our assumption that the

weight of C-+ ABC is smaller or equal to the weights of the rema.ining edges. Since the

weight of (a) is equal to the weight of C-+ ABC, the weight of (b) is equal to the weight

of C-+ (AB)C, and the weight of C-+ ABC is equal to the weight of C-+ (AB)C,

the query graphs (a) and (b) have identical weights.

A similar argument permits us to conclude that the weights of (a) and (c) are identical

if c is the minimum weight query graph and that the weights of (a) and (d) are identical if

d is the minimum weight query graph. D

142

4.5.2 Varying the Parameters of the Heuristic

In this subsection, the effects of varying the parameters of the heuristic are investigated.

The parameters are the weights assigned to the different types of edges. The analyses

of Section 4.5.1 provide convincing evidence that the weight of a (1,1)-edge should be 0.

Otherwise, the heuristic associates with a reque_st different weights in different schemas for

the same domain. For the other types of edges, let their weights be denoted by variables

X, Y, and Z as illustrated in the following table:

min/max
(1,1)
(0, 1)
(1,n)
(0,n)

weight
0
y
z
X

Figure 4.22 illustrates the computations of semantic relatedness for two of the interpre­

tations for the phrase "Dr. Lee's Students". The variables X, Y, and Z are assumed to be

positive integers including zero.

The computations using specific values for the edge weights have been illustrated in

Figure 4.3. To obtain the same relative ordering of the query graphs as with the specific

values the following conditions must hold:

1. X + Z :5 3X

2. X + Z > 0

3. 2X ~ O

Thus, if X ~ 1, the same relative ordering of the interpretations is obtained.

143

request: Dr. Lee's students
word assignments

"Dr. Lee" PName

"student" Student

1. Students In courses taught by Dr. Lee

Student--->SC<---Course--->C P<---P rof--->P N<---P Name
(0,n) (0,n) (1,n) (0,n) (1, 1) (0,n)

7 nodes

weight rel. Student (X+Z+0)=X+Z

weight rel PName (X+X+X)=3X
absolute weight minlmum(X+Z,3X)=X+Z

2. Students supervised by Dr. Lee

Student --->SUp<---Prof---> PN<---Pn am e
(1,1) (0,n) (1,1) (0,n)

5 nodes
weight rel Student

weight rel PName
absolute weight

(0+0)=0
(X+X)=2X
mlnimum(0,2X)=0

Figure 4.22: Varying the Parameters for "Dr. Lee's students"

144

In the remainder of this subsection, a similar set of inequalities is given for each of the

requests that has been studied in Section 4.4. Our objective is to determine whether the

original set of edge weights is necessary and, if not, the extent to which the original edge

weights can be varied without affecting the results of the heuristic.

Jones' courses

1. X :5 2X

2. Z :5 2X

3. Z < X

Conclusion: X > O, X > Z.

A professor for a course with no students

1. X :5 2X

2. X :5 X + Z

3. Z :5 2X

4. Z :5 X + Z

5. Z < X

Conclusion: X > 0.

145

Does the main library have Joseph Conrad?

1. Z:5X+Z

2. 2Z :5 X + Z

3. 2Z :5 X + 2Z

4. Z < 2Z

Conclusion: X ;:= 1, Z > O.

A patient in a hospital

1. Y:5X+Z

2. X + Z :5 2X

3. (Y < X + Z) V (Y < X)

4. X < X + Z

Conclusion: Z > 0, X > O.

A patient in a hospital with tests

1.Y:5X+Y

2. Y :5 2X + Z

3. 2X + 2Y :5 3X + 2Z

4. 2X + 2Y :5 3X + Z

146

5. 2X + 2Y s 2X + Z

6. 3X + 2Z ~ 2X + Z + Y

7. 3X + Z ~ 2X + Z + Y

8. 2X + 2Z ~ 2X + Z + Y

9. (2X + 2Y > Y) V (2X + Z + Y> Y)

Conclusion: X > O; if Y > 0 then Z > 0.

The results indicate that the specific edge w~ights may be varied without alternating the

outcome of the heuristic. For the sample requests qf Section 4.4 the same relative ordering

on interpretations would have been obtained if the conditions (X > 0) and (Z > 0) hold.

4.5.3 The Relationship between Distance in Relational and SET Schemas

It is common practice to base the design of a relational schema on an Entity Relationship

Diagram [12] that has been previously developed for the domain. SET schemas are a

refinement of Entity-Relationship Diagrams. We will assume a schema design methodology

introduced by Gilmore in (32].

In this section, a correspondence is drawn between our heuristic and a previous semantic

relatedness measure in relational schemas. Specification of the correspondence is simplified

by choosing a convenient assignment of values for the different types of edges consistent

with the results of sections 4.6.1 and 4.6.2 which indicate that a (1,1)-edge should have

weight zero, and the remaining types should have weight greater than zero.

147

If S is a SET schema and R is the relational schema designed from S, then R and S

will be called corresponding SET and relational schemas. Distance in a relational schema

between objects denoted by sentence constituents is usually measured by the number of

links that must be followed to get from one object to the other. Distance between objects

in a SET schema is the distance in its domain graph measured by the method described

in Section 4.3.(i.e., If the objects are denoted by vertices Vt and v2 in the DG, then the

distance between the objects is the _ weight of the minimum weight path between Vt and

v2, The weight of a path is the minimum of the weights relative to Vt and relative to

v2 , where the weight of an edge in the path depends on its min/max value.) Distance

in a relational and the corresponding SET schema is illustrated in Figure 4.23. Here two

sentence constituents whose semantic relatedness we wish to determine, denote objects X

and Yin the relational schema and objects A and Bin the SET schema.

The notion of distance in SET schemas, briefly referred to as the / ormal measure,

is founded on well understood mathematical concepts (those expressed by the min/max

values). We find that the measure of distance in relational schemas usually described in the

natural language literature (40, 51, 93, 55] is a restricted version of our formal measure.

The Use of Min/max Values for Relational Schema Design

A base relation in the relational model is a relation that cannot be completely derived by

means of a relational query from other relations in the database. Within the SET schema

methodology, each base relation is viewed as a set defined in terms of sets named in the

DG. The problem of designing a database schema is to provide definitions for the sets

148

mapping

distance
link counts

distance by
min/max
approach

----,.--------'1....--object B

Relational Schema SET Schema

Figure 4.23: The Relationship between Distance in Relational and SET Schemas

149

corresponding to base relations.

Figure 4.24 illustrates some possible base relations for the university domain, a sample

extension for each, and a definition for each expressed in the language DEFINE [32) which is

reviewed in Appendix A. A small addition has been made to the language for the purpose of

the example. The expression colname@x:setname occurring as the ith entry in the select

part of a declaration states that the name of the ith column of the set is colname. If col name

is omitted, then the name of the column is taken to be setname.

Example 4.10. In the university domain the min value of SC on Student is zero which

states that a student may be registered in no courses. If null values are permitted in the

extension of the schema, then either the schema of Part (a) or that of Part (b) of Figure

4.24 will permit the sets Student and SC to be represented. However, if null values are

not permitted, then the schema of Part (a), but not that of Part (b), will permit those sets

to be represented. Given the schema of Part (b), it would not be possible without the use

of null values to record the identifiers for students who are not registered in any courses.

Given the schema of Part (a), identifiers for students who are not registered in any courses

can be recorded using the Student relation, and student identifier/course identifier pairs

for only those students who are taking courses can be recorded using the StudenLCourse

relation.

In general, if X is a.n association with pa.rent set P, a.n.d the min value of X on P is

a.t lea.st one, then P can be derived as a projection of X. Therefore, the base relation that

represents X will also represent P. If the min value of X on P is zero, and null values are

150

not permitted, then it is necessary that X and P be represented by different base relations:

one from which X can be derived, and another from which P can be derived.

Example 4.11. The max value of SC on Student is n which states that a student may

take more than one course. Regardless of which schema is used the student i4_entifier will

be duplicated in the database once for every course that the student with that identifier

is taking. If the relational schema of Part (b) is used, then the name of a student will be

duplicated once for every time that the student identifier is duplicated. To avoid propagation

of data redundancy the schema of Part (a) is preferred.

In general, if X is an association with parent set P, and the max value of X on P is

no greater than one, then no propagation of data redundancy will result if X and P are

represented by the same base relation.

The Relationship between Distance in Relational Schemas and Domain Graphs

The above examples illustrate how the min/max values influence the number of links in a

relational schema. A (1,1)-edge (X, P) in the DG indicates that X and P can be represented

by one base relation without null values and without propagation of data redundancy. If

(Y,X) is also a (1,1)-edge then the three sets Y, X, and P can be represented by the same

base relation. In general, the sets whose names label the vertices of any (1,1)-connected

subgraph of the DG can all be represented by the same base relation. This rule is used in

(32) as the basis for a design methodology for relational schemas. The methodolgy is briefly

outlined next. Some simplifications have been made for brevity.

151

Student Student_C ourse
SID SName SID
Sl Jones Sl
S2 Smith Sl
S3 White S1

Student def
select SID@x:Student, y:SName
where < x,y >:SN

StudenLC our se def

CID
CSlOO
CS200
CSlOl

Grade
A
A
B

select SID@x:Student, CID@y:Course, z:Grade
where < x,y >:SC and<< x,y >,z >:SCG

(a)

Stud_Course
SID CID SName Grade
S1 CSlOO Jones A
S1 CS200 Jones A
Sl CSlOl Jones B

Stud_Course def
select SID@x:Student, CID@y:Course, z:Grade, w:SName
where < x,y >:SC and<< x,y >,z >:SCG and< x,w >:SN

(b)

Figure 4.24: Use of Min/Max Values for Designing the Database Schema

152

1. The methodology describes how to declare a table schema capable of recording the

extensions of declared sets of a SET schema.

2. (1,1)-connected subgraphs of the domain graph are formed. We will assume that max­

imal subgraphs a.re used. A subgraph is maxi:tnal if it cannot be enlarged by adding

nodes that are connected by (1,1)-edges.

3. The subgraphs of (2), if undirected-cyclic, are made into trees by removing edges. Re­

strictions are imposed on which edges may be removed to avoid tables with more columns

than necessary.

4. To construct a table from a tree, the tree is extended to ensure that identifiers are

included for all sets named in the tree. To provide an identifier for a set which needs

one, a one-to-one correspondence is established between the set and a value set. The

correspondence is total on the set that needs an identifier, but not in general on the

value set.

5. Each tree is used to construct a table. A table is declared as a defined set the intension

of which references the sets named in the tree.

Abiding by the restrictions of (3) regarding which edges may be removed to break cycles,

there ma.y still be more than one possible tree for a cyclic subgraph and the methodology

does not specify which one is best. The important point here is that whichever tree is

chosen, all of its edges a.re labeled (1,1).

A semantic relatedness measure in relational schemas is concerned with links between

relations, not with links between columns of relations. The additional columns that are of

153

concern in (3) add nothing to the link count. For simplicity and without loss of generality,

we will assume a methodology for table design in which any edges which leave the subgraph

connected may be removed to break cycles.

The sets that are introduced for identification add nothing to the link count in relational

schemas. Relationships of interest do not exist between value sets and, hence, there will

never be a need to join two relations on that basis. Furthermore, none of the sets that are

introduced for identification create a, new relation which might introduce additional links.

N a.tural language requests will never reference sets in the SET schema that are introduced

solely for identification. Therefore, starting with the SET schema, it is more appropriate

to consider not the augmented trees of (3), but trees "stripped" of sets that serve the sole

purpose of providing identification. A maximal subgraph has weight zero. Taking away

edges will not decrease its weight and certainly will not increase it.

The relationship between a. given domain graph a.nd a corresponding relational schema

is illustrated pictorially in Figure 4.25. Part (a) of the diagram indicates the relational

schema. A relational schema. is assumed to be represented as a graph Gr whose nodes

denote relations of the schema. An edge (Rl, R2) is an edge of Gr if the relations denoted

by Rl and R2 a.re allowed to be joined. The edges of Gr are undirected a.nd each has a

weight of 1. A join pa.th for set of vertices V is a subtree of Gr that contains the vertices

in V and ea.ch of whose leaf nodes is in V.

Part (b) of the diagram indicates the domain graph from which the relational schema

represented by Gr has been derived. Each "blob" denotes a maximal subgraph of the domain

graph. The lines connecting blobs indicate paths between maximal subgraphs. A path

154

relational schema

(a)

domain graph

(b)

Figure 4.25: The Relationship between the Domain Graph and a Corresponding Relational
Schema

155

between two subgraphs SG1 and SG2 is a sequence of edges (v1, v2), (v2, v3), ... , (Vn-l, vn)

such that v1 is a vertex of SG1 and v2 is a vertex of SG2, In the design methodology of

[31, 32], each maximal subgraph gives rise to exactly one table in the table schema. The

bold arrow in the figure indicates that the tables of the table schema are sets defined from

those of the SET schema.

To compare semantic relatedness measures in relational and SET schemas, it is necessary

to draw a correspondence between the objects referenced by a natural language request in

the corresponding schemas. Using the domain graph method of table design, the objects

of both SET and table schemas are sets. In addition, for each set S referenced by the

request in one schema, there must be a set T in the corresponding schema such that S

and T are intensionally equal, and the converse. Otherwise, the NL request would have a

different meaning in the two different schemas. To accomplish this requirement, we adopt

the following convention: The primitive constituents of a natural language request denote

tables in the table schema and maximal subgraphs in the DG. A maximal subgraph can

be viewed as a vertex that denotes a set the definition of which is not important for our

analysis. Since there is a one-to-one correspondence between tables and maximal subgraphs,

we assume that whenever an NL request references a table in the table schema, it will

reference the corresponding maximal subgraph in the DG.

The weight of a (1,1)-connected subtree of the DG relative to any of its vertices is zero,

and its absolute weight is also zero. Any subtree of a (1,1)-connected subtree has weight

zero relative to each of its vertices and absolute weight zero. If a (1,1)-connected subgraph

is cyclic, then each of the trees that can be constructed from it by breaking cycles has

156

relative and absolute weights equal to zero.

The maximal subgraphs partition the vertices of the domain graph. Therefore, any path

between two maximal subgraphs has at least one edge.

It is assumed that all of the declared sets of the SET schema are to be represented in

some table. Therefore, every path between two subgraphs must have at most one edge.

Suppose that a path has two edges. Both must be non-(1,1)-edges. Otherwise, they would

have been included in some maximal subgraph. We must consider the vertex v between the

two edges as a maximal subgraph containing only v. Otherwise, there would be a declared

set which is not represented by any table.

The above two observations state that every path between two maximal subgraphs

contains exactly one edge.

The graphs of Figure 4.25 differ only in that the edges of graph (b) are directed, whereas

those of graph (a) are undirected. The edges between tables in graph (a) and between

maximal subgraphs in graph (b) all have weight 1.

The heuristic in SET schemas could be redefined in the following way without affecting

the results: The weight of a query graph relative to vertex v a member of the target graph is

the sum of the weights of backward edges relative to v. The absolute weight is the maximum

of the relative weights over all vertices in the target graph.

The following discussion describes the conditions under which query graphs for a given

target graph will receive the same relative ordering by our heuristic in a given SET schema

as they would using a semantic relatedness measure in the corresponding table schema.

Assume first that the weight of a query graph in the SET schema is computed as the

157

maximum of the relative weights where the relative weight of v is the sum of the weights

on backward edges relative to v.

Consider two query graphs QG1 and QG2 for target graph TG. For any v E TG, if

all of the edges of QG1 relative to v are backward edges, then the weight of QG1 in the

SET schema is the same as the weight of QG1 in the relational schema. Furthermore, if

there are about the same number of backward edges relative to each vertex in the target

graph in both QG1 and QG2, then the weight of QG1 is less than the weight of QG2 in the

SET schema whenever the weight of QG1 is less than QG2 in the corresponding relational

schema, and the converse.

Now assume that the weight of a query graph in the SET schema is computed as the

minimum of the relative weights where the relative weight of v E TG is the sum of the

weights on forward edges relative to v. If all of the edges of QG1 relative to v E TG are

forward edges, then the weight of QG1 in the SET schema is the same as its weight in the

corresponding relational schema..

In summary, sufficient conditions, for a semantic relatedness measure in relational

schemas to have the same outcome as the measure in SET schemas, are as follows: For

each subgraph of the relational schema, the corresponding subgraph of the SET schema has

about the same number of forward edges relative to each of its vertices, or for each subgraph

one of the vertices has all of the forward edges. In short, a notion of direction is missing

from the semantic relatedness measure in relational schemas. Its presence in the heuristic

that has been presented in this thesis results in a richer descriptive capability for modeling

semantic relatedness.

158

I.

I

4.6 Related Work

The notion of the min value of an association on a set can be used to express the multivalued

dependency constraints (MVDs) of the relational model [67, 5).7

Given the domain graph A --+ X ..._ B --+ Y -- C the statement that -both X and

Y have a min value of 1 on B is equivalently stated by the pair of MVDs B -+-+ A I C.

The notion of the max value of an association on a ·set can be used directly to express the

functional dependency constraints of the relational model.

Maier and Ullman [62] give lossless join conditions based on functional and multivalued

dependencies for building maximal objectB which are intuitively "maximal sets of attributes

among which there is significant connection". A relational schema that comprises such

maximal objects tends to give more correct answers to queries posed by users who view the

database as a universal relation. The universal relation assumption is intended to free users

from concerns about the organization of the database. The maximal object approach has

immediate relevance for automatic understanding of natural language database requests,

because the user who formulates such requests is usually unaware of the organization of

the database. In [67) the third normal form, Boyce/Codd normal form, and projection/join

normal form schemas of the normalization approach are obtained within a synthetic ap-

7Beeri et al (5] show that MVDa ca.n be expressed u lossless join conditions in relational schemas: Given

a relational schema R(A,B,C), the MVD B -+-+ A holds in R if and only if R is the natural join of its

projections R[A,B] and R[B,C]. The MVD B -+-+ C a.lso holds in R. Ola (67] proves that a necessary

and sufficient condition for a l088leas join of relational schemas Rl(A,B) and R2(B,C) is that the common

attribute B is mapped 'onto' in both Rl and R2.

159

proach. These results suggest that the lossless join conditions for building maximal objects

based on functional and mulitivalued dependency constraints can be equivalently expressed

as lossless join conditions based on the min/max values.

4.7 Summary

In this chapter a measure of relatedness between sentence constituents, called semantic

relatedness, has been proposed as a basis for · res~lving ambiguities in natural language

database requests. A description of the domain in terms of sets, associations, and min/max

values, called the SET schema, is assumed to be available. Our semantic relatedness measure

is based on a notion of distance between objects in the SET schema.

