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Abstract 

This paper investigates two different activities that involve making 
assumptions: predicting what one expects to be true and explaining 
observations. In a companion paper, a logic-based architecture for 
both prediction and explanation is proposed and an implementation 
is outlined. In this paper, we show how such a hypothetical reason­
ing system can be used to solve recognition, diagnostic and prediction 
problems. As pa.rt of this is the assumption that the default reasoner 
must be "programmed" to get the right answer and it is not just a 
matter of "stating what is true" and hoping the system will magi­
ca.lly find the right answer. A number of distinctions have been found 
in practice to be important: between predicting whether something 
is expected to be true versus explaining why it is true; and between 
conventional defaults ( assumptions as a communication convention), 
normality defaults ( assumed for expediency) and conjectures ( assumed 
only if there is evidence). The effects of these distinctions on recogni­
tion and prediction problems are presented. Examples from a running 
system a.re given. 
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1 Introduction 

There have been many proposals for how to build nonmonotonic reasoning 
systems [Reiter80, McCarthy86, Moore85, Delgrande87). There have, how­
ever, been very few discussions as to how one should use a non-monotonic rea­
soning system to solve the sorts of problems we want to solve ( notable excep­
tions are plan recognition in [Kautz87), inheritance systems in [Etherington87] 
and the use of the abnormality predicate in [McCarthy86]). As even very 
weak logics can compute any computable function [Lloyd87, Theorem 9.6], 
there is nothing in principle that one of these can do that any other can't. 
The difference between each of these is in how they can be used to solve the 
sorts of problems that we want to solve. It is only by developing method­
ologies for using such systems that we will be able to compare and evaluate 
these systems. 

This research follows from the conjecture that there is nothing wrong with 
classical logic in representing commonsense knowledge; there is, however, a 
problem with the assumption that to use logic we have to do deduction from 
our knowledge. We need to find different ways to use logic. As part of the 
Theorist project [PGA87, Poole88a), we are investigating how far we can get 
using a simple form of hypothetical reasoning, where the user provides a pool 
of possible hypotheses, instances of which can be used if consistent. We start 
with the hypothesis that "hypothetical reasoning, where the user provides 
the forms acceptable as hypotheses, and normal logic is used to test the con­
sequence of our assumptions" is adequate for commonsense reasoning tasks. 
If this hypothesis is correct, we will have made a discovery in AI. Other­
wise, by showing this hypothesis is not correct, we will have found examples 
where we need more power in our AI systems. This will also represent an 
advance in Al. To test (i.e., attempt to refute) this hypothesis, we need to 
build systems to solve real problems, which in particular, means we need to 
develop methodologies of how to solve problems. It may seem a bit weak to 
just develop programming methodologies, but this is, if you think about it, 
all that AI is doing; we are provided with a universal computing machine, 
we have to develop programming methodologies to make it suitable to solve 
problems and behave intelligently. 

This work is done in the spirit of providing a very limited set of tools. 
Given these tools, we investigate how they can be used to solve problems. A 
repertoire of techniques can then be built to determine how to appropriately 
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use these tools. Only when these tools can be shown to be inadequate, or 
we have very good reasons why they should be augmented do we expand 
our set of tools. In this manner, the distinctions outlined in this paper were 
found from useful when using the system, explaining to others how to use 
the system a.nd in building applications (see for example [Poole87]). 

This paper is a. companion paper to [Poole89b]. 

2 Distinctions 

Example 2.1 Consider the following "knowledge": 

A person may possibly have a brain tumour, 
a person may possibly have a broken leg, 
a brain tumour typically produces a headache, and 
a broken leg typically produces a sore leg and a bent leg. 

On the basis of this knowledge alone, if we observe that Randy has a bent leg, 
it is reasonable to hypothesise he may have a broken leg and the broken leg 
produced the bent leg. If we subsequently ask whether we predict a sore leg 
based on this information, we would say yes, as we hypothesise a broken leg 
which is typically sore. If we were asked whether we predict, on the evidence 
of a bent leg, that Randy has a headache we would say no, there is no reason 
to assume that he has a brain tumour given no evidence for it. 

This simplistic example indicates a distinction between explaining observa­
tions and predicting what we expect to be true. There is also a distinction 
between normality assumptions (which we want to assume given no evidence 
to the contrary) a.nd abnormality assumptions which we want to assume only 
if we have evidence. 

Each of these distinctions is discussed in this section, and a system which 
respects such distinctions is outlined in the next section. Formal definitions, 
outlines of implementations and applications are discussed in later sections. 

2.1 Prediction versus Explaining Observations 

In example 2.1 we saw a distinction between predicting what we expected to 
be true as opposed to explaining actual observations. 
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These a.re both processes where we want to make assumptions in order 
to derive conclusions, but differ in the task they are carrying out. There are 
a. number of differences imposed by the task: 

1. There are some things which we only want to hypothesise if we have 
evidence. We don't want to hypothesise a.n invisible person in a picture 
or a rare disease in a patient if there is no evidence for them. However, 
if we have evidence of a rare disease, then we should hypothesise it. 
There are different hypotheses we bring to bear when asked whether 
we expect something is true or whether we are told that something is 
true and asked to find a plausible explanation of why it is true. 

2. H we are trying to explain the observation g, it seems irrelevant that 
-,g is also able to be explained; this just means that in some other 
circumstances g is not true. H, however we are asked whether we predict 
g, it seems very relevant whether we can also explain its negation. 

3. a.n observation is like a fact, in the sense that all of our theories must 
be consistent with it (in fact, in the proposed system the explanations 
imply the observations) whereas a prediction may or may not be ex­
plained or consistent with all future theories. We may find out that 
our predictions are incorrect, but our observations are given as correct. 

This distinction between prediction and explaining observations is a dif­
ference in kind, not a difference in degree ( this is important to avoid the 
question why isn't there a continuum of values between them?). Of course, 
we may observe some phenomena, and then make predictions based on that 
observation; this will be considered here as two activities, observing and then 
predicting. 

The properties of each of these is discussed later; for now it is important 
to note the distinction. 

2.2 Defaults and Conjectures 

Example 2.1 shows a distinction between what I will call defaults (or "nor­
mality assumptions" which are assumed to be true, given no evidence to the 
contrary) and conjectures (or "abnormality assumptions") which are assumed 
only if we have evidence ( for example, diseases or malfunctions in a system 
for diagnosis or prototypes in recognition or design tasks). 
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Defaults and conjectures are similar in that they are both statements that 
we can hypothesise, but differ in the task in which they can be hypothesised. 
Defaults are hypotheses which can be assumed for prediction. Conjectures 
are hypotheses that can be assumed for explaining observations. Because of 
this division of labour, there are a number of differences between them. 

Defaults can be used unless there is reason to believe otherwise, for exam­
ple, that some device is working correctly, that if you have broken your leg 
it is sore, that a bridge is passable. These are assumptions that can be used 
to predict something is true, unless there is evidence that they are incorrect. 
I also assume that they can be used to explain observations1 . as I cannot 
think of an example where one would use them to predict something, but not 
use them to explain why something occurred (this is, however, not a crucial 
part of the theory). 

