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Following [KK89] we will say that an algorithm for finding the column minima of a 
matrix is ordered if the algorithm never evaluates the (i,j) entry of the matrix until 
the minima of columns 1, 2, ... , i are known. This note presents an extremely simple 
linear time ordered algorithm for finding column minima in triangular totally monotone 
matrices. Analagous to [KK89] this immediately yields a linear time algorithm for the 
concave one-dimensional dynamic programming problem. Wilber [W88] gave the first 
linear time algorithm for the concave one-dimensional dynamic programming problem, 
but his algorithm was not ordered and hence could not be applied in some situations. 
Examples of these situations are given in [GP89] and [189]. Galil and Park [GP89] and 
Larmore (189] independently found quite different ordered linear time algorithms. All 
of these algorithms, and ours as well, rely on the original linear-time algorithm known 
as SMAWK for finding column minima in totally monotone matrices [AKMSW87]. The 
constant in our algorithm is essentially the same of that of the Galil-Park algorithm, and 
since our algorithm is so simple to program, we expect if to be the algorithm of choice in 
implementations. 

Let w(i,j) for integers O S i S j S n be a real-valued function such that for all 
a Sb Sc S d we have w(a, c) + w(b, d) S w(b, c) + w(a, d). The concave one-dimensional 
programm=ng problem is to compute, given E[O], the values E[j] = mino:::;i<j D[i]+w(i,j) 
for j = l, ... , n, where D[i] can be computed from E[·i] in constant time. Let M(i,j) for 
1 S j S n, 0 S i < j be the upper triangular matrix defined by M(i,j) = D[i] + 
w(i,j). This matrix is shown in Figure 1. We will call M an upper-triangular matrix 
of size n. Clearly computing the E[j] is equivalent to finding the column minima of M, 
and the ordering condition for a column-minima finding algorithm is simply a condition 
to guarantee that we can always evaluate an entry of Min constant time. 

Following [GP89] we say that an element M(i,j) is available if the column minima of 
columns 1, 2, ... , i are already known. It is well-known (see [Y82] for example) and easy 
to check that the property that w( a, c) + w( b, d) S w( b, c) + w( a, d) for all a S b S c S d 
implies that M has the property that whenever O ~ h < i < j, if M(h,j) < M(i,j) 
then M(i, k) is not a column minima for i + 1 S k S j, and if M(h,j) ~ M(i,j) then 
M(h, k) is not a column minima for j S k S n. This is essentially (up to reflection) 
the total monotonicity property introduced in [AKMSW87]. Figure 2 shows the regions 
eliminated from containing column minima in each case. 

Clearly an algorithm to find column minima is ordered if it only evaluates elements 
of the matrix which are available. We will say that an element of M has been treated 
if it has either been evaluated or has been shown not to be a column-minima. Similarly, 
a region of the matrix has been treated if every element in that region has been treated. 
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It is easy to see that any ordered algorithm which treats the entire matrix M can triv­
ially be converted to an ordered algorithm which finds the column minima of M with 
at most a doubling of the time. Thus we will concentrate on giving a simple algorithm 
to treat the matrix M which only evaluates an entry M(i,j) if the region consisting of 
columns 0, ... , i has already been treated. At the end of this note we indicate how our 
"treatment" algorithm can be converted to a column minima finding algorithm with only 
a small additive increase in the multiplicate constant. 

The overall structure of the algorithm is that there is a fixed constant c, such that 
for some q with O < q ~ n/2, in cq time the algorithm will treat the region consisting 
of rows 0, ... , q - l. Since the remaining untreated region of the matrix is an upper­
triangular matrix of size n - q, by applying the algorithm recursively we obtain an al­
gorithm running in time en. The algorithm functions by building two types of treated 
regions in the matrix, squares and slices. The algorithm will interleave the building of 
these two types of regions. 

Fork > 0 we define the k-square to be the region M(O: 2k - 1, 2k : 2H1 - 1). Figure 
3(a) shows the k squares for k= 0, l, 2 and 3. For i =/= 2flog il - 1 we define the i-slice to 
be th " region M ( i, i + 1 : 2 fl og i1 - 1 ). Figure 3(6) shows the i-slices for i = 2, 4, 5 and 
6. It is easy to verify that for any s the union of the i slices for i ~ s with the k-squares 
fork ~ Llog(s + l)J is exactly the region M(0 : s, l : 2Llog(a+i)J+1 - 1). In particular, 
this region covers the columns 1, ... , s so after we have treated the i-slices for i ~ s and 
the k-squares fork ~ llog(s + l)J, we may evaluate any entry in rows 0, ... , s + l of the 
matrix. 