We have focused on three types of ambiguities in natural language requests: semantic

ambiguities, word sense ambiguities, and post noun modifier attachments, in particular,

prepositional phrase attachments involving the prepositions 'in' and 'with'.

For the prepositions "in" a.nd "with", our heuristic favors the part of meaning which

is denoted by an existence dependency association between the referent a.nd the modifier.

Similarly, for pre-noun modifiers that indicate possession (genitives) the heuristic favors the

part of meaning denoted by an existence dependency association between the noun and

the modifier.

Favoring the part of meaning is motivated by previous work [40, 51, 93, 55) which

shows that distance measures in relational schemas are useful for resolving ambiguitiies and

the work reported here which shows that there is a close correspondence between distance

measured in relational schemas and distance measured in SET schemas. In particular, we

160

have stated conditions under which our heuristic would give the same results in a SET

schema S as a heuristic in relational schemas would give in a relational schema designed

from S. A desireable feature of any heuristic that operates in the SET schema is that it

should be invariant with arbitrary decisions made by the SET schema designer. We have

shown that our heuristic gives the same outcome in SET schemas that look different but

express the same information.

We have followed the philosophy of Judea Pearl [68] who pointed out the following

properties of good heuristics: 1.) They provide a simple means of discriminating among

alternatives 2.) Although they are not guaranteed to identify the best alternative, they do

so sufficiently often.

161

Chapter 5

Design Strategy

We have argued that knowledge for automatically understanding natural language database

requests is available from the process used to design the DB schema. A design strategy for

natural language interfaces that captures knowledge from this source results in an enhance­

ment of domain portability. In this chapter we discuss some of the issues associated with

implementing such a strategy. In addition, the focus will be on providing clean lines of

communication between the NLI and the RDB to enhance database portability.

Section 5.1 describes the overall design of our proposed system. In Section 5.2 the

problem of obtaining semantic knowledge from the database within the architecture of our

proposed system is addressed. Issues associated with portability are discussed in Section

5.3. Finally, in Section 5.4 heuristics that are needed for solving the linguistic problems

of word sense disambiguation, semantic ambiguities, and post noun modifier attachment

within the proposed architecture are provided.

162

5.1 Overall Design

An overall design for our proposed system has been illustrated in Figure 2.13 of Chapter 2

where we see that the system, denoted NLI+, is designed as a typical NLI enhanced with a

module that implements a data management strategy (DMS) for portability. We will refer

to the module itself as the DMS. The DMS captures knowledge from the SET schema

which we assume to be available as a result of the DB schema design process, and presents

it to the natural language interface.

5.1.1 The Natural Language Interface

A more detailed description of the NLI part of the system is illustrated in Figure 5.1. The

given design is an expansion of a. design proposed by Booth in [7]. The box on the left

side of the figure illustrates the kinds of knowledge that a.re useful for NL processing. The

rounded boxes indicate program modules and the square boxes data.. The arrows indicate

data movement. The middle column illustrates the process of translating an NL request to

a, DB query. The right most column illustrates the process of formulating an appropriate

response to an NL request. All of the NL processing problems that are the focus of the

thesis occur in the process of tr~sla.ting an NL· request to a, DB query (the middle column

in the figure), with the exception of one problem in the area. of answer presentation which

is discussed in Subsection 5.2.3.

The linguistic core, which contains the domain independent components of the system,

has been proposed by Rosenberg [72] to permit the NLI to be easily adapted to a, new

domain. The technique of separating the linguistic components from the rest of the system

163

user

NL request NL answer

t----- ----------------------- -----~ ' _____ .__ ---~- '
I

• - - - - - - - - -~ parser
1.-----. '' : I lexicon I : ~ _ _ _ _ _ _ __________ . _ _ _ _ _ _ _ _ _ _ _ ___ _

.. _________ ..

- -- ... ---- ----------- --- - --- --
,_-cL..-- '

answer
presenter.

SET Schema
I ntertace

standard DB
Interface , ______ ---------------------- _____ ,

formal DB query standard format data

l----- ------------------•--- -----~
I

actual DB query raw data

Figure 5.1: Proposed Design for an NL Interface

164

11 ng •
gulstlc
core

database
compon­

ent

is important for domain portability because it permits alteration of the domain without

requiring significant modifications of the entire natural language interface.

We assume a knowledge base approach in which the components in the underlying

structure of the sentence are mapped to simple and composite objects in the knowledge

base, and further that the semantic interpretation of a sentence constituent is built from

the semantic interpretations of its constituents. The interpretation of a primitive constituent

derives independently from the interpretations of other constituents.

The internal representation for an NL request is expressed in the context of a SET

schema. The language DEFINE is used as the target language of a set of semantic rules

which specify interpretations for fragments of a parse tree in terms of interpretations for

the constituents of the fragment.(See Appendix B for the semantic rules for part of the

University domain).

5. 1.2 Data Management Strategy

A layering of schemas each one based on a different data model facilitates the provision of

knowledge to the NLI for resolving ambiguities (as discussed in Chapter 4), for formulating

the internal representation of a request, and for translating the internal representation to

a formal database query. The top level schema (the SET schema) provides knowledge for

formulating the internal representation (IR) and for fesolving ambiguities. Knowledge about

the correspondence between objects in different schemas assists the process of automatically

translating the IR of a request to a. formal DB query.

The use of several schemas ea.ch one based on a different data model does not imply

165

that the database system must support a query language for each different data model.

Intermediate forms of natural language requests (internal representation, formal DB query)

are not actually executed during processing of a request. Hence, the implementation of

the data management strategy is a much simpler problem than that of building a database

system that supports each of the different data models.

Part of the process of translating a particular SET schema to a corresponding relational

schema can be automated. (This subject has been researched by Gilmore [31, 32) and

Storey and Goldstein [80).) Knowledge about how the RDB schema has been derived from

the SET schema would be useful for translating the internal representation of a request to

a formal DB query. It is conjectured that the required knowledge can be captured from the

process used to design the RDB schema. Therefore, a new feature for database systems that

would be useful for portable natural language interfaces, is a component that automatically

designs the RDB schema and records knowledge about its derivation from the SET schema.

One of the schemas in the layering is based on a model, the N F2 object model, which we

have defined specifically as an intermediate model between the SET model and the relational

model. The N F 2 object model is introduced in Chapter 6. A useful feature of the model for

portable natural language interfaces is that it supports multiple representations of objects.

This feature facilitates the logical structuring of the OMS as a layering of schemas in which

objects in one schema are represented redundantly in another. Furthermore, the N F 2 object

model supports the capability of recognizing different representations of the same object, a

facility that is useful for representing mappings between different schemas.

Each schema is assumed to be represented as a collection of first normal form relations

166

ANIMAL

/
MAMMAL BIRD

/
SEAGULL

Jonathan

INSECT

PARROT

Tweety

SUB

Jonathan
Tweety
SEAGULL
PARROT
BIRD
MAMMAL
INSECT

SUP

SEAGULL
PARROT
BIRD
BIRD
ANIMAL

ANIMAL
ANIMAL

Figure 5.2: Relational Representations for an Animal Taxonomy

using Codd's approach [16] for describing knowledge representation strategies, other than

the relational one, using relations. The technique is illustrated in Figure 5.2 where a gen­

eralization hierachy is represented using one relation. The arcs denote two different kinds

of relationships. The arcs between nonterminal nodes denote set inclusion (Seagulls are

Birds) and arcs between a nonterminal and a terminal node set membership (Jonathan is

a Seagull).

It is desirable to permit integrity checking on objects represented in this way. How­

ever, a standard RDB system [63) automatically enforces constraints only on objects of

the relational model. Integrity checks on more general objects can be automatically en­

forced by extending the operations that are provided by the RDB system for updating the

meta.database as illustrated in Chapter 6.

The data management strategy has two parts, a data part which comprises a collection

167

of relations for representing N F 2 data, N F 2 object, and SET schemas, and an operation

part which comprises expansions of existing operations in the metaschema to enforce in-

tegrity checks on objects (e.g., non-first normal form relation schemes, sets, associations).1

Logically, the DMS can be separated into those expansions needed to describe N F 2 data

relations, further expansions to describe N F 2 object schemas, and still further expansions

to describe SET schemas.

In Chapter 6 the meta.schema of a standard RDB system is extended to describe N F 2

object schemas and enforce constraints on objects (e.g., non-first normal form entity-relation

schemes) of N F 2 object schemas. Additional expansions would be needed to permit SET

schemas to be described, and integrity contraints to'be enforced on objects of SET schemas.

The extended meta.schema has been designed to express knowledge about the mapping

between a particular N F2 object schema and the RDB schema designed from it. We

conjecture that general algorithms can be written for using the mapping information to

assist the process of translating the internal representation to a formal RDB query.

5.1.3 Interfaces between the NLI and the OMS

To keep the interface between the NLI and the RDB clean and simple, all access to the RDB

must occur through the DMS. Figure 5.3 illustrates the lines of communication between the

NLI and the DMS. On the left side of the figure appears a more abstract view of the NLI

that has previously been depicted in Figure 5.1. The DMS is depicted on the right side of

1 Here, we are referring to objects in the schema rather than those in the ra.w data interpreted by the

schema..

168

the figure where its logical structure as a layering of schemas is highlighted. The double

headed short verticle arrows (the diamonds) indicate information about mappings between

different schemas. The thick arrows indicate fl.ow of knowledge from the data management

strategy to the component of the NLI that uses it. The SET schema provides knowledge

to the linguistic core for constructing a unique internal representation of the request. The

DMS provides mapping information to the database. component for translating the internal

representation to a formal DB query.

~L :~~[~J-~r~~~er J

I I

: linguistic core : SET schema
I I

. - -1.- - - - -i_- - - -• __ y _____ r ___ ~
, standard DB ,
' ..-i--.. , interface

~::,:::::t::::
: actual DB :
: Interface : ---♦ -----A - - -
' - - - - - - - - _f - - - -,
: relational DB

1

'

N=2 object
Data

schema
Manage-

N= 2 data
ment

Strategy
schema

relational
schema ·-------------

Figure 5.3: Interfaces between the NLI and DMS

169

5.1.4 Formulating the Internal Representation

Knowledge about which objects in the domain are related is needed for automatically for­

mulating the internal representation of a simple request (See definition Subsection 4.3.2),

however, relationships between objects are not explicitly stated in relational schemas. The

RDB system automatically enforces the requirement that only fields defined on the same

value set may be used as the basis for a join but this technique is not, in general, sufficient

to represent relationships between objects. This problem is known as referential ambiguity.

If it is not known which objects in the domain are related, it is not possible to automatically

formulate a precise statement of the meaning of a natural language request.

To illustrate the problem of referential ambiguities in relational schemas, consider the

following database: We wish to record the relationship between managers and their em­

ployees. This situation is typically represented within the relational model by a relation,

say MANAGER, with columns MGR and EMP. 'An entry in the MGR column denotes

a manager a.nd the corresponding entry in the EM P column, an employee of that manager.

Even though the values for both columns may be drawn from the same value set, say 'strings

of characters length 8', we cannot conclude that the entries in the two columns denote se­

mantically related objects (e.g., employees). To do so, we would also have to conclude that

the values of all other columns defined on 'strings of characters length 8' denote employees.

The latter conclusion is erroneous because, for example, column CITY might be defined on

'strings of characters length 8', but the values in that column denote cities, not employees.

The SET schema is free of referential ambiguities. Graphically the relationship between

170

I.

managers and employees is described by two vertices Manager a.nd Employee and two

edges each directed from Employee to Manager. This creates an undirected cycle but

not a. directed one. There can be no ambiguity a.bout the pa.rent sets of the Manager

association. The left and right pa.rent sets must be the same set because they a.re denoted

by the same vertex.

If the internal representation is expressed within the context of a. relational schema., then

the NLI must be provided with knowledge a.bout which relations may be joined and a.bout

which columns may be used as the basis for the join. This knowledge is usually referred

to in the natural language literature as join pa.th information. A conclusion resulting from

normalization theory [22, 25, 24] as well as the synthetic methods of relational schema.

design (32, 57, 67] is that a. relation describes an entity set. This is to say that in a. doma.in

of entities, viewed as a collection of disjoint entity sets, a. relation describes entities from

a.t most one of them. From this result, we can conclude that join path information gives

knowledge about which sets in the domain are related.

If the internal representation is expressed in the context of a. SET schema, then join path

information can be captured from the SET schema. An example of a strategy for providing

knowledge about legitimate join paths is illustrated in Appendix B. Semantic rules specify

how the internal representation is built from the parse tree for a request. The right hand

side of a rule gives a partial query expressed in the context of a particular SET schema.

The semantic rules express the following types of information: 1.) join paths, which for the

given rules a.re very short, (In general, they would consist of a sequence of join conditions.)2,

2lf X and Y are UIOCiationa, X with parent aeta A and B, and Y with parent seta B and C, then a join

171

2.) associations between words, in particular nouns a.nd verbs, in the request and objects

(sets a.nd associations) in the SET schema., 3.) associations between determiners (some, a,

a.ny, all, every) in the request a.nd quantifiers (For some, For all). The rules would have

to be provided to the NLI as part of the customization process, however, if the internal

representation is expressed in the context of a particular SET schema., then knowledge of

type (1) is automatically provided.

5.2 Using the Database as Part of the Lexicon

Harris proposed the idea. of obtaining, from the relational data.base, knowledge a.bout mem­

bership in columns which is useful for automatically translating the internal representa._ti2n

of a. request to a. formal DB query.

To tra.nsla.te the request 'Tell me a.bout green ford ca.rs' to a. formal DB query we need to

know which data.base objects the primitive constituents 'green', 'ford', a.nd 'ca.r' denote. In a.

relational database 'car' might denote the CAR relation, and 'green' and 'ford' the COLOR

and MANUFACTURER columns, respectively.3 Harris' algorithm for determining column

information is as follows: To determine if a primitive constituent is a member of a column,

sea.rch the current extension of the column. A gain in efficiency is realized by searching the

database indices on columns, rather than the columns themselves.

condition ia a ,tatement [For 110me 6:B] (< 11, b >:X and < 6, c >:Y))
3In a more practical ■ituation, 'green' may refer to either the color or the owner o{ a cu and '{ord'

to either the owner or manufacturer. Before addre■■ing the problem o{ how to formulate queriea when a

primitive constituent denote■ more than one DB object, let ua reatrict our attention to the cue where it

denote■ at mo■t one.

172

In the database system to which Harris' INTELLECT system is attached (ADABASE),

the indices a.re part of the user's conceptual view of the database. In more current database

systems the indices a.re hidden from the user and automatically applied as needed for efficient

retrieval. This new feature of database systems implies that Harris' solution for obtaining

column information is not directly applicable to current data.base systems. In this section,

we show how column information can be obtained from a standard current RDB system,

thus providing an update of Harris' approach to apply to current technology, and filling in

many of the details that are missing in the literature.

A related problem which has not been resolved by Harris' results is the one of providing

an appropriate answer to a request when primitive constituents referenced in the request

are neither in the DB nor the lexicon. We propose new features for DB systems that could

be used to solve it. The solution proposed is with a view to the future because the current

technology does not yet allow an efficient implementation.

5.2.1 The Requirements of an NLI for Membership Information

For primitive constituent t, let A and B be lie.ts of names of columns with the following

properties: The A-list identifies columns to which t belongs, the B-list columns to which t

could pouibly belong. Primitive constituent t belongs to column C if tis a member of C in

the current extension of the database. Primitive constituent t possibly belongs to column

C if tis a member of the value set of C but not a member of the current extension of C.

If I A-list U B-listl> 1 then there is more than one interpretation for the request.

If the A-list is empty and the B-list is non-empty then the answer to the question is

173

'none'. For example, given the request 'Tell me about green ca.rs', if 'green' is a. member

of the COLOR value set but there are no green ca.rs described in the data.base, then the

answer is 'There are no green cars'.

If both the A-list and the B-list a.re empty then the natural language system must report

on the presuppositions of the request. Given the above request if there is no value set to

which the primitive constituent 'green' belongs then the answer is 'I don't know what green

means'.

In the INTELLECT system, the answer 'none' is given for requests for which column

information cannot be obtained from either the lexicon or the data.base. Such a solution

does not permit the distinction between the answer 'No' and an answer which reports on

the system's lack of knowledge. The B-list has been introduced to solve this problem.

5.2.2 A Construction for Providing Membership Information

In this section and the next, we show how the inverted indices and the meta.data.base can

be used to construct the A-list and B-list defined in Subsection 5.2.1. For illustration, we

will assume that the particula.r RDB system is OR.ACLE which supports the SQL query

language.

An inverted index on a database column C is a function le : V -+ P(addresses) with

domain:' V, the set of all database values, and range the power set of database addresses.

le(v) is the set of addresses of tuples with value v in column C. If there a.re no tuples with

t Here the term domain ia being ued u in mathematia, u oppoled to referring to the domain o{ diacoune

for a natural language interface.

174

value v in column C, then le(v) = {} where {} is the empty set.

The following rule is used to obtain column information for primitive constituents in

natural language requests. If v is a primitive constituent and le(v) returns a non-empty

set, then vis a member of column C.

An inverted index is created in ORACLE using the INDEX command. The following

command creates an index on the ADDRESS field of the EMPLOYEE relation:

index I-ADDRESS on EMPLOYEE(ADDRESS)

Once a column of a relation has been indexed 'ORACLE will use the index to locate

tuples that satisfy a search condition on that column. Consider the following query:

select *
from EMPLOYEE
where ADDRESS = 'Vancouver'

The index on the ADDRESS column is I-ADDRESS. The database system will use the

index to locate the tuples from the EMPLOYEE relation satisfying the search condition

ADDRESS = 'Vancouver'.

A ~able, COL, of the metadatabase describes database columns. The following query

selects a subset of the fields of COL: The result of the query is given in Table 5.1

select TNAME, CNAME, COLTYPE, WIDTH, NULLS
from COL

Suppose that t is a primitive constituent in the input request, and we wish to determine

which columns have t as a member.

175

TNAME CNAME COLTYPE WIDTH NULLS
EMP EMP# CHAR 6 not null
EMP NAME CHAR 20 null
EMP DEPT CHAR 10 null
EMP SALARY NUMBER 10 null
EMP ADDRESS CHAR 20 null

Table 5.1: A Fragment of the ORACLE Metada.ta.ba.se

For ea.ch table-(cha.ra.cter)column pair (table, column) returned by the previous query,

the following query is executed:

select
from
where

COUNT(*)
table
column= 't'

The COUNT is used as a convenience so that a numerical result will be returned. If the

query returns a non-zero result, then t e column.

