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Abstract 

Cooperative parallel algorithms are presented for detennining convex polygon 

separation and constructing convex polygon mutual tangents. Given two n-vertex 

convex polygons, using k CREW processors (1 S k S n), each of these 

algorithms has an S(log n/(1 + log k)) time bound. This provides algorithms for 

these problems which run in O(log n) time sequentially or in constant time using a 

quasi-linear (na for some ex> 0) number of processors. 

These algorithms make use of hierarchical data structures to solve their 

respective problems. The polygonal hierarchy used by our algorithms is available 

implicitly (with no additiona1 preprocessing) within standard representations of 

polygons. 

1 This research was supported in part by lhe Natural Science$ and Engineering Research Council of Canada. 
A preliminary version of lhese results were reported in [DaK4) . 
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Abstract 

Cooperative parallel algorithms are presented for determining convex 

polygon separation and constructing convex polygon mutual tangents. 

Given two n-vertex convex polygons, using k CREW processors 

(1 S k S n), each of these algorithms has an 8(log n/(1 + log k)) time 

bound. This provides algorithms for these problems which run in 

O(log n) time sequentially or in constant time using a quasi-linear (na for 

some ex.> 0) number of processors. 

These algorithms make use of hierarchical data structures to solve their 

respective problems. The polygonal hierarchy used by our algorithms is 

available implicitly (with no additional preprocessing) within standard 

representations of polygons. 

1.0 Introduction 
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We present parallel algorithms for a number of convex polygon problems which make use of a 

hierarchical representation. We concentrate on cooperative algorithms, algorithms for which 

multiple processors are employed to answer a single query. These algorithms are competitive with 

previously known algorithms which address the same problems and provide constant time solutions 

1 A preliminary version of these results were reported in [DaK4). 
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when a quasi-linear (na for some ex> 0) number of processors is available. They have the 

interesting property that as the number of processors available is reduced to one, the time bounds 

increase smoothly to provide sequential algorithms which match the best sequential times known for 

the same problems. 

We assume a synchronous parallel model of computation in which all processors have access to 

a global shared memory which is used for all communication between processors. Our algorithms 

use the concurrent-read exclusive-write (CREW) rule for accessing the common memory. The 

implications of exclusive-read with respect to our algorithms are addressed in Section 5. 

In the design of parallel algorithms, a major goal is the minimization of the product T(n)* P(n) 

where T(n) is the time bound of the algorithm and P(n) is the number of processors required by the 

algorithm. In general, an algorithm exhibits optimal speedup if its time-processor product matches 

that of the best known sequential algorithm [KR]. Usually, a parallel algorithm provides a 

corresponding sequential algorithm with an O(T(n)*P(n)) time bound by employing a single 

processor to simulate P(n) parallel processors. 

When the sequential algorithm for a given problem is already sublinear, as is the case for the 

problems addressed here, an optimal speedup is clearly not possible for arbitrarily large numbers of 

processors. Hence we use the term optimal in a more classical sense to refer to algorithms whose 

upper bounds match their respective problem's lower bounds. The algorithms presented here run in 

constant time with a quasi-linear number of processors and as the number of processors available 

decreases, the time bound increases smoothly to match the best known sequential time bound with a 

single processor. 

In a sense, the algorithms described here have a 'decreasing return' in their application of 

parallelism; the speedup may only be polylogarithmic in the number of processors. One might ask 

why issues of massive parallelism should be explored for problems which already admit a sublinear 
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sequential algorithm. In addition to their purely theoretical interest, such problems may appear as 

recurring subproblems in a setting for which there are a varying number of processors available. 

We denote by n the number of vertices of a typical input polygon. The number of processors 

available, k for 1 S k ~ n, is an input parameter of our algorithms. Although our algorithms are 

applicable to the entire range of k, occasionally minor modifications are necessary to ensure correct 

behaviour for small values of k. When these modifications are straightforward, we omit their details 

in the interest of an uncluttered presentation. 

Throughout the paper, all polygons considered are convex. We assume a very natural 

presentation of the input; the vertices of a convex polygon are provided in an array in clockwise 

order of their appearance on the boundary. As described in the next section, this representation 

contains enough structure to provide the hierarchy of polygons used in our algorithms without 

preprocessing. This is in contrast to the corresponding polyhedral representation in which each of 

the polyhedron hierarchies must be constructed explicitly [DaK3]. 

The problems addressed are separation, and separating/common tangents. Determining the 

separation of two convex polygons is a generalization of detecting their intersection; it is the 

identification of a witness to the minimum distance separating them. If the polygons do intersect the 

separation is zero and the witness is a point in their intersection. 

A separating (respectively, common) tangent of two convex polygons P and Q is a line tangent 

to both polygons such that P and Q lie in different half-planes (respectively, the same half-plane). 

The separating tangents delimit the set of possible separating lines for P and Q. The common 

tangent in which both polygons lie in the half-plane below (respectively, above) the tangent is 

known as the upper (respectively, lower) common tangent. Determining the common tangents of 

two convex polygons is a step in forming the convex hull of their union. 

Previous work has provided logarithmic time sequential algorithms for common tangents [OvL] 

and convex polygon separation [E]. Viewing the boundary of each polygon as a sequence of 
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values, both of these algorithms involve a 'binary search' approach; within each iteration, the 

midpoints of the remaining sequence of vertices of each polygon are compared. Then, a case 

analysis is applied to limit the remaining search to one half of the sequence associated with one of 

the polygons. The iterations continue until one of the two sequences is reduced to a constant size. 

Therefore, there are a logarithmic number of constant time iterations. Although these algorithms do 

not seem to admit to straightforward parallel implementations in our model, their binary search 

approach forms the basis for the k-way search algorithms developed here. 

Chazelle and Dobkin [CD], Dobkin and Kirkpatrick [DKl][DK2][DK3][DK4] and Avis, El 

Gindy and Seidel [AES] have presented sequential algorithms for a number of polygon and 

polyhedron separation problems. Some of the results presented here can be viewed as non-trivial 

parallel generalizations of their work. 

The parallel solutions presented by Atallah and Goodrich [AG 1] for the common tangents and 

separation problems are described for a quasi-linear number of processors. However, the natural 

extensions of their algorithms for n-vertex convex polygons run in O(log2n/(1 + log k)2) parallel 

time using k CREW processors. Therefore, although they provide constant time algorithms (with a 

sublinear number of processors) for the problems which they address, they do not achieve the 

theoretical maximum speed-up of log k (cf. Section 5). In particular, since they embed a point

polygon test within each iteration of their polygon-polygon algorithms, as k the number of 

processors available decreases and approaches one, the natural extensions of their algorithms run in 

O(log2n) sequential time. We extend the basic design of their algorithms using convexity and 

properties of the inner polygonal hierarchy of Dobkin and Kirkpatrick [DKl]. 

The results reported here unify and extend the work cited above. In Section 2, we present 

details of the hierarchical representations which are used in the design of our algorithms. In 

Sections 3 & 4, we describe algorithms which solve separation and separating tangent queries for 

n-vertex convex polygons in O(log n/(1 + log k)) time using k CREW processors ( 1 $ k $ n ). In 



Section 5, we present a reduction which provides the matching lower bounds for the problems 

addressed here. 

