
Optimal Parallel Algorithms
For Convex Polygon Separation1

N. Dadoun, D.G. Kirkpatrick

Technical Report 89-21
September, 1989

Abstract

Cooperative parallel algorithms are presented for detennining convex polygon

separation and constructing convex polygon mutual tangents. Given two n-vertex

convex polygons, using k CREW processors (1 S k S n), each of these

algorithms has an S(log n/(1 + log k)) time bound. This provides algorithms for

these problems which run in O(log n) time sequentially or in constant time using a

quasi-linear (na for some ex> 0) number of processors.

These algorithms make use of hierarchical data structures to solve their

respective problems. The polygonal hierarchy used by our algorithms is available

implicitly (with no additiona1 preprocessing) within standard representations of

polygons.

1 This research was supported in part by lhe Natural Science$ and Engineering Research Council of Canada.
A preliminary version of lhese results were reported in [DaK4) .

Optimal Parallel Algorithms
For Convex Polygon Separation 1

N . Dadoun,
D.G. Kirkpatrick

Department of Computer Science,
University of British Columbia,

Vancouver, BC, CANADA V6T 1W5

Abstract

Cooperative parallel algorithms are presented for determining convex

polygon separation and constructing convex polygon mutual tangents.

Given two n-vertex convex polygons, using k CREW processors

(1 S k S n), each of these algorithms has an 8(log n/(1 + log k)) time

bound. This provides algorithms for these problems which run in

O(log n) time sequentially or in constant time using a quasi-linear (na for

some ex.> 0) number of processors.

These algorithms make use of hierarchical data structures to solve their

respective problems. The polygonal hierarchy used by our algorithms is

available implicitly (with no additional preprocessing) within standard

representations of polygons.

1.0 Introduction

Page 1

We present parallel algorithms for a number of convex polygon problems which make use of a

hierarchical representation. We concentrate on cooperative algorithms, algorithms for which

multiple processors are employed to answer a single query. These algorithms are competitive with

previously known algorithms which address the same problems and provide constant time solutions

1 A preliminary version of these results were reported in [DaK4).

Page 2

when a quasi-linear (na for some ex> 0) number of processors is available. They have the

interesting property that as the number of processors available is reduced to one, the time bounds

increase smoothly to provide sequential algorithms which match the best sequential times known for

the same problems.

We assume a synchronous parallel model of computation in which all processors have access to

a global shared memory which is used for all communication between processors. Our algorithms

use the concurrent-read exclusive-write (CREW) rule for accessing the common memory. The

implications of exclusive-read with respect to our algorithms are addressed in Section 5.

In the design of parallel algorithms, a major goal is the minimization of the product T(n)* P(n)

where T(n) is the time bound of the algorithm and P(n) is the number of processors required by the

algorithm. In general, an algorithm exhibits optimal speedup if its time-processor product matches

that of the best known sequential algorithm [KR]. Usually, a parallel algorithm provides a

corresponding sequential algorithm with an O(T(n)*P(n)) time bound by employing a single

processor to simulate P(n) parallel processors.

When the sequential algorithm for a given problem is already sublinear, as is the case for the

problems addressed here, an optimal speedup is clearly not possible for arbitrarily large numbers of

processors. Hence we use the term optimal in a more classical sense to refer to algorithms whose

upper bounds match their respective problem's lower bounds. The algorithms presented here run in

constant time with a quasi-linear number of processors and as the number of processors available

decreases, the time bound increases smoothly to match the best known sequential time bound with a

single processor.

In a sense, the algorithms described here have a 'decreasing return' in their application of

parallelism; the speedup may only be polylogarithmic in the number of processors. One might ask

why issues of massive parallelism should be explored for problems which already admit a sublinear

Page 3

sequential algorithm. In addition to their purely theoretical interest, such problems may appear as

recurring subproblems in a setting for which there are a varying number of processors available.

We denote by n the number of vertices of a typical input polygon. The number of processors

available, k for 1 S k ~ n, is an input parameter of our algorithms. Although our algorithms are

applicable to the entire range of k, occasionally minor modifications are necessary to ensure correct

behaviour for small values of k. When these modifications are straightforward, we omit their details

in the interest of an uncluttered presentation.

Throughout the paper, all polygons considered are convex. We assume a very natural

presentation of the input; the vertices of a convex polygon are provided in an array in clockwise

order of their appearance on the boundary. As described in the next section, this representation

contains enough structure to provide the hierarchy of polygons used in our algorithms without

preprocessing. This is in contrast to the corresponding polyhedral representation in which each of

the polyhedron hierarchies must be constructed explicitly [DaK3].

The problems addressed are separation, and separating/common tangents. Determining the

separation of two convex polygons is a generalization of detecting their intersection; it is the

identification of a witness to the minimum distance separating them. If the polygons do intersect the

separation is zero and the witness is a point in their intersection.

A separating (respectively, common) tangent of two convex polygons P and Q is a line tangent

to both polygons such that P and Q lie in different half-planes (respectively, the same half-plane).

The separating tangents delimit the set of possible separating lines for P and Q. The common

tangent in which both polygons lie in the half-plane below (respectively, above) the tangent is

known as the upper (respectively, lower) common tangent. Determining the common tangents of

two convex polygons is a step in forming the convex hull of their union.

Previous work has provided logarithmic time sequential algorithms for common tangents [OvL]

and convex polygon separation [E]. Viewing the boundary of each polygon as a sequence of

Page 4

values, both of these algorithms involve a 'binary search' approach; within each iteration, the

midpoints of the remaining sequence of vertices of each polygon are compared. Then, a case

analysis is applied to limit the remaining search to one half of the sequence associated with one of

the polygons. The iterations continue until one of the two sequences is reduced to a constant size.

Therefore, there are a logarithmic number of constant time iterations. Although these algorithms do

not seem to admit to straightforward parallel implementations in our model, their binary search

approach forms the basis for the k-way search algorithms developed here.

Chazelle and Dobkin [CD], Dobkin and Kirkpatrick [DKl][DK2][DK3][DK4] and Avis, El

Gindy and Seidel [AES] have presented sequential algorithms for a number of polygon and

polyhedron separation problems. Some of the results presented here can be viewed as non-trivial

parallel generalizations of their work.

The parallel solutions presented by Atallah and Goodrich [AG 1] for the common tangents and

separation problems are described for a quasi-linear number of processors. However, the natural

extensions of their algorithms for n-vertex convex polygons run in O(log2n/(1 + log k)2) parallel

time using k CREW processors. Therefore, although they provide constant time algorithms (with a

sublinear number of processors) for the problems which they address, they do not achieve the

theoretical maximum speed-up of log k (cf. Section 5). In particular, since they embed a point

polygon test within each iteration of their polygon-polygon algorithms, as k the number of

processors available decreases and approaches one, the natural extensions of their algorithms run in

O(log2n) sequential time. We extend the basic design of their algorithms using convexity and

properties of the inner polygonal hierarchy of Dobkin and Kirkpatrick [DKl].

The results reported here unify and extend the work cited above. In Section 2, we present

details of the hierarchical representations which are used in the design of our algorithms. In

Sections 3 & 4, we describe algorithms which solve separation and separating tangent queries for

n-vertex convex polygons in O(log n/(1 + log k)) time using k CREW processors (1 $ k $ n). In

Section 5, we present a reduction which provides the matching lower bounds for the problems

addressed here.

2.0 Polygon Hierarchies

Page 5

All polygons considered are convex and are assumed to be presented in an array listing the

vertices in clockwise order. For simplicity, we assume that no three vertices of a given polygon are

collinear. We denote the set of vertices of polygon P by V(P). Segment ab is the line segment

whose endpoints are vertices a and b. Line ab is the line which contains segment ab. Ray ab is the

half-line directed from a to b which contains segment ab.