This is contrasted with conjectures which one has up one's sleeve if one 
needs to explain some observation2

• These may include such hypotheses as: 
someone has some disease, some device is malfunctioning in some way, or 
there is some object in a scene in a recognition task. Evidence is needed to 
assume these conjectures. 

At first glance, this distinction seems to be more a difference in degree 
rather than a difference in kind (for example, in example 2.1 above, one 
could say that maybe Randy has a sore head because he may have a brain 
tumour which would cause a sore head). However, the distinction is the 
final essence is in the role that they each play. A hypothesis which can be 
used for prediction is a default, and one that can only be used for explaining 
observations is a conjecture. 

2.3 Normality defaults and conventional defaults 

We can distinguish two types of defaults: 

• reasonable assumptions, which may be incorrect, but for the time being 
we will assume that they are true, a "normality default". 

11.e., they can also be used as conjectures. 
2The user provides the system with formulae that can be used as conjectures if there 

is evidence for them. The term "conjecture" is used here to mean these formulae that the 
system has available to conjecture. 
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• communication conventions, where we know that something is true if 
we have no statement to the contrary, a "conventional default". 

The classic AI example is that we have the default that birds fly, and know 
that Tweety is a bird, and know nothing else about Tweety, we conclude that 
Tweety flies. How one interprets this conclusion depends on whether the 
default is a normality default or a conventional default. If it is the former, 
the answer should mean that "we expect that Tweety flies, as birds typically 
do, but maybe she doesn't"; if the default was a conventional default, the 
answer should mean that "Tweety flies, as if she didn't fly you would have 
told us according to the convention that we have between us". I would claim 
that the second is still using default reasoning, but this distinction seems to 
be the distinction that Moore [Moore85] was making when he claimed that 
autoepistemic reasoning was not default reasoning. 

This distinction is also important in solving the "multiple extension prob­
lem". Multiple extensions seem natural and to be expected for normality 
defaults, where if some individual is in two classes which normally have 
incompatible properties, it is to be expected that we can expect different 
conclusions based on the two classes. For conventional defaults, multiple ex­
tensions indicate a bug in our convention, as we have evidence that there is 
a consistent conclusion which we can draw which is incorrect ( one of the ex­
tensions must be incorrect, as they all can't be correct as multiple extensions 
are always incompatible). 

These defaults, at least for the tasks in this paper, seem to be used in 
the same way (this is supported by [Konolige87], where the formal equiv­
alence between Default logic [Reiter80] and Autoepistemic Logic [Moore85] 
was proved). For the rest of this paper we will put both of these into one 
class called the defaults. 

2.4 Facts and Hypotheses 

One of the questions that arises when using a hypothetical reasoning system 
is when should some piece of knowledge be a fact and when should it be a 
hypothesis. The answer is that it is relative to the problem at hand. One 
person's facts may be another's hypotheses. This should not be seem as a 
bug in the theory, but as a feature. 

The facts are those pieces of knowledge that for the sake of some argument 
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we are not prepared to give up. A default is some piece of knowledge we are 
prepared to give up if there is evidence to the contrary. In a similar way 
that our answers will be conditioned on the defaults used to conclude them, 
the set of explanations is conditioned by the meta-level assumptions made in 
building the knowledge base (these may or may not be explicit). Assumptions 
are made when building a knowledge base; if these are found to be wrong, 
we try to debug the knowledge base. This framework is the same theory 
formation and revision framework that the reasoning system itself uses. 

One may often want to condition diagnoses with "assuming that the dis­
eases are not acting pathologically and the problem is amongst the known 
diseases, the diagnosis is ... ". H the symptoms cannot be explained, we know 
that this assumption is incorrect, and we can try to make explicit our as­
sumptions to try to find out the correct diagnosis. This building of a new 
layer of the Theorist framework is not any different to the other tasks. In 
the rest of this paper, we assume that we are operating in one level of this 
hierarchy. See [Brewka89] for a discussion of multiple layers of hypotheses. 

2.5 Facts and Observations 

Perhaps a more difficult question is what knowledge should be added as 
facts and what should be added as observations. Facts and observations 
are both considered true of the domain under consideration, but they play 
very different roles as part of the framework. The answer "observations 
are those things we observe that need explaining" is a rather vacuous and 
unsatisfactory answer if there is no way to say what needs explaining and 
what does not.3 

Instead I propose a convention that the facts consist of the general "back­
ground" knowledge about a domain, which includes physical and other con­
straints that we are not prepared to give up. The observations are all the 
things we observe about the particular case in hand. Thus facts can be seen 
as things necessarily true in the domain ( as far as the designer is concerned), 
and the observations are the contingent facts, which happen to be true of the 
case under consideration. As far as the user is concerned, all she sees about a 
particular case are observations. The designer of the system can decide that 

3 Note that this is a problem of programming methodology, not of the theory or imple­
mentation of the system. 
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some observations can be treated as facts by writing them as conjectures (see 
section 4.3). This is perfectly consistent with the idea that conjectures are 
base causes that we can hypothesise if we have evidence. 

One of the important properties of our system, is that once an observation 
has been explained, it is derivable in all resulting theories. As far as future 
questions and observations are concerned, the observation thus has the same 
status as a. fact. 

2.6 What this is not 

This paper is not intended to present a theory of how one changes ones beliefs 
(i.e., how one changes from attending one theory of the world (scenario) to 
another). That seems to be either the role of a psychological theory (e.g., How 
many scenarios do people consider at once? How many scenarios do people 
consider at all? How much evidence is required before someone changes their 
mind? [Harman86]) or an implementation decision (e.g., Should we build 
one theory at a time and undo relevant assumptions if we get into trouble'? 
[Doyle79] or should we try to build all explanations or extensions at once'? 
[de Kleer86]). Both of these are very important issues but are not the subject 
of this paper. 

This is intended to be a competence theory and not a performance the­
ory or descriptive theory of nonmonotonic reasoning. This paper talks about 
consistency as something which can and should be checked in order to hy­
pothesise something. It does not consider that people jump to conclusions 
with very little reasoning and only fix up their beliefs when they are ·con­
vinced they are inconsistent, nor does it talk about how the processes can 
be done in real time. The psychological validity of this theory is not what is 
being considered here, nor are very efficient proof procedures. 

Although this is presented in a theory formation framework, the proposed 
system is not intended to be a learning system. There is no way in this 
framework to generate new hypotheses. We are not trying to automatically 
generate general theories which a.re applicable to other cases. 
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Figure 1: Architecture of the Theorist system presented here 

3 A Default Reasoning System 

3.1 Architecture 
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The architecture (Poole89b) we are considering is one where the system is 
provided with facts, defaults and conjectures. We assume that these provide 
the background knowledge about the domain being modelled (e.g., how dis­
eases interact and how symptoms work in a diagnosis system, and general 
knowledge about objects, occlusion etc., in a recognition task), all specific 
knowledge about the particular case is added as observations ( see section 4 
for a description of the programming methodology). 

The system is provided with a sequence of observations and abduces ex­
planations of the observations. From each of these explanations we can ask 
what they predict. The system can also propose what observations it would 
like about the world in order to prune and refine its explanations. 