2.0 Polygon Hierarchies 
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All polygons considered are convex and are assumed to be presented in an array listing the 

vertices in clockwise order. For simplicity, we assume that no three vertices of a given polygon are 

collinear. We denote the set of vertices of polygon P by V(P). Segment ab is the line segment 

whose endpoints are vertices a and b. Line ab is the line which contains segment ab. Ray ab is the 

half-line directed from a to b which contains segment ab. 

A convex polygon P can be defined as the intersection of a set of bounding half-planes. Hence, 

we define the edges as having a direction (clockwise) around the polygon such that each edge ab 

(defined on distinct vertices a and b) defines two closed bounding half-planes ~b (on the right side 

of the edge from a to b) and ~b ( on the left side of the edge from a to b ). Note that within this 

definition, a and b need not be consecutive vertices of P. This notation is generalized to define 

corresponding closed half-planes W and Ir with respect to any ray r. 
r r 

Our algorithms make use of a hierarchical representation of convex polytopes [DKl] [DK2] 

[DK3] [DK4]. In two dimensions, this hierarchical representation can be motivated by a simple 

observation: Given a convex polygon P, any subsequence of P's vertices defines another convex 

polygon completely contained within P. For a convex polygon P, a (nested) sequence of convex 

polygons po, pl, ... ,PN is said to be an (inner) polygon hierarchy of P if 

ii) I pN I = 3; 

iii) V(Pi+l) c V(Pi) and I pi+1 I < I pi I/ ex for some constant ex> 1 and 

iv) there is at most some constant number j3 of vertices of pi between any two consecutive 

vertices of pi+ 1. 



Page 6 

Conditions (ii) and (iii) ensure that N = O(log n) and condition (iv) ensures that the vertices of 

pi+l are evenly selected from the vertices of pi_ A sequence of polygons H(P) = po, P1, ... ,PN that 

forms a polygon hierarchy is described simply: if the vertices of Pare Po, Pl, ... pn-1, then the 

vertices of Pt are taken to be those vertices of P whose index is congruent to O MOD 2t. This 

hierarchical representation has been used to solve a number of number of geometric separation 

problems in a sequential model of computation [DK4]. The algorithms which use this representation 

generally have the same basic design: Having answered the separation query for hierarchy element 

Pi, step to element Pi-1 and use a constant number of tests to answer the query for pi-1. 

One of our goals is to demonstrate that this hierarchical representation is adapted easily for use in 

cooperative search queries. This is accomplished by relating the values a and~ in conditions (iii) 

and (iv) of the polygon hierarchy definition to k, the number of processors we have available. A 

sequence of polygons Hk(P) = P~, P!, ... ,P~ that forms an accelerated polygon hierarchy attuned 

to the value k ( 2 :s; k Sn) is described accordingly: if the vertices of Pare po, P1, ... Pn-h then the 

vertices of P~ are taken to be those vertices of P whose index is congruent to O MOD kt. 

Therefore, this accelerated hierarchy has O(log n/(1 + log k)) elements. 

Viewed explicitly in this way, this hierarchical representation can be used by k processors to 

solve a point-polygon separation query. Each iteration of the algorithm deals with an element of the 

polygon hierarchy which is a "current approximation" of the initial polygon. When a point which 

realizes the separation property of interest is localized, the algorithm steps to the preceding element 

of the hierarchy which is a refinement of the current polygon approximation. Solving a polygon

polygon separation query is analogous, the algorithm deals with a current approximation of each 

polygon; an iteration of the algorithm steps to the preceding element of (at least) one of the polygon 

hierarchies 1. 

1 It is worth noting that Atallah and Goodrich's [AGl] approach is an informal variant of this paradigm. Their 
algorithms take a step by refining the region of interest dynamically using a k-way subdivision. 



Page 7 

We maintain the invariant that when examining an element of the polygon hierarchy, only a 

portion of size O(k) need be considered. The algorithm initializes this invariant by examining the last 

element of the sequence; th.is element forms the coarsest approximation of P and is of size O(k). 

Given Pt 1, from the portion of size O(k) under consideration, the algorithm identifies a constant 

size portion which is guaranteed to contain a point which realizes the separation property of interest. 

This expands into a portion of size O(k) in P~ , and maintains the invariant. 

When a polygon Pis presented in an array, all elements of the hierarchy (for all values of k) are 

available implicitly by indexing.1 To avoid excess notation, we denote the current hierarchy element 

P~ by Pt (or, more commonly, P when the context is clear or unimportant). At any given point 

within an algorithm, a vertex may have two different labels, its index in the original polygon P and 

its index in the current hierarchy element P. To avoid possible ambiguities, we adopt some 

notational conventions: The vertex Pt is the tth vertex of polygon P, and the vertex Pr is the rth 

vertex of the current hierarchy element P. The sequence of vertices of polygon P between Ps and Pr 

inclusive is denoted by P[ps, pJ, consecutive subscripts refer to consecutive vertices on P. The 

sequence of m vertices of interest within hierarchy element P between Ps (=Pl ) and Pt ( = Pm) 

inclusive is denoted by P[p 1, pnJ, consecutive subscripts refer to consecutive vertices on P. For 

example, P[pi, Pi+d refers to the complete sequence of vertices on polygon P between two vertices 

Pi and Pi+l inclusive which are consecutive on the current hierarchy element P. In the discussion of 

polygon separation where the separation may be realized by a point which is not necessarily a 

vertex, we occasionally abuse this notation by using P[pi, Pi+tJ to refer to the complete sequence of 

points on the boundary of P between two vertices Pi and Pi+l inclusive. 

Given hierarchy element P, convexity imposes implicit restrictions on how far P can extend 

beyond the edges of P: Let a, b and c be vertices of convex polygon P appearing in that order and 

1 In three dimensions, the corresponding polyhedral hierarchy must be explicitly constructed in a preprocessing phase 
[DaK3]. 
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consider the two chords ab and be of P. Consider the two half-planes ~band H;b (respectively, 

H~ and~) defined by ray ab (respectively, ray be). 

Observation 1: P[a,b] c ~band P[b,a] c tt;b· 

Observation 2: P[c,a] c H;b f'I ~ and ~b f'I ~ f'I P = 0. 

Applying these observations about chords of P to the edges of an element of the polygon 
~ I\ 

hierarchy P implicitly defines P: the star-shaped polygon (possibly unbounded) which is the union 

of all possible convex polygons which could have P as a hierarchy element. The boundary of the 

polygon P must lie within the envelope of points between any hierarchy element P and its 
I\ 

corresponding P (see Figure 2.1). 

The key to the efficient parallel use of the hierarchy element approximations is the judicious 

assignment of processors. Intuitively, this can be thought of as a direct analogue of parallel search 

in a sorted table [S]; each iteration of the k-way search corresponds to a step through the implicit 

polygon hierarchy. This correspondence, formalized by the reduction in Section 5, allows the 

design of k-processor convex polygon algorithms which are natural extensions of k-way search. 

Within each iteration of the natural k-way search algorithm for the sorted table lookup problem, the 

search key's containment in a particular subsequence can be determined by a single processor in 

constant time. This process is slightly more involved for the polygon tangents/separation problems 

but can be done efficiently by employing tests which exploit convexity and properties of a polygon 

hierarchy. 

