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Abstract 

The t ask and design requirements for a vision system for manipulator position sensing in a 
telerobotic system are described . Model-based analysis-by-synthesis t echniques offer generally 
applicable methods with the potential to meet the system 's requirement for accurate, fast and 
reliable results. Edge- based chamfer matching allows .efficient computation of a measure, E, 
of the local difference between the real image and a synthetic image generated from arm 
and camera models. Gradient descent techniques a.re used to minimise E by adjusting joint 
angles. The dep endence of each link position on the p osition of the link preceding it allows the 
search to be broken down into lower dimensional problems. In tensive exploitation of geometric 
constraints on the possible position and orientation of manipulator components results in a 
correct and efficient solution to the problem. Experimental results demonstrate the use of the 
implemented prototype system to locate the boom, stick and bucket of an excavator, given a 
single video image. 

1 Introduction 

A telerobotic system integrates some autonomous robot control with high-level human supervi­

sion. Such a system should incorporate internal models of its environment and itself. As the 

robot moves its limbs, the perceptual system should use visual information and other senses to 

provide updates to its internal self-model; however, a typical current hand-eye system has to 
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hide its arm before looking at the scene. Surely one of the first perceptual tasks for a robot or a 

telerobot must be to understand images of its own arm( s ). -Once this has been achieved, visually­

guided grasping and coordinated manipulation become possible. Using vision sensors to observe 

the robot's arms (and legs) further suggests using visual feedback to supplement or replace the 

traditional inverse kinematic and setpoint methods for path planning and path following. 

In this paper we describe a model-based vision system that allows a telerobot to see its 

manipulator and monitor its position. The success of the system may be seen as a step toward the 

goal of integrating control-theoretic and model-based approaches to control. A robot manipulator 

is typically controlled by representing its configuration as a vector of joint angles. Individual servo 

loops for each joint allow precise control of the manipulator. In our model-based vision system 

we use an articulated, 3-D model of the limb. We envision using perceptual data to close servo 

loops, supplementing or replacing traditional proprioceptive joint angle sensor data and allowing 

for continuous control of the movement of the limb during action. 

The idea of using a vision system to determine manipulator position arose in a project to 

teleoperate a Caterpillar 215B excavator. Joint angle sensing systems in the heavy equipment 

environment are fragile in that the sensor itself, the connections to the sensor and the wires 

linking them to controlling computers are vulnerable to mechanical damage (shock, vibration, 

abrasion) and electrical damage (welding repairs, short circuits due to moisture). Such sensors 

and their decoding electronics also introduce substantial extra cost and complexity. Furthermore, 

any flexing of the arm due, for example, to a heavy load, makes sensor readings inadequate to 

compute link positions. An inexpensive video camera system mounted in the cab could perhaps 

overcome these difficulties as well as providing augmented visual feedback to a remote operator. 

The excavator in question has four joints formed by the rotating cab, the boom, the stick 

and the bucket, as illustrated in Figure 1. For the purposes of this project only the angle of the 

boom, 82 , the angle between the boom and the stick, 8a, and the angle of the bucket, 84, will be 

computed. 
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Figure 1: Schematic of Excavator Configuration 

The motion of the excavator arm through the image is highly constrained by its geometry. The 

resulting location and orientation constraints can be efficiently used in parallel to filter irrelevant 

information out of the image edge data. Model-based chamfer matching can then be applied to 

the refined edge image to deduce the desired joint angles. The range of positions for the boom 

relative to the camera is limited; similarly, the position of the stick relative to the boom, and 

the bucket to the stick are restricted. These global constraints on the joints allow the system to 

break down the problem and locate the boom first, then the stick relative to it, and the bucket 

relative to the stick. The same process can be applied to any serial multi-link manipulator. 

2 Vision and Joint Angle Sensing 

There are a number of critical requirements for position sensors used to control a robot arm 

or excavator. The first is accuracy: accurate joint angles are essential to accurate positioning 

and task performance. Speed will also be crucial, particularly if the system is to compete with 

existing joint angle sensors. The only way to achieve this speed, given the amount of processing 

required is to use highly parallelizable methods and special-purpose, parallel hardware. The 
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degree of intrinsic parallelism of proposed algorithms is therefore an important criterion. Finally 

the system must be reliable over changes in lighting, operating conditions, occlusion and poor 

image quality. In an industrial environment such a system must be at least as robust as the 

system it replaces. 