The idea (figure 1) is that the user axiomatises the implication from causes 
to effects. When an observation is made, we abduce possible causes. From 
these causes, we predict what else we expect to be true. The same axioma­
tisation from causes to effects is used for both explanation and prediction. 
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See [Poole89b] for a more detailed description. 

3.2 Theorist Framework 

Theorist (PGA87, Poole88a, Poole89b] is a simple framework for hypo- deduc­
tive reasoning where the user provides the forms of the possibly hypotheses. 

We assume that we a.re given a standard first order language over a count­
able alphabet (Enderton72]. By a formula we mean a well formed formula in 
this language. By an instance of a formula we mean a substitution of terms 
in this language for free variables in the formula. 

Suppose A is a set of closed formulae and H is a set of (possibly open) 
formulae, a scenario of ( A, H) is a set A U D where D is a set of ground 
instances of elements of H such that A U D is consistent. If g is a closed 
formula, an explanation of g from (A, H) is a scenario of (A, H) which 
implies g. An extension of (A, H) is the set of logical consequences of a 
maximal (with respect to set inclusion) scenario of (A, H). 

[Poole88a] discusses how the above simple hypothetical reasoning frame­
work can be used for default reasoning. 

In accordance with the preceding discussion, the following sets of formulae 
are provided by the user:4 

F is the set of facts, which we are taken as being true of the domain; 

d is the set of defaults, possible hypotheses which can be used for prediction; 

IT is the set of conjectures, possible hypotheses which can be used for ex-
plaining observations; 

0 is the set of observations that have been made about the actual world. 

3.3 Explaining Observations 

When explaining observations, we want to build a scenario as to why those 
observations could have occurred. This can be considered as abducing possi­
ble causes of the observations. We want to be able to hypothesise conjectures 
and defaults which would account for these observations. 

4 AA far as the preceding semantics are given, the possible hypotheses, H, will in some 
cases be a and in some cases Il U a; the given A will sometimes be F and sometimes an 
explanation of the observations. 
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Suppose we are given facts F, conjectures IT and defaults A, and O is 
observed. We want to explain O from (F, ITU A) (i.e., ITU A is the set of 
possible hypotheses). That is, we want sets P and D, instances of elements 
of Il and A respectively, such that 

FU P U D t= 0 and 
F U P U D is consistent 

P U D are the assumptions of the explanation. 
See [Poole89b] for discussions on different ways to compare explanations 

and algorithms for computing explanations. We assume that we are com­
puting the least presumptive ( does not imply any other explanation) and 
minimal ( contains not redundant hypotheses) explanations. 

3.4 Prediction 

When predicting what we expect to be true, the possible hypotheses we are 
prepared to use are the set A of defaults. The given formulae A will normally 
be an explanation of the observations. We want to predict some proposition 
g based on A and A if, assuming that everything that is not known to be 
acting "abnormally" is acting "normally", g is true. 

Definition 3.1 We predict g based on (A, A) if g is in every extension of 
(A,A). 

g is not in every extension of ( A, A), if and only if there is some scenario 
S of (A, A), such that g is not able to be explained from (S, A) [Poole89b]. 
Based on our normality conditions and what we are given we cannot rule 
out S, and so we should not predict g. This is thus a very sceptical form of 
prediction. 

For a more detailed discussion of alternative notions of prediction and 
how they can be implemented see [Poole89b]. 

3.5 Interacting with the system 

When implementing Theorist we want a system in which we can add facts, 
defaults, etc., and then give observations and ask predictions based on what 
the system has been told. 

The input language to the system is defined below. 
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fact w. 
where w is a. formula, means "\/w" 5 is a fact. 

default n. 
where n is a. name (predicate with only free variables as arguments) 
means n is a. default6• 

conjecture n. 
where n is a name means that n is a conjecture. 

observe g. 
where g is a closed formula, means that g is an observation. The result, 
e is the set of least presumptive and minimal explanations of all of the 
observations (Poole89b]. 

predict g, S. 
where g is a formula and S is a scenario ( usually one of the elements 
of E), returns yes (together with the instance) if some instance of g is 
in every extension of Sand no otherwise (not that we predict that g is 
false, but rather that we do not predict that it is true). 

predict g. 
where g is a formula returns yes (together with the instance) if some 
instance of g is in every extension of E, A for all E E £, and no other­
wise. 

4 Programming Methodology 

It is not adequate to just define a representational language and leave it at 
that; it is also necessary to say how this language can be used to solve the 
sorts of problems we want to solve. This knowledge comes from experience 
with using the system. In this section we discuss some useful ways to use 
the system that we have found. I do not believe that one can or indeed 
should try to state knowledge without consideration as to how it is used 

5Vw is the universal closure of w, that is, if w has free variables 'ii then Vw means Vv w. 
6Thi.s is not really a restriction on the forms of the defaults allowed. See [Poole88a] for 

a discll88ion on naming defaults. 
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(as, for example, [McDermott87] argued in the context of arguing against 
"logicism"). 

If we consider an algorithm as logic plus control [Kowalski79], logic pro­
grammers have realised that they must program both the logic and control 
to get their programs to run. Here we a.re considering how to program the 
logic; the discussion is independent of the control structure used. 

4.1 Anticipating Explanations 

Essentially statements that are to be used to predict what is true are added 
as facts if they are always true, or defaults if there are cases where they may 
not be applicable. What is always implied from a set defaults or conjectures 
(and thus can be used to rule out the hypotheses) are also added as facts. If 
a statement is possibly true, but can not be used for prediction, it is added 
a.s a conjecture. 

Principle 1 Any formula which can be used as part of a scenario, should be 
added as a fact if it is always true, as a default if it is used for prediction, or 
as a conjecture othenoise. 

For anything which could possibly be observed, one has to consider what 
an appropriate explanation would be. This may be the observation itself 
(see section 4.3) or more often, the observation is broken down into more 
primitive parts (causes) which in turn need to be explained. The implication 
of the observation from the causes can use any mixture of fa.cts, defaults and 
conjectures. For example, if g is a potential observation and c is a potential 
cause of g, then c and c => g could each be considered either as facts, defaults, 
conjectures or as observations which need to be explained. There is nothing 
in the formalism which forces us to think, for example, that c => g should be 
a fact or default and c a conjecture. 

Principle 2 For each possible obseroation or prediction, consider what would 
be an appropriate explanation for it. 

4.2 Parametrizing Possible Hypotheses 

When building systems using Theorist it is important to know how the way 
possible hypotheses can be parametrized to have different effects. 
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In general the free variables in possible hypotheses a.re the values on 
which the truth of the hypothesis depends. IT, for example, the truth of a 
hypothesis depends on the time, then time should be a parameter of the 
possible hypothesis (then contradicting it at one time should not contradict 
it for other times). H the identity of some variable is irrelevant to the truth 
of a hypothesis, it should not be a parameter in the possible hypothesis. 

Principle S Parametrize possible hypotheses by those variables on which 
they depend. 

This is important because we want to actually imply the observations and 
predictions from the hypotheses. 