Within each iteration of the algorithms for polygon tangents and separation, a solution is found 

for the current approximations (hierarchy elements) of the polygons and then the appropriate case 

analysis is applied to reduce the region of interest. This can be thought of as 'electing' an active 

processor (the one that witnesses the hierarchy element/subsequence solution) which then applies the 

case reduction. The active processor then writes the reduced ranges into a predetermined location 

and the remaining processors use the concurrent read facility to update their information. Since only 
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one processor is assigned to the pair realizing the hierarchy element solution, this election process 

avoids write contention. 

As an example of our general approach, consider the following k-processor algorithm for 

finding pd, the extremum of an n-vertex convex polygon Pin the direction of ray d: Initialize P to be 

the last element of P's polygon hierarchy and repeat the following until P is reduced to a single 

point. Assign a processor to each vertex of the current hierarchy element pt_ Vertex Pi realizes the 

extremum of P1 in the direction of ray d iff there exists a line L perpendicular to d such that 

pi e L r'I Pt, pt c ~ and d extends to infinity in ~- This can be determined in constant time 

by comparing the slopes of segments Pi-lPi and PiPi+l with ray d. If so, then by Observation 2, all 

points of P clockwise between Pi+l and Pi-1 lie in the wedge formed by rays PiPi+l and PiPi-1 · 

Therefore, pd must lie in P[Pi-l, Pi+ i]. Replace P with the portion of hierarchy element pt- l between 

vertices Pi-1 and Pi+l· 

Each iteration of this procedure performs a constant number of tests for each element of the 

hierarchy. Essentially, this algorithm identifies the vertex of P which realizes the separation between 

P and a line L perpendicular to direction d placed at infinity in direction d. Therefore, we have 

immediately: 

Lemma 2.1: Ann-vertex convex polygon's extremum in a given direction d can be identified in 

O(log n/(1 + log k)) time using k CREW processors. 

For the problems we consider, we present a uniform treatment and simplify aspects of our 

algorithms by adding an initial preprocessing step to reduce a convex polygon under consideration to 

a constant number of polygonal chains each of which delimits a convex region of the plane. From 

[DKl], we recall the definition of a Monotone Polygonal Sector (see Figure 2.2): The boundary of 

a convex polygon is decomposed into two monotone polygonal chains of edges by cutting at its 

highest and lowest y coordinates. This yields two sequences of vertices and edges in order of 

increasing y-coordinate. By convexity, any such chain will be either left- or right-oriented. Semi-
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infinite rays are attached to the beginning and end of each chain and the interior is included to form 

two (convex) monotone polygonal sectors (MPS). These rays run parallel to the x-axis towards 

+oo if right-oriented or -oo if left-oriented and define the area contained by the MPS. By Lemma 

2.1, a convex n-venex polygon P can be decomposed into its left MPS PL and its right MPS PR in 

O(log n/(1 + log k)) time using k CREW processors. 

We maintain MPS PL with its vertices indexed by increasing y-coordinate as 

PdPlower_P, Pupper_P], This denotes the convex region delimited by the sequence of edges of P 

from vertex Plower_P to vertex Pupper_P augmented by infinite rays at the upper and lower bounds. 

Initially, the upper and lower bounds correspond to the maximum and minimum y-coordinates 

respectively. Within the general design of our algorithms, each iteration reduces the size of a 

polygonal chain under consideration by adjusting the upper and lower bounds of an MPS. When 

the upper and lower bounds are adjusted, the resulting MPS has infinite rays extending from the 

adjusted bounds. The polygon hierarchy extends in the natural way to an MPS: the MPS 

P~[P1ower_P, Pupper_P] consists of the portion of hierarchy element pt between (and including) 

Plower_P and Pupper_P· When the context is clear, we omit the range specification and hierarchy 

element index by referring to PL[P1ower_P, Pupper_P] (respectively, P L[Plower_P, Pupper_p]) as PL 

(respectively, PL), 

3.0 Polygon Separation 

For our polygon separation algorithms, we assume that each input convex polygon P has been 

decomposed into its left and right MPSs PL and PR. We state without proof several useful 

separation properties of monotone polygonal sectors [DKl]l: 

MPS Property 1: Convex polygons P and Q intersect iff PL intersects ~ and PR intersects Qi,. 

1 Note that a line segment can be considered a degenerate polygon and hence these properties can be applied to 
polygon/line segment separation. 



MPS Property 2: If P and Q do not intersect then their separation is realized either by the 

separation between PL and QR, or the separation between Qi. and PR. 
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MPS Property 3: Ignoring degeneracies, the boundaries of two oppositely-oriented MPSs can 

intersect in either O or 2 points. 

First, consider the problem of finding the separation of an n-vertex convex polygon P and a line 

segment r. By MPS Properties 1 and 2, it is sufficient to describe an algorithm for MPS/line 

segment separation. For simplicity, we assume that the MPS and line segment do not intersect; the 

algorithm can be trivially modified to report an intersection if one is detected. 

Without loss of generality, we consider the problem of determining the separation of MPS PL 

and line segment r. The following k processor algorithm to find a point p* of P which realizes the 

separation of PL and r is essentially the algorithm presented by Atallah and Goodrich [AG l]: 

Initialize PL to be the last element of PL's polygon hierarchy and repeat the following. If PL is 
reduced to a constant number of segments then determine exhaustively a point p* of PL (not 

necessarily a vertex) which realizes the separation with r. Otherwise, assign a processor to each 

vertex Pi of PL. In constant time, determine if vertex Pi is closer to segment r than vertices Pi-1 or 

Pi+l· If so, then by Observation 2, all points of PL in Pdp10 wer_P, Pi-1] or in PdPi+l• Pupper_p] lie 

interior to the wedge formed by rays PiPi+l and PiPi-1· Therefore, p* must lie in PdPi-1, Pi+d

Replace PL with the portion of hierarchy element Pt1 between vertices Pi-1 and Pi+l· 

Each iteration of this procedure takes a single step through the polygon hierarchy while 

maintaining the invariant that the remaining range of edges contains a point which realizes the 

desired separation. This algorithm can be used to find line/polygon separation by regarding the line 

as a segment with its endpoints extended to infinity. Similarly, this algorithm can be used to find 

point/polygon separation by regarding the point as a degenerate segment with zero length.1 This last 

1 Note that due to the non-unirnodality of distances in a convex polygon [E], this technique cannot be used directly for 
the farthest point problem. 
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application can be thought of as a table-lookup routine: finding the minimum in a virtual table of 

distances from a fixed point. We summarize these results as: 

Lemma 3.1: The separation of an n-vertex convex polygon with a line-segment, a line or a point 

can be determined in O(log n/(1 + log k)) time using k CREW processors. 

We turn to the problem of finding the separation of arbitrary convex polygons P and Q. If one 

of the polygons, say Q, has a constant number of facets then using Lemma 3.1 it is possible to 

determine the separation of P and Q by testing each facet of Q against P. If Pis an n-vertex convex 

polygon, this would determine the polygon/polygon separation in O(log n/(1 + log k)) time using 

k CREW processors. However, if both P and Q are n-vertex polygons then this naive approach 

would not produce an optimal algorithm. 

Therefore, consider the case in which both P and Q haven-vertices. The MPS properties 

simplify several aspects of determining polygon/polygon separation. By Properties 1 and 2, it 

suffices to compute MPS separations; without loss of generality, we describe an algorithm to 

determine the separation of PL and~- By Property 3, if the polygons P and Q do intersect, then 

their corresponding (oppositely-oriented) MPS boundaries have a constant number of intersections 

and and a witness to the intersection of P and Q can be determined from the corresponding MPS 

intersections. 