A convex polygon P can be defined as the intersection of a set of bounding half-planes. Hence,

we define the edges as having a direction (clockwise) around the polygon such that each edge ab

(defined on distinct vertices a and b) defines two closed bounding half-planes ~b (on the right side

of the edge from a to b) and ~b (on the left side of the edge from a to b). Note that within this

definition, a and b need not be consecutive vertices of P. This notation is generalized to define

corresponding closed half-planes W and Ir with respect to any ray r.
r r

Our algorithms make use of a hierarchical representation of convex polytopes [DKl] [DK2]

[DK3] [DK4]. In two dimensions, this hierarchical representation can be motivated by a simple

observation: Given a convex polygon P, any subsequence of P's vertices defines another convex

polygon completely contained within P. For a convex polygon P, a (nested) sequence of convex

polygons po, pl, ... ,PN is said to be an (inner) polygon hierarchy of P if

ii) I pN I = 3;

iii) V(Pi+l) c V(Pi) and I pi+1 I < I pi I/ ex for some constant ex> 1 and

iv) there is at most some constant number j3 of vertices of pi between any two consecutive

vertices of pi+ 1.

Page 6

Conditions (ii) and (iii) ensure that N = O(log n) and condition (iv) ensures that the vertices of

pi+l are evenly selected from the vertices of pi_ A sequence of polygons H(P) = po, P1, ... ,PN that

forms a polygon hierarchy is described simply: if the vertices of Pare Po, Pl, ... pn-1, then the

vertices of Pt are taken to be those vertices of P whose index is congruent to O MOD 2t. This

hierarchical representation has been used to solve a number of number of geometric separation

problems in a sequential model of computation [DK4]. The algorithms which use this representation

generally have the same basic design: Having answered the separation query for hierarchy element

Pi, step to element Pi-1 and use a constant number of tests to answer the query for pi-1.

One of our goals is to demonstrate that this hierarchical representation is adapted easily for use in

cooperative search queries. This is accomplished by relating the values a and~ in conditions (iii)

and (iv) of the polygon hierarchy definition to k, the number of processors we have available. A

sequence of polygons Hk(P) = P~, P!, ... ,P~ that forms an accelerated polygon hierarchy attuned

to the value k (2 :s; k Sn) is described accordingly: if the vertices of Pare po, P1, ... Pn-h then the

vertices of P~ are taken to be those vertices of P whose index is congruent to O MOD kt.

Therefore, this accelerated hierarchy has O(log n/(1 + log k)) elements.

Viewed explicitly in this way, this hierarchical representation can be used by k processors to

solve a point-polygon separation query. Each iteration of the algorithm deals with an element of the

polygon hierarchy which is a "current approximation" of the initial polygon. When a point which

realizes the separation property of interest is localized, the algorithm steps to the preceding element

of the hierarchy which is a refinement of the current polygon approximation. Solving a polygon

polygon separation query is analogous, the algorithm deals with a current approximation of each

polygon; an iteration of the algorithm steps to the preceding element of (at least) one of the polygon

hierarchies 1.

1 It is worth noting that Atallah and Goodrich's [AGl] approach is an informal variant of this paradigm. Their
algorithms take a step by refining the region of interest dynamically using a k-way subdivision.

Page 7

We maintain the invariant that when examining an element of the polygon hierarchy, only a

portion of size O(k) need be considered. The algorithm initializes this invariant by examining the last

element of the sequence; th.is element forms the coarsest approximation of P and is of size O(k).

Given Pt 1, from the portion of size O(k) under consideration, the algorithm identifies a constant

size portion which is guaranteed to contain a point which realizes the separation property of interest.

This expands into a portion of size O(k) in P~ , and maintains the invariant.

When a polygon Pis presented in an array, all elements of the hierarchy (for all values of k) are

available implicitly by indexing.1 To avoid excess notation, we denote the current hierarchy element

P~ by Pt (or, more commonly, P when the context is clear or unimportant). At any given point

within an algorithm, a vertex may have two different labels, its index in the original polygon P and

its index in the current hierarchy element P. To avoid possible ambiguities, we adopt some

notational conventions: The vertex Pt is the tth vertex of polygon P, and the vertex Pr is the rth

vertex of the current hierarchy element P. The sequence of vertices of polygon P between Ps and Pr

inclusive is denoted by P[ps, pJ, consecutive subscripts refer to consecutive vertices on P. The

sequence of m vertices of interest within hierarchy element P between Ps (=Pl) and Pt (= Pm)

inclusive is denoted by P[p 1, pnJ, consecutive subscripts refer to consecutive vertices on P. For

example, P[pi, Pi+d refers to the complete sequence of vertices on polygon P between two vertices

Pi and Pi+l inclusive which are consecutive on the current hierarchy element P. In the discussion of

polygon separation where the separation may be realized by a point which is not necessarily a

vertex, we occasionally abuse this notation by using P[pi, Pi+tJ to refer to the complete sequence of

points on the boundary of P between two vertices Pi and Pi+l inclusive.

Given hierarchy element P, convexity imposes implicit restrictions on how far P can extend

beyond the edges of P: Let a, b and c be vertices of convex polygon P appearing in that order and

1 In three dimensions, the corresponding polyhedral hierarchy must be explicitly constructed in a preprocessing phase
[DaK3].

Page 8

consider the two chords ab and be of P. Consider the two half-planes ~band H;b (respectively,

H~ and~) defined by ray ab (respectively, ray be).

Observation 1: P[a,b] c ~band P[b,a] c tt;b·

Observation 2: P[c,a] c H;b f'I ~ and ~b f'I ~ f'I P = 0.

Applying these observations about chords of P to the edges of an element of the polygon
~ I\

hierarchy P implicitly defines P: the star-shaped polygon (possibly unbounded) which is the union

of all possible convex polygons which could have P as a hierarchy element. The boundary of the

polygon P must lie within the envelope of points between any hierarchy element P and its
I\

corresponding P (see Figure 2.1).

The key to the efficient parallel use of the hierarchy element approximations is the judicious

assignment of processors. Intuitively, this can be thought of as a direct analogue of parallel search

in a sorted table [S]; each iteration of the k-way search corresponds to a step through the implicit

polygon hierarchy. This correspondence, formalized by the reduction in Section 5, allows the

design of k-processor convex polygon algorithms which are natural extensions of k-way search.

Within each iteration of the natural k-way search algorithm for the sorted table lookup problem, the

search key's containment in a particular subsequence can be determined by a single processor in

constant time. This process is slightly more involved for the polygon tangents/separation problems

but can be done efficiently by employing tests which exploit convexity and properties of a polygon

hierarchy.

Within each iteration of the algorithms for polygon tangents and separation, a solution is found

for the current approximations (hierarchy elements) of the polygons and then the appropriate case

analysis is applied to reduce the region of interest. This can be thought of as 'electing' an active

processor (the one that witnesses the hierarchy element/subsequence solution) which then applies the

case reduction. The active processor then writes the reduced ranges into a predetermined location

and the remaining processors use the concurrent read facility to update their information. Since only

Page 9

one processor is assigned to the pair realizing the hierarchy element solution, this election process

avoids write contention.