5.2.3 Distinguishing between 'No' and 'Null' Answers

A useful facility for providing cooperative answers to NL requests would be the ability to

find the complement of a. request. Consider the database schema of Figure 5.4 and the

request "Print supplier numbers of suppliers in Paris". The SQL query in the figure results

in a possibly empty set of such numbers, say PS.

If PS is empty then the system can answer either "There a.re no suppliers in Paris"

or "There a.re no suppliers in Paris and there never will be (short of restructuring the

data.base). The database has no knowledge of Paris suppliers."

The complement of PS is

{s: s e S & (3c)(c e C & c = Paris & (s,c) ~ LOG)}

176

select LOC.SNO
from LOC .
where (LOC.CITY = 'Paris')

Figure 5.4: Schema for a Suppliers Database

which is the set of all supplier-Paris pairs that a.re members of (S x C) and not members

of LOC.

Assuming that value sets S and C a.re represented by relations the following SQL query

computes the complement of PS.

select S.SNO
from S, C
where C.CITY = 'Paris'
and S.SNO
not in select LOC.SNO

from LOC
where LOC.CITY = 'Paris'

If the original request results in an empty set and the complement is non-empty then

the answer to the request is 'No'. Previous systems give the answer 'No' even when the

complement is empty (INTELLECT [42]).

An algorithm for transforming a query into another query that computes the complement

of the original query is given in [31). The source and target queries a.re both written in the

language DEFINE in which a. complementation operator is available. A DB system that

supports such a. language would be useful for a. new generation of natural language interfaces

that provide more cooperative answers.

177

The architecture of the natural language system given in Figure 5.1 requires the following

modifications to take advantage of the facility of finding the complement of a request: The

semantic interpreter finds the complement of the natural language request expressed in its

internal representation (IR). Both the IR and its complement are processed by the query

generator to produce formal database queries. The query interpreter receives as input both

the formal query and its complement and produces a cooperative response.

5.3 Portability Issues

Portability is measured by the extent to which the NLI can be adapted to a new domain

and database, by the DBA, as opposed to a linguistic expert. In this section, we exaJ!li!e

how our design strategy enhances domain and database portability.

5.3.1 Domain Portability

If any of the semantic knowledge needed by the NLI for understanding natural language

requests can be easily obtained from any source, then domain portability will be improved.

Our design strategy is based on the key concept that semantic knowledge can be obtained

from the proce11 used to design the DB schema. The DBA has already undertaken the work

of gathering semantic knowledge that is useful to the NLI when he or she designed the DB

schema. Our design strategy enhances portability of the resulting NLI because the DBA,

not a linguistic expert is called upon to gather the knowledge and, furthermore, the DBA

has already gathered the knowledge for designing the DB schema.

178

5.3.2 Database Portability

This section discusses the way in which our design strategy provides each of the three

different types of database portabilities that we introduced in Chapter 3.

Data Model Portability

Data model portability is the ease with which an NLI can be adapted to a DB system that

supports a new data model. The standard solution to obtaining data model portability (i.e.,

separating the linguistic and database components) entails modifications of the programs

that implement the query generator and query interpreter when the data model is changed.

In an NLI+ the DB system itself is used to enhance data model portability. The DMS

provides an expansion of the available DB capabilities to support at lea.st some of the

capabilities of the data. model expected by the query genera.tor and query interpreter. In

this way these components of the system will require fewer modifications when the NLI is

to be attached to a DB system that supports a. different data. model.

The DMS must be modified each time that the NLI is adapted to a different data model.

However, if the database system is extensible, then modifi.ying the DMS will be easier than

modifying the query generator and query interpreter.

Within our design strategy the enhancement in data model portability is dependent on

the extensibility of the particular database system. Using the standard relational architec­

ture of Mark and Roussopoulos [63], the DMS is easily modified due to the fact that the

database system has been designed to be easily extended. However, the standard relational

architecture does not permit the relational query language to be extended, which limits the

179

ease with which a.n NLI ca.n be attached to it.

A current hot topic in database research is the design of easily extensible database system

architectures [74, 59]. The design of our system takes full advantage of the extensibility

of the database system to enhance da.ta model portability, and has been motivated with a

view to future architectures for DB systems.

Schema Portability

Schema portability of a natural language interface is the ease with which the interface can

be adapted to a new relational database schema (i.e., the schema in which the formal

database query is formulated). Schema portability is concerned with independence of the

NLI from changes in the structures used for representing the knowledge in the domain.

The term "logical data independence" refers to a database system capability which permits

the database schema to be changed without requiring modification of existing application

programs. This capability which is widely provided by current DB systems is useful for

enhancing the schema portability of natural language interfaces.

The programmer of a. database application has knowledge of the database schema that

he or she obtains by studying the meta.data.base. The knowledge obtained in this way is

used to formulate database queries in the context of the given DB schema.

In a natural language interface it is not known in advance of writing the programs that

implement the interface, which particular database requests will be presented to the system.

Therefore, the NLI must itself obtain (from somewhere) sufficient information about the

given schema to formulate data.base queries.

180

ff knowledge of a. pa.rticula.r schema. is built into the NL interface, then program mod­

ifications will be required to adapt it to a. new data.base schema. which makes the system

not very portable. Program modifications a.re a.voided, a.nd schema. portability improved,

by providing a mapping between objects that a.re referenced in the internal representations

of requests and objects in the relational DB schema.. This approach is not new. It is used

in the TEAM system [36) and elsewhere. The mapping must be provided whenever the

natural language interface is attached to a new data.base, but it is easier to provide the

mapping which is specified in the form of data than to modify the NLI to adapt it to a new

DB schema..

Our proposed system enjoys an enhancement in schema. portability in addition to that

provided by other systems by taking advantage of the results of a. large body of research into

the problem of automatically designing relational DB schemas. The internal representation

(IR) for a request is formulated in the context of a. SET schema. The process of translating

a. SET schema. to a. relational schema. is not entirely automatic; however, a. specification of

the translation (for those parts that ca.n be specified) provides the mapping between objects

that a.re referenced by the (IR) a.nd the those that are referenced by the formal DB query.

This mapping would otherwise have to be provided as part of the customization process.

Databue System Portability

The pa.rt of the customization programs of ASK and LDC-1, for example, that assist in

acquiring knowledge a.bout the physical files have a direct counterpart in database systems.

The customization program provides a language for describing the correspondence between

181

conceptual objects of the domain and fields of the physical files. The counterpart in data.base

systems is the language for mapping between the conceptual schema and the internal schema

as proposed by the ANSI/X3/SPARC Study Group [83].

The separation between conceptual and internal schemas is made in the ANSI/X3/SPARC

framework to afford application programs protection from changes in their physical files.

When this level of protection is provided the application programs are said to be physically

independent from their data.

A natural language interface to a database system is an application supported by the

data.base system. Physical da.ta independence contributes to the data.base portability of the

natural language interface because it reduces the need to modify the interface to a.dapt it to

the physical files of a. new domain. Since the database system provides da.ta independence,

there is no need for the natural language interface to provide it.

5.4 Heuristics for Linguistic Applications

Figures 5.5 illustrates the relationships between ambiguities that may arise in transforming

an NL request to a.n intemal representation (IR) a.nd the IR to a. DB query. The root of

the tree denotes the NL request. Ea.ch level in the tree identifies a particular intermediate

form of the request, with the leaf level vertices denoting alternate possible DB requests

for the given NL request. The branching illustrates ambiguities that may occur at each

stage. The sources of ambiguity for each stage are identified along the right margin of

the figure. For example, the NL request (assumed to be a.n ellipsis) has three immediate

children in the tree each of which denotes a possible completion of the ellipsis. For each

182

of the resulting non-elliptical requests there may be a number of parse trees resulting from

different attachments of the modifiers a.nd conjunction scopings. The semantic relatedness

Ellipsis

NL Request2

Parse1 Parse2

~
WSA1 WSA2.

J Ellipsls
Handling (E)

NL request3

J
Conjunction
Scoping (CS)

Parse3 Modifier
Attachment (MA)

Word Sense ~ Disambiguation (WSD)

IR1 IR2 IR3

DBQ1 DBQ2

Legend

WSA - word sense assignment
IR - Internal Representation
DBQ - Database Query

J Semantic
Ambiguity (SA)

J Query
Inference
Problem (QIP)

Figure 5.5: Sources of Ambiguities in Tra.nslating a.n NL Request to a DB query

measure in SET schemas is applied for the following purposes:

. -

1. For determining the type of ellipsis that has occurred it is used to compare Ills corre­

sponding to different completions of the elliptical fragment.

183

2. For resolving MA a.nd CS it is used to compare !Rs corresponding to different pa.rse

trees.

3. For WSD it is used to compare !Rs corresponding to the same pa.rse tree, but with

different assignments of meanings to the words.

4. For resolving SA it is used to compare different IRs corresponding to the same parse

tree a.nd the same a.ssignmen t of meanings to the words.

In the following subsections, heuristics are given for ma.king use of the knowledge captured

from the SET schema for solving the problems of WSD, SA, a.nd MA.

5.4.1 Preliminaries

The union G1 U G2 of two graphs G1 = (Vi, E1) a.nd G2 = (V2, ~) where l'i a.nd V2 are the

sets of vertices for G1 a.nd G2 a.nd E1 a.nd E2 the sets of edges is defined a.s follows:

Let forward..edges(G, v) denote the forward edges of graph G = (V, E) relative to

vertic~ v e V. Let edge - weight(e) where e is a.n edge denote the weight of e a.s defined

in Subsection 4.3.2. The weight of G relative to v denoted r - weight(G,v) is defined as

followa:

r -weight(G,v) = edge - weight(e)
eE/OM1Jo.rtL.ed.1u(G,v}

IfV = E ={}(the empty set) then r-weight(G,v) = 0. IfT ~ V a.nd T = {v1, ... ,vr},

184

then the weight of G relative to T is

weight(G, T) =MI N(r - weight(G, vi), ... , r - weight(G,vr)).

MIN(a1, ... , ap) where a1, ... , a,, are integers evaluates to the minimum of a1, ... , a,,. It

should not be confused with the min value of a.n association.

5.4.2 Word Sense Disambiguation

For each primitive constituent of a sentence there is a set of possible vertices that the

constituent could denote. If the set is a singleton set, then the constituent is unambiguous.

If the set is nonempty, a.nd it is not a singleton set, then the constituent is ambiguous. This

subsection describes a heuristic that uses knowledge expressed by the min/ma.x values~

resolve word sense ambiguities in natural language sentences.

Primitive constituents of a sentence may denote either vertices or edges in the DG.

Figure 5.6 illustrates two different ways of describing the marriage relationship. Primitive

constituents 4husband' and 4wife' would denote the edges husband and wife in the domain

graph of part (a), a.nd the vertices husband and wi/e in the DG of part (b). It is convenient

to rest_rict primitive constituents to denote only vertices. Let S be an n-ary association with

pa.rent set s •. The edge (Si -- S), is defined as a vertex Pf in the following way. Let

1rr[t] denote the projection of n-ary association entity ton the ith component. For example,

1rf[{a,b,c)] = b. Pf is defined as follows:

Pf is a binary association with pa.rent sets Si a.nd S. Such a set is called a P-set. An

185

. (erso)
w I f e husband

marriage

/erson~
w I f e husband

~arrlage/

(a) (b)

Figure 5.6: Dama.in Graph Descriptions of the Marriage Relationship

edge Si - S can be represented by the P-set Pt and a pair of edges S - Pt and

Si - Pt as illustrated in the following figure:

S, '(m,n) S

(m~,fal)
Pt

If the min/ma.x value of Son S, is (m,n) then the min/ma.x value of Pi; on Si will also

be (m,n). The min/ma.x value of Pt on Sis (1,1) independent of the min/ma.x values of

S. These two results are proved next.

No particular ordering of the parent sets of a. P-set is intended. In order to state the

definition S, was designated as the left pa.rent &nd S as the right pa.rent. The definition

could equally well have been stated by making the opposite designation.

Observation 1. lithe min/ma.x value of Son Si is (m,n) then the min/ma.x value of

P!; on Si is also (m, n), and the converse.

186

Proof. For all z, E S, and all t E S, z, participates in t if and only if (zi, t) E P£,

by definition of P§;. By definition of min and max values it follows that the min and max

values of S on S, and P§; on S, a.re the same. D

Observation 2. The min/ma.x value of P/; on Sis (1,1) for all i.

Proof. Since 1r1 is a function with doma.in S and range S,, the maximum number of

pa.irs (zi, t) E Pf in which any given t E S occurs i~ 1, and since 1r1 is total on its doma.in,

the minimum number of pa.irs (z,, t) E Pf in whicli. any given t E S participates is 1. D

Denotations for primitive constituents a.re specified as vertices in the doma.in graph

(as opposed to edges and vertices). To accomplish this goal, new vertices a.re introduced

to the DG to denote P-sets. Since min/max values a.re easily determined for P-sets, the

requirement that min/max values are available for labeling all edges of the DG is met.

The name of the heuristic for resolving WSD is BTG for best target graph. Input is a

sentence constituent represented as a parse tree. Output is a set of vertices called the target

graph which is obtained by selecting exactly one vertex for each primitive constituent that

denotes a nonempty set of vertices. Furthermore, BTG outputs the "best" target graph

which is the target graph among the possible ones that determines a query tree of smallest

weight. Input a.nd output of BTG is illustrated by the following pictorial:

sentence constituent ~ BTG ~ the best ta.rget graph

Let PRIM denote the set of primitive constituents in the domain, and V the set of

vertices in the doma.in graph. Let DENOTE ~ (PRIM x V) denote a set of pa.irs of the

form (p, u) where primitive constituent p denotes vertex"· DENOTE is usually recorded in

187

the lexicon. The min/ma.x value of DENOTE on Vis (0, n) (different primitive constituents

may have the same meaning (synonyms), a.nd not every vertex need serve a.s the meaning for

some primitive constituent). The min/max value of DENOTE on PRIM is also (O,n) (a.

primitive constituent ma.y not have a meaning such .as noise words "please" a.nd "quickly",

or may have more tha.n one such as "orange" which may be either a fruit or a color).

Let Pt, ... ,Pt denote the primitive constituents of a sentence constituent SC that are

each associated in DENOTE with one or more vertices. For i = 1, ... , l let DEN OT E(Pi)

be the set of vertices denoted by p;. A target graph TG(SC) for SC is a collection of vertices

111 , ••• ,vn where for i = 1, ... ,l,v; E DENOTE(p;).

Let TG1(SC), ... , TG.(SC) denote the target graphs for sentence constituent SC. The

word sense disambiguation (WSD) problem is to choose the best target graph BTG(SC) for

SC. The heuristic for computing BTG(SC) involves generating one or more query graphs

for ea.ch possible target graph a.nd choosing the target graph that is associated with the

query graph of smallest weight.

Let TG;(X) where Xis a sentence constituent denote a target graph of X. Let BQG(Y)

where Y is a target graph denote the query graph of smallest weight among the possible

ones for Y. The beet target graph BTG(SC) is TG;(SC) such that

weight(BQG(TG;(SC))) ~ weight(BQG(TG;(SC))) for j = 1, ... , s.

The function weight has been defined in the preliminaries, and BQG is defined in the

next section.

188

5.4.3 Semantic Ambiguity

The semantic ambiguity (SA) problem is to :find the "best" query graph among the possible

ones for a given target graph. In this section we will give a definition for "best"query graph.

The heuristic for this problem is named BQG for best query graph. Input is a target graph,

a.nd output is the best query graph as illustrated by the following pictorial:

target graph ~ BQG ~ the best query graph

A query graph for a target graph TG,QG(TG), is a.ny minimal connected undirected­

acyclic subgraph of the domain graph that contains the vertices in TG. If a query graph

does not exist for TG, then QG(TG) = (V,E) where V = {} and E ={}.The best query

graph for TG is the one among the possible ones of smallest weight with respect to TG.' If

QG1(TG), ... , QG1 (TG) are query graphs for TG, then the best query graph BQG(TG) is

defined as follows: It is the one QG,(TG), 1 ::5 i ::5 g, for which

weight(QG,(TG)) ::5 weight(QG;(TG)) for j = 1, ... ,g.

5.4.4 Modifier Attachment

For the modifier attachment (MA) problem, we restrict the modifiers to adjectives and

prepoeitional phrases, and the referents to nouns. The sentence constituents for which the

MA problem is addreased a.re restricted to noun phrases. A grammar for the NPs under

consideration follows:

NP~ {DET}{ADJ}•N{PP}•

PP~PREP NP

189

The ,., is the Kleene closure operator meaning "any number of''. The brackets { a.nd

} enclose optional items. Thus an NP is an optional determiner followed by a.ny number

(including zero) of adjectives followed by a noun followed by any number (including zero)

of prepositional phrases.

Nouns and adjectives a.re assumed to denote vertices in the DG. A prepositional phrase

(PP) denotes the vertex denoted by the head noun of its noun phrase. For prepositional

phrases the meaning is implicit in the sense that it is derived from the meanings of con­

stituents of the PP.

Ambiguous Pane Trees

An ambiguous parse tree is a parse tree in which modifiers, that have more than one possi6le

referent, are left unattached. However, the possible referents for a modifier are indicated by

marking the modifier and each of the possible referents with a common symbol. For example,

for the parse tree of Figure 5.7, the PP "with a red cover" is unattached and marked with a

'*'. Possible referents for the PP a.re also marked with a'*'. The unambiguous parse trees

in which the modifier ha.s been attached a.re illustrated in Figure 2.1.

Unambiguous Pane Trees

Let m1, ... , m, be the modifiers of a parse tree PT. _For i = 1, ... , l let { mi : MOD I FY : }

denote the set of possible referents for m.. An unambiguous parse tree U (PT) is PT together

with a set of markers r1 , ... , r9 such that for every m. there exists a unique rs such that

rs E {mi: MODIFY:}. That is, exactly one referent has been selected for each modifier.

190

NP'"

Figure 5. 7: Ambiguous Parse Trees for the NP "the book on the table with a red cover"

Representing the Attachment of a Modifier to a Referent

Definition 5.1 that follows defines a particular kind of set, called a P-composition, as a

means of representing the attachment of a modifier to a referent. Given an arc Si - Sin

the DG the corresponding P-set is PJ;. Let R denote a referent and Ma modifier of R. Let

v1 and v2 denote vertices in the DG denoted by Rand M, respectively. The P-composition

for the attachment of M to R is the set composition of the P-sets corresponding to arcs in

the minimum weight pa.th connecting v1 a.nd v2, Given two binary sets R1 ~ Ax B and

R2 ~Bx C, the set composition of R1 and R2, denoted R1 o R2, is the set

Definition 5.1. Given a. simple directed pa.th between Ro a.nd R1c with vertices v1, ... , "k-I

labeled R1 , •.. , R1c-i, respectively, the P-composition of sets Ro and R1c on the given path

is the set R06.R1c defined as follows: There are three cases.

