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Abstract 

A new proof is presented of Tsotsos' result [1] that the VISUAL MATCH problem is 

NP-complete when no (high-level) constraints are imposed on the search space. Like the 

proof given by Tsotsos, it is based on the polynomial reduction of the NP-complete problem 

KNAPSACK [2] to VISUAL MATCH. Tsotsos' proof, however, involves limited-precision real 

numbers, which introduces an extra degree of complexity to his treatment. The reduction of 

KNAPSACK to VISUAL MATCH presented here makes no use of limited-precision numbers, 

leading to a simpler and more direct proof of the result. 





A New Proof of the 
NP-Completeness of Visual Match 

1 Introduction 

The problem of VISUAL MATCH was formulated by Tsotsos [1] as a way of demonstrating 

the inherent intractability of most (if not all) bottom-up visual processing. He started from 

the observation that visual search is a component of many low-level visual processes, be 

they instantiated in man or machine. By reducing visual search to the problem of VISUAL 

MATCH, and showing VISUAL MATCH to be NP-complete, he demonstrated that visual 

search is NP-complete when no general constraints are imposed on the search process. Since 

NP-complete problems are generally assumed to be intractable, simple use of any realistic 

amount of parallel computation will not ensure the rapid execution of bottom-up visual 

search. Additional constraints and/or top-down control are also required. 

The proof given by Tsotsos [1] is based on the polynomial reduction of the NP-complete 

problem KNAPSACK [2] to VISUAL MATCH. Tsotsos' proof, however, involves limited­

precision real numbers, which introduces an extra degree of complexity to his treatment. 

The reduction of KNAPSACK to VISUAL MATCH presented here makes no use of limited­

precision numbers. This leads to a simpler and more direct proof that makes clear the 

essential similarity of the two problems. 

1.1 The VISUAL MATCH problem 

The essence of the VISUAL MATCH problem is to determine whether a particular pattern 

(the goal) is present in a given image (the test image). Since a match is unlikely to be 

perfect, it becomes necessary to determine whether there is some subset of the test image 

which matches the pattern sufficiently well. The following discussion (based on [1]) formulates 

this problem more precisely. 

Let I denote the test image, a set of pixels indexed by the spatial coordinates ( x, y) = x. 

Let the set of coordinates be denoted X. The value of I at any given point x E X is 

an m-dimensional vector i(x), corresponding to a set of m different measurements. Each 

1 



measurement corresponds to a scene parameter, and is represented as an integer 1 For 

notational convenience, the jth component of i(x) will be denoted as i(x, y,j). 

The goal image G is similarily defined. Measurements need not be exactly of the same 

types as those in I. Measurement types common to both test and goal images are assigned the 

same index j. Different types in I and G can be accomodated by expanding the dimensionality 

of the vectors appropriately; if a measurement type does not exist in the test or goal image, 

assigned it a zero value. Let M denote the dimensionality of the resultant vectors. 

The requirement that test and goal images correlate to an acceptable degree is given by 

M 

L corr(x) = L L g(x, y,j) X i(x, y,j) ~ 1,,, 

xeX1 xeX1 j=l 

where X' is some subset of locations common to the test and goal images, and 1,, E z+ 
is the correlation threshold. Note that summation over noncontiguous locations is allowed. 

Intuitively, this provides for the exclusion of points where noise or the interposition of other 

objects have altered the measurements(s) in the test image. 

Since any superset of the goal image will lead to a high degree of "correlation", it is also 

necessary to penalize differences. This is done by imposing the constraint 

M 

L diff(x) = L L lg(x,y,j)- i(x,y,j)I ~ /3, 
xeX' ;,c:EX' j=l 

where X' is the same subset of locations as above, and /3 E z+ governs how much difference 

is acceptable. 

Since the elements of I and G only influence the correlation and difference functions, 

they are not really necessary for any once these two functions have been determined for any 

particular instance. As such, VISUAL MATCH can be described as: 

Instance: A finite set X; a "correlation" corr(x) E z+ and "difference" diff(x) E z+ 
for each x E X; a correlation goal 1,, E z+, and a difference constraint f3 E z+. 

Question: Is there a subset X' ~ X such that 

L corr(x) ~ 1,, and L diff(x) ~ f3 ? 
xeX1 xeX1 

1 Measurements can be represented as fixed-precision real numbers, as done in [1], but multiplication by an 
appropriate factor can transform them into integers. 
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2 The NP-Completeness of VISUAL MATCH 

Like most proofs of NP-completeness, VISUAL MATCH will be demonstrated to be NP­

complete by showing (i) that it is a member of the class NP, and (ii) that it is NP-hard (i.e., 

that a known NPC problem will reduce to it in polynomial time). Taken together, these two 

conditions are sufficient to ensure that VISUAL MATCH is NP-complete [2]. 

i) VISUAL MATCH E NP 

Proof: Both the diff and corr functions are computed by simple operations at each point, 

followed by summation over the relevant measurement types. As such, computing their value 

at any point clearly requires only polynomial time. Given any test image P, the relevant 

pointwise measurements can be simply added together, and their values tested against the 

specified thresholds. Thus, VISUAL MATCH is clearly in NP. ■ 

ii) VISUAL MATCH is NP-hard 

Proof: Consider first KNAPSACK, an NP-complete problem described as follows [2]: 

Instance: A finite set U; a "value" function v( u) E z+ and "size" function s( u) E z+ 
for each u EU; a value goal]( E z+, and a size constraint BE z+. 

Question: Is there a subset U' ~ U such that 

L v(u) 2:'. ]( and L s(u) ~ B ? 
uEV' uEU' 

Given an instance of KNAPSACK, let Vmax denote the maximum value of v( u), and Smax 

the maximum value of s(u). Now, consider an instance of VISUAL MATCH defined in the 

following way. Let the measurement space of the test and goal images be the same, and set 

its dimensionality be Vmax + Smax• Next , set both test and goal images to be arrays one pixel 

high and IUI pixels wide. (The shape of the images does not affect bottom-up visual match.) 

Associate each element of U with a particular location in this array. 

Once the assignments have been made, the values of the measurements in the test and 

goal image can be specified. Given any element a E U, assign to the corresponding location 

Xa = (xa, 1) the following values: 
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test image: set the first v(a) elements of i(xa) to 1, and the next (vmax - v(a)) elements to 

0. Set the next s(a) elements to 1, and the remaining elements to 0. 

goal image: set the first Vmax elements of g(xa) to the same values as the corresponding 

elements of i(xa) , Set the remaining Smax elements to 0. 

Notice now that for any element a, 

and 

corr(xa) = L g(xa, 1,j) X i(xa, 1,j) = v(a), 
j 

diff(xa) = L lg(xa, 1,j) - i(xa, 1,j)I = s(a). 
j 

(1) 

(2) 

so that the selection of elements in KNAPSACK corresponds exactly to the selection of 

locations in VISUAL MATCH. To complete the proof, it suffices to note that all operations 

in the reduction can clearly be carried out in polynomial time. ■ 
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