Within each iteration of the algorithm, we maintain the invariant that the MPSs 

PdPiower_P, Pupper_P] and ~[ci1ower_Q, qupper_Q] contain either a pair of points realizing the 

minimum distance separating PL and ~ or a point in the intersection of PL and QR. Thus, the 

algorithm can be viewed as a search routine to identify p"' and q"', points of PL and~ respectively, 

which realize the MPS separation. Each iteration of the algorithm finds the separation of the current 

hierarchy elements PL and~- If PL and~ intersect then a witness to their intersection is returned 

as a witness to the intersection of PL and~- Alternatively, if PL and~ do not intersect, their 

separation is realized by a vertex-vertex or vertex-segment pair. 
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We maintain the segment T with endpoints Pi and c1 defining the separation between hierarchy 

elements PL and 5R_. For ease of exposition in the vertex-segment case, we assume the existence of 

a ps.eudo-vertex on the segment in question which realizes the separation and assume that it has been 

labeled to incorporate it into the vertex ordering. This reduces the vertex-segment case to the 

vertex-vertex case. 

Given PL and <1_, hierarchy element MPSs of PL and~ respectively, and the points Pi and c:L 

which realize the separation of PL and 5R_, the following two lemmas show how the range of 

vertices under consideration for realizing the separation of PL and ~ can be reduced so that a step 

can be taken in one of their polygon hierarchies. This is done by demonstrating that there exist 

portions of PL and~ which can be replaced by horizontal rays such that points p* and q* realizing 

the separation are retained within the respective reduced MPSs. 

Lemma 3.2 (The kitty-corner lemma): Given hierarchy element MPSs PL and~ and vertices Pi 

and cL realizing their separation, then 

(i) either p* E PdPi-2, Pupper_P] or q* E ~[Cilower_Q, C}j+2J 

and (ii) either p* E PdPlower_P, Pi+2l or q* E ~[C}j-2, 4upper_Q]. 

Furthermore, the valid reduced range in each of (i) and (ii) can be determined by a single 

processor in constant time. 

Proof: If one of the MPSs, say QR[ci1ower_Q, ci.upper_Q], is a single vertex1 then, by Observation 2, 

p* e PdPi-1, Pi+il• As well, if Pi-2 or 4j+2 (respectively, Pi+2 or cij-2) do not exist then (i) 

(respectively, (ii)) is true trivially. 

Otherwise, each of statements (i) and (ii) offers a possibility of two MPS reductions. We ignore 

for the moment the question of determining which reduction is applicable, and begin by showing 

1 . - -
That 1s 4lowcr_Q = quppcr_Q· 



Page 14 

that statements stronger than (i) and (ii) respectively are true. That is, we prove that the separation 

cannot be realized by a point in PdP1ower_P, Pi-1] and a point in ~[<L+1, ciupper_Q] (respectively, a 

point in PdPi+ 1, Pupper_P] and a point in ~[Qiower_Q, 4j-1]). Observe that the "kitty-corner" MPSs 

PLLPlower_P, Pi-ll and ~[qj+b qupper_Q] (respectively, PdPi+l, Pupper_P] and ~[ci1ower_Q, Clj-1]) 

are contained in halfplanes on opposite sides of the parallel lines of support passing through Pi and 

qj perpendicular to the separation segment Pi'li• It follows that their minimum separation must be 

greater than the distance between Pi and Clj and hence (at least) one of them can be discarded while 

retaining a pair of points which realize the separation of PL and~-

The difficulty lies in the determination of which portions of PL and ~ can be discarded while 

retaining a pair of points which realize the true separation. To ensure that a correct reduced range 

can be determined by a single processor in constant time, it seems necessary to restrict consideration 

to which of PdP1ower_P, Pi-21 and ~[Clj+2, Clupper_Q] (respectively, which of Pdp i+ 2, Pupper_P] and 

~[ci1ower_Q, Clj-2]) can be replaced by a single ray. 

We turn to the determination of a correct reduced range corresponding to statement (i). Consider 

the line Pi-l'li+l· At least one of (a), (b) and (c) must occur1: 

(a) Vertex 'li+2 e IL _ (see Figure 3.1). Note that the case condition implies that <L+i e H: _ 
~~ ~~ 

and equivalently, p i-1 e H ~ ;r • As well, by the monotonicity of~. the y-coordinate of cij+ 1 is 
q,1+1'iJ+2 

less than the y-coordinate of (lj+2, therefore the case condition implies that the y-coordinate of Pi-1 is 

less than the y-coordinate of ciJ+ l • 

Let w be the horirontal ray originating at (lj+2 and extending to positive infinity. Let v be the ray 

originating at ciJ+2, at right angles to ciJ+1cii+2, such that v does not intersect the interior of~

Denote by p' and q' points which realize the separation of PL and Qil[qj+2, qupper_Q] respectively. 

By Observation 1 and monotonicity, Qil[ciJ+2, ciupper_Q] is contained in the wedge 

1 It is possible that both (a) and (b) occur simultaneously. 
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W Q = H! ;,; ri H- and therefore q' e W Q· The following case analysis demonstrates that 
'i,t,-1'itt2 W 

wherever p' is located. there must exist a point on w which realizes the separation of PL and 

1) p' e ii: u II;, Any circle centred at p' which contains a point in ~[Clj+2, 4upper_Q] must 

also contain a point of the ray w. That is, if q' e w then it is possible to find a point 

Qw e w such that the angle Lp'qwq' ~rand therefore, the distance between p' and qw must 

be less than the distance between p' and q'. Therefore, the separation of p' with 

~[cL+2, 4upper_Q] must be realized by a point on w and hence in ~[ci1ower_Q, cij+21. 

2) p' e ~ ri H:. Since the y-coordinate of Pi-1 is less than the y-coordinate of Clj+ 1 then 

Pi-1 e H+ ri Ir. If p' e H~ _ then the segment Pi-1P' must intersect wand a witness to 
V W P,_i4J+2 

the intersection must exist in ~[ci1ower_Q, 4j+2J. Otherwise, p' e IL _ . Denote by p" 
P1-8;+2 

the intersection of segment Pi-1P' and ray v and note that by Case 1, p' ¢ p". Assume that 

q' e w. If the distance between p' and q' were less than the distance between p" and Clj+Z, 

then ray p"p' would have to intersect ray Clj+2q'. But ray p"p' c ray Pi-1P' c H -= _ and 
Pi-8J+2 

ray cL+2q' c WQ, and clearly IL _ and WQ are disjoint except for the vertex Clj+2· 
P1--8,1,-2 

Therefore, the distance between p' and q' must be greater than the distance between p" and 

qj+2 and the separation of PL with ~[C}j+2, 4upper_Q] must be realized by a point in 

~[q1ower_Q, qj+21 • 

These cases are exhaustive and therefore q* e Q&[q10 wer_Q, ~+21. Note that the analysis does 

not depend on the structure of PL or the location of Pi-1 other than what is implied by the initial case 

condition that cfi+2 e K _ . This allows us to reuse this argument in the proof of Lemma 3.3. 
P1--8tt1 

(b) Vertex Pi-2 e IL - . By symmetry with (a), p"' e PdPi-2, Pupper_P], 
P1--1q,1+, 

(c) Vertex g'_j+2 e IL _ and vertex Pi-2 e IL - (see Figure 3.2). Denote line Pi-lPi-2 by Land 
P1--8tt1 p,_i4J I 

line ci+i~+2 by R. Without loss of generality, assume that the intersection of Land R lies in JL_ 
""JJ P,91 

and therefore, that the horizontal separation of L and R in IL_ increases with increasing 
P8J 
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y-coordinate. By the case condition, cij+2 e H::- ~ (respectively, Pi-2 e H~ _ ), the intersection 
-PH"i,1+1 pi- 8J+I 

of Land R must lie below Pi-1 (respectively, below cij+1). 