As an example of our general approach, consider the following k-processor algorithm for

finding pd, the extremum of an n-vertex convex polygon Pin the direction of ray d: Initialize P to be

the last element of P's polygon hierarchy and repeat the following until P is reduced to a single

point. Assign a processor to each vertex of the current hierarchy element pt_ Vertex Pi realizes the

extremum of P1 in the direction of ray d iff there exists a line L perpendicular to d such that

pi e L r'I Pt, pt c ~ and d extends to infinity in ~- This can be determined in constant time

by comparing the slopes of segments Pi-lPi and PiPi+l with ray d. If so, then by Observation 2, all

points of P clockwise between Pi+l and Pi-1 lie in the wedge formed by rays PiPi+l and PiPi-1 ·

Therefore, pd must lie in P[Pi-l, Pi+ i]. Replace P with the portion of hierarchy element pt- l between

vertices Pi-1 and Pi+l·

Each iteration of this procedure performs a constant number of tests for each element of the

hierarchy. Essentially, this algorithm identifies the vertex of P which realizes the separation between

P and a line L perpendicular to direction d placed at infinity in direction d. Therefore, we have

immediately:

Lemma 2.1: Ann-vertex convex polygon's extremum in a given direction d can be identified in

O(log n/(1 + log k)) time using k CREW processors.

For the problems we consider, we present a uniform treatment and simplify aspects of our

algorithms by adding an initial preprocessing step to reduce a convex polygon under consideration to

a constant number of polygonal chains each of which delimits a convex region of the plane. From

[DKl], we recall the definition of a Monotone Polygonal Sector (see Figure 2.2): The boundary of

a convex polygon is decomposed into two monotone polygonal chains of edges by cutting at its

highest and lowest y coordinates. This yields two sequences of vertices and edges in order of

increasing y-coordinate. By convexity, any such chain will be either left- or right-oriented. Semi-

Page 10

infinite rays are attached to the beginning and end of each chain and the interior is included to form

two (convex) monotone polygonal sectors (MPS). These rays run parallel to the x-axis towards

+oo if right-oriented or -oo if left-oriented and define the area contained by the MPS. By Lemma

2.1, a convex n-venex polygon P can be decomposed into its left MPS PL and its right MPS PR in

O(log n/(1 + log k)) time using k CREW processors.

We maintain MPS PL with its vertices indexed by increasing y-coordinate as

PdPlower_P, Pupper_P], This denotes the convex region delimited by the sequence of edges of P

from vertex Plower_P to vertex Pupper_P augmented by infinite rays at the upper and lower bounds.

Initially, the upper and lower bounds correspond to the maximum and minimum y-coordinates

respectively. Within the general design of our algorithms, each iteration reduces the size of a

polygonal chain under consideration by adjusting the upper and lower bounds of an MPS. When

the upper and lower bounds are adjusted, the resulting MPS has infinite rays extending from the

adjusted bounds. The polygon hierarchy extends in the natural way to an MPS: the MPS

P~[P1ower_P, Pupper_P] consists of the portion of hierarchy element pt between (and including)

Plower_P and Pupper_P· When the context is clear, we omit the range specification and hierarchy

element index by referring to PL[P1ower_P, Pupper_P] (respectively, P L[Plower_P, Pupper_p]) as PL

(respectively, PL),

3.0 Polygon Separation

For our polygon separation algorithms, we assume that each input convex polygon P has been

decomposed into its left and right MPSs PL and PR. We state without proof several useful

separation properties of monotone polygonal sectors [DKl]l:

MPS Property 1: Convex polygons P and Q intersect iff PL intersects ~ and PR intersects Qi,.

1 Note that a line segment can be considered a degenerate polygon and hence these properties can be applied to
polygon/line segment separation.

MPS Property 2: If P and Q do not intersect then their separation is realized either by the

separation between PL and QR, or the separation between Qi. and PR.

Page 11

MPS Property 3: Ignoring degeneracies, the boundaries of two oppositely-oriented MPSs can

intersect in either O or 2 points.

First, consider the problem of finding the separation of an n-vertex convex polygon P and a line

segment r. By MPS Properties 1 and 2, it is sufficient to describe an algorithm for MPS/line

segment separation. For simplicity, we assume that the MPS and line segment do not intersect; the

algorithm can be trivially modified to report an intersection if one is detected.

Without loss of generality, we consider the problem of determining the separation of MPS PL

and line segment r. The following k processor algorithm to find a point p* of P which realizes the

separation of PL and r is essentially the algorithm presented by Atallah and Goodrich [AG l]:

Initialize PL to be the last element of PL's polygon hierarchy and repeat the following. If PL is
reduced to a constant number of segments then determine exhaustively a point p* of PL (not

necessarily a vertex) which realizes the separation with r. Otherwise, assign a processor to each

vertex Pi of PL. In constant time, determine if vertex Pi is closer to segment r than vertices Pi-1 or

Pi+l· If so, then by Observation 2, all points of PL in Pdp10 wer_P, Pi-1] or in PdPi+l• Pupper_p] lie

interior to the wedge formed by rays PiPi+l and PiPi-1· Therefore, p* must lie in PdPi-1, Pi+d

Replace PL with the portion of hierarchy element Pt1 between vertices Pi-1 and Pi+l·

Each iteration of this procedure takes a single step through the polygon hierarchy while

maintaining the invariant that the remaining range of edges contains a point which realizes the

desired separation. This algorithm can be used to find line/polygon separation by regarding the line

as a segment with its endpoints extended to infinity. Similarly, this algorithm can be used to find

point/polygon separation by regarding the point as a degenerate segment with zero length.1 This last

1 Note that due to the non-unirnodality of distances in a convex polygon [E], this technique cannot be used directly for
the farthest point problem.

Page 12

application can be thought of as a table-lookup routine: finding the minimum in a virtual table of

distances from a fixed point. We summarize these results as:

Lemma 3.1: The separation of an n-vertex convex polygon with a line-segment, a line or a point

can be determined in O(log n/(1 + log k)) time using k CREW processors.

We turn to the problem of finding the separation of arbitrary convex polygons P and Q. If one

of the polygons, say Q, has a constant number of facets then using Lemma 3.1 it is possible to

determine the separation of P and Q by testing each facet of Q against P. If Pis an n-vertex convex

polygon, this would determine the polygon/polygon separation in O(log n/(1 + log k)) time using

k CREW processors. However, if both P and Q are n-vertex polygons then this naive approach

would not produce an optimal algorithm.

Therefore, consider the case in which both P and Q haven-vertices. The MPS properties

simplify several aspects of determining polygon/polygon separation. By Properties 1 and 2, it

suffices to compute MPS separations; without loss of generality, we describe an algorithm to

determine the separation of PL and~- By Property 3, if the polygons P and Q do intersect, then

their corresponding (oppositely-oriented) MPS boundaries have a constant number of intersections

and and a witness to the intersection of P and Q can be determined from the corresponding MPS

intersections.

Within each iteration of the algorithm, we maintain the invariant that the MPSs

PdPiower_P, Pupper_P] and ~[ci1ower_Q, qupper_Q] contain either a pair of points realizing the

minimum distance separating PL and ~ or a point in the intersection of PL and QR. Thus, the

algorithm can be viewed as a search routine to identify p"' and q"', points of PL and~ respectively,

which realize the MPS separation. Each iteration of the algorithm finds the separation of the current

hierarchy elements PL and~- If PL and~ intersect then a witness to their intersection is returned

as a witness to the intersection of PL and~- Alternatively, if PL and~ do not intersect, their

separation is realized by a vertex-vertex or vertex-segment pair.

Page 13

We maintain the segment T with endpoints Pi and c1 defining the separation between hierarchy

elements PL and 5R_. For ease of exposition in the vertex-segment case, we assume the existence of

a ps.eudo-vertex on the segment in question which realizes the separation and assume that it has been

labeled to incorporate it into the vertex ordering. This reduces the vertex-segment case to the

vertex-vertex case.

