
A SIMPLE LINEAR TIME ALGORITHM
FOR CONCA VE ONE-DIMENSIONAL

DYNAMIC PROGRAMMING
by

Maria M. Klawe
Technical Report 89-16

Department of Computer Science
University of British Columbia

Vancouver, B.C. V6T 1W5 Canada

A Simple Linear Time Algorithm for Concave One-Dimensional Dynamic Programming

by
Maria M. Klawe

The University of British Columbia

Following [KK89] we will say that an algorithm for finding the column minima of a
matrix is ordered if the algorithm never evaluates the (i,j) entry of the matrix until
the minima of columns 1, 2, ... , i are known. This note presents an extremely simple
linear time ordered algorithm for finding column minima in triangular totally monotone
matrices. Analagous to [KK89] this immediately yields a linear time algorithm for the
concave one-dimensional dynamic programming problem. Wilber [W88] gave the first
linear time algorithm for the concave one-dimensional dynamic programming problem,
but his algorithm was not ordered and hence could not be applied in some situations.
Examples of these situations are given in [GP89] and [189]. Galil and Park [GP89] and
Larmore (189] independently found quite different ordered linear time algorithms. All
of these algorithms, and ours as well, rely on the original linear-time algorithm known
as SMAWK for finding column minima in totally monotone matrices [AKMSW87]. The
constant in our algorithm is essentially the same of that of the Galil-Park algorithm, and
since our algorithm is so simple to program, we expect if to be the algorithm of choice in
implementations.

Let w(i,j) for integers O S i S j S n be a real-valued function such that for all
a Sb Sc S d we have w(a, c) + w(b, d) S w(b, c) + w(a, d). The concave one-dimensional
programm=ng problem is to compute, given E[O], the values E[j] = mino:::;i<j D[i]+w(i,j)
for j = l, ... , n, where D[i] can be computed from E[·i] in constant time. Let M(i,j) for
1 S j S n, 0 S i < j be the upper triangular matrix defined by M(i,j) = D[i] +
w(i,j). This matrix is shown in Figure 1. We will call M an upper-triangular matrix
of size n. Clearly computing the E[j] is equivalent to finding the column minima of M,
and the ordering condition for a column-minima finding algorithm is simply a condition
to guarantee that we can always evaluate an entry of Min constant time.

Following [GP89] we say that an element M(i,j) is available if the column minima of
columns 1, 2, ... , i are already known. It is well-known (see [Y82] for example) and easy
to check that the property that w(a, c) + w(b, d) S w(b, c) + w(a, d) for all a S b S c S d
implies that M has the property that whenever O ~ h < i < j, if M(h,j) < M(i,j)
then M(i, k) is not a column minima for i + 1 S k S j, and if M(h,j) ~ M(i,j) then
M(h, k) is not a column minima for j S k S n. This is essentially (up to reflection)
the total monotonicity property introduced in [AKMSW87]. Figure 2 shows the regions
eliminated from containing column minima in each case.

Clearly an algorithm to find column minima is ordered if it only evaluates elements
of the matrix which are available. We will say that an element of M has been treated
if it has either been evaluated or has been shown not to be a column-minima. Similarly,
a region of the matrix has been treated if every element in that region has been treated.

1

.I

It is easy to see that any ordered algorithm which treats the entire matrix M can triv
ially be converted to an ordered algorithm which finds the column minima of M with
at most a doubling of the time. Thus we will concentrate on giving a simple algorithm
to treat the matrix M which only evaluates an entry M(i,j) if the region consisting of
columns 0, ... , i has already been treated. At the end of this note we indicate how our
"treatment" algorithm can be converted to a column minima finding algorithm with only
a small additive increase in the multiplicate constant.

The overall structure of the algorithm is that there is a fixed constant c, such that
for some q with O < q ~ n/2, in cq time the algorithm will treat the region consisting
of rows 0, ... , q - l. Since the remaining untreated region of the matrix is an upper
triangular matrix of size n - q, by applying the algorithm recursively we obtain an al
gorithm running in time en. The algorithm functions by building two types of treated
regions in the matrix, squares and slices. The algorithm will interleave the building of
these two types of regions.

Fork > 0 we define the k-square to be the region M(O: 2k - 1, 2k : 2H1 - 1). Figure
3(a) shows the k squares for k= 0, l, 2 and 3. For i =/= 2flog il - 1 we define the i-slice to
be th " region M (i, i + 1 : 2 fl og i1 - 1). Figure 3(6) shows the i-slices for i = 2, 4, 5 and
6. It is easy to verify that for any s the union of the i slices for i ~ s with the k-squares
fork ~ Llog(s + l)J is exactly the region M(0 : s, l : 2Llog(a+i)J+1 - 1). In particular,
this region covers the columns 1, ... , s so after we have treated the i-slices for i ~ s and
the k-squares fork ~ llog(s + l)J, we may evaluate any entry in rows 0, ... , s + l of the
matrix.

We now give the algorithm, and then explain how it works.