Example 4.1 Consider the statement "you may assume that a person likes 
all dogs". This can be used to predict that some person likes some dog unless 
there is evidence to the contrary. If there is one dog which they do not like 
then we cannot assume that they like other dogs. This can be given by 

default likes-all-dogs( P). 
fact likes-all-dogs(P) I\ person(P) A dog(D) => likes(P, D). 

Making P and not D a parameter of the default means that the default 
is contradicted for a person if there is one dog they do not like. 

For example, given also 

fact dog(fido). 
fact dog(honey). 
fact person(randy). 
fact person(sumo). 
fact ,likes(randy, f ido). 

we can explain likes(sumo,fido) but cannot explain likes(randy, honey), as 
likes-all-dogs(randy) is inconsistent with the facts. 

This should be contrasted to the statement "you may assume that any 
person likes any dog". Here the existence of one dog that a person does not 
like should not prevent us from assuming they like other dogs. This can be 
specified by 

default likes-dog(P, D). 
fact likes-dog(P, D) A person(P) A dog(D) => likes(P, D). 
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From this and the above facts, we can explain likes( sumo, fido) and 
likes(randy, honey) but not likes(randy, fido) 

In contra.st to other proposals where the hypotheses must be consistent 
with our observations (e.g., [Reiter87, de Kleer87]), our hypotheses must have 
the power to imply the observations. To do this the conjectures should be 
parametrized by the relevant inputs on which the ca.use depends as well as 
the possible outputs. 

For example, if we want to consider malfunction d, that depends on pa­
rameters 11 , ... , In (for example, incoming current, time of day, temperature 
in Antarctica) and predicts values for 0 1, ... , Om (for example, temperature 
of a person, output current), the conjecture should be specified as being 
parametrized by a.II of these, namely as hasmald(I1 , ... ,ln,01 , .•• ,0m), We 
are then allowed to hypothesise that the system has some outputs for the 
inputs given as 

fact input(/1, ... , ln)A. 
hasmald(l1, ... , In, 01, ... , Om)A. 
reln(li, ... , In, 01, ... , Om) 

::::} output(01, ... , Om), 
fact c(/1, ... , In, 01, ... , Om) ::::} 

-,hasmald(l1, ... , In, 01, ... , Om)• 

Where rein is some relation that must hold between the inputs and the 
outputs before we can use the hypothesis to predict the output from the 
given input, and c is some relation which cannot hold between the input 
and the output (-,c is a consequence of the malfunction). If we observe 
some output produced from some input, and if it fits the constraints of the 
malfunction (i.e. rein is true of them, and we cannot prove that c is true of 
them) then the appropriate instance of d can be conjectured as a cause of 
the output. 

Example 4.2 Consider the domain of having a lamp connected to a battery. 
Suppose if a battery is acting normally its voltage is between 1.2 and 1.6; if 
it is overcharged, its voltage is above this, and if it is flat its voltage is below 
this range. The lamp will normally be lit if the voltage is over 1.3 and will 
be dim if the voltage is between 1.0 and 1.3, however if the voltage ever gets 
over 1.8 then the lamp will blow and never be normal again. 

The following relations (with their intended interpretations) are used: 



Using a. default a.nd a.bductive reasoning system 

battery(B) means Bis a battery. 

lamp(L) means that Lis a lamp. 

connect(B, L) means power supply Bis connected to device L. 
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voltage(B, V,T) means that at time T the voltage across battery B (and 
also across the lamp) is V volts. 

battOK(B, V, T) means that at time T, battery B is working OK and is 
producing V volts. 

overcharged(B, V, T) means that at time T, battery Bis overcharged and 
is producing V volts. 

flat(B, V, T) means that at time T, battery B is flat and is producing V 
volts. 

lampOK(L, T) means that at time T, lamp Lis working normally. 

dim(L, T) means that lamp Lis dim at time T. 

lit(L, T) means that lamp L is lit at time T. 

We can specify that the battery normally produces some voltage between 
1.2 and 1.6 by 

fact battery(B) A battOK(B, V, T) => voltage(B, V, T). 
default battOK(B, V, T). 
fact battOK(B, V, T) => 1.2:::; VI\ V < 1.6. 

We specify how the problems/malfunctions manifest themselves: 

fact battery( B) A overcharged( B, V, T) => voltage( B, V, T). 
conjecture overcharged(B, V, T). 
fact overcharged(B, V, T) => V > 1.6. 
fact battery(B) A flat(B, V, T) => voltage(B, V, T). 
conjecture flat(B, V, T). 
fact f lat(B, V, T) => V < 1.2. 

We also state that there cannot be two different voltages at any time 
(Note that this could have also be achieved by making voltage a function 
from time to the voltage at that time. It is added as a relation because we 
want to make it explicit when we are using the functionality of the relation.) 
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fact voltage(B, Vi, T) I\ voltage(B, ½, T) =} ½ = ½. 

Similarly we a.xioma.tise how a. lamp works normally: 

fact lamp( L) A lampO K ( L, T) I\ voltage( L, V, T) A V > 1.3 ::} 
lit(L, T). 
fact lamp(L)l\lampOK(L,T)l\voltage(L, V,T)l\1.0 :5 VI\ V < 
1.3::} dim(L, T). 
default lampOK(L,T). 
fact lampOK(L, T) I\ voltage(L, V, T) =} V :5 1.8. 
fact ,lampOK(L, To) I\ bef ore(To, T1) ::} ,lampOK(L, Ti). 

We also say how lamps and batteries can be connected together, 

fact connect(B,L) I\ voltage(B,T, V)::} voltage(L,T, V). 
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Given no observations, we cannot predict that the voltage of some bat­
tery is any particular voltage, for example, 1.5 volts ( as it is not true in all 
extensions), however we can predict 

battery(B) =} 3V V > 1.2 AV< 1.6 A voltage(B, V,T) 

for each B and T. 
Given no observations, if we were asked to predict whether a lamp l 

connected to a battery b is lit at some time t, then the answer is no, as 
{battOK(b, 1.25, t)} is a scenario from which lit(l, t) cannot be explained. We 
can, however, predict lit(t) V dim(t). There are infinitely many explanations 
of 

battery(b) I\ lamp(l) I\ connect(b, l) =} lit(t) V dim(t) 

namely consisting of 

{battOK(b, V, t), lampOK(l, t)} 

for every V such that 1.2 :5 V < 1.6. There is no scenario of (F, ~) from 
which lit(t) V dim(t) cannot be explained, given no observations. 

Suppose we observe that when lamp I connected to battery b, it is dim 
at time t. This is specified as 
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observe battery(b) A lamp(l) A connect(b, l) => dim(l, t).7 

There are the least presumptive explanations: 

{battOK(b, V, t), lampOK(l, t)} 

for 1.2 ~ V ~ 1.3 and 

{flat(b, V, t), lampOK(l, t)} 
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for 1.0 < V < 1.2 ( only the former are minimal abnormality explanations 
[Poole89b]). We only predict things which are true in all extensions of these 
explanations. 