191

1. The path Ro is of length O.

RoARo = {} (the empty set)

2. The path Ro - ... - R1c-1 - R1c is of length k > 1 and (R1c- i, R1c) is a forward arc

from Ro to R1c.

3. The path Ro - ... - R1c-1 - R1c is of length k > 1 and (R1c-i, R1c) is a backward

arc from Ro to R1c.

The parent sets of RoAR1c are the sets Ro and R1c.

For example, consider the pa.th between Student and Prof through Course in the

University DG:

Student - SC - Course - C P - Prof

The P-composition of Student a.nd Prof on the given pa.th StudentAProf is the set

The P-composition permits the attachment of a modifier to a. referent to denote a

vertex in the DG just aa primitive constituents denote vertices. The ability to deno.te

the attachment of a modifier by a vertex makes it possible to use the heuristic BTG given

previously (for resolving the WSD problem) to also resolve the MA problem. It is important

to note that no extra work is required to provide denotations for modifier attachments

192

because, a.s we have shown in this subsection, the vertices denoted by modifier attachments

ca.n be computed automatically based on knowledge in the parse tree a.nd the domain graph.

Computing Min/Max Values for Sets Denoted by Modifier Attachments

This section shows how to compute min/max values for sets that a.re defined using only

the relational join a.nd projection operators. P-sets fall into this category. A method

for computing min/max values for P-sets is needed as pa.rt of our heuristic for resolving

ambiguous modifier attachments.

Let TG(Q) be a target graph for request Q. The vertices in TG(Q) are called distinguished

vertices. A query graph G determined by TG(Q) defines a set r which is the join of sets

denoted by adjacent vertices in G projected on the sets denoted by vertices in TG(Q). The

parent sets of r a.re those that label the vertices in ·TG(Q). If S denotes the set that labels

vertex v E TG(Q), then the min/max value of G relative to v gives the min/max value of

r on s.

Definition 5.2. Given a query graph G with distinguished vertex v, the min/max

value of a forward edge in G relative to v is the min/max value that labels the corresponding

edge in the domain graph. The min/ma.x value of a backward edge in G relative· to v is

(1, 1).

Definition 5.3. Let the product of min/ma.x pairs (a, b) and (c, d) be the pair (a x

c, b x d). The min/max value of G relative to v is the product of the min/ma.x values of all

edges in G relative to v.

193

(1,5) X (0,5) y (1,1001

C

Figure 5.8: A Query Graph Determined by {A, B, C}

The min/ma.x value (1, 1) acts a.s an identity for multiplication.

(p,q) x (1, 1) = (p,q) for all m and n

Therefore, the backward edges ca.n be ignored when computing the min/ma.x value of

G relative to v, unless all of the edges are backward ·edges in which case the min/max value . --
is (1, 1).

Example 5.1. Consider the domain graph of Figure 5.8.5 The target graph TG(Q) =

{A,B,C} determines exactly one query graph which is the entire domain graph. The

forward edges relative to A are (A, X), (X, Y), a.nd (A, C). There is only one backward

edge relative to A which is (Y,B). The min/max value of G relative to A is (1,5) x (0,5) x

(0, 25)- x (1, 1) = (O, 625). By similar computations, the min/ma.x value of G relative to B

is (0,2500) a.nd of G relative to C is (0,25).

1 Here we are uing non-ab.Ddard min/mu: values which were iniroduced in Chap~r 4.

194

Simultaneous Resolution of Word Sense Ambiguities and Ambiguous Modifier

Attachments

This subsection describes a. heuristic which ma.kes use of knowledge expressed by the

min/ma.x values for resolving MA and WSD. It is well known by researchers in the a.rea that

the two problems cannot be resolved independently from each other. A brief introduction

to the heuristic is given first followed by a more detailed description.

Brief Introduction

Given an unambiguous parse tree U PT, the assignment of a. unique meaning to each prim­

itive constituent results in a target graph TG(U PT) which gives the meaning either explic­

itly or implicitly for each modifier and for each referent. However, information about the

attachments of modifiers to referents is missing.

For a given modifier M denoting vertex v1 and referent R denoting v2 , we a.re not

guaranteed to find a. path in the DG connecting v1 and v2• Many of the ambiguous pa.rse trees

ca.n be eliminated on those grounds. For each of the remaining ones, an augmented target

graph is constructed by adding one vertex for each ambiguous attachment of a modifier to a

referent. The new vertex denotes the P-composition of the vertices denoted by the referent

and its modifier.

Min/ma.x values are computed for P-compositions a.nd the minimum weight query graph

for each augmented target graph is determined. The best attachment of the modifiers (and

assignment of meanings to the words) is that specified by the augmented target graph which

determines the query graph of smallest weight over a.11 possible augmented target graphs.

195

The Detail.I

Let U1(PT), ... , Ur(PT) be the unambiguous parse trees for PT. Associated with ea.ch

of them Ui(PT), 1 $ i $ r is a. collection of target graphs, ea.ch of which assigns ex­

actly one vertex in the DG to ea.ch primitive constituent in PT. Let the target graphs for

Ui(PT) be Th (PT), ... , T,t(PT). Ea.ch unambiguous parse tree U,(PT) ha.s exactly l mod­

ifiers m1 , ••• , m,. Let V(r,) a.nd V(m,) denote the vertices denoted by the referent r, and

the modifier m;, respectively. With respect to a given target graph Ti9(PT) there will be

only one such vertex for ea.ch referent a.nd modifier.' The modifier graph for Ui(PT) in the

context of the target graph T,9(PT), 1 $ fJ $ t, denoted MG,9(PT) is defined a.s follows:

1. If a. pa.th does not exist between V(r,) a.nd V(m;) for any 1 $ j $ l then the modiner

graph MG,9(PT) is undefined.6

2. Otherwise
I

MG,9(PT) = LJ V(r;)~V(m;)
j=l

The augmented target graph for TGi8(PT) denoted TGt8(PT) is defined a.s follows:

TGt1(PT) = TGi6(PT)LJMGi6(PT)

Given the augmented target graph a.nd assuming that the modifier graph is defined, the

MA problem can be handled like the WSD problem aa illustrated by the following pictorial.

sentence constituent ~ BTG ===> the best augmented target graph

8The modifier and the referent are not related above the minimum threahold needed to consider them

related at all.

196

The best augmented target graph for PT assigns exactly one vertex to each primitive

constituent of PT and exactly one referent to each modifier.

The above specification assumes that all of the ambiguous parse trees are available at

one time for analysis by the heuristic. However, it is inefficient for the parser to generate all

possible unambiguous parse trees. Our heuristic is assumed to be applied to fragments of

larger requests. Query graphs are generated for the fragments and analysed by the heuristic

as a ha.sis for early elimination of some of the unambiguous parse tr~s for the complete

request.

5.5 Summary

In the descriptions of natural language interfaces that appear in the literature, little at­

tention has been paid to the mechanism by which the interface to a database system will

be accomplished. This is due to the fact that most of the existing natural language inter­

faces a.re experimental, and the database is implemented using LISP or PROLOG (Data.log,

CHAT-80 (91]). Some systems are interfaced with a'file system rather than a database sys­

tem (ASK, LDC-1). Therefore the data management capabilities that could be exploited

to improve the portability of the interface are not available. For the commercially avail­

able systems (THEMIS (29], INTELLECT) details of the implementation are not reported

because this information is proprietary to the company that markets the product.

In this chapter we have focused on the mechanism by which the interface can be ac­

complished with the added requirement that the natural language interface (NLI) take full

advantage of capabilities associated with the data.base system to permit it to be portable

197

from one domain and database to another. An architecture for natural language interfaces

has been proposed which comprises a. typical NLI enhanced with a module called the data

management strategy (OMS) for portability.

The data. management strategy is designed as a layering of schemas ea.ch one based

on a different data. model. The top level schema .(the SET schema.) provides knowledge

for formulating the internal representation, and for dealing with ambiguities in requests

(semantic ambiguities, word sense ambiguities, and modifier attachments). Each schema

in the layering is assumed to be derived from the previous one, by methods which are at

present partially automated [31, 80, 61, 73]. Knowledge, a.bout how the objects in one

schema relate to those in the schema from which it is derived, is useful for automatically

translating the internal representation of a request to a formal DB query. The N F 3 object

model has been introduced specifically to facilitate representation of that knowledge.

The purpose of the N F 1 object model in our design strategy is two fold: It permits a

natural structuring of the knowledge a.bout how the RDB schema. is derived from the SET

schema. 2.) It facilita.tea representation of the relationships between a. SET schema. and

the corresponding relational schema. due to its capability of multiply representing objects.

The particular orga.nization of the knowledge that is imposed by the N F 3 object ~odel is

useful as a baais for providing general algorithms for translating the internal representation

of a request to a formal DB query. Schema portability of the NLI is enhanced because the

knowledge needed to construct the formal query is already available as a. result of designing

the ROB schema.. Otherwise, it would have to be provided ea.ch time the NLI is adapted

to a. new RD B schema.

198 '

The internal representation is expressed in the context of the SET schema.. If the internal

representation is expressed within the context of a relational schema, then the NLI must be

provided with knowledge, about which relations ma.y be joined and a.bout which columns

may be used a.s the ha.sis for the join. No such supplementary information is needed when

the internal representation is expressed in the context of the SET schema.

The DB system itself is used to enhance data model portability. Extensible data.base

systems permit themselves to be easily extended to support new objects. Additions to

the existing DB system provide a. virtual data model for the query genera.tor and query

interpreter. When the NLI is to be attached to a new data model, the DMS must be

modified, but this will be easier than modifying the query genera.tor and query interpreter.

This feature of our proposed design is particularly useful for future generations of DB

systems which are expected to be highly extensible .[74, 59].

For a request such as "List all the red cogs", the information is not available in the

request that red is a. color and cog is the name of a pa.rt. This knowledge, which we have

referred to as column information, is needed for automatically formula.ting the formal DB

query. We have shown how column information can be obtained from a standard current

RDB system, thus providing an update of Harris' results [41] to apply to more current

da.tabaae systems.

We ha.ve examined a related problem which has not been resolved by Harris' approach,

that of providing an appropriate answer to a request when primitive constituents referenced

in the request are neither in the DB nor in the lexicon, and proposed new features for DB

systems that would be useful for dealing with this problem.

199

Finally, heuristics have been specified for making use of the knowledge available from

the SET schema for resolving the problems of semantic ambiguities, word sense ambiguities,

and modifier attachments. It is well understood by researchers in the area that, in general,

ambiguous modifier attachments in a request cannot be resolved independently from each

other, or from word sense ambiguities. It is expected that our heuristic would, in practice,

be applied to fragments of a request. For those fragments, ambiguous attachments of the

modifiers and ambiguous meanings for words a.re handled simultaneously.

200

Chapter 6

Using the Metadatabase to

Provide Semantic Knowledge

6.1 Introduction

A strategy for logically structuring the knowledge needed by a natural language interface

has been described in Chapter 5. The strategy involves a layering of schemas each one based

on a different data model. The purpose of the layering is to take advantage of previous work

which specifies the mapping between different types of schemas. Knowledge of the mapping

is useful to the natural language interface for translating the internal representation of a

request to a DB query.

One of the types of schemas in the layering is based on a model called the N F 2 object

model which was introduced in Section 2.3.3 and which will be described more fully in

this chapter. In addition, in this chapter we provide an expansion of the meta.schema

201

of a standard relational database system that would be needed to describe N F 2 object

schemas. In addition, the expanded meta.schema is capable of expressing knowledge about

the derivation of an RDB schema from a particular N F 2 object schema. A significant

feature of the extended system is that operations in the metaschema were extended by

adding assertions just as the data of the meta.schema were extended by adding relations.

A meta.schema comes with knowledge of certain classes of objects built into it . For

example, a meta.schema for a relational database has knowledge of value sets and base

relations. For illustration assume that objects are described by a generalization hierarchy.1

A meta.schema "breaks down" when there is not an exact correspondence between the

classes of objects that it can describe and the classes that need to be described. That is,

if the meta.schema does not distinguish a. subclass of objects that need to be described,

or if a more general class of objects must be described, but the meta.schema is capable

of describing only a subclass, then the meta.schema breaks down. For example, the SET

model distinguishes between primitive value and primitive non-value sets, and corresponding

concepts exist in the standard meta.schema, proposed by Mark and Roussopoulos [63), which

are known by the names lexical and non-lexical set. Therefore, the meta.schema does not

break down on primitive sets. In the SET model the parent sets of a hue set may be any

previously declared sets, primitive, base or defined. The meta.schema only has knowledge

of a subclass of base sets, those each of whose pa.rent sets is a primitive set. Therefore, the

1 Tsichritzia and Lochovaky (84) point out that thia ii a good uaumption. Generalization (77) has been used

informally in data management for a long time. A metuchema, for a databue organized as a generalization

heirarchy, describes a wide range of IChemu.

202

metaschema breaks down on base sets. At the point where a metaschema breaks down, it

is necessary to describe additional general properties of objects by data. The metaschema

must be expanded by defining additional relations to hold the data. and operations on the

new relations must be defined which enforce constraints on the data.

The remainder of the chapter is orga.nized as follows: In Section 6.2 the N F 2 object

model is presented. Deficiencies of the metaschema for describing N F 2 object schemas

are pointed out in Section 6.3. In Section 6.4 additions to the metaschema that would be

needed to describe N F 2 object schemas are given. In Section 6.5 the use of the extended

metaschema to describe a particular N F 2 object schema is illustrated.

6.2 The NF2 Object Model

Knowledge representation strategies for current applications such as natural language un­

derstanding, computer aided design, and full-text and mixed media databases are typically

not first normal form and often include the concept of an entity. The concept of an entity

is introduced to the N F 2 data model in the following way: Associated with every column

name is a value set name which identifies either a set of values or a set of surrogates used

to identify entities. A set of values is called a tJalue set and a set of entity surrogates a

non-value 1et. Leaf column names are associated with value sets and non leaf names with

non-value sets. The N F 2 data model extended in this way is called the N F 2 object model.

A tuple of a column is defined as follows: For leaf columns a tuple of a column is a value

from the value set of the column. For non-lea.f columns a tuple of a column is a value from

the value set of the column together with one or more tuples from each of the immediately

203

DEPARTMENTS: d1

/
DNO: 3 MG PROJECTS: p1

PNO,;J~,vm
PNAME: CGA MGR: 582

Figure 6.1: A Tuple of Column DEPARTMENTS

subordinate columns.

The tree structure of a tuple is illustrated in Figure 6.1. The nodes of the tree are

labelled c: v where c is a column name and vis a value from the value set of c. In the figue

d1 and Pl are non-lexical values. The entire tree rooted at (DEPARTMENTS: d1) is a tuple

of DEPARTMENTS. The subtree rooted at (PROJECTS: Pt) is a tuple of PROJECTS.

Only one of the three PROJECTS tuples subordinate to d1 is illustrated.

The next several definitions are needed so that ultimately we can give a precise definition

for the term N F2 object schema. A tuple of a leaf column is called a leaf value. The value

that occ_urs at the root of a tuple is called a root value. Tuples of leaf columns have only

one value which is both the leaf value and the root value. The eztension of a column is a

collection of tuples of the column. The root eztension of a column is the set of all values

from the value set of the column that partake as root values in tuples of the column.

An inclusion constraint is a statement of the form a ~ b where a and b are column

names. The statement a= bis an abbreviation for the pair of constraints a ~ band b ~ a.

204

In this chapter all columns are assumed to have unique names which are used rather

than the full path names for identifying columns. An N F 2 object scheme is a collection

of column names partitioned into one root partition and zero or more non root partitions.

The root partition contains exactly one name and each non root partition is itself an N F 2

scheme. An N F 2 object schema is a collection of N F 2 schemes together with a set of

inclusion constraints. For each inclusion constraint a ~ b in a schema the root extensions

Ta and Tb of a and b obey the rule that every object in ra occurs also in Tb•

Multiple representations for objects is supported within the N F 2 object model: Given

a tuple rooted at e, let T(e) denote the representation of e. r(e) is defined recursively as

follows:

1. If e is a leaf value, then r(e) = e.

2. If e is a non-leaf value with immediately subordinate values e1, ... , en, then T(e) =

If a given entity is a member of the root extensions of two different columns, then it

may have two different representations. A leaf value has identical representations in every

leaf column in which it appears.

6.3 Deficiencies of the Metaschema

We now consider how N F 2 object schemas can be described by the core metaschema and ad­

ditions to it. The following constraints (among others) are imposed by the core metaschema,

and any N F 2 object schema that is to be described must abide by them:

205

1. Every existing column belongs to some relation.

2. Every existing relation has at least one column.

By constraint (1) a root relation cannot be considered to be a column, and by constraint

(2) a leaf column cannot be considered to be a relation.

To ensure that N F 2 object schemas abide by constraint (1) we make the assumption

that a root relation is a column of itself. For illustration, consider the Projects schema of

Figure 6.9 and the description of the Projects Schema of Figure 6.10. The root relation

DEPARTMENTS is denoted by entity surrogate r 5 in relation rein and its role as a column

by entity surrogate al8 in relation coin. The assertion rdas(rs,du,al8) states that a1s is a

column of r5 • It is important that a root relation be considered as a column because every

root relation has a value set and the relation rdas associates columns (not relations) with

value sets.

Thls trick does not work for leaf relations. Let us assume that every leaf relation has

itself as a column. More precisely, a.ny lea.f relation l in its role as a column a has a value

set d such that the assertion rdas(l,d,a) is true. Unfortunately, this assumption leads to a

violation of one of the key constraints in the core meta.schema. A leaf relation of an N F 2

relation plays a role as a column of the relation that is its immediate parent. If we assume

that a lea.! relation is also a column of itself, then the constraint that a column belongs to

at most one relation is violated. This constraint is expressed by the condition in the core

meta.schema that att is the key for relation rdas.

206

To ensure that N F 2 object schemas abide by constraint (2) we make the assumption

that leaf columns are not also relations. Thus, every relation is considered to be a column,

but not every column is considered to be a relation. For the Projects schema (Figure 6.9)

and its description (Figure 6.10) observe that names of leaf relations do not appear in the

extension of relation rein.