The Algorithm
i +- O; r i- O; *initialization*

While i < 2flog(n+l)l and r < i do;
If i = 2 flog il - 1

then do;
SMAWK M(0: i, i + 1: min(2(i + 1) - 1, n));
* a square has been treated*
i +- i + 1;
end;

else if M(r,2llog(i+l)J+l -1) < M(i,2llog(i+l)J+1 -1)

end;

then i i- i + 1;
* a slice has been treated*
else r i- r + l;
*the region M(r, 2 Llog(i+l)J +1 - 1 : n) has been treated *

*The algorithm has now treated rows 0, . . . , i - 1. *

Before considering the correctness and timing of the algorithm, we start with an

2

intuitive explanation of what is going on. The basic idea of the algorithm is depend
ing on whether i = 2f1og il - 1 or not, the algorithm either treats the k square where
k = flog il or attempts to treat the i - slice by comparing M(r, 2llog(i+l)J+1 - 1) with
M(i, 2Llog(i+i)J+1 -1) . If M(r, 2Llog(i+l)J+1 - 1) < M(i, 2LJog(i+J)J+ 1 - 1) then we succeed
in treating the i-slice and go on to the next value of i. If not, then we know that the re
gion M (r, 2 Llog (i+ 1)J + 1 - 1 : n) contains no column minima so we increment r. It is easy
to prove that by induction that at the beginning of each iteration of the while loop we
have treated the regions M(O : i - 1, 1 : min(2llog iJ+i - 1, n)) and M(O : r - 1, 1 : n).
Since the algorithm only evaluates elements in rows· witl1 indices at most i it clearly is an
ordered algorithm. Thus in order to prove its correctness it suffices to show that when it
exits the while loop every element in rows 0, ... , i - 1 has been treated. This is obvious
from the previous observation if r = i so we may assume i = 2f1og(n+l)l. However, now it
is easy to check that this implies 2LlogfJ+1 -1 ~ n, and hence by the previous observation
we are done.

We now analyze the timing of the algorithm. Let a be a constant such that the
SMAWK algorithm uses at most an time to find the column minima of an n x n totally
monotone matrix. The amount of time used in applying the SMA WK algorithm is at
most I:f~i iJ a2k :::; a2 llog iJ +1 :::; 2ai. The additional work consists of incrementing the
variables i and r and performing the comparisons. The number of increments is clearly
bounded by 2i and the number of comparisons is simply the number of passes through
the while loop. Since either i or r is incremented on each pass through the while loop,
the total number of comparisons is also at most 2i. Thus the total amount of additional
work is bounded by 4i. Combining all this we see that the amount of time required by
the algorithm is at most i(4 + 2a) which is obviously linear in i.

Comparing the constants.

In order to fairly compare our algorithm with the Galil-Park algorithm we must con
vert it to a column minima finding algorithm rather than simply a "treatment algo
rithm". The only change necessary is that after the algorithm treats the rows 0, ... , i-1,
before applying it to the remaining upper triangular matrix of size n-i we must "merge"
the column minima found in the last square which we SMAWKed with the values in
the corresponding columns in row i of the matrix. One possibility for this merging is
as follows. For each column in the last square to be SMAWKed we replace the value
in row i with the minimum of that value and the column minimum in the SMAWKed
square. This adds at most an additional i comparisons and assignments. A solution
which does better on average, at least with respects to the effect on the constants, is
to add a dummy top row to the remaining matrix containing the column minima for
columns in the most recently SMAWKed square, and infinity in the columns to the right
of most recently SMAWKed square.

Since neither our algorithm nor the Galil-Park algorithm has been completely opti
mized with respect to constants, it only seems to make sense to compare the dominant
cast which is the application of the SMAWK algorithm to square submatrices of the

3

original triangular matrix. In both cases, in the worst case the sum of the number of
rows in the square submatrices is approximately 2n, so with respect to the use of the
SMAWK algorithm the two algorithms are essentially equivalent.

References

[AKMSW87] A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. Wilber, Geometric
applications of a matrix searching algorithm, Algorithmica 2(1987), pp. 195-208.
[AK87] A. Aggarwal and M. Klawe, Applications of generalized matrix searching to geo
metric algorithms, to appear in Discrete Applied M·ath.
[AP88] A. Aggarwal and J. Park, Notes on searching in multidimensional arrays, Proc.
29th Ann. IEEE Symposium on Found. Comp. Sci. (1988), pp.497-512.
[EGG88] D. Eppstein, Z. Galil and R Giancarlo, Speeding up dynamic programming,
Proc. 29th Ann. IEEE Symposium on Found. Comp. Sci. (1988), pp.488-496.
[GP89] Z. Galil and K. Park, A linear-time algorithm for concave one-dimensional dy
namic programming, preprint 1989.
[HL87] D.S. Hirschberg and L.L. Larmore, The least weight subsequence problem, SIAM
J. Computing 16, 1987, pp. 628-638.
[189] L. Larmore, On-line dynamic programming and application to Waterman's RNA
problem, preprint 1989.
[W88] R. Wilber, The concave least weight subsequence revisited, J. Algorithms 9
(1988), pp.418-425.
[Y82] F. Yao, Speed-up in Dynamic Programming, SIAM J. Alg. Disc. Methods 3, 1982,
pp. 532-540.

4

1
0 I

Figure 1. The upper triangular matrix, M.

1

Figure 2. Regions not containing column mimima

(a) If M(hJ) < M(iJ)

(b) If M(hJ) ~ M(iJ)

n

n-1 ---

J n

ra

--n-1

0

Figure 3(a). The k -squares fork = 0,1,2 and 3.

n-1

1 4 R 16 n
0 I I I

2

4
5

6

Figure 3(b). The i -slices for i =2,4,5,6.

- ~

n-1 .._