We now give the algorithm, and then explain how it works. 

The Algorithm 
i +- O; r i- O; *initialization* 

While i < 2flog(n+l)l and r < i do; 
If i = 2 flog il - 1 

then do; 
SMAWK M(0: i, i + 1: min(2(i + 1) - 1, n)); 
* a square has been treated* 
i +- i + 1; 
end; 

else if M(r,2llog(i+l)J+l -1) < M(i,2llog(i+l)J+1 -1) 

end; 

then i i- i + 1; 
* a slice has been treated* 
else r i- r + l; 
*the region M(r, 2 Llog(i+l)J +1 - 1 : n) has been treated * 

*The algorithm has now treated rows 0, . . . , i - 1. * 

Before considering the correctness and timing of the algorithm, we start with an 
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intuitive explanation of what is going on. The basic idea of the algorithm is depend­
ing on whether i = 2f1og il - 1 or not, the algorithm either treats the k square where 
k = flog il or attempts to treat the i - slice by comparing M(r, 2llog(i+l)J+1 - 1) with 
M(i, 2Llog(i+i)J+1 -1) . If M(r, 2Llog(i+l)J+1 - 1) < M(i, 2LJog(i+J)J+ 1 - 1) then we succeed 
in treating the i-slice and go on to the next value of i. If not, then we know that the re­
gion M ( r, 2 Llog ( i+ 1 )J + 1 - 1 : n) contains no column minima so we increment r. It is easy 
to prove that by induction that at the beginning of each iteration of the while loop we 
have treated the regions M(O : i - 1, 1 : min(2llog iJ+i - 1, n)) and M(O : r - 1, 1 : n). 
Since the algorithm only evaluates elements in rows· witl1 indices at most i it clearly is an 
ordered algorithm. Thus in order to prove its correctness it suffices to show that when it 
exits the while loop every element in rows 0, ... , i - 1 has been treated. This is obvious 
from the previous observation if r = i so we may assume i = 2f1og(n+l)l. However, now it 
is easy to check that this implies 2LlogfJ+1 -1 ~ n, and hence by the previous observation 
we are done. 

We now analyze the timing of the algorithm. Let a be a constant such that the 
SMAWK algorithm uses at most an time to find the column minima of an n x n totally 
monotone matrix. The amount of time used in applying the SMA WK algorithm is at 
most I:f~i iJ a2k :::; a2 llog iJ +1 :::; 2ai. The additional work consists of incrementing the 
variables i and r and performing the comparisons. The number of increments is clearly 
bounded by 2i and the number of comparisons is simply the number of passes through 
the while loop. Since either i or r is incremented on each pass through the while loop, 
the total number of comparisons is also at most 2i. Thus the total amount of additional 
work is bounded by 4i. Combining all this we see that the amount of time required by 
the algorithm is at most i( 4 + 2a) which is obviously linear in i. 

Comparing the constants. 

In order to fairly compare our algorithm with the Galil-Park algorithm we must con­
vert it to a column minima finding algorithm rather than simply a "treatment algo­
rithm". The only change necessary is that after the algorithm treats the rows 0, ... , i-1, 
before applying it to the remaining upper triangular matrix of size n-i we must "merge" 
the column minima found in the last square which we SMAWKed with the values in 
the corresponding columns in row i of the matrix. One possibility for this merging is 
as follows. For each column in the last square to be SMAWKed we replace the value 
in row i with the minimum of that value and the column minimum in the SMAWKed 
square. This adds at most an additional i comparisons and assignments. A solution 
which does better on average, at least with respects to the effect on the constants, is 
to add a dummy top row to the remaining matrix containing the column minima for 
columns in the most recently SMAWKed square, and infinity in the columns to the right 
of most recently SMAWKed square. 

Since neither our algorithm nor the Galil-Park algorithm has been completely opti­
mized with respect to constants, it only seems to make sense to compare the dominant 
cast which is the application of the SMAWK algorithm to square submatrices of the 
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original triangular matrix. In both cases, in the worst case the sum of the number of 
rows in the square submatrices is approximately 2n, so with respect to the use of the 
SMAWK algorithm the two algorithms are essentially equivalent. 
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Figure 1. The upper triangular matrix, M. 
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Figure 2. Regions not containing column mimima 

(a) If M(hJ) < M(iJ) 

(b) If M(hJ) ~ M(iJ) 
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Figure 3(a). The k -squares fork = 0,1,2 and 3. 
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Figure 3(b ). The i -slices for i =2,4,5,6. 
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