If we observe that the voltage is 1.25 at time t0 , 

observe battery(b) => voltage(b, 1.25, t0) 

there is one explanation, namely 

{battOK(b, 1.25, to), lampOK(to)} 

Example 4.3 Consider the hunting, robbing example of [Kautz87]. Suppose 
that if someone is hunting, they get a gun and go to a forest. The instance 
of hunting we are considering depends on the agent, the gun and the forest. 
We can then write this as 

conjecture hunting(A, G, F). 
fact hunting(A, G, F) => get(A, G) A goto(A, F). 

hunting(A, G, F) means that agent A is hunting in forest F with gun 
G. Note that knowing a person is hunting does not imply that he gets 
some particular gun. However, by parametrizing the hypothesis on what it 
depends, we can explain why a person went to a particular forest, but the 
knowledge that a person went hunting only implies that they went to some 
forest. For example, if we observe that Henry went to Sherwood forest: 

7Note that the observation is an implication. We need to explain that when b is a 
battery and l is a lamp, and they are connected l is dim. We do not want to explain why 
b is a battery, or why they are connected together. Putting these on the left hand side of 
the implication is like adding them as facts for the purpose of the observation. 
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observe goto(henry, sherwood_Jorest) 

there is the explanation 

{ hunting( henry, G, sherwood-f or est)} 
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for each ground instance of G. All we can predict is that there exists a 
gun that Henry gets; each explanation logically implies that Fred goes to 
Sherwood Forest, and each implies he gets some gun. 

4.3 Observations and Facts 

In section 2.5 it was claimed that all of the generalised knowledge about a 
domain should be added as facts and all knowledge about a particular case 
should be added as observations. This convention makes a clear distinction 
for the user of the system, but requires the builder of the knowledge base to 
be aware of this. However, if one follows principle 2, the conjectures that the 
designer provides should include all of those possible observations that one 
wants to treat as facts. This is entirely within the spirit of conjectures; we 
just don't want a deeper analysis of the cause of these observations. 

For example, if we want to allow the age of a patient to be added as an 
observation, but do not want a deep analysis of why this is the observed age, 
then we can add 

conjecture age(P, A). 

If we find out the age of Jen, this is added as 

observe age(jen, 25). 

There is one least presumptive explanation: 

{ age(jen, 25)}. 

This has the same effect as adding age(jen, 25) as a fact as the least pre­
sumptive explanations will always contain age(jen, 25). 

The conjectures are thus whatever we are prepared to accept as compo­
nents in explanations for observations whether they are formulae that don't 
really need to be explained or are deep causes for complex behaviour. 
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4.4 Causes and Symptoms 

One of the ways of looking at recognition and diagnostic tasks is to find 
the causes of symptoms [Cox87). There are cases when something can be 
considered a ca.use sometimes and symptom at other times. If not handled 
appropriately, this may become a problem if we prefer the lea.st presumptive 
explanation (see section 3.3). Appropriate structuring of the knowledge base 
will avoid these problems. Consider the following example: 

Example 4.4 Suppose we want to represent the sentences 

Sometimes people sneeze because they have a cold. 
Sometimes people just sneeze. 

One representation of this may be 

conjecture sneezes(X). 
conjecture has-cold(X). 
default sneezing-because-of-cold( X). 
fact sneezing-because-of-cold( X) Ahas-cold( X) =>sneezes( X). 

If we observe 

observe sneezes(eric). 

there is one lea.st presumptive explanation, namely 

{ sneezes( eric)} 

The explanation that eric has a cold is not considered because it is more 
presumptive than the other explanation. There may be a problem here with 
interpretation; we should not consider this answer as meaning the second 
sentence above (i.e. that he is just sneezing for no reason). This answer 
means that he is sneezing, and that is considered as a cause in itself. It does 
not exclude that he is sneezing because of a cold. 

If, however, we want to distinguish between the two causes then the 
appropriate way to represent this is 

conjecture random-irritation(X). 
conjecture has-cold(X). 
default sneezing-because-of-cold( X). 
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fact sneezing-because-of-cold( X)I\ has-cold( X) =>sneezes( X). 
default just-sneezing(X). 
fact just-sneezing(X)l\random-irritation(X) => sneezes(X). 

In this case there are two least presumptive explanations of eric sneezing: 

{ random-irritation( eric), just-sneezing( eric)} 

{ has-cold( eric), sneezing-because-of-cold( eric)} 

Here we can distinguish the different causes. 

4.5 Hypo-deductive reasoning 
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What has been presented so far can be seen as one instance of, what Hempel 
called deductive-nomological explanations [Hempel66, Popper62, Quine78]. 
McDermott [McDermott87] has criticised this as a method for AI reason­
ing, so it is interesting to consider how Theorist copes with the problems in 
Hempel's formalism. 

Deductive-nomological explanations of E are "deductive arguments whose 
conclusion is the explanandum sentence E, and whose premiss-set, the ex­
planans, consists of general laws and of other statements which make asser­
tions about particular facts" [Hempel66, p. 51]. 

In Theorist, the problem of what are "general laws" are avoided by the 
acceptable hypotheses being part of the background knowledge as much as 
other facts about the world. Thus, we are not doing arbitrary theory for­
mation, where we may explain "Elizabeth is the Queen of Australia" by the 
law "Copper conducts electricity" and the true statement, "Elizabeth is the 
Queen of Australia or copper doesn't conduct electricity". 

Notice that Hempel shows that observation, "must be true", given that 
other things are true. The laws are things which are always true. Thus he is 
trying to explain why some observation must have occurred, given all of the 
other knowledge in the system. The Theorist hypotheses, are rather expla­
nations which may occur. There is no notion of likelihood, only possibility 
(the probability of an explanation is an orthogonal issue (Neufeld87a]). 

Thus there is no problem arising for the example of Selma McGillicuddy 
of Seraucus who won the New Jersey lottery for the second time in the 
last two months [McDermott87, p. 153]. If we allow chance as a reasonable 
explanation for someone winning the lottery we can write 
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conjecture wins_lottery_by_chance( P, T). 
fact wins_lottery_by_chance(P, T) =}wins_lottery(P, T). 

H we observe that Selma won the lottery on February 13 and March 3, 
we have the explanation 

{ wins_lottery_by_chance(selma, f eb_l3), 
wins_lottery_by_chance( selma, march-3)} 

This does indeed imply the observations. 
Notice that we have just followed the programming methodology above, 

and not made any special allowance for this example. Note also that we still 
do not predict that Selma wins the lottery given no evidence, as even if above 
were defaults and not conjectures, we only predict what is in all extensions, 
and in a complete a.xiomatisation there would be a scenarion where someone 
else wins the lottery. 

4.6 Abstraction and Causal Hierarchies 

[Kautz87] dismisses hypo-deductive reasoning as being unsuitable for plan 
recognition because it does not work properly for the combination of causal 
implication and abstraction implication. 

For example, consider that if someone is going hunting, they get a gun and 
go into the woods. Suppose we also know that a MIG machine gun is a sort 
of gun. H we want to a.newer the question "why did Henry get the MIG?", 
then [Kautz87] claims that the answer to the question is "to go hunting; as 
the mig is a sort of gun and and a gun can be used to go hunting". He does 
not also consider the meaning of the sentence as "why did he get a MIG 
as opposed to another sort of gun?". In this section, I show how the above 
methodology naturally solves the problems. 