6.4 The Extended Metaschema

To capture the nested structure of N F 2 relations a new relation nest is introduced. In

addition a new relation class is introduced to represent inclusion constraints.

nest

rel att sup

column(att] = nest(att]

nest(rel] ~ column(att]

claas(sup] ~ column(att]

class[sub] ~ column[att]

sub

Figure 6.2: The Extended Meta.schema

class

The data structure diagram and inclusion constraints for the additional relations are

given in Figure 6.2. nest(a, b) states that column a in its role as a relation has b as a

column. class(a, b) represents the constraint b ~ a. Only immediate subset relationships

are explicitly represented in relation class.

The relations nest and class are described by entering tuples in relations of the core

207

rdas
coln

rein col:
reln: val: col:

cname:
rname: rel :

relation valueset column
column column

relation relation name
rs d2 a32 name rel

d2
a32

I
nest

I
rs

I
rs a33 att

d2
a33

class r9
r9 a34

d2
a34 - sup

r9 a35
a35 sub

Figure 6.3: Extended Metaschema Description Stored in Metaschema Extensions

class
sup: sub:
column column

a33 a36

a36 a33

a36 a3:,i

a36 a34

a36 a35

Figure 6.4: Inclusion Constraints Stored in Class Extension

metaschema as illustrated in Figure 6.3. Inclusion constraints associated with the new

relations are stated by entering tuples in the relation class of the extended metaschema as

illustrated in Figure 6.4. In the figure the entity surrogate for column column[att] of the

core metaschema is assumed to be a36 •

The claaa relation ii provided for use by the natural language interface. In Section 5.2,

we have considered how column information (knowledge about membership of primitive

constituents in database columns) can be obtained from the database. This information is

useful for automatically formulating relational queries for natural language requests which

do not, in general, reference database columns. From the class relation and the standard

208

insert(column(A))
- var(A),

new(column(A)),
insert(column(A)).

- nonvar(A) /\ column(A) /\ (rdas(_,D,A)) /\ (vset(D,_,value)).

- nonvar(A) /\ column(A) /\ (rdas(_,D,A)) I\ (vset(D,_,non-value)),
insert(nest(A,_)).

- nonvar(A) /\ -i(column(A)),
assert(column(A)),
insert(coln(A,_),
insert(rdas(-,-,A),
insert(column(A)).

Figure 6.5: Insertion into Column

metaschema relations rein, rdas, and coin, the columns that are not included in any of

the others can be automatically determined. Only these columns will be searched for a

given primitive constituent to determine the columns of which it is a member. Knowledge

about membership of the given primitive constituent in other columns can be deduced from

relation class .

6.4.1 Operations in the Extended Metaschema

Just as additional relations are provided without disturbing the existing meta.schema re­

lations, additional update dependencies are provided without disturbing the existing ones.

Expanded versions of the existing operations insert(column(A)) and delete(colum_n(A))

and definitions of insert and delete operations for the nest relation are provided in Figures

6.5, 6.6, 6.7, and 6.8.

209

delete(column(A))
-+ -.(column(A)).

-+ nonvar(A) /\ column(A) /\ (rdas(_,D,A)) /\ (vset(D,_,value)),
retract(column(A)),
delete(rdas(-,-,A)),
delete(coln(A,-)).

-+ nonvar(A) A column(A) /\ (rdas(-,D,A)) /\ (vset(D,_,non-value)),
retract(column(A)),
delete(nest(A,-)),
delete(rdas(..,-,A)),
delete(coln(A,-)).

-+ var(A),
write("column surrogate?"),
break, rea.d(A),
delete(column(A)).

Figure 6.6: Deletion from Column

The operation in.9ert(column(A)) is modified by adding one update dependency as

illustrated in Figure 6.5. A new column surrogate is created if needed. If the column

surrogate identifies a simple column the operation succeeds with the database unchanged.

The third update dependency is new. If the column surrogate identifies a non-leaf column

the insertion is propagated to the nest relation. The fourth update dependency inserts the

column surrogate and propagates the insertion to relations coin and rdas.

In the operation delete(column(A)) if A is defined on a non-value set then A has columns

that should also be deleted. The definition of operation delete(column(A)) is given in Figure

6.6. If A is not a column then the operation succeeds with no change to the database. If A is

defined on a value set then A is deleted and the deletion is propagated to relation rdas and

coin. If A is defined on a non-value set then A is deleted and the deletion is propagated to

210

insert(nest(A,B))
- nonvar(B) /\ nest(-,B).

- var(A),
write("parent surrogate?"),
break, read(A),
insert(nest(A,B)).

- var(B),
new(column(B)),
insert(nest(A,B)).

- nonvar(A) /\ nonvar(B) /\ -,(nest(-,B)),
assert(nest(A,B)),
insert(column(A)),
insert(column(B)).

Figure 6. 7: Insertion into Nest

relations rdas, coln, and nest. The fourth update dependency requests a column surrogate

if A is uninstantiated. In the operation delete(column(A)) the third update dependency is

new (not part of the core metaschema.).

In the operation insert(nest(A, B)) (See Figure 6.7.) let us call A the parent surrogate

and B the child surrogate. If variable B is instantiated and the surrogate occurs in the

nest relation as a child then the operation succeeds with the data.base unchanged. If the

parent surrogate is not provided it is requested. H the child surrogate is not provided one

is created. If both variables are instantiated a.nd the child surrogate is not already in the

nest relation then the tuple is inserted. Update dependencies one a.nd four guarantee that

a child surrogate has at most one parent.

The variables A and Bin operation delete(nest(A,B)) (Figure 6.8) bind to parent and

child column surrogates, respectively. If both variables are uninstantiated or if no tuples

211

delete(nest(A,B))
-+ var(A) /\ var(B),

write("nothing done").

-+ ..,(nest(A,B)).

-+ nonvar(A) A var(B) /\ nest(A,B),
retract(nest(A,B)),
delete(nest(B ,-)) ,
delete(column(B)),
delete(nest(A,_)).

- nonva.r(B) A (nest(A,B)),
retract(nest(A,B)),
delete(nest(B ,-)),
delete(column(B)).

Figure 6.8: Deletion from Nest

match the instantiated values then the operation succeeds with no change to the database.

If the parent variable is instantiated and the child variable is uninstantiated then all child

surrogates and their descendents are deleted. If the child variable is instantiated then only

that child surrogate and its descendents are deleted.

The operations insert(nest(A, B)) and delete(nest(A, B)) and the new update depen­

dencies of operations insert(column(A)) and delete(column(A)) are part of the extended

metaschema. We were pleased to find that none of the existing update dependencies had

to be deleted or modified.

212

6.5 Example

This section provides an example of the use of the core metaschema and additions to it

to describe N F 2 object schemas. A pictorial description of an N F 2 object schema for a

database that records information about projects is given in Figure 6.9. In Figure 6.10 part

of the Projects schema of Figure 6.9 is described in the extensions of the relations rein, vset,

rda.s, and coin of the core meta.schema. Only that part of the extensions that describes the

Projects schema is illustrated. In a fully operational database system other schemas as well

as the core meta.schema itself would be described in the extensions of the core meta.schema

relations. In Figure 6.11 the relations nest and class of the extended metaschema are

used to describe the remaining part of the Projects schema. In a fully operational datab~

system additional N F2 object schemas might be described in the extensions of the relations

of the extended meta.schema.

6.6 Summary

We have introduced a model, called the N F2 object model by extending the N F2 data

model to include the concept of an entity. The N F 2 object model is capable of multi­

ply representing an object and permits different representations of the same object to be

recognized.

The N F2 object schema figures in our design strategy for portable natural language

interfaces as an intermediate step between the SET schema and the relational schema.

Mappings between the SET schema and the N F 2 object schema and between the N F 2

213

DEPARTMENTS
DNO MGR PROJECTS

PNO I PNAME I MGR I CITY

I I I

COMPANIES
CNO GNAME PROJECTS

PNO I PNAME I MGR I CITY

I I I

PROJECTS
PNO PNAME MGR CITY

DEPARTMENTS[PROJECTS] ~ PROJECTS

COMPANIES[PROJECTS] ~ PROJECTS

Figure 6.9: N F 2 Schema for the Projects Database

object schema and the relational schema provide useful knowledge for translating the in-

ternal representation of a request to a formal DB query. The improvement in portability

over previous systems results from the ability to automatically generate information about

mappings between the different schemas.

To !'(!present the mapping information, there is a need to maintain multiple representa-

tions of objects a.nd to recognize different representations of the same object. The concept

of multiple representations is missing from the N F 2 data model as previously described[18].

We have specifically defined the N F 2 object model to ensure that extensional objects can

be multiply represented.

Current database systems are capable of supporting a variety of applications each of

214

rein

I
rname:
relation name

DEPARTMENTS
COMPANIES
PROJECTS

DEPARTMENTS[PROJECTS]
COMPANIES[PROJECTS]

rdas
rel: val:
relation valueset

rs ds
rs dg
rs d10
rs d12
rs d1a
rs dg

rs du
rs du
rs dis
r5 d17
rs d10
r9 d12
rg d1a
rg dg
rg du
rs d15
r7 d12
r7 d1a
r7 dg
r7 du
r7 d10

I rel :
relation

rs
r5
r7

rs
rg

col:
column

au
a12
a1a
au
a15
a1s
a17
a1s
a19
a20
a21
a22
a23
a24
a25
a2s
a27
a2s
a29
aao
aa1

vset
val: vname : lex :
valueset valueset name lexicality

ds deptno value
d9 empno value
d10 project non-value
du department non-value
d12 projno value
d1a projname value
du cities value
d15 company non-value
dis compno value
d17 compname value

coin

col : I cname :
column column name

au DNO
a12 MGR
a13 PROJECTS
au PNO
a15 PNAME
a16 MGR
a17 CITY
a1s DEPARTMENTS
a19 CNO
a20 CNAME
a21 PROJECTS
a22 PNO
a23 PNAME
a24 MGR
a25 CITY
a2s COMPANIES
a27 PNO
a2s PNAME
a29 MGR
aao CITY
a31 PROJECTS

Figure 6.10: Projects Schema Description Stored in Meta.schema Extensions

215

nest
rel: col:
column column

a1a a14

a1a a15

a13 a15

a1a a17

a1s au
al8 a12

a1s a13 class
a1s a1s sup: sub:
a25 a19 column column
a25 a20

I
a31

I
a13

I a26 a21
a31 a21

a25 026

a21 a22

a21 a23

a21 024

a21 a25

a31 a27

a31 a2s

a31 a29

031 030

031 031

Figure 6.11: Projects Schema Description Stored in Extended Metaschema Extensions

216

which may use a different knowledge representation strategy. Standard relational database

systems provide this capability by supplying one core metaschema (including core opera­

tions) for use by all applications, and permitting additional relations to be defined for each

application to describe additions to the core metaschema that are needed to describe that

application's knowledge representation strategy.

The metaschema of a standard relational database system has been expanded to describe

N F 2 object schemas. Expansion of the metaschema results in a collection of relations

suitable for recording information about the mapping between the RDB schema and the

N F 2 object schema. Further research is needed to define a collection of relations that is

suitable for recording information about mapping between the N F 2 object schema and the

SET schema.

217

Chapter 7

Conclusions and Further Research

This thesis has focused on the problem of designing a highly portable natural language

- -interface for relational database systems. The issues considered can be grouped into two

parts: those concerned with identifying knowledge associated with the DB that is useful

for automatically understanding natural language, and those dealing with how the NLI

should be designed to be portable between domains and databases. The two topics are

related because, if knowledge associated with the DB that is useful for natural language

understanding can be automatically provided to the NLI, then portability of the NLI will

be enhanced. This chapter summarizes the issues considered in each of the main areas,

presents our conclusions, and suggests areas for further research.

218

7.1 Knowledge Associated with the DB that is Useful for

Natural Language Understanding

The SET schema expresses knowledge that is useful for automatically understanding natural

language. Previous systems have captured knowledge for natural language understanding

from the relational database schema. The SET schema is a better source of knowledge for

the following reasons:

1. Natural language interfaces that obtain knowledge from the relational schema require

supplementary knowledge to alleviate the problem of referential ambiguity. Any ER

based model (such as the SET model) and even the Network model [17] uses the notion

of a link between objects to indicate a relationship between them, and, therefore, the

problem of referential ambiguity does not a.rise. If the natural language interface obtains

knowledge from the SET schema, supplementary knowledge to resolve the problem of

referential ambiguity is not needed, a.nd therefore the domain portability of the NLI is

enhanced.

2. Knowledge a.bout which objects in the domain are related is useful for natural language

understanding as pointed out in (1). In addition, knowledge about the nature of the

relationship is useful, and such knowledge is called metaknowledge. The SET model per­

mits meta.knowledge to be stated explicitly in the SET schema. The relational model

does not, but meta.knowledge may be obtained indirectly from the schema by inspect­

ing the structures that are described therein. However, not all of the metaknowledge

available from SET schemas ca.n be captured from relational data.base structures. Thus,

219

capturing knowledge for natural language understanding from the SET schema is a

better approach than obtaining it from the relational schema.

7.1.1 What is it Useful for?

The metaknowledge is knowledge about the relationships in the domain, in particular,

whether the relationships are one-to-one, one-to-many, or many-to-many, and whether they

are total or partial, and into or onto. We considered two main constructs in English.

1. genitive (possessive) noun modifiers (e.g., Jones' courses)

2. prepositional phrases that modify a noun (e.g., patients in hospitals)

Heuristics were provided to resolve three different types of ambiguities (word sense ambigu­

ities, semantic ambiguities, a.nd post noun modifier attachments) in requests that contain

these two different language constructions. The heuristics give an ordering on the different

possible interpretations according to their likelihood of being the interpretation intended

by the user.

For the possessive case the heuristic favors the interpretation in which the objects pos­

sessed belong to the possessor and no one else (a many to one relationship) as well as the

case in which every possessor possesses at least one object. The prepositions considered

were "in" and "with", and, in particular, the meaning part of. For such relationships the

heuristic favors the case in which the modifier is associated with at least one and at most

one referent.

220

7.2 The Design of a Portable Natural Language Interface

The SET schema has been used as the basis for o~r design of a portable natural language

interface. Supplying the natural language interface with knowledge captured from the

SET schema enhances domain portability, that is the ease with which the NLI can be

adapted to a new domain. We have focused on resolving ambiguities in natural language

database requests. Little further work is required to provide the NLI with knowledge for

resolving ambiguities, because the knowledge has previously been gathered for the purpose

of designing the RDB schema. A major advantage of our approach is that the duplication

of effort between the processes of designing the DB schema and adapting the NLI to a new

domain is eliminated.

We have also addressed the problem of adapting the NLI to a new database. Our

proposed system takes advantage of the extensibility features of the database system to

permit it to be easily adapted to a new data model. To permit the NLI to be easily adapted

to a new DB schema, the internal representation of the NL request must be independent

from the DB schema. In our proposed system, the internal representation is expressed

within the context of the SET schema, a choice that has been motivated by the fact that

the SET schema is independent of any particular DB schema and, moreover, independent

of a.ny particular data model. Therefore, knowledge about the particular DB schema need

not be built into the linguistic components of the system. In addition, knowledge needed

for translating the internal representation to a formal database query is provided as data,

as opposed to being built into the database components of the natural language interface.

221

Both of these features contribute to the ease with which the natural language interface can

be adapted to a new database schema. A technique in widespread use for designing the

RDB schema. is to begin with a SET schema for the domain and translate that description

to a relational schema. We have investigated whether the knowledge generated by this

process could be used for automatically translating the internal representation to a formal

database query, and conclude the afirmative. Portability of the NLI is further enhanced

because the knowledge is already available as a. result of designing the RDB schema.

An intermediate model, called the N F 2 object model, has been proposed as a basis

for specifying the relationship between a particular SET schema and the corresponding

relational schema. The N F 2 object model is a conceptual tool which aids our understanding

of the correspondence between the SET model a.nd the relational model. It is easier to

understand the correspondence in pieces, and the N F2 object model provides a natural

division. The subproblems are the correspondence between the SET model and the N F2

object model and between the N F 2 object model and the relational model.

The metaschema of a standard relational database has been expanded to describe N F2

object schemas, and we have conjectured that general algorithms can be written to capture,

from the expanded metaachema, knowledge a.bout the mapping between a. particular N F 2

object echema a.nd the corresponding relational schema. .. The expa.nsion of the metaschema

to capture knowledge about the mapping between a. particular SET schema a.nd the corre­

sponding N F2 object schema is left for future research.

222

7 .3 Suggestions for Further Research

This section describes directions for further research emerging from our results.

7.3.1 Temporal Knowledge for NL Understanding

The notion of time is important for NL processing, and the foundations for it a.re provided

within the SET model. The extension of a set changes with time. A notion of time would

be useful for resolving conjunction scoping. For the requests

1. Which presidents visited New York and New Jersey after leaving office?

2. Which presidents died in New York and New Jersey after leaving office?

our knowledge that two different cities may be visited by a president at two different times

leads use to admit the narrow scope reading as a possible meaning for (1). Similarly, our

knowledge that presidents die at most once and that they cannot be in two different places

at the same time leads us to exclude the narrow scope reading of (2) in favor of the wide

scope reading.

7.3.2 Conjunctions of Database Values

A conjunction in natural language is frequently used to mean disjunction. For example, the

requeat "red and blue books" has a conjunctive meaning "books that a.re both red and blue"

as well as a "disjunctive" one "books that a.re red or blue". Janis [51) has shown how to

generate subgraphs in relational schemas to represent the meaning of requests that contain

data.base values separated by the word "a.nd". In this subsection we will consider how

223

our semantic relatedness measure can be extended to resolve ambiguities in such requests.

Janis' results are useful for our purpose because the subgraph in relational schemas for

representing the meaning of a request is easily adapted to the domain graph.

For illustration, consider the request "Which libraries have borrowers named Smith and

Jones?" which has the following possible mea.nlngs:

1. Which libraries have borrowers named both Smith and Jones?

2. Which libraries have borrowers named Smith or borrowers named Jones?

To determine the best scoping for the conjunction we would like to compare the absolute

weights of the query graphs for the different interpretations. However, the target graph will

be the same regardless of which scoping we choose, and therefore, the query graph will also

be the same. To represent the distinction between the different conjunction scopings, a

technique similar to the one we used for representing different prepositional phrase attach­

ments is useful. Following Janis' terminology we will refer to the association to which the

DB values a.re attached as the branching node. The branching node for interpretation (1)

is the vertex that denotes the verb "name". In the library database introduced in Chapter

4, the ·branching node would be Name which associates borrowers with their names. The

branching node for interpretation (2) is the vertex that denotes the verb "have" which in

the library database would be Membership which associates libraries with borrowers.

The query graph for a given interpretation is constructed as follows: 1.) A vertex

newnode is added to the domain graph to denote a relationship between the set from which

the DB values a.re drawn and the branching node. 2.) The vertex newnode is added to

224

the target graph (TG) for the request. 3.) The possible interpretations a.re ordered by the

weight of their query graphs (QGs) with the minimum weight QG corresponding to the

most likely interpretation.