Given PL and <1_, hierarchy element MPSs of PL and~ respectively, and the points Pi and c:L

which realize the separation of PL and 5R_, the following two lemmas show how the range of

vertices under consideration for realizing the separation of PL and ~ can be reduced so that a step

can be taken in one of their polygon hierarchies. This is done by demonstrating that there exist

portions of PL and~ which can be replaced by horizontal rays such that points p* and q* realizing

the separation are retained within the respective reduced MPSs.

Lemma 3.2 (The kitty-corner lemma): Given hierarchy element MPSs PL and~ and vertices Pi

and cL realizing their separation, then

(i) either p* E PdPi-2, Pupper_P] or q* E ~[Cilower_Q, C}j+2J

and (ii) either p* E PdPlower_P, Pi+2l or q* E ~[C}j-2, 4upper_Q].

Furthermore, the valid reduced range in each of (i) and (ii) can be determined by a single

processor in constant time.

Proof: If one of the MPSs, say QR[ci1ower_Q, ci.upper_Q], is a single vertex1 then, by Observation 2,

p* e PdPi-1, Pi+il• As well, if Pi-2 or 4j+2 (respectively, Pi+2 or cij-2) do not exist then (i)

(respectively, (ii)) is true trivially.

Otherwise, each of statements (i) and (ii) offers a possibility of two MPS reductions. We ignore

for the moment the question of determining which reduction is applicable, and begin by showing

1 . - -
That 1s 4lowcr_Q = quppcr_Q·

Page 14

that statements stronger than (i) and (ii) respectively are true. That is, we prove that the separation

cannot be realized by a point in PdP1ower_P, Pi-1] and a point in ~[<L+1, ciupper_Q] (respectively, a

point in PdPi+ 1, Pupper_P] and a point in ~[Qiower_Q, 4j-1]). Observe that the "kitty-corner" MPSs

PLLPlower_P, Pi-ll and ~[qj+b qupper_Q] (respectively, PdPi+l, Pupper_P] and ~[ci1ower_Q, Clj-1])

are contained in halfplanes on opposite sides of the parallel lines of support passing through Pi and

qj perpendicular to the separation segment Pi'li• It follows that their minimum separation must be

greater than the distance between Pi and Clj and hence (at least) one of them can be discarded while

retaining a pair of points which realize the separation of PL and~-

The difficulty lies in the determination of which portions of PL and ~ can be discarded while

retaining a pair of points which realize the true separation. To ensure that a correct reduced range

can be determined by a single processor in constant time, it seems necessary to restrict consideration

to which of PdP1ower_P, Pi-21 and ~[Clj+2, Clupper_Q] (respectively, which of Pdp i+ 2, Pupper_P] and

~[ci1ower_Q, Clj-2]) can be replaced by a single ray.

We turn to the determination of a correct reduced range corresponding to statement (i). Consider

the line Pi-l'li+l· At least one of (a), (b) and (c) must occur1:

(a) Vertex 'li+2 e IL _ (see Figure 3.1). Note that the case condition implies that <L+i e H: _
~~ ~~

and equivalently, p i-1 e H ~ ;r • As well, by the monotonicity of~. the y-coordinate of cij+ 1 is
q,1+1'iJ+2

less than the y-coordinate of (lj+2, therefore the case condition implies that the y-coordinate of Pi-1 is

less than the y-coordinate of ciJ+ l •

Let w be the horirontal ray originating at (lj+2 and extending to positive infinity. Let v be the ray

originating at ciJ+2, at right angles to ciJ+1cii+2, such that v does not intersect the interior of~

Denote by p' and q' points which realize the separation of PL and Qil[qj+2, qupper_Q] respectively.

By Observation 1 and monotonicity, Qil[ciJ+2, ciupper_Q] is contained in the wedge

1 It is possible that both (a) and (b) occur simultaneously.

Page 15

W Q = H! ;,; ri H- and therefore q' e W Q· The following case analysis demonstrates that
'i,t,-1'itt2 W

wherever p' is located. there must exist a point on w which realizes the separation of PL and

1) p' e ii: u II;, Any circle centred at p' which contains a point in ~[Clj+2, 4upper_Q] must

also contain a point of the ray w. That is, if q' e w then it is possible to find a point

Qw e w such that the angle Lp'qwq' ~rand therefore, the distance between p' and qw must

be less than the distance between p' and q'. Therefore, the separation of p' with

~[cL+2, 4upper_Q] must be realized by a point on w and hence in ~[ci1ower_Q, cij+21.

2) p' e ~ ri H:. Since the y-coordinate of Pi-1 is less than the y-coordinate of Clj+ 1 then

Pi-1 e H+ ri Ir. If p' e H~ _ then the segment Pi-1P' must intersect wand a witness to
V W P,_i4J+2

the intersection must exist in ~[ci1ower_Q, 4j+2J. Otherwise, p' e IL _ . Denote by p"
P1-8;+2

the intersection of segment Pi-1P' and ray v and note that by Case 1, p' ¢ p". Assume that

q' e w. If the distance between p' and q' were less than the distance between p" and Clj+Z,

then ray p"p' would have to intersect ray Clj+2q'. But ray p"p' c ray Pi-1P' c H -= _ and
Pi-8J+2

ray cL+2q' c WQ, and clearly IL _ and WQ are disjoint except for the vertex Clj+2·
P1--8,1,-2

Therefore, the distance between p' and q' must be greater than the distance between p" and

qj+2 and the separation of PL with ~[C}j+2, 4upper_Q] must be realized by a point in

~[q1ower_Q, qj+21 •

These cases are exhaustive and therefore q* e Q&[q10 wer_Q, ~+21. Note that the analysis does

not depend on the structure of PL or the location of Pi-1 other than what is implied by the initial case

condition that cfi+2 e K _ . This allows us to reuse this argument in the proof of Lemma 3.3.
P1--8tt1

(b) Vertex Pi-2 e IL - . By symmetry with (a), p"' e PdPi-2, Pupper_P],
P1--1q,1+,

(c) Vertex g'_j+2 e IL _ and vertex Pi-2 e IL - (see Figure 3.2). Denote line Pi-lPi-2 by Land
P1--8tt1 p,_i4J I

line ci+i~+2 by R. Without loss of generality, assume that the intersection of Land R lies in JL_
""JJ P,91

and therefore, that the horizontal separation of L and R in IL_ increases with increasing
P8J

Page 16

y-coordinate. By the case condition, cij+2 e H::- ~ (respectively, Pi-2 e H~ _), the intersection
-PH"i,1+1 pi- 8J+I

of Land R must lie below Pi-1 (respectively, below cij+1).

Define rays wand v as in (a). Let u be the horizontal ray originating at Pi-land extending to

negative infinity. Again, denote by p' and q' points which realize the separation of PL and

<JR[qj+2• qupper_Q] respectively and, as in (a), note that q' e W Q = IL Pr n Ir . Recall that the
qJ+l"iJ+2 W

separation of PL and <JR cannot be realized by a point in PdPiower_P, Pi-1] and a point in

~[qj+l • qupper_Q] and therefore we assume that p' e PdPi-1, Pupper_p]. By Observation 1 and

monotonicity, PdPi-1, Pupper_P] is contained in the wedge Wp = H::- « n H+ and therefore
-P1--1PH U

p' e Wp. Since the intersection of Land R lies below Pi-1 and cij+l, the wedges Wp and WQ are

disjoint.

Let ex,= L4i+14i+2Pi-l and~= Lqjqj+tPi-1• Before proceeding with a case analysis, we show

that a< r· Since 4i+2 E }L_ (by Observation 1) and cij+2 e lL - (by the case condition),
qJqj+I Pi-i4J+I

therefore ex,< p. We assume that ex,~ r (and, therefore ~ > ½) and derive a contradiction. If

P > ~
2

, then Pi e H~ _ (since LpiCljcij+l ~ 7t
2

). Therefore, Pi-2 must be below the horizontal
pHqj+I

line through Pi-1 (by monotonicity), Pi-2 e IL;{ (by Observation 1), and Pi-2 e H~ _ (by the
P1P1-1 P1-8j+I

case condition). But these three regions are disjoint (except for vertex Pi-1). Therefore, J3 ~ I and

hence a <f and Pi-1 e H~.