Define rays wand v as in (a). Let u be the horizontal ray originating at Pi-land extending to 

negative infinity. Again, denote by p' and q' points which realize the separation of PL and 

<JR[qj+2• qupper_Q] respectively and, as in (a), note that q' e W Q = IL Pr n Ir . Recall that the 
qJ+l"iJ+2 W 

separation of PL and <JR cannot be realized by a point in PdPiower_P, Pi-1] and a point in 

~[qj+l • qupper_Q] and therefore we assume that p' e PdPi-1, Pupper_p]. By Observation 1 and 

monotonicity, PdPi-1, Pupper_P] is contained in the wedge Wp = H::- « n H+ and therefore 
-P1--1PH U 

p' e Wp. Since the intersection of Land R lies below Pi-1 and cij+l, the wedges Wp and WQ are 

disjoint. 

Let ex,= L4i+14i+2Pi-l and~= Lqjqj+tPi-1• Before proceeding with a case analysis, we show 

that a< r· Since 4i+2 E }L_ (by Observation 1) and cij+2 e lL - (by the case condition), 
qJqj+I Pi-i4J+I 

therefore ex,< p. We assume that ex,~ r (and, therefore ~ > ½ ) and derive a contradiction. If 

P > ~
2

, then Pi e H~ _ (since LpiCljcij+l ~ 7t
2 

). Therefore, Pi-2 must be below the horizontal 
pHqj+I 

line through Pi-1 (by monotonicity), Pi-2 e IL;{ (by Observation 1), and Pi-2 e H~ _ (by the 
P1P1-1 P1-8j+I 

case condition). But these three regions are disjoint (except for vertex Pi-1). Therefore, J3 ~ I and 

hence a <f and Pi-1 e H~. 

The following case analysis demonstrates that wherever p' is located there must exist a point on 

w which realizes the separation of PL and ~[cL+2, 4upper_Q]: 

1) p' e H~ _ n Ir ( = WQ). As noted above, p' e Wp and Wp n WQ = 0. Therefore 
qj<-.qj+1 w 

this case cannot occur. 

2) p' e Wu Ir. As in (a) Case 1, any circle centred at p' which contains a point in 
W V 

<JR[qj+2, 4upper_Q] must also contain a point of the ray w. Therefore, the separation of p' 

with QR[cL+2, qupper_Q] must be realized by a point in QR[ci1ower_Q, 4j+2l. 
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3) p' e H+ n H=:- ;r • Since Pi-1 e H-, p' and Pi-1 lie on opposite sides of ray v. Denote by 
V - QJ+t'iJ+2 V 

p" the intersection of segment Pi-tP' and ray v and note that by Case 1, p' ':I- p". Assume 

that q' e w. If the distance between p' and q' were less than the distance between p" and 

Clj+2• then ray p"p' would have to intersect ray Clj+2q'. But ray p"p' c ray Pi-tP' c W p 

and ray Clj+2q' c WQ, and Wp n WQ = 0. Therefore, the distance between p' and q' must 

be greater than the distance between p" and cfi+2 and the separation of PL with 

<JR[cij+2, qupper_Q] must be realized by a point in ~[ci1ower_Q, 4j+2J. 

These cases are exhaustive and therefore q* e <JR[ci1ower_Q, ci.j+2J. Similarly, if the intersection 

of Land R lies in J:L_ then p* e PdPi-2, Pupper p]. If Land Rare parallel, then q* e ~[CIIower Q, 
~ - -

cij+2l and p* E PdPi-2, Pupper_p]. 

The arguments used in (a), (b) and (c) prove (i); using symmetry in they direction the same 

arguments prove (ii). The tests employed above to determine correct reduced ranges are line 

intersection and point containments in half-planes. These tests can be easily implemented to run in 

constant time using a single processor. • 
To take a step in one of the polygon hierarchies within a given iteration, it is necessary to ensure 

that one of the PL and QJl subsequences under consideration be reduced to a constant length. This is 

not guaranteed by Lemma 3.2. It is possible, for example, that only the upper portion of PL and the 

upper portion of QJl are eliminated. The following Lemma shows that this reduction is always 

possible for at least one of the hierarchy element approximations. 

Lemma 3.3 (The same side lemma): Given hierarchy element MPSs PL and~ and vertices Pi and 

4i realizing their separation, then 

(i) either p* e PL[Piower_P, Pi+2l or q* e QR[ci.1ower_Q, 4i+2l 

and (ii) either p* e PdPi-2, Pupper_P] or q* e <lR[~-2, 4upper_Q]. 

Furthermore, the valid reduced range in each of (i) and (ii) can be determined by a single processor 

in constant time. 
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Proof: If one of the MPSs, say QR[Q1ower_Q, Qupper_Ql. is a single vertex then, by Observation 2, 

p* e Pdi>i-1, Pi+d· As well, if Pi+2 or Qj+2 (respectively, Pi-2 or 4j-2) do not exist then (i) 

(respectively, (ii)) is true trivially. 

Otherwise, as in Lemma 3.2, we ignore for the moment the question of determining which 

reduction is applicable, and begin by showing that statements stronger than (i) and (ii) respectively 

are true. Observe that the "same side" MPSs PdPi+l• Pupper_P] and ClR[<lj+1, 4upper_Q] 

(respectively, PL[P1ower_P, Pi-tl and ClR[cii0 wer_Q, Qj-1]) are contained in halfplanes on opposite 

sides of the parallel lines of support passing through Pi and 4j perpendicular to the separation 

segment Pi4j- It follows that their minimum separation must be greater than or equal to the distance 

between Pi and ~ and that (at least) one of them can be discarded while retaining a pair of points 

which realize the separation of PL and~-

Again, it seems necessary to restrict consideration to which of PdPlower_P, Pi-2] and 

~[ciiower_Q, <L-21 (respectively, which of PdPi+2, Pupper_P] and ~[Qj+2, ciupper_Q]) can be 

discarded to ensure that a correct reduced range can be determined by a single processor in constant 

time. 

We tum to the determination of a correct reduced range corresponding to statement (i). Consider 

line Pi+t<ij+l• At least one of (a), (b) and (c) must occur1: 

(a) Vertex ~+2 e IL _ . Substituting Pi+l for Pi-1, the same case analysis used in Lemma 3.2 (a) 
P1+8;.1 

shows that q* e ClR[q1ower_Q, G.j+2l-

(b) Vertex Pi+2 e IL - . By symmetry with (a), p* e PdP1ower_P, Pi+2]. 
P~1q;+1 

(c) Vertex ~+2 e IL _ and vertex Pi+2 e IL _ (see Figure 3.3). Define rays wand v as in 
P1+8;.1 P1+8;+1 

Lemma 3.2 (a). 