When the branching node is Name, newnode denotes an association which consists of

those pa.irs << borr,boname >,boname > for which< borr,boname > is a member of

Name, and boname is a member of BoN ame. The min/ma.x values of the association

denoted by newnode a.re easily calculated. When the branching node is Borrower, the

association denoted by newnode is intensionally equal to the association denoted by Name.

Interpretations (1) a.nd (2) above for the request "Which libraries have borrowers named

Smith a.nd Jones?" correspond with QGs of equal weight. Therefore, they are considered

to be equally likely interpretations.

A conjunction of DB values ca.n be viewed as a complez verb constructed from more sim-

ple verbs. For example, in interpretation (2) above, a. complex verb, say have.borrowers_named,

is constructed f:.:om the verbs have a.nd named. Our heuristic measures the part of rela­

tionship between the verb so constructed a.nd the request itself.

7.3.3 Ellipses

In this subsection, we consider how our semantic relatedness measure ca.n be extended to

apply to a class of ellipses that has been distinguished by Janis [51] called qualification

ellipses. An ellipsis is an utterance in which constituents have been omitted. In a qualifica­

tion ellipsis, moreover, the omitted constituents define qualifications on the entities referred

to in the utterance. An approach to automatically understanding the meaning of an ellipses

225

is to determine the missing qualifications from a. previous request in the dialog, a.nd it is

within this approach that our semantic relatedness measure is to be applied. Consider the

pair of requests

1. students in the Computer Science department

2. supervised by Dr. Lee

The second utterance has at least the following possible completions:

1. students supervised by Dr. Lee in the Computer Science department

2. students supervised by Dr. Lee

The semantic relatedness measure orders possible completions of a.n ellipsis a.ccording4o

their likelihood of being the interpretation intended by the user with the possibility of some

completions being ruled out. For the problem of ellipses our SRM is applied differently than

for the other linguistic problems (semantic ambiguity, word sense disambiguation, etc.) The

query graphs based on the target graphs for the different possible completions of the ellipsis

are determined, and ordered on the basis of their weight relative to their respective target

graphs_. The notion of relative weight introduced in Chapter 4 needs to be generalized to

apply to a set of vertices rather than just one. This is an easy task. The weight of a query

graph G = (V, E) relative to T ~ V is the minimum of the relative weights over all v E T.

7.3.4 Violations of the Min/max Values

It is useful to determine whether any of the interpretations of a request violates a condition

in the domain that should always be true (a constraint). Such a request needs special

226

processing to determine the false presuppositions that underly it. A direct expansion of our

work would be to develop a heuristic based on min/max values for this problem.

In this subsection some ideas on developing a heuristic that identifies parse trees that

violate a constraint expressed by the min/max values are presented. The focus will be

on violations due to prepositional phrase attachments, although violations due to other

properties of the parse tree such as conjunction scoping are equally important. The method

is based on two different types of violations that may occur as illustrated by the following

examples based on the university domain graph of Figure 4.2.

1. A prepositional phrase attachment may contradict a constraint expressed by the min/max

values. For example, the max value of C P on Course states that every course has a

professor assigned to it. The interpretation "a student for a course without a professor"

for the corresponding sentence fragment violates the condition expressed by the max

value. If the noun professor had been itself further modified ("a student for a course

without a good professor"), then it cannot be determined from the parse tree whether

the max value is violated.

2. A prepositional phrase attachment may express no information in addition to that ex­

pressed by the min/max values. For example, if every course is taught by a professor,

then the prepositional phrase attachment in the interpretation "a course taught by a

professor, with no students" expresses no new information. If the noun "professor" is

itself further modified then it is not possible to determine from the parse tree whether

the attachment expresses no new information.

227

A positive violation is committed when information expressed by the min/ma.x values is

restated in the request. A negative violation is committed when the request is inconsistent

with the min/ma.x values. A positive violation of either min or max and a negative violation

of min ca.n be detected only if the head noun is not further modified. To clarify these idea.a,

consider the following ca.see:

1. min violated/positive violation:

The request is "a course taught by a professor". The min value of C P on Course

states that every course is taught by a professor. The attachment of the modifying

phra.se "taught by a professor" to the head noun "course" gives no new information.

However, if the head noun "course" is further modified (e.g., "a course taught by a ~o~d

professor"), then new information is requested.

2. min violated/negative violation:

The request is "a course without a professor". Since every course is taught by a professor

a.nd the noun "professor" is not itself modified, the attachment of the phra.se "without

a professor" to the head noun "course" violates the constra.int expreBSed by the min

val:ue. ff the request had read "a course without a good professor", then no violation

occun because even though every course is assigned a professor, not every course may

be aaigned a good professor.

3. ma.x violated/negative violation:

The request is "a student in several departments". According to the ma.x value, a

student belongs to at moet one department. The attachment of the phrase "in several

228

departments" violates the information expressed by the max value. The violation occurs

regardless of whether the noun "departments" is further modified.

4. max violated/positive violation:

The request is "a student in at most one department". Since "department" is not itself

modified, the attachment of "in at most one department" to the head noun "student"

expresses no new information. No violation of the max value is committed by the request

"a student in at most one small department".

The transitivity property of min/max values can be employed to gain more power out

of these simple ideas. According to the min value every student belongs to at least one

department and every department has at least one professor. By the transitivity property,

every student has at least one professor in his or her department.

The interpretation "a student in a department with professors" denotes an association,

say SP, defined as follows:

(def SP

select z:Student, y:Prof

where (For some z:Dept]

(< z,z >:SD and< z,y >:PD))

SP is the join of SD a.nd PD on Dept. A method for computing min/max values for n­

ary sets, n ~ 2, that a.re defined on any connected directed-acyclic subgraph of the domain

graph using only joins has been given in Section 5.4.4. By applying our method, the min

value of SP on Student is computed to be 1. Therefore, the interpretation "a. student in

229

a. department with no professors" commits a. negative violation of the min value of SP on

Student.

We see from the a.hove example that it will, in general, be necessa.i-y to compute min/max

values to determine violations of min/max constraints. A method of computing min/max

values for n-ary sets, n ~ 2, is necessary, because a prepositional phrase attachment is not

always represented in the internal representation as a bina.ry set. For example, if a. noun

has more than one modifier, the relationships between the noun and ea.ch modifier may be

represented altogether by one n-a.ry association.

The remainder of thls subsection describes how the internal representations of sentences

can be analysed to determine whlch ones correspond with parse trees that commit a. negative

or positive violation. A term is a. constant, a. variable, or a tuple of terms. An elementary

assertion is an assertion of the form term:setname or terml = term2 where term, terml,

and term2 a.re terms a.nd setname na.mes either a declared or embedded set. Let us re­

fer to a variable tha.t occurs in exactly one elementary assertion in the assertion part of

a.n internal representation a.n underconstrained variable. The condition for identifying a

positive violation derives from the following observation: ff z; is a universally quantified

underconstrained variable, a.nd the Jf" min value of assoc is 1, then the assertion

not< z1, .. ,,z;-1,z;,z;+1, .. ,,zn >:assoc

is necessarily false. Hin the query form of the internal representation a.ny of the variables

z1, ... , z ;-1, z ;+1, ... , Zn occur free, then the set defined by the query is necessa.rily empty.

Example 7.1. For the interpretation "a professor for a course, with no students", the

230

assertion form of the internal representation is

[For some x:Prof][For some y:Student] [For some w:Course]

(not < x, y >:PS and < y, z >:SC)

(PS def

select x:Prof, y:Student

where [For some z:Course]

(< z,x >:GP and< y,z >:SC))

The min value of PS on Prof is 1 which states that every professor has at least one

student. Knowledge expressed by the min value is expressed by the following assertion:

(1) [For all z:Pro/][For some z~Student]< z,x >:PS

Its negation:

(2) [For some x:Prof][For all z:Student]not< z, x >:PS

is necessarily false in the given domain. In addition, the assertion

[For all x:Prof][For all z:Student]not< z, x >:PS

is necessarily false. Any query that contains the assertion [For all z:Student]not< z, x >:PS

where z is underconstrained and x occurs free defines a. set that is necessarily empty in the

given domain.

The internal representation for "a professor for a. course, with no students" contains the

elementary assertion not< z, x >:PS where z is a universally quantified underconstrained

231

variable and z occurs free. The set defined by the internal representation is necessarily

empty and will therefore be excluded as a possible interpretation.

If z is not underconstra.ined, then an assertion which contains (2) is not necessarily false.

For example, consider the query corresponding to the request "a professor with no graduate

students".

[For some z:Pro/][For all z:Student](not< z,z >:PS and z:Graduate)

The set Graduate has been declared in Appendix A. z is not an underconstra.ined variable

because (after application of DeMorgan's law) it occurs in two elementary assertions not<

z, z >:PS and notz:Graduate. The set defined by the query is not necessarily empty.

Although there do not exist professors with no students, there may exist professors with no

graduate students.

The condition for identifying a positive violation derives from the following observation:

If z j is an existentially quantified u.nderconstra.ined variable, and the j th min value of assoc

is 1, then the assertion

not< z1,,,,,zj-1,z3,z3+1,,,.,zn >:assoc

expresses no information in addition to that expressed by the min value.

Example 7 .2. The min value of C P on COURSE is 1 which states that every course

is taught by at least one professor. The interpretation "a course taught by a professor,

with no graduate students", could be more succinctly stated "a course with no graduate

students" given the min value of GP on Course. A possible internal representation is

232

select :i::Course

where [For some y:Prof] < :i:,y >:GP and

[For all z:Student] not< z, :i: > :SC and z:Graduate.

The pa.rt of the query [For 1ome y:Prof] < ~, y >:GP could be eliminated without

changing its meaning. A sufficient condition for elimination of that portion without affecting

the meaning of the query is that y is underconstra.ined.

In this subsection, we have considered some aspects of the problem of developing a

heuristic to identify violations of min/ma.x values due to prepositional phrase attachments.

Further research is needed to determine how the system should respond when it has detected

a. violation.

7.3.5 Automatically Generating the Formal Database Query

Our design for a portable natural la.ngua.ge interface is based on two conjectures ea.ch of

which needs to be further explored. First, we have conjectured that knowledge generated

in the _process of translating a SET schema. for the domain to a. relational schema. is useful

for automatically tra.n.slating the internal representation of a request to a. formal DB query.

Second, we have conjectured that general algorithms can be written to automatically gener­

ate the DB query based on an intermediate model, the N F 2 object model, between the SET

model and relational model. A design strategy based on the availability of such algorithms

results in a natural language interface that is easily portable between data.bases.

233

7 .4 Main Contributions of the Thesis

This thesis has focused on the problem of transporting a natural interface to a new domain

and data.base, and it reflects the excitement that prevails in both the a.rea.s of natural lan­

guage understanding and database systems. In pa.rticula.r, we have applied current data.base

theory a.nd data.base system capabilities to solve problems in the area of natural language

understanding.

The ma.in contributions of the thesis to ongoing resea.rch a.re a.s follows:

1. The discovery that the process used for adapting the natural language interface to a

new domain and data.base overlaps considerably with the process of designing the DB

schema.

2. The design of an enhanced natural language interface based on sharing of knowledge,

about the relationships in the doma.in, for DB schema design and NL understanding.

3. The development of heuristics based on the knowledge referred to in 2) for resolving

ambiguities in natural language database requests, in particular, semantic ambiguity,

word sense ambiguity, and post noun modifier attachment.

4. Specification of the relationship between the mathematical notions of mapping type and

total/partial mapping and specific English language constructions.

Further research is expected, particularly with regard to {4). The richness of description

that the notions of mapping type and total/partial mapping provide for modeling language

phenomena has not been fully tapped by our approach. We have provided a general heuristic

234

that applies to several linguistic problems and several English language constructions. A

challenging problem for the near future is to provide heuristics based on the notions of

mapping type and total/partial mapping, but specialized to each ·linguistic problem and

language construction.

235

Appendix A

Internal Representation of

Sentences and Noun Phrases

The semantics of a sentence Sis represented by an assertion (called the internal representa­

tion of S) that references vertices in the domain graph. The language for expressing internal

representations is DEFINE [32]. In this appendix the language DEFINE is reviewed and

internal representations for sentences and noun phrases a.re illustrated by example.

Review of the Language DEFINE

A set is denned in the language in the context of a SET schema such as the one illustrated

by the domain graph for the university domain. The format of a definition is

< setname > def

select < parent set + variable declaration >

where <assertion>

236

Each occurrence of a free variable in < assertion > must be declared in < parent set +

variable declaration > . The format of < parent set + variable declaration > is < Vl :

S1, V2 : S2, ... , V n : Sn > where Vl, ... , V n are terms and S1, ... , Sn are set names. A

term is a constant, a variable, or a tuple of terms. The ":" stands for set membership.

Vl : S1 means Vl is a meruber is S1. The set defined by such a < parent set + variable

declaration > is a subset of the Cartesian product of (Sl x S2 x ... x Sn). Elementary

assertions are of the form V: Sor Vl = V2 where V, Vl and V2 are terms and Sis a set

name. Quantified assertions are of the form [QT : S] < assertion> where Q is a quantifier

'For some' or 'For all', Tis a term, and Sis a set name.

Example:

Comp-Sci-Stud def

(select z: Student

where [For some y: Course](< z,y >:SC and< y,'CPSClOl'>:CN))

Comp-Sci-Stud is the set of students who take .the course CPSC101. Entities are denoted

by "surrogates" in a database. Comp-Sci-Stud is actua.lly the set of surrogates that denote

students who take at least one computer science course.

The language permits a set declaration to be embedded within a query. The embedded

defined set is given a name which may be used within the query to refer to the embedded set,

but the name is meaningful only during execution of the query. Embedded set declarations

appear as a list of parenthesized set declarations following the query each of the form

237

(< setname > def

select < parent set + variable declaration >

where <assertion>)

as before. setname is the name of the embedded-defined set. An embedded declaration

may itself contain embedded declarations.

Functions in the language DEFINE

Given an association (for example SC in the university domain) and a variable y which is

bound to a member of Student, the expression < y: SC :> refers to the set of surrogates

of courses ta.ken by the student denoted by the surrogate to which y is bound. If y is bound

to a member of Course then <: SC: y > is the set of (surrogates of) students in the course

denoted by the surrogate to which y is bound.

Examples

In this section, sa.mple sentences and noun phrases and their internal representations are

illustrated.

The internal representations for NL requests a.re represented using an assertion form of

a query. The aelect part of a query is omitted in its assertion form and explicit existential

qu&ntifica.tion is given for all of the variables which occur free in assertion. Embedded set

declarations in a query a.re not altered in the assertion form.

Suppose that a graduate student is a student who takes a course numbered 500 or

greater.

238

Graduate def

select x:Student

where [For some y:Course](< x, y >:SC and

(<< y:NUM: >:GREATER:500 >or<< y:NUM:>:EQUAL:500 >))

GREAT ER, EQUAL, and NU Mare functions. When y is bound to a member of Course,

< y:NUM:> is the number of the course. << y:NUM:>:GREATER:500 > is true if

< y:NU M:> is greater than 500.

The assertion form for the set Graduate which has been defined in Chapter 4 is:

[For some x:Studentl[For some y:Course] (< x,y >:SC and

(<< y:NUM:>:GREATER:500 >or<< y:NUM:>:EQUAL:500 >))

The internal representation of a sentence has the form

assertion (set1 def ...) ... (setn def ...).

where the seti denote the arguments of the verb. A possible internal representation for the

sentence "professors tea.ch courses" is

[For some x:Pro/][For some y:Student][For some z:Course]

(< y,z >:SC and< z,x >:GP).

The internal representation states that a professor teaches a. course if the professor is as­

signed to tea.ch the course and there exists a.t least one student enrolled in the course. The

arguments of the verb a.re simple NPs in that they do not themselves contain embedded

NPs or other modifiers. The sets Prof and Student that denote the arguments of the verb

239

a.re primitive sets declared as pa.rt of the SET schema. In general, previously declared sets

will not be available to represent the meaning of the arguments of the verb.

The internal representation of an NP is an assertion of the same form as the internal

representation for a sentence. The following examples illustrate internal representations for

different types of noun modifiers:

Adjectives

A possible internal representation for the phrase "a graduate student" is

[For some x:Student)(x:Graduate).

Since the decla.ra.tion is previously given as part of the set schema., it is not given as Pa.i:t 2f

the internal representation.

Genitives

An internal representation for the phrase "Dr. Lee's Students" has been given in Chapter

4, page 104.

Modifying Phrase

A possible internal representation for the NP "students in the Computer Science depart-

ment" is:

[For 1ome x:Student)[For some y:Dept] (< x,y >:SD and y:CS..Dept)

(CS..Dept def

select z:Dept

240.

where (< x,'Computer Science'>:DN))

Ordinals

The following example illustrates the internal representation for another type of modifier,

the ordinal modifier, which defines an objects position in a series (e.g., first, tenth, hun­

dredth). If the NP "the first CPSC 101 student" means the student who received the highest

grade in CPSC 101, then an internal representation for the NP might be:

[For some x:CPSC..Stud][For some y:Course] (< x,y >:First..Stud)

(CPSC..Stud def

select x:Student

where [For aome y:Course]

(< z,y >:SC and< y,'CPSClOl'>:CN)

(First..Stud def

select < st,cr >:Student x Course

where [For aome gr:Grade] (< gr,< st,cr >>:SCG and

[For all gr':Grade] [For all st':Student]

(<gr', < st', er >>:SCG::::, gr'~ gr)))

241

Appendix B

Procedural S~mantics for the

University Domain

Semantic rules specify how the internal representation is built from the parse tree for a

sentence. In this appendix a collection of rules is given for generating internal representa­

tions for some of the NL requests that a.rise in the university domain. The rules a.re based

on Woods' procedural semantics approach [95]. The action of the semantic interpreter is

also illustrated by showing how it applies the rules to a. particular sentence to produce a.n

internal representation. The rules given in this appendix are intended for illustration. In

a. working system many more rules would be needed to handle the variety of requests that

would be presented to the system.

242

B.1 Defined Sets Referenced by Semantic Rules

The rules reference base sets of the University domain as well as a number of sets defined

in terms of the base sets. The defined sets are Avg..Student which is the set of average

students, Graduate which is the set of graduate students, and CourseAvg which is an

association that gives for each student, the average in his or her courses.