The following case analysis demonstrates that wherever p' is located there must exist a point on

w which realizes the separation of PL and ~[cL+2, 4upper_Q]:

1) p' e H~ _ n Ir (= WQ). As noted above, p' e Wp and Wp n WQ = 0. Therefore
qj<-.qj+1 w

this case cannot occur.

2) p' e Wu Ir. As in (a) Case 1, any circle centred at p' which contains a point in
W V

<JR[qj+2, 4upper_Q] must also contain a point of the ray w. Therefore, the separation of p'

with QR[cL+2, qupper_Q] must be realized by a point in QR[ci1ower_Q, 4j+2l.

Page 17

3) p' e H+ n H=:- ;r • Since Pi-1 e H-, p' and Pi-1 lie on opposite sides of ray v. Denote by
V - QJ+t'iJ+2 V

p" the intersection of segment Pi-tP' and ray v and note that by Case 1, p' ':I- p". Assume

that q' e w. If the distance between p' and q' were less than the distance between p" and

Clj+2• then ray p"p' would have to intersect ray Clj+2q'. But ray p"p' c ray Pi-tP' c W p

and ray Clj+2q' c WQ, and Wp n WQ = 0. Therefore, the distance between p' and q' must

be greater than the distance between p" and cfi+2 and the separation of PL with

<JR[cij+2, qupper_Q] must be realized by a point in ~[ci1ower_Q, 4j+2J.

These cases are exhaustive and therefore q* e <JR[ci1ower_Q, ci.j+2J. Similarly, if the intersection

of Land R lies in J:L_ then p* e PdPi-2, Pupper p]. If Land Rare parallel, then q* e ~[CIIower Q,
~ - -

cij+2l and p* E PdPi-2, Pupper_p].

The arguments used in (a), (b) and (c) prove (i); using symmetry in they direction the same

arguments prove (ii). The tests employed above to determine correct reduced ranges are line

intersection and point containments in half-planes. These tests can be easily implemented to run in

constant time using a single processor. •
To take a step in one of the polygon hierarchies within a given iteration, it is necessary to ensure

that one of the PL and QJl subsequences under consideration be reduced to a constant length. This is

not guaranteed by Lemma 3.2. It is possible, for example, that only the upper portion of PL and the

upper portion of QJl are eliminated. The following Lemma shows that this reduction is always

possible for at least one of the hierarchy element approximations.

Lemma 3.3 (The same side lemma): Given hierarchy element MPSs PL and~ and vertices Pi and

4i realizing their separation, then

(i) either p* e PL[Piower_P, Pi+2l or q* e QR[ci.1ower_Q, 4i+2l

and (ii) either p* e PdPi-2, Pupper_P] or q* e <lR[~-2, 4upper_Q].

Furthermore, the valid reduced range in each of (i) and (ii) can be determined by a single processor

in constant time.

Page 18

Proof: If one of the MPSs, say QR[Q1ower_Q, Qupper_Ql. is a single vertex then, by Observation 2,

p* e Pdi>i-1, Pi+d· As well, if Pi+2 or Qj+2 (respectively, Pi-2 or 4j-2) do not exist then (i)

(respectively, (ii)) is true trivially.

Otherwise, as in Lemma 3.2, we ignore for the moment the question of determining which

reduction is applicable, and begin by showing that statements stronger than (i) and (ii) respectively

are true. Observe that the "same side" MPSs PdPi+l• Pupper_P] and ClR[<lj+1, 4upper_Q]

(respectively, PL[P1ower_P, Pi-tl and ClR[cii0 wer_Q, Qj-1]) are contained in halfplanes on opposite

sides of the parallel lines of support passing through Pi and 4j perpendicular to the separation

segment Pi4j- It follows that their minimum separation must be greater than or equal to the distance

between Pi and ~ and that (at least) one of them can be discarded while retaining a pair of points

which realize the separation of PL and~-

Again, it seems necessary to restrict consideration to which of PdPlower_P, Pi-2] and

~[ciiower_Q, <L-21 (respectively, which of PdPi+2, Pupper_P] and ~[Qj+2, ciupper_Q]) can be

discarded to ensure that a correct reduced range can be determined by a single processor in constant

time.

We tum to the determination of a correct reduced range corresponding to statement (i). Consider

line Pi+t<ij+l• At least one of (a), (b) and (c) must occur1:

(a) Vertex ~+2 e IL _ . Substituting Pi+l for Pi-1, the same case analysis used in Lemma 3.2 (a)
P1+8;.1

shows that q* e ClR[q1ower_Q, G.j+2l-

(b) Vertex Pi+2 e IL - . By symmetry with (a), p* e PdP1ower_P, Pi+2].
P~1q;+1

(c) Vertex ~+2 e IL _ and vertex Pi+2 e IL _ (see Figure 3.3). Define rays wand v as in
P1+8;.1 P1+8;+1

Lemma 3.2 (a).

1 It is possible that both (a) and (b) occur simultaneously.

Page 19

Consider the angles a= LPi+lPi+2cij+2 and P = Lqj+lcij+2Pi+2· Note that a+~< n (otherwise,

rays Pi+ 1Pi+2 and Clj+ 1 ~+2 would intersect or would be parallel) and therefore at least one of the

angles a or p must be less than;. Without loss of generality, assume that p < r and therefore that

Pi+2 e 1¾·

Again, denote by p' and q' points which realize the separation of PL and CJR[cij+2, qupper_Q]

respectively and, as in Lemma 3.2 (a), note that q' e WQ = R: ~ ri Ir. We demonstrate by a
4;t8;+2 w

case analysis that wherever p' is located there must exist a point on w which realizes the separation

1) p' e IL ~ ri Ir (= WQ). In the halfplane IL ~ , PL c H:_ (by Observation 1),
4;t8;+2 w PM-8;+2 P1PM-1

W Q c H!- (by Observation 1), and rays PiPi+l and 'li'li+l do not intersect. In the
'iJqjtl

halfplane IL ~ , PL c H~ " (by Observation 1), WQ c H- and rays Pi+2Pi+l and w do
~~ ~~ w

not intersect. Therefore, PL and WQ are disjoint and this case cannot occur .

. 2) p' e Wu H-. As in Lemma 3.2 (a) Case 1, any circle centred at p' which contains a point
W V

in QR.[qj+2, qupper_Q] must also contain a point of the ray w. Therefore, the separation of p'

with 0R[cij+2, qupper_Q] must be realized by a point in OR[ci1ower_Q, qj+2l.

3) p' e W n IL ~ • Since P <-
2
1t, then Pi+2 e H- and p' e PdPi+2, Pupper_P], But, as

V 4J+i4J+2 V

noted above, the separation of PL and OR cannot be realized by a point in PL[p i+ 1, Pupper_P]

and a point in OR[cij+l, (}upper_Q]. Therefore, no q' arising in this case can be a point

realizing the minimum separation of PL and OR.

These cases are exhaustive and therefore q* e OR[ci1ower_Q, ~+2J. Similarly, if a< i then

p* E PdPlower_P, Pi+2J.