Firstly, we define the abstraction hierarchies in the normal manner, namely 
by making them implications, to say that a machine gun is a type of gun, 
that a hunting activity is a physical activity, and that a forest is a wild place, 
we say 

fact machine_gun(X) =} gun(X). 
fact hunting_activity( E) =} physicaLactivity( E). 
fact forest(P) =} wild(P). 

.. I 
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If we do not need an explanation as to why the gun was a machine gun 
(i.e., the fact that it is a machine gun is an adequate explanation of it being 
a machine gun), then we say 

conjecture machine_gun(X). 
conjecture gun(X). 
conjecture hunting-activity( E). 
conjecture forest(P). 
conjecture wild( P). 

The standard way to add type information ( which is the sort of informa­
tion in an abstraction hierarchy), is to form an implication of a type predicate 
(parametrized by the variable) implying the sentence in which the variable 
appears. 

We can use this method then to express our knowledge about types. For 
example to say that wanting exercise is a reasonable base cause for doing a 
physical activity, we can say: 

default doforexercise(P, E). 
fact doforexercise(P, E)/\physica1-activity(E)/\ wants_exercise(P, E) ==> 
do(P, E). 
conjecture wants_exercise( P, E). 

The only "trick" we have done to represent this is to use the standard 
trick (principle 3) of parametrizing the conjectures over their possible values. 

To say that when any a.gent A goes hunting they get a gun and go to a 
wild area, we say 

default gohunting( A, W, P). 
fact gohunting(A, W, P)/\hunting_activity(h(W, P))/\ gun(W) 

I\ wild(P) I\ do(A, h(W, P)) ==> get(A, W) I\ goto(A, P). 

If we observe fred getting a machine gun, we name the machine gun, and 
write: 

observe get(Jred, mig)/\machine_gun(mig). 

The least presumptive explanations of this contain the ground instances 
of wants-exercise(fred, h(mig, Al)) and wild(Al). 

The importance of this example is that not only can we use abstraction 
and causal hierarchies in the Theorist system, but can develop the program by 
following the preceding programming methodology and standard techniques. 
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5 Applications 

5.1 Diagnosis 
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In this section we show how the preceding outline can be a basis for for­
malising model-based diagnosis. This theory, as a theory of diagnosis, is an 
attempt to bridge the gap between diagnosis from first principles [Reiter87, 
Davis84, Genesereth84, de Kleer87], and more experience-based diagnosis 
based on knowledge as to how diseases and malfunctions normally manifest 
themselves [Weiss 78, Patil81, Popl83, Brown82]. See [Poole88b, Poole89a] 
for detailed comparisons of various approaches. 

In diagnosis from first principles, one has a model of the intended be­
haviour of the system. Any discrepancy between the predicted and observed 
behaviour means that the assumptions that components are working cor­
rectly is inconsistent with the observations, and so we can prove that some 
components are not working correctly. Reiter [Reiter87] defines a diagnosis as 
a minimal set of assumptions that components are faulty, together with the 
assumption that all other components are working correctly that is consistent 
with all observations of the system. That is, there are defaults of normality, 
and a diagnosis corresponds to an extension. He is doing the predictive half 
of the architecture presented here, and does not do any abduction. 

When doing a diagnosis, we want to find out what is wrong with some 
system. One way to do this is to find some minimal set of components we 
need to assume are faulty given our evidence. Somehow we have to make 
these assumptions relevant to the observations and not to always say that we 
should just assume nothing. Reiter minimises abnormality assumptions and 
maximises normality assumptions so that the observations are consistent. In 
the framework suggested in this paper, we minimise all assumptions, however 
to stop always degenerating to the case of making no assumptions, we must 
have our assumptions implying the actual observations. 

The main consequence of this distinction is that we have the ability as well 
as the obligation to state how problems manifest themselves. We must not 
only state how normal components act, but also how abnormal components 
a.ct. This is not as big an imposition as it may seem as we can always say 
that a component is abnormal if it is working in some way that is different 
to what was designed. 
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Example 5.1 (Genesereth and Reiter) This example is derived from [Genesereth84, 
Fig. 8, p416] and [Reiter87, Example 2.2, p. 60]. To specify the intended ac-
tion of an and-gate, Reiter gives the axiom (here we have modified Reiter's 
notation slightly to allow multiple observations as in [Genesereth84]) 

andg(X) A. -,ab(X) => out(X, T) = and(inl(X, T), in2(X, T)) 

This axiom tells us what happens if a gate is working normally. It does not 
tell us what happens if the gate is acting abnormally. By abnormal, Reiter 
means that there exists some input value for which it gives the incorrect 
output value. 

In Theorist, we need to parametrize the assumption and talk about acting 
normally for some inputs and acting abnormally for other inputs. If we decide 
that the relevant parameters to the normality assumption are the inputs to 
the gate (i.e., not on the time of day8

, or the amount of money in my bank 
account), then we use the relations ab(X, /1 , / 2 , 0) which means that gate X 
is working abnormally for inputs / 1 and / 2 , and producing output 0, as well 
as the corresponding ok(X, / 1 , / 2 , 0). The operations of the gate can then be 
specified as 

fact andg(X) A. ok(X, inl(X), in2(X), out(X)) 
=> out(X, T) = and(inl(X, T), in2(X, T)). 

default ok(X, /1 , /2). 
fact andg(X) A. ab(X, inl(X), in2(X), V) 

A. V =/- and(inl(X, T), in2(X, T)) 
=> out(X,T) = V. 

conjecture ab(X, Jl, /2, 0). 

The first fact says that the output of a normal and-gate is the conjunction 
of the inputs. The second fact says that the output of an abnormal and-gate 
(i.e. abnormal for the particular input values) is some value which is different 
to the conjunction of the inputs. 

The main differences between the diagnoses is that Theorist does not need 
to make assumptions about parts which are not relevant to the diagnosis (we 

8By not making the value depend on the time, we are making the non-intermittency 
&SBumption, namely that the value of the outputs of a gate depends only on the inputs 
and not on the time. If we did not want to make this assumption, we could add T as a 
parameter to our aseumptions. 
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minimise all assumptions, whereas Reiter maximises normality assumptions). 
By ok we mean that the gate is working norma.lly for the particular inputs 
being considered. Reiter means (by -iab(X)) that Xis working normally for 
a.II inputs. Theorist can have a gate being OK for some inputs and not OK 
for other inputs. 

It is straight forward to incorporate fa.ult models into Theorist. For ex­
ample, to say that faulty gates are either stuck at one or stuck at zero we 
replace the ab conjecture with more specific knowledge: 

fact andg(X) A stuck(X, V) => out(X,T) = V. 
conjecture stuck(X, V). 