1 It is possible that both (a) and (b) occur simultaneously. 
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Consider the angles a= LPi+lPi+2cij+2 and P = Lqj+lcij+2Pi+2· Note that a+~< n (otherwise, 

rays Pi+ 1Pi+2 and Clj+ 1 ~+2 would intersect or would be parallel) and therefore at least one of the 

angles a or p must be less than;. Without loss of generality, assume that p < r and therefore that 

Pi+2 e 1¾· 

Again, denote by p' and q' points which realize the separation of PL and CJR[cij+2, qupper_Q] 

respectively and, as in Lemma 3.2 (a), note that q' e WQ = R: ~ ri Ir. We demonstrate by a 
4;t8;+2 w 

case analysis that wherever p' is located there must exist a point on w which realizes the separation 

1) p' e IL ~ ri Ir ( = WQ ). In the halfplane IL ~ , PL c H:_ (by Observation 1), 
4;t8;+2 w PM-8;+2 P1PM-1 

W Q c H!- (by Observation 1), and rays PiPi+l and 'li'li+l do not intersect. In the 
'iJqjtl 

halfplane IL ~ , PL c H~ " (by Observation 1), WQ c H- and rays Pi+2Pi+l and w do 
~~ ~~ w 

not intersect. Therefore, PL and WQ are disjoint and this case cannot occur . 

. 2) p' e Wu H-. As in Lemma 3.2 (a) Case 1, any circle centred at p' which contains a point 
W V 

in QR.[qj+2, qupper_Q] must also contain a point of the ray w. Therefore, the separation of p' 

with 0R[cij+2, qupper_Q] must be realized by a point in OR[ci1ower_Q, qj+2l. 

3) p' e W n IL ~ • Since P <-
2
1t, then Pi+2 e H- and p' e PdPi+2, Pupper_P], But, as 

V 4J+i4J+2 V 

noted above, the separation of PL and OR cannot be realized by a point in PL[p i+ 1, Pupper_P] 

and a point in OR[cij+l, (}upper_Q]. Therefore, no q' arising in this case can be a point 

realizing the minimum separation of PL and OR. 

These cases are exhaustive and therefore q* e OR[ci1ower_Q, ~+2J. Similarly, if a< i then 

p* E PdPlower_P, Pi+2J. 

The arguments used in (a), (b) and (c) prove (i); using symmetry in they direction the same 

arguments prove (ii). The tests employed above to determine the valid reduced ranges are point 

containments in half-planes and angle comparisons. These tests can be implemented to run in 

constant time using a single processor. ♦ 
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Without loss of generality, assume that k ~ 25. We outline a k CREW processor algorithm for 

determining the separation between PL and QR, which follows from Lemmas 3.2 and 3.3 above: 

Initialize PL and~ to be the last elements of the -Jk-polygon hierarchies1 of PL and QR, respectively 

and repeat the following. If P~ or~ are of constant size then use the polygon/segment separation 

algorithm to determine their separation and halt. Otherwise, assign a processor to each pairing of a 

vertex from P~ with a vertex from Q~. The processor which determines that the edges incident on 

its pair of vertices realize the separation of the current hierarchy elements then restricts the sequence 

of vertices under consideration according to Lemmas 3.2 and 3.3 by adjusting lower_P and 

upper_P, or lower_Q and upper_Q. Depending on which MPS bounds are adjusted, replace P~ 

(respectively,~) with the portion of Pt1 (respectively, ~ 1
) between vertices Plower_P and Pupper_P 

(respectively, Qlower_Q and ciupper_Q). 

Theorem 3.1: The separation of two convex n-vertex polygons P and Q can be determined in 

O(log n/(1 + log k)) time using k CREW processors. 

Proof: Given two convex n-vertex polygons, the MPS preprocessing is performed in 

O(log n/(1 + log k)) time using k CREW processors. Within each iteration, the vertices realizing 

the separation of PL and Qa ( or PR and Qr,) can be determined in constant time. Therefore by 

Lemmas 3.2 and 3.3, each iteration takes constant time and results in a step in (at least) one of the 

polygon hierarchies. Therefore, a total of O(log n/(1 + log k)) iterations will suffice to determine 

MPS separation. Running the algorithm twice for the two MPS pairs will suffice to determine the 

convex polygon separation. ♦ 

The use of the -Jk-polygon hierarchy (an instance of the -Jk-subdivision technique [KR]) 

provides a logarithmic sequential algorithm and a constant time algorithm using a quasi-linear 

I Note that an integer within a constant factor of ...fk will suffice for the subdivision size and that with k processors an 
integral approximation of ...fk can be computed in constant time. Each processor squares its predecessor's, its successor's 
and its own index. The unique processor whose squared index is closest to k, writes its index into a predetermined 
location and the other processors read it using the concurrent read facility. 
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number of processors for computing convex polygon separation. The polygon/polygon separation 

case analysis provided in Edelsbrunner [E] produces a sequential O(log n) time separation algorithm. 

If concurrent write is available, it is possible to use Edelsbrunner's case analysis to design a 

polygon/polygon separation algorithm which runs in O(log n/(1 + log k)) time using k CRCW 

processors. In the absence of a concurrent write facility, it is not straightforward to coordinate the ../k 

case results at each vertex of the hierarchy elements under consideration. Our algorithm avoids this 

coordination problem by "electing" the processor which corresponds to the hierarchy element 

minimum separation to apply the case analysis. 

3.0 Polygon Separating and Common Tangents 

For the problem of computing convex polygon tangents, we add a preprocessing step. To 

ensure that the polygons in question do not intersect, we apply the appropriate separation algorithm 

presented in the last section. With a pair of points realizing the separation, we construct a separating 

line S perpendicular to the segment realizing the separation. Without loss of generality, we assume 

that this separating line S is oriented horizontally with polygon P above and polygon Q below. 

Given this orientation, it is sufficient to consider MPS common/separating tangents: The two 

separating tangents of P and Q can be constructed from oppositely-oriented MPSs PL and (a, or PR 

and~- The two common tangents can be constructed from similarly-oriented MPSs PR and QR or 

PL and~. 

Therefore, we assume that each polygon P has been preprocessed into MPSs PL and PR which 

are monotone with respect to the perpendicular of the separating line S as constructed above. Note 

that the rays augmenting the left and right monotone polygonal chains of Pare parallel to S. 

We address the problem of finding separating tangents. For a convex polygon and vertex pair, 

the separating tangents are the same as the common tangents. For two convex polygons, minor 

modifications to the separating tangents algorithm produce an algorithm for finding common 

tangents; we discuss the necessary modifications at the end of the section. 
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We first consider the problem of constructing the tangent of an n-vertex MPS PL passing 

through a vertex r outside PL, We assume that PL and rare presented with a horizontally-oriented 

separating line S with PL above Sand r below S. The following k processor algorithm to find a 

point p* of P which realizes the tangent of PL passing through r is essentially the algorithm 

presented by Atallah and Goodrich [AG 1]: Initialize PL to be the last element of PL's polygon 

hierarchy and repeat the following. If PL is reduced to a constant number of segments then determine 

exhaustively a vertex p* of PL which realizes the tangent passing through r. Otherwise, assign a 

processor to each vertex Pi of PL, In constant time, for vertex Pi determine if Pi-1 and Pi+l, the 

neighbours of Pi on PL, both lie on the same side of line rpi, If so, then by Observation 2, all points 

of PL in PdP1ower_P, Pi-1] or in PdPi+lt Pupper_P] lie interior to the wedge formed by rays PiPi+l and 

PiPi-1· Therefore, p* must lie in PdPi-lt Pi+1J, Set Plower_P to Pi-1 and Pupper_p to Pi+l and replace 

PL with the portion of hierarchy element Pt 1 between vertices Pi-1 and Pi+ 1 · 

Each iteration of this procedure takes a single step through the polygon hierarchy while 

maintaining the invariant that the range of edges under consideration contains a point which realizes 

the desired tangent. Therefore, the tangent of PL passing through r can be constructed using k 

CREW processors in O(log n/(1 + log k)) time. The separation and MPS preprocessing are 

performed within the same resource bounds. 