The arguments used in (a), (b) and (c) prove (i); using symmetry in they direction the same

arguments prove (ii). The tests employed above to determine the valid reduced ranges are point

containments in half-planes and angle comparisons. These tests can be implemented to run in

constant time using a single processor. ♦

Page 20

Without loss of generality, assume that k ~ 25. We outline a k CREW processor algorithm for

determining the separation between PL and QR, which follows from Lemmas 3.2 and 3.3 above:

Initialize PL and~ to be the last elements of the -Jk-polygon hierarchies1 of PL and QR, respectively

and repeat the following. If P~ or~ are of constant size then use the polygon/segment separation

algorithm to determine their separation and halt. Otherwise, assign a processor to each pairing of a

vertex from P~ with a vertex from Q~. The processor which determines that the edges incident on

its pair of vertices realize the separation of the current hierarchy elements then restricts the sequence

of vertices under consideration according to Lemmas 3.2 and 3.3 by adjusting lower_P and

upper_P, or lower_Q and upper_Q. Depending on which MPS bounds are adjusted, replace P~

(respectively,~) with the portion of Pt1 (respectively, ~ 1
) between vertices Plower_P and Pupper_P

(respectively, Qlower_Q and ciupper_Q).

Theorem 3.1: The separation of two convex n-vertex polygons P and Q can be determined in

O(log n/(1 + log k)) time using k CREW processors.

Proof: Given two convex n-vertex polygons, the MPS preprocessing is performed in

O(log n/(1 + log k)) time using k CREW processors. Within each iteration, the vertices realizing

the separation of PL and Qa (or PR and Qr,) can be determined in constant time. Therefore by

Lemmas 3.2 and 3.3, each iteration takes constant time and results in a step in (at least) one of the

polygon hierarchies. Therefore, a total of O(log n/(1 + log k)) iterations will suffice to determine

MPS separation. Running the algorithm twice for the two MPS pairs will suffice to determine the

convex polygon separation. ♦

The use of the -Jk-polygon hierarchy (an instance of the -Jk-subdivision technique [KR])

provides a logarithmic sequential algorithm and a constant time algorithm using a quasi-linear

I Note that an integer within a constant factor of ...fk will suffice for the subdivision size and that with k processors an
integral approximation of ...fk can be computed in constant time. Each processor squares its predecessor's, its successor's
and its own index. The unique processor whose squared index is closest to k, writes its index into a predetermined
location and the other processors read it using the concurrent read facility.

Page 21

number of processors for computing convex polygon separation. The polygon/polygon separation

case analysis provided in Edelsbrunner [E] produces a sequential O(log n) time separation algorithm.

If concurrent write is available, it is possible to use Edelsbrunner's case analysis to design a

polygon/polygon separation algorithm which runs in O(log n/(1 + log k)) time using k CRCW

processors. In the absence of a concurrent write facility, it is not straightforward to coordinate the ../k

case results at each vertex of the hierarchy elements under consideration. Our algorithm avoids this

coordination problem by "electing" the processor which corresponds to the hierarchy element

minimum separation to apply the case analysis.

3.0 Polygon Separating and Common Tangents

For the problem of computing convex polygon tangents, we add a preprocessing step. To

ensure that the polygons in question do not intersect, we apply the appropriate separation algorithm

presented in the last section. With a pair of points realizing the separation, we construct a separating

line S perpendicular to the segment realizing the separation. Without loss of generality, we assume

that this separating line S is oriented horizontally with polygon P above and polygon Q below.

Given this orientation, it is sufficient to consider MPS common/separating tangents: The two

separating tangents of P and Q can be constructed from oppositely-oriented MPSs PL and (a, or PR

and~- The two common tangents can be constructed from similarly-oriented MPSs PR and QR or

PL and~.

Therefore, we assume that each polygon P has been preprocessed into MPSs PL and PR which

are monotone with respect to the perpendicular of the separating line S as constructed above. Note

that the rays augmenting the left and right monotone polygonal chains of Pare parallel to S.

We address the problem of finding separating tangents. For a convex polygon and vertex pair,

the separating tangents are the same as the common tangents. For two convex polygons, minor

modifications to the separating tangents algorithm produce an algorithm for finding common

tangents; we discuss the necessary modifications at the end of the section.

Page 22

We first consider the problem of constructing the tangent of an n-vertex MPS PL passing

through a vertex r outside PL, We assume that PL and rare presented with a horizontally-oriented

separating line S with PL above Sand r below S. The following k processor algorithm to find a

point p* of P which realizes the tangent of PL passing through r is essentially the algorithm

presented by Atallah and Goodrich [AG 1]: Initialize PL to be the last element of PL's polygon

hierarchy and repeat the following. If PL is reduced to a constant number of segments then determine

exhaustively a vertex p* of PL which realizes the tangent passing through r. Otherwise, assign a

processor to each vertex Pi of PL, In constant time, for vertex Pi determine if Pi-1 and Pi+l, the

neighbours of Pi on PL, both lie on the same side of line rpi, If so, then by Observation 2, all points

of PL in PdP1ower_P, Pi-1] or in PdPi+lt Pupper_P] lie interior to the wedge formed by rays PiPi+l and

PiPi-1· Therefore, p* must lie in PdPi-lt Pi+1J, Set Plower_P to Pi-1 and Pupper_p to Pi+l and replace

PL with the portion of hierarchy element Pt 1 between vertices Pi-1 and Pi+ 1 ·

Each iteration of this procedure takes a single step through the polygon hierarchy while

maintaining the invariant that the range of edges under consideration contains a point which realizes

the desired tangent. Therefore, the tangent of PL passing through r can be constructed using k

CREW processors in O(log n/(1 + log k)) time. The separation and MPS preprocessing are

performed within the same resource bounds.

Now, consider the problem of constructing the separating tangents of n-vertex convex polygons

P and Q. As noted above, it suffices to construct the separating tangents of oppositely-oriented

MPSs; without loss of generality, we describe an algorithm to construct the separating tangent of PL

and~- We assume that PL and~ have been preprocessed with respect to the horizontally-oriented

separating line Sas described above and that they are presented with PL above S and <2R below S.

Since this preprocessing step uses the separating line perpendicular to the minimum separation of P

and Q, the vertex with minimum y-coordinate on PL and the vertex with the maximum y-coordinate

on~ have the same x-coordinate. Therefore, we are searching for the separating tangent of

maximum positive slope.

Page 23

Denote the vertices of PL and (a which realize the separating tangent asp* and q* respectively;

recall that the vertices are indexed in order of increasing y-coordinate. Given PL and <2R_, hierarchy

element MPSs of PL and (a respectively, and the current separating tangent line T defined by

vertices Pi and qj of PL and~ respectively, the following two lemmas show how the range of

vertices under consideration for realizing the separating tangent of PL and Ca can be reduced so that

a step can be taken in one of their polygon hierarchies. This is done by demonstrating that there

exist p~rtions of PL and QR_ which can be replaced by horizontal rays such that points p* and q*

realizing the separating tangent are retained within the respective reduced MPSs.

Lemma 4.1 (See Figure 4.1): Given hierarchy element MPSsPL and <1_ with vertices Pi and cL

realizing their separating tangent T then p* e PL[Piower_P, Pi+il and q* e QR[qj-1, ciupper_Ql•

Proof: If one of the MPSs, say (a[q10 wer_Q, Clupper_Q], is a single vertex then, by Observation 2,

p* E PdPi-1, Pi+ll,

Otherwise, p* e PdPi+l, Pupper p] iff a vertex in that range lies in H'.:"_, By Observation 1, all - ~

vertices in PdPi+l, Pupper p] lie in JL_ and hence in JL_, Therefore, p* e Pdp1ower p, Pi+1l
- P1P1+1 qp. -

and, by a symmetric argument, q* e (a[cfi-1, Clupper_Q], ♦

Lemma 4.2 (See Figure 4.1): Given hierarchy element MPSs PL and 5R_ with vertices Pi and qj

realizing their separating tangent T then either p* e PdPi-2, Pi+il or q* e QR[qj-1, cij+2].