Reiter would specify this as 

andg(X) A ab(X) A -iab'(X) => stuckl(X) V stuckO(X) 
stuckl(X) => out(X, T) = 1 
stuckO(X) => out(X, T) = 0 

Note that the use of this axiom is very different to the use of the Theorist 
version. This is only used to say that a gate by default is not broken because 
it is not stuck at one or stuck at zero. This is only useful if we can indeed 
prove that one of these is not the case. For more complicated cases it is easy 
to imagine a situation where we cannot actually prove that some abnormality 
does not occur. This is very different to being able to conjecture a fault. Also 
Reiter's diagnosis does not say that the gate is stuck at one, it just says that 
the gate is abnormal. 

There seems to be no way to prove that one model of diagnosis is better 
than another, except by using each for a number of different applications. 
See [Poole88b, Poole89a] for a more detailed comparison of the models of 
diagnosis. 

5.2 Recognition 

As a final domain consider the framework for depiction and image interpre­
tation of Reiter and Mackworth [Reiter89]. 

One Theorist representation of this would consist of having the possible 
scene objects as conjectures. These conjectures are the building blocks of the 
scene domain. We hypothesise a scene that could produce the image rather 
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than proving what the scene must be like. In this implementation they are 
parametrized by the object in the image that they denote. Thus, for example, 
land(X) means that image object X represents land in the scene. 

One difference between the implementation here and Reiter and Mack­
worth's is that we need to name the ends of the open chains. One end of a 
linear scene object is arbitrarily given the name O and the other is assigned the 
value 1. This allows us to identify the ends of the chains that correspond to 
mouths and sources of rivers for example. Thus, for example, joins(X, Y, E) 
means that end E of road X joins scene object Y. Similarly mouth(R, L, E) 
means that end E of river R joins scene object L, and source(R, E) means 
that end E of linear scene object R is a place where is starts, not joining 
anything. 

The following are the conjectures of possible scene objects that are the 
building blocks of scene descriptions. 

conjecture land(X). 
conjecture water(X). 
conjecture road(X). 
conjecture river(X). 
conjecture shore(X). 

conjecture joins(X, Y, E). 
conjecture cross(X, Y). 
conjecture beside(X, Y). 
conjecture mouth(R, L, E). 
conjecture source(R, X). 
conjecture loop(X). 
conjecture inside(X, Y). 
conjecture outside(X, Y). 

Next we need to axiomatise the relationship between image objects and 
scene objects. These correspond to Reiter and Mackworth's relational map­
pings. Note that we need only axiomatise the implication from scene to 
image and not the equivalence between scene and image descriptions.9 

9Note that here we have not used the depicts relation (the t!,,. of Reiter and Mackworth), 
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fact beside(X, Y) => bounds(X, Y). 
fact joins(X, Y, E) => tee(X, Y, E). 
fact mouth(X, Y, E) => tee(X, Y, E). 
fact cross(X, Y) => chi(X, Y). 
fact source(X,E) => open(X,E). 
fact loop(X) => closed(X). 
fact inside(X, Y) => interior(X, Y). 
fact outside(X, Y) => exterior(X, Y). 
fact area(X) => region(X). 
fact linear(X) => chain(X). 
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We can also have axioms that allow for a taxonomy of descriptions in the 
scene domain. 

fact land(X) V water(X) => area(X). 
fact river(X) V road(X)orshore(X) => linear(X). 

Finally we need to specify constraints on the scene objects. 

fact river(X) A. river(Y) => --,cross(X, Y). 
fact shore(X) V shore(Y) => --,cross(X, Y). 
fact river(R) A. mouth(Ll, R, 0) => --,mouth(L2, R, 1 ). 
fact river(R) A. road(Y) A. joins(R, Y, N) * start(R, N). 
fact source(X, Y) * start(X, Y). 
fact river(R) A. start(R, 0) * --,start(R, 1). 
fact river(R) A. (river(L) V shore(L)) * --,joins(R, L, N). 
fact road(X) V road(Y) * --,mouth(X, Y, N). 
fact shore(X) * --,source(X, N) A. --,joins(X, A, N). 
fact shore(X) A. river(A) * --,joins(A, X, N). 
fact river(X) * --,foop(X). 
fact shore(X) A. inside(X, Y) A. outside(X, Z) * (land(Y) * 

to give a relationship between scene and image objects. This can be incorporated into this 
axiomatisation by adding the relation depicts(Xi,Xs) (meaning image object Xi depicts 
scene object Xs) to join the variables in the left and right hand side of the implications. 
There can either be a conjecture depicts([, S) to enable the relationship between scene 
and image objects to be part of the explanation, or there can be an axiom that says 
that for every image object there is a scene object to which it corresponds (thus allowing 
Skolemisation to give a name to the scene object corresponding to each image object). 
This was not done in order to keep the axiomatisation as simple as possible. 
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Figure 2: Simple sketch-map image 

-,land(Z)) A (water(Z) * -,water(Y)). 
fact beside(X, Y) I\ (road(X) V river(X)) * ..,water(Y). 

The image description is given as an observation. Consider the sketch 
map of figure 2. The corresponding observation is: 

observe chain( cl )/\chain( c2)1\region( rl )/\region( r2)Atee( c2, cl, 1 )A 
bounds(c2, r2)1\bounds(cl, rl)l\bounds(cl, r2)Ainterior(cl, rl)A 
exterior(cl, r2), open(c2, 0) A closed(cl ). 

The corresponding minimal explanations are 

1. { loop( cl), source( c2, 0), outside( cl, r2), inside( cl, r1 ), beside( cl, r2), 
beside(cl, rl), beside(c2, r2), joins(c2, cl, 1), land(r2), land(rl), road(c2), 
road(cl)} 

2. {loop(cl), source(c2, 0), outside(cl, r2), inside(cl, rl), beside(cl, r2), 
beside(cl,rl),beside(c2,r2),mouth(c2,cl,1),land(r2),water(rl),river(c2), 
shore(cl)} 
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igure 3: Sketch map from [Reiter89] 

3. { loop(cl), source(c2, 0), outside(cl, r2), inside(cl, rl ), beside( cl, r2), 
beside(cl, rl), beside(c2, r2), joins(c2, cl, 1), land(r2), water(rl), road( c2), 
shore(cl)} 

The explanations are thus detailed descriptions of the scene that imply 
the image observed. 