Now, consider the problem of constructing the separating tangents of n-vertex convex polygons 

P and Q. As noted above, it suffices to construct the separating tangents of oppositely-oriented 

MPSs; without loss of generality, we describe an algorithm to construct the separating tangent of PL 

and~- We assume that PL and~ have been preprocessed with respect to the horizontally-oriented 

separating line Sas described above and that they are presented with PL above S and <2R below S. 

Since this preprocessing step uses the separating line perpendicular to the minimum separation of P 

and Q, the vertex with minimum y-coordinate on PL and the vertex with the maximum y-coordinate 

on~ have the same x-coordinate. Therefore, we are searching for the separating tangent of 

maximum positive slope. 
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Denote the vertices of PL and (a which realize the separating tangent asp* and q* respectively; 

recall that the vertices are indexed in order of increasing y-coordinate. Given PL and <2R_, hierarchy 

element MPSs of PL and (a respectively, and the current separating tangent line T defined by 

vertices Pi and qj of PL and~ respectively, the following two lemmas show how the range of 

vertices under consideration for realizing the separating tangent of PL and Ca can be reduced so that 

a step can be taken in one of their polygon hierarchies. This is done by demonstrating that there 

exist p~rtions of PL and QR_ which can be replaced by horizontal rays such that points p* and q* 

realizing the separating tangent are retained within the respective reduced MPSs. 

Lemma 4.1 (See Figure 4.1): Given hierarchy element MPSsPL and <1_ with vertices Pi and cL 

realizing their separating tangent T then p* e PL[Piower_P, Pi+il and q* e QR[qj-1, ciupper_Ql• 

Proof: If one of the MPSs, say (a[q10 wer_Q, Clupper_Q], is a single vertex then, by Observation 2, 

p* E PdPi-1, Pi+ll, 

Otherwise, p* e PdPi+l, Pupper p] iff a vertex in that range lies in H'.:"_, By Observation 1, all - ~ 

vertices in PdPi+l, Pupper p] lie in JL_ and hence in JL_, Therefore, p* e Pdp1ower p, Pi+1l 
- P1P1+1 qp. -

and, by a symmetric argument, q* e (a[cfi-1, Clupper_Q], ♦ 

Lemma 4.2 (See Figure 4.1): Given hierarchy element MPSs PL and 5R_ with vertices Pi and qj 

realizing their separating tangent T then either p* e PdPi-2, Pi+il or q* e QR[qj-1, cij+2]. 

Furthermore, the correct containment can be determined in constant time using a single processor. 

Proof: If one of the MPSs, say QR[ci1ower_Q, Clupper_Q], is a single vertex then, by Observation 2, 

* [~ ~ ] p E PL Pi-1, Pi+l · As well, if Pi-2 or ~+2 do not exist then the result follows trivially from 

Lemma 4.1. 

Otherwise, denote line Pi-2Pi-1 by L, and line cij+1cij+2 by R. Note that the slopes of Land Rare 

both positive and both less than the slope of T. Without loss of generality, assume that Land R 

intersect below Sand denote line PiPi-1 by Li. Note that L2 must also intersect R below S since the 

slope of Li lies between the slopes of Land T. If q* e QR[qj+2, ciupper_Q] then part of PL above S 
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must extend below R. By Observation 1, all vertices on PL which are outside PdPi-Z, Pi-i] 

(respectively, outside PdPi-1' piJ) are above L (respectively, above Lz). Therefore, no part of PL 

below T ca~ extend below Rand therefore, with the above argument, q* e ~[Clj-l, qj+zP. 

Similarly, ifL intersects R above S then p* e PdPi-2, Pi+il• 

This test can be easily implemented to run in constant time using a single processor. ♦ 

The polygon/polygon separating tangent algorithm uses the "1c-subdivision technique (in the 

-./k-polygon hierarchy) in the same way as the polygon separation algorithm described in Section 3. 

Within each iteration the separating tangent between the current hierarchy elements is determined and 

the case analysis described in the above lemmas enables the algorithm to take a step in (at least) one 

of the polygon hierarchies. 

Theorem 4.1: The separating tangents of two convex n-vertex polygons P and Q can be 

determined in O(log n/(1 + log k)) time using k CREW processors. 

Proof: The separation preprocessing and decomposition into monotone polygonal sectors is 

performed within the same resource bounds. Similar to Theorem 3.1, by Lemmas 4.1 and 4.2, each 

iteration takes constant time and results in a step through one of the polygon hierarchies. Therefore, 

a total of O(log n/(1 + log k)) iterations will suffice to determine MPS separating tangents. 

Running the algorithm twice with the appropriate (symmetric) changes will produce both separating 

tangents. ♦ 

The case analysis presented here is similar in spirit to that provided by Overmars and Van 

Leeuwen [OvL]. They describe an analysis for a sequential O(log n) time algorithm to find the 

upper common tangents of two n-vertex convex polygons; their analysis can be modified to provide 

an equivalent separating tangent result. Although the analysis for their common tangent algorithm is 

sufficient for the sequential result, it only considers consecutive vertices and thus does not 

1 Note that if line qjqj+ 1 intersects L above S then it is possible that q * e [qj+ 1, qj+i) . 



immediately provide a test which will enable the algorithm to take a step in one of the polygon 

hierarchies. 
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The separating tangents algorithm can be modified easily to compute common tangents within 

the same bounds. For the separating tangent case analysis presented in Lemma 4.2, the case 

reduction is predicated on whether Rand L intersect above or below the separating line S. In fact, 

within Lemma 4.2, the same case reduction could have been predicated on whether R and L intersect 

to the left or to the right of the current separating tangent T. However, the analog of Lemma 4.2 

used in the common tangent algorithm requires a separating line for its case reduction (as does the 

case reduction of Overmars and Van Leeuwen [OvL]). Therefore, as for the separating tangents 

algorithm, given two convex polygons P and Q, we apply the appropriate separation algorithm, 

construct a line S between them perpendicular to their separation and decompose P and Q into their 

respective MPSs with respect to line S. 

We describe the modifications to find the common tangent of PL and~ (see Figure 4.2); the 

common tangent algorithm for PR and~ is symmetric. The -vk-hierarchies technique are used for 

each of PL and ~. Within each iteration, the tangent of PL and <iL is found and analyses analogous 

to those in Lemmas 4.1 and 4.2 are applied to take a step in one of PL's or <iL's polygon hierarchies. 

Denote the vertices of PL and~ which realize the common tangent asp"' and q* respectively. 

Assume that we have verticespi and Clj which realize the common tangent T of PL[P1ower_P, Pupper_P] 

and Q[q1ower_Q, qupper_Q], hierarchy elements of PL and QL respectively. 