The set Graduate has been defined in Appendix A. Definitions for the others are given

here. For definition of Avg..Student we assume that an average student is one who has an

average of B in his or her courses:

Avg..Student def

select Y:Student

where <Y,'B'>:StudAvg

(StudAvg def

select X:Student, Z:Grade

where <X:SG:>:AVERAGE:Z)

(SG def

select X: Student, Z:Grade

where [For some Y:Course]

<<X,Y>,Z>:SCG))

The association StudAvg associates with a student 'the average of grades obtained in his or

her courses. When X is bound to a member of Student, <X:SG:> is a list of the grades

243

obtained by X in all of X's courses. The list may contain duplicates since a student may

receive the same grade in more than one course. AVERAGE is a system declared function.

It is a subset of (GradeSet X Grade) where the members of Grade are 'A', 'B', 'C', 'D', ...

and the members of GradeSet a.re sets of grades.

The association CourseAvg associates with a co~rse the average of grades obtained by

students in the course.

CouraeAvg def

select X:Course, Z:Grade

where <X:CG:>:Average:Z

(CG def

select X:Course, Z:Grade

where [For some Y:Course] <<Y ,X>,Z>:SCG)

B.2 Semantic Rules for the University Domain

The rules refer to partial tree structures (as illustrated in Figures B.1 and B.2) which a.re

matched to subtrees of the pa.rse tree. An example of a. rule follows:

1 - {GS: {1) = Student) and

2 - {GlO: (1) = in and Dept{{2)))

==> [For some <2-2>:Dept] <X,2-2>:SD

The numbers in pa.rentheses in the semantic rules match the numbers in parentheses

in the partial tree structures. Arguments for the predicates a.re specified using a. pair of

244

G1: G2:

s s

/"'- I
VP NP VP

/"" V NP
(1) V

(1) (2)

(2)

subject - verb verb - object

G3: G4:

s s

I I
VP VP

A I
pp

AUX V A I I PREP NP
(1) (2) I I

aux - verb (1) (2)

preposition - object

Figure B.1: Partial Tree Str,rctures for Use by S-rules

245

G7: GS: G9:
NP NP NP

~ I I
DET NU N ADJ

I I I I
(1) (2) (1) (1)

G10: G11:
- -

NP NP

I I
pp ADJ

A
PREP NP NPR

I I I
(1) (2) (1)

Figure B.2: Partial Tree Structures for' Use by D, N, a.nd R-rules

246

numbers <nl,n2> where nl refers to a numbered pa.rt of the left side of the rule a.nd n2

is one of the parenthesized numbers in that pa.rt. A number of type checking predicates

are assumed to be available. Examples include Student(x), Course(x), Dept(x), Dname(x).

There is one type checking predicate for each primitive set in the domain.

Conditions in the semantic rules are expressed in terms of the type checking predicates

and the relation'='. The condition "(n)=W" is true if string Wis identical to the terminal

string of the subtree of the parse tree rooted at node n. This is to say that node n dominates

the string W. The condition P((n)) is true if n denotes an object of type P.

The conditions on the left-hand side of a rule a.re numbered, and ea.ch refers to exactly

one partial tree structure. At any given moment the semantic interpreter is working on a

given node in the parse tree which is called the root. For a condition to be true, the partial

tree structure identified by it must match the subtree of the parse tree starting at the root,

and its subconditions must be true of the matched subtree of the parse tree.

Condition 1 of the given rule refers to the partial tree structure labeled G8. It is satisfied

if G8 matches the pa.rse tree starting at the root, and the node in the parse that matches

the node labeled (1) in GS dominates the string "student". A rule is applicable if all of its

conditions are satisfied.

The semantic rules used here differ from Woods' in the right hand side which contains a

query fragment expressed in a set notation (the language DEFINE) rather tha.n a. functional

calculus. The left-hand pa.rt of our rules is still expressed in a predicate calculus which may

cause confusion. For example, Student((l)) on the left and <1>: Student on the right have

the same meaning but serve different purposes.

247

S-Rules for the University Domain

Sl

1- (Gl: Student((!)) a.nd ((2)=enroll or (2) = register)) and

2- (G3:(l) = be and ((2)=enroll or (2)=register)) and

3- (G4:(l) = in and Course((2)))

==} <1-1, 3-2>: SC

e.g.s.

"Jones is enrolled in CPSC 101"

"Jones is registered in CPSC 101"

S2

1- (Gl: Prof((!)) and ((2) = teach or (2) = instruct) and

2- (G2: ((1) = teach or (1) = instruct) and Course((2)))

==} <2-2, 1-1>: CP

e.g. "Dr. Lee teaches CPSC 101"

S3

1-(Gl: Course((!)) and ((2)) = teach or (2) = instruct and

2-(G3: ((2) = tea.ch or (2) = instruct) and (1) = be) a.nd

3-(G4: (1) = by and Prof((2))

==} <1-1, 3-2>: CP

e.g.s. "CPSC 101 is taught by Dr. Lee"

S4

248

1-(Gl: Student((l)) a.nd ((2) = receive or (2) = earn or (2) = obtain or (2) = get)) and

2-(G2: (4) = receive or (1) = earn or (1) = obtain or (1) = get) a.nd Grade ((2))) and

3-(G4: (1) = in and Course((2)))

~ <2-2, <1-1,3-2>>: SCG

e.g.s.

"Smith received A in CPSC 101"

"Smith in CPSC 101 received A"

Note: An order on the prepositional and verb phrases is not specified by rule S4. To impose

an order a different tree structure from G4 would be needed which includes a PP for each

of the direct a.nd indirect objects.

S5

1-(Gl: Student((l)) a.nd ((2) = take or (2) = study) and

2-(G2: ((1) = take or (1) = study) and Course((2)))

~ <1-1,2-2>:SC

e.g. "Jones takes CPSC 101"

Determiner Rule• (D-Rulea}

D1

1-(G7: ((1) = some or (1) = a. or (1) = any) and (2) = SG)

~ ([For aome X: A] V)

e.g.s. "any student enrolled in CPSC 101"

"some professor in the computer science department"

249

D2

1-(G7: ((1) = ea.ch or (1) = every or (1) = all) and (2) = SG)

=> ([For all X:y7] 6)

e.g.s.

"all students enrolled in CPSC 101"

"every professor in computer science"

D3

1-(G7: (1) = no a.nd (2) = SG)

=> (not [For some X: y7] 6)

e.g. "no student in CPSC 101"

D4

1-(G7: (1) = not every a.nd (2) = SG)

=> (not [For all X: y7] 6)

e.g. "Not every student taught by Dr. Lee"

The symbol y7 in the D-rules will be replaced by a. set name resulting from a.n N-rule.

The symbol 6 will be replaced by an assertion resulting from R-rules (and applications of

D-rules, N-rules, and R-rules to NPs lower down in the pane tree).

Noun Rulea (N-Rulea)

Nl

1-(G8: (1) = student or (1) = pupil)

=> Student

250

I

I
r

e.g. "a student"

N2

1-(G8: (1) = graduate)

~ Graduate

e.g. " a graduate"

N3

1-(G8:(l) = professor or (1) = instructor)

~ Prof

e.g. "a professor"

N4

1-(G8:(l) = course)

~ Course

e.g. "a course"

N5

1-(G8: (1) = department)

~ Dept

e.g. "a department"

Addition• to Wood'• Framework

The N-rules are applied differently depending on whether the head noun is universally of

existentially quantified. For existential quantification, the symbol V is repla.ced by the

right-hand side of the applicable N-rule. For uni;versa.l quantification the NP-processor

251

generates the name of an embedded set which replaces 'y in the working string, and the

initial pa.rt of an embedded set decla.ra.tion replaces the symbol 6..

Example:

If the working string generated by the D-rules is [For some X: 'y] 6. where X is a

va.ria.ble that denotes the NP, then application of an N-rule will replace 'y with the name

of a set appearing on the right-hand side of the N-rule. If the working string is

[For all X: 'y] 6.

then the N-rules will produce a string such as

[For all X:S]

(S def

select X:T

where 6.)

where Xis a variable generated by the NP-processor to represent the NP, S is the name of

a.n embedded set decla.ra.tion also generated by the NP-processor, and T is the name of a

set which appears on the right-hand side of the applicable N-rule.

Restriction Rules (R-rules)

Rl

l-(G8: (1) = student) a.nd

2-(G9: (1) = average) a.nd

3-(GlO:(l) = in a.nd Course((2)))

252

~ <<<3-2>: Cou.rseAvg:>, <X,3-2>>: SCG and t:::,.

e.g. "an average student in CPSC 101"

R2

1-(GS: (1) = student) and

2-(G9: (1) = average)

~ X:Avg_Student

e.g. "an average student"

R3

1-(GS: (1) = student) and

2-(G9: (1) = graduate)

~ X: Graduate

e.g. "a graduate student"

R4

1-(GS: (1) = student) and

2-(GlO: (1) = in and Dept((2)))

~ [For some <2-2>: Dept) <X,2-2>: SD a.nd I::::,.

e.g. "a student in the computer science department"

R5

1-(G8: (1) = department) a.nd

2-(G9: DName ((1)))

~ <X,2-1>:DN

e.g. "the computer science department"

253

R6

1-(GS: (1) = professor) a.nd

2-(Gl0: (1) = in a.nd Dept((2)))

~ [For some <2-2>: Dept] <X,2-2>: PD a.nd !::.

e.g. "a professor in the computer science department"

R7

1-(GS: (1) = computer science course

2-(G9: CNa.me ((1)))

~ X:CPSC_course

e.g. "a. computer science course"

The symbol X in the R-rules stands for the variable that the NP-processor has created for

the noun phrase which it is looking at when it applies the R-rule.

s

~N~ /p"-....
✓<Z V NP

I ~ REP ~:as fr "'•
every student / 6

a computer
science

in DET ADJ N course

I
the I " •computer department

science•
Figure B.3: Parse Tree for the Sentence "Every student in the computer science department
takes a computer science course."

254

Example:

This example describes the processing of the sentence "Every student in the Computer

Science department takes a Computer Science Course". A parse tree for the sentence is

given in Figure B.3.

The S-processor begins with a working string 6.. The NP-processor is called to process

the quantified noun phrase "every student in the computer science department". The NP­

processor applies the D-rules, N-rules and R-rules in succession. 6. in the working string

is replaced by rule D2 resulting in the new working string ([For all Xl: 'v] 6.). Xl is a new

variable created by the NP-processor for the noun.phrase. Next the N-rules are applied.

The result of applying rule Nl is the string

[For all X:S]

(S def

select X: Student

where 6.)

Finally, the R-rules are applied. Rule R4 substitutes 6. in the working string producing

[For all X:S]

(S def

select X:Student

where [For some Y:Dept] <X,Y>: SD and 6.)

X is a variable generated by the NP-processor to denote the embedded NP. The NP­

processor is called again to process the embedded NP. None of the D-rules or N-rules apply.

255

The R-rules (R5) substitute !:::.. in the working string producing

(For all X:S)

(S def

select X: Student

where (For some Y:Dept] <X,Y>: SD a.nd <Y, 'Computer Science'>:DN)

The NP-processor is called on the NP "a computer. science course" producing

[For some Z: Course) Z:CPSC-Course

by applying Dl, N4. a.nd R7.

The $-processor applies S5 substituting !:::.. in the working string to produce

[For all X:S] (For some Z:Course]

(<X,Z> SC a.nd Z:CPSC_Course)

(S def

select X: Student

where [For some Y: Dept] <X,Y>:SD a.nd <Y,'Computer Science'>:DN)

256

Appendix C

A Transportable Natural

Language Interface

A natural language interface based on the architecture illustrated in Figure 2.5 is available

at UBC, and it has been designed to be portable. The specific architecture of this system is

assumed for interfacing an NLI with a database system. It was designed and implemented

by Steve White in 1985 as part of his master's thesis work [93]. The system is named ALPS

(automatic language processing system). This appendix describes ALPS and compares it

with the TEAM system [36] which is another transportable NL interface that has been

recently described in the literature.

Domain portability is achieved in ALPS by separating domain independent and domain

dependent information. There are two sources of domain independent information: the

general dictionary, and the global dictionary. Both dictionaries are provided as pa.rt of the

initial system before it is adapted to any particuiar d~main. The general dictionary contains

257

syntactic descripti~ns of words that appear frequen~ly in da.ta.ba.se requests independent of

the domain. These include pronouns such as who, what, me, you, that, which and command

verbs such as show, print, and count. Grosz et al. [36] refer to these types of lexical entries

as closed class. Semantic information for some nouns, question pronouns (who, what), and

verbs is also provided in the general dictionary. The global dictionary contains syntactic

information for words that a.re widely applicable to many different domains (e.g.,words for

units of measure - foot, pound, kilogram). Grosz et al. refer to such words a.nd domain

dependent words as open class. The meaning of open class words is usually dependent on

the domain. However, since some open class words occur so frequently it is worth providing

information for them in the initial lexicon. Syntactic definitions for those words that occur

in the given domain a.re automatically extracted from the global dictionary when the system

is started up. Thereafter, the global dictionary is not referenced.

Domain dependent information includes a. domain schema. which provides syntactic,

semantic, and linguistic information about the domain, an inverted index which is a table

of most of the words in the database together with their syntactic category and the data.base

fields to which they belong, and the database schema library which includes syntactic and

semantic definitions of words that are commonly used in requests against databases.

A dictionary (called the active domain dictionary) is compiled from the domain inde­

pendent and domain dependent information when the system is started up. The active

domain dictionary serves as the lexical dictionary during operation of the system. The gen­

eral dictionary, inverted index, and database schema are not referenced during operation of

the system.

258

All information required to adapt the system to a new domain is specified as data. No

programming changes are required. Data model portability is achieved in the standard way

by using a logical form that is data model independent. No changes to the syntactic or

semantic components are required to adapt the system to a new data model.

The parser is based on Wood's specification [96), and it uses an ATN grammar for

English developed by Winograd [94). The grammar is a syntactic grammar enhanced with

semantic routines for resolving syntactic ambiguity. The parser reads the global dictionary

and the active domain dictionary during the parse.

ALPS is pa.rticula.rily good a.t handling compound proper nouns. When a. proper noun is

parsed the system will parse as many subsequent words as possible which might be pa.rt of a.

compound proper noun. These words include abbreviations, initials, proper nouns, and the

words 'of' and 'a.nd'. This string of words is then matched against proper nouns that occur

in the data.base. This is the reason that the active domain dictionary is accessed during

the parse. If an exact match is found then the string of words is parsed a.s a compound

proper noun. If a match is not found then the string is checked a.ga.inst entries in the global

dictionary to see if it (or its components) occur there a.s proper nouns. If they do then the

string ·will be assumed to be an unknown proper noun, a:nd an appropriate response will be

given to the user.

The semantic interpreter uses verb frames which permit the identification of the semantic

roles that the syntactic constituents of the parse play with respect to the ma.in verb. The

definition of a. verb consists of a. verb frame and optiona.lly some information on how relations

a.re to be joined together. A verb frame specifies which relations and columns can serve

259

as argument types of the verb. For example, the direct object of the verb 'teach' may be

specified to be an entity of the Student relation, and modifiers for the verb may be specified

to come from the Rating field of the Teacher relation.

When a. verb frame specifies that different relations can provide values for the verb''s

arguments, it must also specify how the relations a.re to be joined together. This information

is expressed a.s a. collection of join conditions. For example, if the subject of the verb 'teach'

is an entity from the Teacher relation and the direct object is as given previously then the

join information may be Teacher.Name=Student. Teach where Name and Teach a.re column

names. The given statement indicates a. join of the Teacher relation on Name with the

Student relation on Teach.

The structure of verb frames is similar to Fillmore's case grammar (27, 26] except that the

argument types a.re syntactic categories (subject, direct object) rather that Filmore's cases

(agent, beneficiary). The motivation for choosing syntactic categories over the conventional

cases is to permit a DBA without a strong background in linguistics to be able to ad.a.pt

the system to a. new doma.in.

The language for expressing the formal database query is the relational query language

SQL [78}. Database portability is improved by the decision to use SQL.

The system does not have a. query interpreter. Natural language requests a.re accepted

by the system and the corresponding formal database queries a.re logged in a. file. For testing

the system each query in the log file was executed by hand using the terminal interface to

the relational data.base system ORACLE which supports the SQL query language. In ALPS

the user performs the job of the query interpreter. Note that the formal and actual data.base

260

queries are identical in this framework.

The main features of the ALPS system especially those that contribute to the trans­

portability of the system have been described in this section. The section is concluded with

a comparison of ALPS and the TEAM system which has been described in Section 3.7.

TEAM provides a knowledge acquisition module that engages the DBA in a dialog

to obtain knowledge that it needs for answering questions. TEAM knows when it has

acquired a sufficient amount of knowledge. In ALPS semantic information is represented

and presented to the system as a collection of LISP forms (not very user friendly). The

DBA decides when the system has acquired enough knowledge.

TEAM is particularly good at handling quantifiers. The language for expressing the

logical form includes special quantifiers for definite determiners (all, the) and question

determiners (what, which). Six different heuristics are used to determine the scope of

quantifiers. ALPS recognizes question determiners but not definite determiners. For a

sentence such as the following

Show me a student with an A average in Computer Science

the sy11tem will print out all students with an A average in computer science. The definite

determiner a is not being recognized. Complicated quantifiers including not are not handled

in ALPS, and there are no heuristics for determining the scope of quantifiers.

ALPS is particularly good at recognizing compound proper nouns in the input and

responding appropriately. The handling of compound proper nouns does not appear to be

a strong point of TEAM.

261

In both ALPS and TEAM the interpretation of a natural language request is independent

of the context of the dialog. Both systems handle only a limited range of conjunction. Both

implement the syntactic and semantic components as separate modules that run in parallel.

Both systems employ the technique of separating domain independent from domain

dependent information to improve domain portability. Both systems use a logical form that

is data model independent to achieve data model portability.

TEAM uses an elaborate sort hierarchy which represents set-subset relationships be­

tween monadic sort predicates. A large a.mount .of the sort hierarchy is built into the

natural language interface, but the DBA may also add new nodes to the sort hierarchy. A

simple two level sort hierarchy is built into ALPS, and it cannot be expanded by the DBA.

TEAM separates both logically and physically (using separate modules) between the con­

ceptual schema. (which includes the sort hierarchy, information a.bout non-sort predicates,

and pragmatic information) and the data.base schema. ALPS makes a logical separation

between the two components but not a physical separation.

The two systems appear to be more similar than different with respect to their basic

paradigms for natural language processing. The designers of TEAM state that the processes

that TEAM uses for reponding to natural language requests a.re similar to those of many

other systems. What makes TEAM different from the others is its focus on a careful modular

design that permits maximum generality. The use of a semantic grammar is therefore ruled

out. A semantic grammar has also been ruled out by the designer of ALPS. Also ruled out

is the use of the database query language for expressing the logical form. The designers

of TEAM see this as a mixing together of the meaning of a request with a procedure for

262

retrieving the answer from the data.base. In ALPS a. sepa.ra.te language is used for expressing

the meaning of a. request, but the language is similar to the data.base query language SQL.