Furthermore, the correct containment can be determined in constant time using a single processor.

Proof: If one of the MPSs, say QR[ci1ower_Q, Clupper_Q], is a single vertex then, by Observation 2,

* [~ ~] p E PL Pi-1, Pi+l · As well, if Pi-2 or ~+2 do not exist then the result follows trivially from

Lemma 4.1.

Otherwise, denote line Pi-2Pi-1 by L, and line cij+1cij+2 by R. Note that the slopes of Land Rare

both positive and both less than the slope of T. Without loss of generality, assume that Land R

intersect below Sand denote line PiPi-1 by Li. Note that L2 must also intersect R below S since the

slope of Li lies between the slopes of Land T. If q* e QR[qj+2, ciupper_Q] then part of PL above S

Page 24

must extend below R. By Observation 1, all vertices on PL which are outside PdPi-Z, Pi-i]

(respectively, outside PdPi-1' piJ) are above L (respectively, above Lz). Therefore, no part of PL

below T ca~ extend below Rand therefore, with the above argument, q* e ~[Clj-l, qj+zP.

Similarly, ifL intersects R above S then p* e PdPi-2, Pi+il•

This test can be easily implemented to run in constant time using a single processor. ♦

The polygon/polygon separating tangent algorithm uses the "1c-subdivision technique (in the

-./k-polygon hierarchy) in the same way as the polygon separation algorithm described in Section 3.

Within each iteration the separating tangent between the current hierarchy elements is determined and

the case analysis described in the above lemmas enables the algorithm to take a step in (at least) one

of the polygon hierarchies.

Theorem 4.1: The separating tangents of two convex n-vertex polygons P and Q can be

determined in O(log n/(1 + log k)) time using k CREW processors.

Proof: The separation preprocessing and decomposition into monotone polygonal sectors is

performed within the same resource bounds. Similar to Theorem 3.1, by Lemmas 4.1 and 4.2, each

iteration takes constant time and results in a step through one of the polygon hierarchies. Therefore,

a total of O(log n/(1 + log k)) iterations will suffice to determine MPS separating tangents.

Running the algorithm twice with the appropriate (symmetric) changes will produce both separating

tangents. ♦

The case analysis presented here is similar in spirit to that provided by Overmars and Van

Leeuwen [OvL]. They describe an analysis for a sequential O(log n) time algorithm to find the

upper common tangents of two n-vertex convex polygons; their analysis can be modified to provide

an equivalent separating tangent result. Although the analysis for their common tangent algorithm is

sufficient for the sequential result, it only considers consecutive vertices and thus does not

1 Note that if line qjqj+ 1 intersects L above S then it is possible that q * e [qj+ 1, qj+i) .

immediately provide a test which will enable the algorithm to take a step in one of the polygon

hierarchies.

Page 25

The separating tangents algorithm can be modified easily to compute common tangents within

the same bounds. For the separating tangent case analysis presented in Lemma 4.2, the case

reduction is predicated on whether Rand L intersect above or below the separating line S. In fact,

within Lemma 4.2, the same case reduction could have been predicated on whether R and L intersect

to the left or to the right of the current separating tangent T. However, the analog of Lemma 4.2

used in the common tangent algorithm requires a separating line for its case reduction (as does the

case reduction of Overmars and Van Leeuwen [OvL]). Therefore, as for the separating tangents

algorithm, given two convex polygons P and Q, we apply the appropriate separation algorithm,

construct a line S between them perpendicular to their separation and decompose P and Q into their

respective MPSs with respect to line S.

We describe the modifications to find the common tangent of PL and~ (see Figure 4.2); the

common tangent algorithm for PR and~ is symmetric. The -vk-hierarchies technique are used for

each of PL and ~. Within each iteration, the tangent of PL and <iL is found and analyses analogous

to those in Lemmas 4.1 and 4.2 are applied to take a step in one of PL's or <iL's polygon hierarchies.

Denote the vertices of PL and~ which realize the common tangent asp"' and q* respectively.

Assume that we have verticespi and Clj which realize the common tangent T of PL[P1ower_P, Pupper_P]

and Q[q1ower_Q, qupper_Q], hierarchy elements of PL and QL respectively.

For the analog of Lemma 4.1, consider the horizontal slab delimited by they-coordinate of Pi

above and they-coordinate of <ii below. The true common tangent support vertices p* and q* must

lie on or to the right of where the current common tangent segment PiClj intersects this slab. Note

that Pi-land qj+1 lie to the left of the current common tangent. By Observation 1, all vertices on PL

below Pi-i lie to the left of line Pi-lPi and therefore lie to the left of the current common tangent.

Therefore, p* cannot be below Pi-1 on PL. Similarly, q* cannot be above cL+1 on QL.

Page 26

For the analog of Lemma 4.2, denote ray Pi+2Pi+l by L, and ray <lj-2'lj-1 by R. Denote ray Pi+lPi

by Li and ray ~-1 ~ by R2. Without loss of generality, assume that L and R intersect below the

given separator S. Note that Li must also intersect R below S since Li lies to the left of L. For q"'

to exist below <lj-2 on Qi., part of PL must extend to the right of R. By Observation 1, all vertices on

PL which are outside PuPi+2, Pi+il (respectively, outside PLLPi+h pJ) are to the left of L

(respectively, to the left of L2) and above S. Therefore, no part of P can extend to the right of R and

therefore, combined with the above reduction q* e Qr,[cL-2, qj+1Jl. Similarly, if L intersects R

above the given separator S then p* e PdPi-1, Pi+2l-

Therefore, using the --/k-polygon hierarchies and the case analysis above, we have immediately:

Theorem 4.2: The common tangents of two convex n-vertex polygons P and Q can be determined

in O(log n/(1 + log k)) time using k CREW processors.

This technique provides a logarithmic sequential algorithm and a constant time algorithm using a

quasi-linear number of processors for computing upper common tangents. With n processors,

using standard recursive subdivision, the common tangents algorithm can be incorporated into

another optimal 2-d convex hull algorithm. Earlier optimal 2-d convex hull algorithms used a

-v'k-subdivision for the divide and conquer step [ACGOY] [AG2]; this can be thought of as using the

power of this technique within a different level of the algorithm. This --/k-subdivision technique has

also been used for list merging and other applications [KR]. Interestingly, Cole & Goodrich [CG]

use a cascading routine based on Cole's parallel merge sort [C] to construct the convex hull without

using the --/k-subdivision technique.

1 Note that if R2 intersects L and Li above S then it is possible that q * E [qj-1, <lj-2],

Page 27

5.0 Lower Bounds

We have repeatedly stressed the link between the common tangents/separation problems and

sorted table lookup. We make this precise with a reduction.

Recall that the sorted table look-up problem is defined as follows: given a sorted table of n real

numbers x1, x2, ... Xn and a search key Xs, return the index i such that Xs e [xi, Xi+ll (with xo = -oo

and Xn+l = 00). To deal simply with the extreme table values, we consider the normalized sorted

table look-up problem where x1 = 0, Xn = 1, and Xs e (0, 1).

Theorem 5.1: The sorted table-lookup problem can be reduced to convex polygon common

tangents and separation.