For the analog of Lemma 4.1, consider the horizontal slab delimited by they-coordinate of Pi 

above and they-coordinate of <ii below. The true common tangent support vertices p* and q* must 

lie on or to the right of where the current common tangent segment PiClj intersects this slab. Note 

that Pi-land qj+1 lie to the left of the current common tangent. By Observation 1, all vertices on PL 

below Pi-i lie to the left of line Pi-lPi and therefore lie to the left of the current common tangent. 

Therefore, p* cannot be below Pi-1 on PL. Similarly, q* cannot be above cL+1 on QL. 
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For the analog of Lemma 4.2, denote ray Pi+2Pi+l by L, and ray <lj-2'lj-1 by R. Denote ray Pi+lPi 

by Li and ray ~-1 ~ by R2. Without loss of generality, assume that L and R intersect below the 

given separator S. Note that Li must also intersect R below S since Li lies to the left of L. For q"' 

to exist below <lj-2 on Qi., part of PL must extend to the right of R. By Observation 1, all vertices on 

PL which are outside PuPi+2, Pi+il (respectively, outside PLLPi+h pJ) are to the left of L 

(respectively, to the left of L2) and above S. Therefore, no part of P can extend to the right of R and 

therefore, combined with the above reduction q* e Qr,[cL-2, qj+1Jl. Similarly, if L intersects R 

above the given separator S then p* e PdPi-1, Pi+2l-

Therefore, using the --/k-polygon hierarchies and the case analysis above, we have immediately: 

Theorem 4.2: The common tangents of two convex n-vertex polygons P and Q can be determined 

in O(log n/(1 + log k)) time using k CREW processors. 

This technique provides a logarithmic sequential algorithm and a constant time algorithm using a 

quasi-linear number of processors for computing upper common tangents. With n processors, 

using standard recursive subdivision, the common tangents algorithm can be incorporated into 

another optimal 2-d convex hull algorithm. Earlier optimal 2-d convex hull algorithms used a 

-v'k-subdivision for the divide and conquer step [ACGOY] [AG2]; this can be thought of as using the 

power of this technique within a different level of the algorithm. This --/k-subdivision technique has 

also been used for list merging and other applications [KR]. Interestingly, Cole & Goodrich [CG] 

use a cascading routine based on Cole's parallel merge sort [C] to construct the convex hull without 

using the --/k-subdivision technique. 

1 Note that if R2 intersects L and Li above S then it is possible that q * E [qj-1, <lj-2], 
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5.0 Lower Bounds 

We have repeatedly stressed the link between the common tangents/separation problems and 

sorted table lookup. We make this precise with a reduction. 

Recall that the sorted table look-up problem is defined as follows: given a sorted table of n real 

numbers x1, x2, ... Xn and a search key Xs, return the index i such that Xs e [xi, Xi+ll (with xo = -oo 

and Xn+l = 00). To deal simply with the extreme table values, we consider the normalized sorted 

table look-up problem where x1 = 0, Xn = 1, and Xs e (0, 1). 

Theorem 5.1: The sorted table-lookup problem can be reduced to convex polygon common 

tangents and separation. 

Proof: Given a sorted table X = {x1, x2, ... Xn} such that x1 = 0 and Xn = 1, and a search key 

Xs e (0, 1), associate with each Xi the coordinate P(xi) = (xi, - xi2). This associates with each table 

entry a vertex on a parabola opening downwards. Therefore, X defines the vertices of a convex 

polygon P(X). Consider the key x5 ; P(x8) is also a vertex on this parabola. It is easy to see that, 

(i) Xs e [xk, Xk+il iff P(x8) has common tangents with P(xk) and P(Xk+1); and 

(ii) Xs e [xk, Xk+1l iff the separation of P(x8) with P(X) is realized by a point on the segment 

P(xk)P(xk+l), 

Therefore, a solution to either of these problems provides an equivalent solution to the sorted 

table-lookup problem. ♦ 

Snir [S] has shown that in the CREW model of computation, with k processors available, the 

sorted table look-up problem has a time bound of S(log n/(1 + log k)). In the absence of concurrent 

read, the sorted table look-up problem has time bound 8(1 + log n - log k). (This is a key result 

which demonstrates that processors with a concurrent read facility are strictly more powerful than 

processors without concurrent reads.) This result together with Theorems 3.1, 4.1 and 4.2 

immediately yields: 
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Corollary 5.1: Finding the common or separating tangents of a vertex with an n-vertex convex 

polygon with k CREW processors has time complexity 0(log n/(1+ log k)). 

Corollary 5.2: Finding the separation of a vertex with an n-vertex convex polygon with k CREW 

processors has time complexity 0(log n/(1 + log k)). 

The algorithms presented in Sections 3 and 4 demonstrate that the tight bounds stated in 

Corollaries 5.1 and 5.2 for the vertex/polygon problems in the CREW model extend to the 

polygon/polygon versions of those problems1• The reduction of Theorem 5.1 has implications for 

the EREW model as well: 

Corollary 5.3: Finding the common or separating tangents of a vertex with an n-vertex convex 

polygon with k EREW processors has time complexity 0(1 + log n-log k). 

Corollary 5.4: Finding the separation of a vertex with an n-vertex convex polygon with k EREW 

processors has time complexity 0(1 + log n - log k). 

The algorithms providing the upper bound for Corollaries 5.3 and 5.4 are the obvious 

extensions of the EREW k-way search algorithm: the k processors are used in the first step to 

reduce the length of the input sequence by a factor of k and the (unique) winning processor whose 

subsequence contains the solution applies the sequential algorithm to obtain the final solution. 

However, it is not clear how to design an 0(1 + log n - log k) algorithm for the 

polygon/polygon versions of those problems using the EREW model of computation. In the CREW 

model, the ../k-subdivision technique introduces a constant factor which does not affect the 

asymptotic complexity of the solution. This technique does not seem to be useful in the EREW 

model. In fact, given two n-vertex polygons, it is not clear how to obtain an asymptotic speedup for 

na EREW processors for any c:x ~ 1. 

1 Note that within the vertex-polygon version of the algorithms described a full concurrent read facility is not necessary, 
a facility which allows one processor to broadcast to all other processors would suffice. 
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6. 0 Discussion 

Employing a hierarchical representation of convex polygons, we have demonstrated tight time 

bounds of 0(log n/(1 + log k)) for the separation and separating/common tangents problems using 

the CREW mcxlel of computation. The algorithms and lower bounds have been derived by 

regarding the exterior of a convex polygon as being related to a sorted table and extending table 

lookup results to the separation and tangent problems. 

As reported elsewhere [DaK.3], it is possible to augment the subdivision hierarchies of 

Kirkpatrick [K] [DaKl] [DaK.2] to produce a linear space data structure which will support optimal 

cooperative algorithms for planar subdivision point location. By regarding the exterior of a convex 

polyhedron as topologically equivalent to a planar subdivision, it is possible to use these point 

location algorithms to design efficient cooperative algorithms for convex polyhedron separation. 
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Figure 2.1: The envelope between P and P containing the boundary of P 



Figure 2.2: Monotone Polygonal Sectors 
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Figure 3.1: Kitty-Comer/Same Side Lemma Cases (a) & (b) 
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Figure 4.1: Separating Tangent Diagram 
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