In ALPS na.tura.l langua.ge requests a.re mapped onto a. rather small° subset of SQL in which

there a.re few procedural components. Even t~ough the language for the logical form in

ALPS is similar to a. subset of the data.base query_ language, there is a recognition of the

need to separate the meaning of a request from the procedure tha.t answers the request.

Different modules implement the transformation from the na.tural la.ngua.ge request to the

logical form and from the logical form to the database query. If the system were to be

modified to handle a broader ra.nge of natural language constructions then the language for

the logical form a.nd the database query language would begin to diverge. It has been noted

in the introduction to this appendix that the language for the logical form in ALPS is not

independent of the database schema as it is in TEAM.

Many of the ideas implemented in TEAM for improving tra.nsportability by using a

careful modular design have been implemented in whole or in part in ALPS. The proposed

extensions to ALPS will result in a system that is distinguished from TEAM and other

systems by its focus on the use of database system capabilities to improve the transporta,.

bility of the system. The approach of using modularity to improve transportability and

that of uaing the database system to improve transportability a.re complementary rather

than competing approaches.

263 '

Bibliography

[1] Hiyan Alshawi and Robert C. Moore. Feasibility Study for a Research Programme
in Natural-Language Processing. SRI International Cambridge Computer Science Re­
search Center, Cambridge, England, August 1986. SRI Project ECC-1437. Contract
No. ALV /CONS/IKBS/026.

(2] Douglas E. Appelt. Planning English Sentences. Computational Linguistics, 1985.

[3] Bruce W. Ba.llard, John C. Lusth, and Nancy L. Tinkham. Ldc-1: A transportable,
knowledge-based natural language processor for office environments. ACM Transac­
tions on Office Information Systems, 2(1):1-25, 1984.

[4] D.S. Batory, T.Y. Leung, and T.E. Wise. Implementation concepts for an extenaible
data model and data. language. ACM Transactions on Database Systems, 13(3):231-
262, 1988.

[5] C. Beeri, R. Fa.gin, and J .H. Howard. A complete axiomatization for functional and
multivalued dependencies. In Proceedings ACM SIGMOD Conference, 1977.

(6] P.A. Bernstein and C.W. Chiu. Using semijoins to solve relational queries. J. ACM,
28(1):25-40, 1981.

[7] Allan David Booth. Designing a. portable natural language data.base interface. Master's
thesis, University of British Columbia., Department of Computer Science, Vancouver,
B.C., Canada, 1983.

[8] Roger A. Browse. A knowledge identification phase of natural language analysis. Mas­
ter's thesis, University of British Columbia., Department of Computer Science, Van­
couver, B.C., Ca.nada., 1977.

[9] Thomas Burns, Eliza.beth Fong, David Jefferson, llichard Knox, Leo Mark, Christopher
Reedy, Louis Reich, Nick RouBBopoulos, and Walter Truszkowski. Reference model for
dbms sta.nda.rdization. report from the database architecture framework task group of
the a.nsi/x3/sparc database system study group. SIGMOD Records, March 1986.

[10] N. Cercone and G. McCa.lla. Accessing knowledge through natural language. Advances
in Computers, 25:1-99, 1986.

[11] Eugene Cha.rnia.k and Drew McDermott. Introduction to Artificial Intelligence.
Addison-Wesley, 1985.

264

[12] P.P. Chen. The entity-relationship model - toward a unified view of data. ACM
Transactions on Database Systems, 1(1):9-36, 1976.

[13] Noam Chomsky. Syntactic Structures. Mouton and Co, The Hague, 1957.

[14] Noam Chomsky. Aspects of the Theory of Syntax. M.I.T. Press, 1965.

[15] E.F. Codd. A relational model of data for large shared data banks. Communications
of the ACM, 13(6):377-387, 1970.

[16] E.F. Codd. Extending the database relational model to capture more meaning. A CM
Transactions on Database Systems, 4(4):397-434, 1979.

[17] COBOL Committee. Codasyl. Journal of Development, 1978. Department of Supply
and Services. Canadian Federal Government. Hull, Quebec, Canada.

[18] P. Dadam, K.Kuespert, F. Andersen, H. Blanken, R. Erbe, J. Guenauer, V. Lum,
P.Pistor, and G. Walch. A dbms prototype to support extended nf2 relations: an
integrated view on flat tables and hierarchies. In Carlo Zaniolo, editor, Proceedings of
the International Conference on Management of Data, pages 356--367. ACM SIGMOD,
1986.

[19] Fred J. Damerau. Problems and some solutions in customization of natural language
database front ends. ACM Transactions on Office Information Systems, 3(2):165-i84,
1985.

[20] James Edward Davidson. Interpreting natural language database updates. Techni­
cal Report STAN-CS-87-1152, Department of Computer Science, Stanford University,
Stanford, CA, 1987.

[21] Bi pin C. Desai, Richard J. Pollock, and Philip J. Vincent. A natural language interface
to a multiple databased office information system. SIGOIS Bulletin, 9(4):19-33, 1988.

[22] Jim Diederich and Jack Milton. New methods and fast algorithms for database nor­
malization. ACM '.lransactions on Database Systems, 13(3):339-365, 1988.

[23] Samuel S. Epstein. Transportable natural language processing through simplicity - the
pre system. ACM '.lransactions on Office Information Systems, 3(2):107-120, 1985.

[24] R. Fagin. Norma.I forms and relational database operators. Proc. ACM SIGMOD Int.
Conj. on Management of Data, pages 153-160, 1979.

[25) R. Fagin. A normal form for relational databases that is based on domains and keys.
ACM Transactions on Database Systems, 6(3), 1981.

[26) Charles J. Fillmore. The case for case. In E. Ba.ch and R.T. Harms, editors, Universals
in Linguistics, pages 1-88, New York, 1968. Holt, Rinehart, and Winston.

[27] Charles J. Fillmore. The case for case reopened. In P. Cole and J.M. Sa.dock, edi­
tors, Syntax and Semantics 8: Gramaticaf Relations, pages 59-81, New York, 1977.
Academic Press.

265

[28] J.P. Fournier, P. Herman, G. Saba.h, and A. Vilnat. Processing of unknown words in
natural language question answering. Computational Linguistics, 4(2):205-211, 1988.

[29] Frey Associates, Inc., Chestnut Hill Road, Amherst, NH. THEMIS Management In­
formation System, 1984.

[30] Paul C. Gilmore. Natural deduction based set theories: A new resolution of the ol!i
paradoxes. J. Symb. Logic, 51(2), 1986.

[31] Paul C. Gilmore. Concepts and methods for database design. Technical Report TR87-
31, Department of Computer Science, University of British Columbia, 1987.

[32] Paul C. Gilmore. A foundation for the entity relationship approach: How and why? In
Proceedings of the 'f1h International Conference on Entity-Relationship Approach, New
York, 1987.

[33] Paul C. Gilmore. Personal correspondence. Department of Computer Science, Univer­
sity of British Columbia., 1987.

[34] Robert C. Goldstein. Database Technology and Management. John Wiley and Sons,
1985.

[35] Ralph Grishman. Computational Linguistics. Cambridge University Press, 1986. __

[36] Barbara J. Grosz, Douglas E. Appelt, Paul A. Martin, and Fernando C.N. Pereira.
Team: An experiment in the design of transportable natural-language interfaces. In Ar­
tificial Intelligence, volume 32, pa.gee 173-243. Elsevier Science Publishers B.V. (North­
Holland), 1987.

[37] Barbara Jean Grosz. The representation and use of focus in a. system for understanding
dialogs. In Proc. of the Fifth International Joint Conference on Artificial Intelligence,
pages 67-76, Cambridge, Mass., 1977.

[38] Barbara. Jean Grosz. Focusing in dialog. In David L. Waltz, editor, TINLAP-2: The­
oretical Issues in Natural Language Processing, pages 96--103, University of Illinois at
UrbanarChampa.ign, 1978.

[39] Ca.role D. Hafner and Kurt Godden. Portability of syntax and semantics in data.log.
ACM Transaction, on Office Information Systems, 3(2):141-164, 1985.

[40] Gary Hall, WoShun Luk, and Nick Cercone. Disambiguating queries using dependency
graphs. Technical Report LCCR TR 87-7, School of Computing Science, Simon Fraser
University, Burnaby, British Columbia., Canada., 1987.

(41] L. Harris. Natural language data. base query: Using the data. base itself a.s the definition
of world knowledge and as an extension of the dictionary. Technical Report TR77-2,
Department of Ma.thematics, Dartmouth College, 1977.

(42] L. Harris. User-oriented data.base query with the robot natural language system. Int.
J. Man-Mach. Stud., 9:697-713, 1977.

266

[43] L. Harris. The robot system: natural language processing applied to database query.
In Proc ACM Annual Conference, pages 165-172, New York, 1978. ACM.

[44] Philip J. Hayes, Peggy M. Anderson, and Scott Safier. Semantic casefra.me parsing
and syntactic generality. In 23rd Annual Meeting of the Association for Compuational
Linguistics, pages 153-160, 1985.

[45] G. G. Hendrix, E. D. Sacerdoti, D. Sagalowicz, and J. Slocum. Developing a natural
language interface to complex data. ACM Transactions on Database Systems, 3(2):105-
147, 1978.

[46] Graeme Hirst. Anaphora in Natural Language Understanding: A Survey. Berlin Hei­
delberg, 1981. Lecture Notes in Computer Science. Springer-Verlag.

[47] Graeme Hirst. Semantic Interpretation and the Resolution of Ambiguity. Cambridge
University Press, 1987.

[48] llichard Hull and Roger King. Semantic database modeling: Survey, applications, and
research issues. ACM Computing Surveys, 19(3):200-260, 1987.

[49] G. Jaeschke. Nonrecursive algebra for relations with relation-valued attributes. Tech­
nical Report TR 85.03.001, IBM Scientific Center, Heidelberg, West Germany, 1985.

[50] G. Jaeschke and H.J. Schek. Remarks on the algebra of non first normal form relations.
In Proc. ACM SIGART-SIGMOD Symp. on Principles of Database Systems, pages
124-138, Los Angeles, Cal., 1982.

[51] Jurgen M. Janas. The semantics-based natural language interface to relational
databases. In L. Bole and M. Jarke, editors, Topics in Information Systems, Co­
operative Interfaces to Information Systems, pages 143-188. Springer-Verlag, 1986.

[52] Karen Jensen and Jean-Louis Binot. Disambiguating prepositional phrase attachments
by using on-line dictionary definitions. Computational Linguistics, 13(3-4):251-260,
1987.

[53] Candace E. Kalish and Matthew B. Cox. Porting an extensible natural language
interface: A case history. In Proceedings of AAA!, pages 556-560, 1987.

[54] M. Kao, N. Cercone, and W. Luk. Providing quality responses with natural lan­
guage interfaces: the null value problem. IEEE Transactions on Software Engineering,
14(7):959-984, 1988. also 3rd IEEE International Data Engineering Conference, 1986.

[55] S. Jerrold Kaplan. Designing a portable natural language database query system. ACM
Transactions on Database Systems, 9(1):1-19, March 1984.

[56] Samuel Jerrold Kaplan. Cooperative Responses from a Portable Natural Language
Data Base Query System. PhD thesis, University of Pennsylvania, The Moore School
of Electrical Engineering, Philadelphia, Pennsylvania, 1979.

267

[57] W. Kent. Fa.ct-based data. analysis and design. In C.G. Davis, S. Ja.jodia., P.A. Ng, and
R.T.Yeh, editors, Entity-Relationship Approach to Software Engineering, pages 3-53.
Elsevier Science Publishers B.V. North-Holland, 1983.

[58] A. Kumar and M. Stonebraker. The effect of join selectivities on optimal nesting order.
SIGMOD Record, 16(1):28-41, 1987.

[59) B. Lindsay, J. McPherson, a.nd H. Pirahesh. A data management extension archi­
tecture. In Umeshwar Daya.I, editor, P~edings of the International Conference on
Management of Data, pages 220-226. ACM SIGMOD, 1987.

[60] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

[61] P. Lyngbeak a.nd V. Via.nu. Mapping a. semantic data. model to the relational model. In
Umeshwar Dayal, editor, Proceedings of the International Conference on Management
of Data, pages 132-142. ACM SIGMOD, 1987.

[62] David Maier and Jeffrey Ullman. Maximal objects a.nd the semantics of universal
relation data.bases. ACM Transactions on Database Systems, 8(1):1-14, March 1983.

[63) Leo Mark a.nd Nick Roussopoulos. Metadata management. IEEE-Computer, pages
26-36, December 1986.

[64) Elaine Marsh and Carol Friedma.n. Tra.nsporting the linguistic string project system
from a medical to a na.vy domain. ACM Transactions on Office Information Systems,
3(2):121-140, 1985.

[65] Kathleen R. McKeown. Text Generation - Using Discourse Strategies and Focus Con­
straints to Generate Natural Language Text. Computational Linguistics, 1985.

[66] Robert Mercer. A Default Logic Approach to the Derivation of Natural Language
Presuppositions. PhD thesis, University of British Columbia, Department of Computer
Science, Vancouver, B.C., Canada, 1987.

[67] A. Ola. Design of relational database schemas: The traditional dependencies are not
enough. Master's thesis, University of British Columbia, Department of Computer
Science, Vancouver, B.C., Canada, 1982.

[68] Judea Pearl. Heurvtics - Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley Publishing Company, 1984.

[69] Joa.n Peckham and Fred Maryanski. Sem~tic data models. ACM Computing Surveys,
20(3):153-189, 1988.

[70] Brian Philips, Micha.el J. Freiling, James H. Alexander, Steven L. Messick, Steve Re­
hfuss, and Sheldon Nicholl. An eclectic approach to building natural language inter­
faces. In 23rd Annual Meeting of the ABBociation for Compuational Linguistics, pages
254-261, 1985.

[71] Va.n Riemsdijk a.nd Edwin Willia.ms. Introduction to the Theory of Grammar. M.I.T.
Press, 1986.

268

(72] Richa.rd S. Rosenberg. Approaching Discourse Computationally: A Review, pages 10-
83. Ca.rl Hanser Verlag, 1980.

[73] M.A. Roth and K.A. Korth. The design of lnf relational data.bases into nested normal
form. In Umeshwa.r Dayal, editor, Proceedings of the Intemational Conference on
Management of Data, pages 143-159. ACM SIGMOD, 1987.

[74] H.J. Schek. A data model and query language for exodus. In Proceedings of the
Intemational Conference on Management of Data, pages 413-423. ACM SIGMOD,
1988.

(75] H.J. Schek and M. Scholl. An algebra for the relational model with relation -valued
attributes. Infonnation Systems, 11(2), 1986.

[76] Peter Sells. Lectures on Contemporary Synta~tic Theories. Center for the Study of
Language and Information, 1985.

[77] J.M. Smith and D.C.P. Smith. Data abstractions: Aggregation and generalization.
ACM Transactions on Database Systems, 2(2):105-133, 1977.

[78] Standa.rds Council of Canada, Mississauga, Ontario. ANSI XS.195-1986 SQL Database
Query Language, 1986.

[79] Veda C. Storey. View Creation: An Expert System for Database Design. PhD thesis,
University of British Columbia, Faculty of Commerce and Business Admin., 1986. ICIT
Press.

[80] Veda C. Storey and Robert C. Goldstein. A methodology for creating user views in
data.base design. ACM Transactions on Databa~e Systems, 13(3):305-338, 1988.

[81] J.B. Sykes. The Concise Ozford Dictionary of Current English. Oxford University
Press, 1987. First Edition 1911.

[82] Bozena. Henisz Thompson and Frederick B. Thompson. Ask is transportable in half a
dozen ways. ACM Transactions on Office Infonnation Systems, 3(2):185-203, 1985.

[83] D.C. Tsichritzis and A. Klug. The a.nsi/x3/spa.rc dbms framework: Report of the study
group on data. base management system. Infonnation Systems, 3:173-191, 1978.

[84] D.C. Tsichritzis and F.H. Lochovsky. Data Models. Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1982.

[85) Jeffrey D. Ullman. Principles of Database Systems. Computer Science Press, 1982.

[86] J.J. van Griethuysen, editor. Concepts and Tenninology for the Conceptual Schema
and Infonnation Base. ISO/TC97 /SC5/WG3-N695, 1982.

(87] J.A. Wald. Problems in Query lnferen<%. PhD thesis, University of Saskatchewan,
Dept. of Computational Science, Saskatoon, Saskatchewan, Canada, 1985.

269

[88] Joseph A. Wald a.nd Paul G. Sorenson. Resolving the query inference problem using
steiner trees. ACM Transactions on Database Systems, 9(3):348-368, September 1984.

[89} Joseph A. Wald a.nd Paul G. Sorenson. Expla.ining ambiguity in a formal query lan­
guage. ACM Transactions on Database Systems, 1989. To appear.

[90} D. L. Waltz. An english la.nguage question a.nswering system for a large relational
database. Communications of the ACM, 3(2):526-539, 1978.

[91] David H.D. Warren and Fernando C.N. Pereira. An efficient easily adaptable system for
interpreting natural language queries. American Journal of Computational Linguistics,
8(3-4):11~119, July-December 1982.

[92} W. Watt. Habitability. Am. Documentation, pages 338-351, 1968.

(93} Steven John White. A portable natural language database query system. Master's
thesis, University of British Columbia, Department of Computer Science, Vancouver,
B.C., Canada, 1985.

[94] Terry Winograd. Language as a Cognitive ProceBB, volume 1. Addison-Wesley, 1983.

[95] W. Woods. Procedural semantics for a question-answering machine. In Fall Joint
Computer Conference, pages 458-471, 1968.

(96] W. Woods. Transition network grammars for natural language analysis. Communica­
tions of the ACM, 13(10):591~06, 1970.

[97] W. Woods. Cascaded a.tn grammars. Am.J. Comput. Linguist, 6(1):1-12, 1980.

[98] W.A. Woods, B.M. Ka.plan, and B. Na.sh-Webber. The Lunar Sciences Natural Lan­
guage Information System: Final Report. Bolt Beranek and Newman, Cambridge,
Mass., 1972. Report No. 2378.

(99} William A. Woode. Knowledge representation. In Thomas C. Bartee, editor, Ezpert
Systems and Artificial Intelligence - Applications and Management, pages 147-176.
Howard W. Sa.ms and Compa.ny, 1988.

270