Proof: Given a sorted table X = {x1, x2, ... Xn} such that x1 = 0 and Xn = 1, and a search key

Xs e (0, 1), associate with each Xi the coordinate P(xi) = (xi, - xi2). This associates with each table

entry a vertex on a parabola opening downwards. Therefore, X defines the vertices of a convex

polygon P(X). Consider the key x5 ; P(x8) is also a vertex on this parabola. It is easy to see that,

(i) Xs e [xk, Xk+il iff P(x8) has common tangents with P(xk) and P(Xk+1); and

(ii) Xs e [xk, Xk+1l iff the separation of P(x8) with P(X) is realized by a point on the segment

P(xk)P(xk+l),

Therefore, a solution to either of these problems provides an equivalent solution to the sorted

table-lookup problem. ♦

Snir [S] has shown that in the CREW model of computation, with k processors available, the

sorted table look-up problem has a time bound of S(log n/(1 + log k)). In the absence of concurrent

read, the sorted table look-up problem has time bound 8(1 + log n - log k). (This is a key result

which demonstrates that processors with a concurrent read facility are strictly more powerful than

processors without concurrent reads.) This result together with Theorems 3.1, 4.1 and 4.2

immediately yields:

Page 28

Corollary 5.1: Finding the common or separating tangents of a vertex with an n-vertex convex

polygon with k CREW processors has time complexity 0(log n/(1+ log k)).

Corollary 5.2: Finding the separation of a vertex with an n-vertex convex polygon with k CREW

processors has time complexity 0(log n/(1 + log k)).

The algorithms presented in Sections 3 and 4 demonstrate that the tight bounds stated in

Corollaries 5.1 and 5.2 for the vertex/polygon problems in the CREW model extend to the

polygon/polygon versions of those problems1• The reduction of Theorem 5.1 has implications for

the EREW model as well:

Corollary 5.3: Finding the common or separating tangents of a vertex with an n-vertex convex

polygon with k EREW processors has time complexity 0(1 + log n-log k).

Corollary 5.4: Finding the separation of a vertex with an n-vertex convex polygon with k EREW

processors has time complexity 0(1 + log n - log k).

The algorithms providing the upper bound for Corollaries 5.3 and 5.4 are the obvious

extensions of the EREW k-way search algorithm: the k processors are used in the first step to

reduce the length of the input sequence by a factor of k and the (unique) winning processor whose

subsequence contains the solution applies the sequential algorithm to obtain the final solution.

However, it is not clear how to design an 0(1 + log n - log k) algorithm for the

polygon/polygon versions of those problems using the EREW model of computation. In the CREW

model, the ../k-subdivision technique introduces a constant factor which does not affect the

asymptotic complexity of the solution. This technique does not seem to be useful in the EREW

model. In fact, given two n-vertex polygons, it is not clear how to obtain an asymptotic speedup for

na EREW processors for any c:x ~ 1.

1 Note that within the vertex-polygon version of the algorithms described a full concurrent read facility is not necessary,
a facility which allows one processor to broadcast to all other processors would suffice.

Page 29

6. 0 Discussion

Employing a hierarchical representation of convex polygons, we have demonstrated tight time

bounds of 0(log n/(1 + log k)) for the separation and separating/common tangents problems using

the CREW mcxlel of computation. The algorithms and lower bounds have been derived by

regarding the exterior of a convex polygon as being related to a sorted table and extending table

lookup results to the separation and tangent problems.

As reported elsewhere [DaK.3], it is possible to augment the subdivision hierarchies of

Kirkpatrick [K] [DaKl] [DaK.2] to produce a linear space data structure which will support optimal

cooperative algorithms for planar subdivision point location. By regarding the exterior of a convex

polyhedron as topologically equivalent to a planar subdivision, it is possible to use these point

location algorithms to design efficient cooperative algorithms for convex polyhedron separation.

References

[ACGOY] Aggarwal, A., Chazelle, B., Guibas, L., O'Dunlaing, C., and Yap, C., "Parallel
computational geometry", Algorithmica 3, 1988, pp. 293-327.

[AES] Avis, D., El Gindy, H. and Seidel, R., "Simple on-line algorithms for convex polygons",
in Computational Geometry. G.T. Toussaint (editor), North-Holland, 1985.

[AGl] Atallah, M.J. and Goodrich, M.T., "Parallel algorithms for some functions of two convex
polygons", Algorithmica 3, 1988, pp. 535-548.

[AG2] Atallah, M.J. and Goodrich, M.T., "Efficient parallel solutions to some geometric
problems", Journal of Parallel and Distributed Computing, 1986, pp. 492-507.

[C] Cole, R., "Parallel merge sort", Proc. 27th Annual IEEE Symp. on Foundations of Comp.
Sci., 1986, pp. 511-516.

[CG] Cole, R. and Goodrich, M., "Optimal parallel algorithms for polygon and point-set
problems (preliminary version)", Proc. 20th ACM Symp. on Theory of Computing, 1988,
pp. 201-210.

[DaKl] Dadoun, N. and Kirkpatrick, D.G. "Parallel processing for efficient subdivision search",
Proc. of the 3rd ACM Symposium on Computational Geometry, 1987, pp. 204-214.

[DaK.2] Dadoun, N. and Kirkpatrick, D.G., "Parallel construction of subdivision hierarchies",
Unjversity of British Columbia Computer Science Dept. Technical Report, TR 87-15,
1987; also To Appear in Journal of Parallel and Distributed Computing.

\

Page 30

[DaK3] Dadoun, N. and Kirkpatrick, D.G., "Cooperative algorithms for planar point location and
convex polyhedron separation", In preparation, 1989.

[DaK4] Dadoun, N. and Kirkpatrick, D.G., "Cooperative subdivision search algorithms with
applications", Proc. 27th Allerton Conference on Communication, Control and
Computing, 1989.

[DKl] Dobkin, D.P. and Kirkpatrick, D.G., "Fast detection of polyhedral intersections",
Proceedings of the International Colloquium on Automata, Languages and Programming,
1982, pp. 154-165.

[DK2] Dobkin, D.P. and Kirkpatrick, D.G., "Fast detection of polyhedral intersection",
Theoretical Computer Science 27, 1983, pp. 241-253.

[DK3] Dobkin, D.P. and Kirkpatrick, D.G., "A linear time algorithm for determining the
separation of convex polyhedra", Journal of Algorithms 6, 3, 1985, pp. 381-392.

[DK4] Dobkin, D.P. and Kirkpatrick, D.G., "Determining the separation of preprocessed
polyhedral- A unified approach", manuscript.

[E] Edelsbrunner, H., "Computing the extreme distances between two convex polygons",
Journal of Algorithms 6, 1985, pp. 213-224.

[K] Kirkpatrick, D.G., "Optimal search in planar subdivisions", SIAM Journal of Computing
12,1, January 1983, pp. 28-35.

[KR] Karp, R.M., and Ramachandran, V. "A survey of parallel algorithms for shared-memory
machines", Report No. UCB/CSD 88/408, Comp. Sci. Division, UC Berkeley, March,
1988.

[OvL] Overmars, M.H., and van Leeuwen, J., "Maintenance of configurations in the plane",
Journal of Computer and Systems Sciences 23, 1981, pp. 166-204.

[S] Snir, M., "On parallel searching", SIAM Journal of Computing 14, 3, August 1985,
pp. 688-708.

p::::) p ::::) p

A p

-.-:•_;~ti

.,.,.,.,.,.,,.,.,_.,.,.".-.:~10u:f~:j:~i l;t p

I\ ~
Figure 2.1: The envelope between P and P containing the boundary of P

Figure 2.2: Monotone Polygonal Sectors

\
\

\V
\ //

' /
... ,,,/

\ ,,/
,/

j+2 w

Figure 3.1: Kitty-Comer/Same Side Lemma Cases (a) & (b)

, ,• _'. .. ,,•·· ,•·,, ,· ,•' ,•'
T

... -.

Figure 4.1: Separating Tangent Diagram

...

' ' I

T

----· .. ---■■--- ,.. _ .. ,____ _ ... ,,,._.. ,_,_

' '
'
' ' i
l
'
' '

Figure 4.2: Common Tangent Diagram

R

s