As a more complicated example, consider the example of [Reiter89] given 
in figure 3. The observation corresponding to the image is 

observe chain(cl) I\ open(cl,O) I\ open(cl,1) I\ region(rl) I\ 
bounds(cl, rl)l\chain(c2)/\tee(c2, cl, 0)/\bounds( c2, rl)l\chain(c3)A 
open( c3, 1 )A tee( c2, c3, 1 )Abounds( c3, r 1 )/\region( r2)/\bounds( c3, r2)A 
chain(c4)/\open(c4, 0) Achi(c3,c4) l\chi(c4, c3) A bounds(c4, rl) A 
bounds(c4, r2)/\chain(c5)/\closed(c5)Atee(c4, c5, l)/\tee(c3, c5, 0)/\ 
bounds( c5, r 1 )/\bounds( c5, r2)/\exterior( c5, r 1 )/\exterior( c5, r2)/\ 
region( r3)Abounds( c5, r3)Ainterior( c5, r3)/\chain( c6)/\closed( c6)A 
bounds(c6,r3) A region(r4) A bounds(c6,r4) A interior(c6,r4) A 
exterior( c6, r3) 

The corresponding explanations are: 

1 

1 
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1. {outside(c6, r3), inside(c6, r4), beside(c6, r4), land(r4), beside(c6, r3), 
loop(c6), shore(c6), inside(c5, r3), beside(c5, r3), water(r3), outside(c5, r2), 
outside(c5,rl), beside(c5,r2), beside(c5,rl),mouth(c3,c5,0),joins(c4,c5,l), 
loop(c5),shore(c5), beside(c4,r2),beside(c4,rl),cross(c4,c3), cross(c3,c4), 
source(c4, 0), road(c4), beside(c3, r2), land(r2), beside(c3, rl), mouth(c2, c3, 1), 
source(c3,l),river(c3),beside(c2,rl),joins(c2,cl,0),river(c2),beside(cl,rl), 
land(rl), source(cl, 1), source(cl, 0), road(cl)} 

2. {outside(c6, r3), inside(c6, r4), beside(c6, r4), land(r4), beside(c6, r3), 
loop(c6), shore(c6), inside(c5, r3), beside(c5, r3), water(r3), outside(c5, r2), 
outside(c5,rl), beside(c5,r2),beside(c5,rl),mouth(c3,c5,0),joins(c4,c5,l), 
loop( c5), shore(c5), beside(c4, r2), beside(c4, rl), cross(c4, c3), cross(c3, c4), 
source(c4, 0), road(c4), beside( c3, r2), land(r2), beside(c3, rl), joins( c2, c3, 1 ), 
source(c3,I),river(c3),beside(c2,rl),joins(c2,cl,0),road(c2), beside(cl,rl), 
land(rl), source(cl, 1), source(cl, 0), road(cl)]} 

3. {outside(c6, r3), inside(c6, r4), beside(c6, r4), land(r4), beside(c6, r3), 
loop( c6), shore(c6), inside(c5, r3), beside(c5, r3), water(r3), outside( c5, r2), 
outside(c5, rl), beside(c5, r2), beside(c5, rl), joins(c3, c5, 0), mouth( c4, c5, 1), 
loop(c5),shore(c5),beside(c4,r2), beside(c4,rl),cross(c4,c3),cross(c3,c4), 
source(c4, 0), river(c4), beside( c3, r2), land(r2), beside(c3, rl), joins(c2, c3, 1 ), 
source(c3,l),road(c3),beside(c2,rl),joins(c2,cl,0),road(c2),beside(cl,rl), 
land(rl), source(cl, 1), source(cl, 0), road(cl)} 

4. {outside(c6,r3), inside(c6,r4), beside(c6,r4), land(r4), beside(c6,r3), 
loop( c6), road(c6), inside(c5, r3), beside( c5, r3), land(r3), outside(c5, r2), 
outside( c5, rl ), beside( c5, r2), beside( c5, rl ), joins( c3, c5, 0), joins( c4, c5, 1 ), 
loop(c5),road(c5),beside(c4,r2),beside(c4,rl),cross(c4,c3),cross(c3 1 c4), 
source(c4, 0), road(c4), beside( c3, r2), land(r2), beside(c3, rl), joins(c2, c3, 1), 
source(c3,I),road(c3),beside(c2,rl),joins(c2,cl,0),road(c2),beside(cl,rl), 
land(rl), source(cl, 1), source(cl, 0), road(cl)} 

5. {outside(c6, r3), inside(c6, r4), beside(c6, r4), water(r4), beside(c6, r3), 
loop(c6), shore(c6), inside(c5, r3), beside( c5, r3), land(r3), outside(c5, r2), 
outside(c5, rl), beside(c5, r2), beside(c5, rl), joins(c3, c5, 0), joins(c4, c5, 1), 
loop(c5),road(c5),beside(c4,r2),beside(c4,rl),cross(c4,c3),cross(c3,c4), 
source(c4, 0), road(c4), beside(c3, r2), land(r2), beside(c3, rl), joins(c2, c3, 1), 
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source(c3,1),road(c3),beside(c2,rl),joins(c2,cl,0),road(c2),beside(cl,rl), 
land( r 1), source( cl, 1), source( cl, 0), road( cl)} 

6. { outside(c6, r3), inside(c6, r4), beside(c6, r4), land(r4), beside(c6, r3), 
loop(c6), shore(c6), inside(c5, r3), beside(c5, r3), water(r3), outside(c5, r2), 
outside(c5,rl),beside(c5,r2), beside(c5,rl),joins(c3,c5,0),joins(c4,c5,1), 
loop(c5),shore(c5),beside(c4,r2),beside(c4,rl),cross(c4,c3),cross(c3,c4), 
source(c4, 0), road(c4), beside(c3, r2), land(r2), beside(c3, rl), joins(c2, c3, 1), 
source(c3,1),road(c3),beside(c2,rl),joins(c2,cl,0),road(c2),beside(cl,rl), 
land(rl), source(cl, 1), source(cl, 0), road(cl)]} 

These correspond exactly to the interpretations of [Reiter89]. 
The notable di:ff erence between this axiomatisation and the axiomatisa­

tion of Reiter a.nd Ma.ckworth is in what we do not have to specify. We do 
not have to have explicit domain closure axioms, nor do we require a unique 
names assumption. Rather than requiring both implications from the scene 
to image a.nd also the implications from image to scene, we require only the 
"graphics" implication from scene to image. It is expected that this infor­
mation will be more stable a.nd more available than the inverse implication. 

One other notable difference is that we automatically solve a "frame" 
problem. H we do not observe an end to a chain in the image (for example 
because the chain runs off the side of the image), we do not have to specify 
how that chain ends, or whether it is a loop or not. 

Which of the formulations is better able to be expanded into more com­
plicated and realistic domains is an open question. 

6 Conclusion 

This paper presents arguments why some distinctions are important in hy­
pothetical reasoning, discusses a system which uses these distinctions and 
demonstrates ways in which the resulting system can be used to solve com­
monsense reasoning tasks. 

Those of us building non-monotonic reasoning systems will eventually 
have to say how they can be used to solve real problems. To show they are 
useful for AI we have to develop appropriate programming methodologies. 
As they a.re usually very powerful logics, that can express any computable 
function, the only way that we can make an empirical statement that says 
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"this system is a good representation system" is to show how it can be used 
as a representation system. I do not believe that we will make advances 
unless we are explicit a.bout how to use these systems. We cannot expect to 
just throw "correct" knowledge at them and get appropriate answers back. 

This paper is part of the endeavour to test the hypothesis that hypothet­
ical reasoning with normal logic is powerful enough to characterise common­
sense reasoning [Poole88a, Poole89b]. The results from this are particularly 
encouraging, for example in showing that the problems with abduction in 
[McDermott87] are not really problems at all. 

This paper is orthogonal to the issues of comparing explanations and 
scenarios [Poole85, Neufeld87a, Goebel88], and of building efficient imple­
mentations (Poole89b, PGA87]. 

There is still much more work that needs to be done, particularly in 
determining how to axiomatise a domain. We have only scratched the surface 
here. 
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