The environment of an excavator poses a number of challenges to the design of a computational 

vision system. Expected image quality is illustrated in Figure 2. First of all it is, in general, 

outside and subject to the shadows, reflections and variable lighting of the natural world. Further, 

these machines are not stationary, so variations in lighting, and landmarks in the environment 

can occur throughout the machine's working day. Immediately then, most of the machine vision 

techniques applied to robotics requiring controlled lighting, are eliminated. Special fixtures, 

cameras and LED's used by systems such as SELSPOT or Watsmart [8], most forms of laser 

range finding and all binary vision techniques are inappropriate for these operating conditions. 

A second constraint imposed by the nature of the problem is that surface albedo, special 

markings [13], lights, or even a camera or fixture mounted on the arm itself are likely to fade, be 

obscured or knocked off entirely by the routine tasks of heavy equipment. Rain, holes, branches, 

mud and other environmental hazards will interfere with the use of these attributes. Since the 

goal is to backup or replace existing joint angle sensors (magnetic or optical) whose wires could 

be easily damaged, the vision system should avoid having similar weak points. 

Recent work in model-based vision suggests that the field is now sufficiently mature to form 

the basis of engineering applications. Work by Grimson [7] demonstrates its effectiveness for 

2-D articulated objects. Lowe uses numeric solutions in a 3-D model-based analysis-by-synthesis 

paradigm [10]. Model-based techniques have been demonstrated to be accurate and reliable. 

They offer the best alternative for meeting the requirements of our problem, provided that we 

can design a system that exploits parallelism to operate in near real time. Special purpose real time 

vision systems have recently been built for such constrained robotics tasks as table tennis [2] and 

throwing and juggling a ball [1]. 
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Figure 2: Image 6 
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Figure 3: Model-based Analysis-by-synthesis: General framework 
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The decision to use model-based vision techniques framed the basic analysis-by-synthesis ap­

proach adopted for this project. An actual image of the manipulator is processed to produce 

an image description; parameter estimates and arm and camera models are used to produce the 

description of a synthetic image. The descriptions of the two images are compared to provide 

an error measure E. Parameters determining the synthetic image features are then repeatedly 

adjusted until Eis minimised. The broad outline of this image-based matching scheme is shown 

in Figure 3. 

The question then arises, what are appropriate image descriptions and error measures for such 
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a framework? From the requirements enumerated in the preceding section the key criterion for 

an image description is that it be robust over the various environmental variations encountered 

by the excavator. Perhaps the best such descriptions available to us are edge-based techniques 

which are fairly stable under such conditions, provided that non-object 'edges' such as highlights 

and shadows can be explicitly discounted. 

There are several characteristics which would be desirable in the error measure E. First 

low-dimensionality of the parameter space reduces the problem considerably; in other words, we 

would like to minimise E with respect to as few parameters as possible. For example, if our 

parameter space were separable, the problem could be broken down into a number of simpler, 

lower dimensional problems. E should be concave upward, with as few extraneous local minima 

as possible. Finally we need an E which is fast and cheap to compute, since it will have to be 

computed for each of several synthetic images until a minimum in Eis reached. 

4 Chamfer Matching 

The chamfer matching process, described by Barrow et al. [3], begins by extracting image features, 

essentially edge feature points, from the input image, retaining shape information while discarding 

greyscale. Given a synthetic image or projection of the 3-D model through the camera model, 

a comparatively robust measure of similarity between real image edge points {R} and synthetic 

image edge points {S} is E, the sum of the distances between each predicted edge point and the 

closest image edge point: 

E = ~ mjn I S j - . Ri I (1) 
3 

This measure can be efficiently computed if we transform the image feature array containing {R}, 

so that each element is assigned a number representing its distance from the nearest real image 

edge point. The distance values for the pixels where synthetic edge points or predicted features 

fall can then be summed to produce the desired measure of similarity; this allows comparison of 

two sets of curve segments at cost proportional to curve length. 
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The transformation of the n X n image begins with an array where feature points {R}, are 

marked with zero, and all other points are marked with infinity. A forward and a backward pass 

use incremental distances of 2 and 3 to approximate Euclidean distances of 1 and J2 computing 

integral distance values as follows : 

for i <= 2 step 1 until n do 
for j <= 2 step 1 until n-1 do 

F[i,j] <= minimum (F[iJ], 
(F[i-1,j] + 2), (F[i-1,j-1] + 3), 
(F[iJ-1] + 2), (F[i-1,j+l] + 3)); 

for i <= (n-1) step -1 until 1 do 
for j <= (n-1) step -1 until 2 do 

F[i,j] <= minimum (F[iJ], 
(F[i+lJ] + 2), (F[i+l,j+l] + 3), 
(F[iJ+l] + 2), (F[i+l,j-1] + 3)); 

This distance array need only be computed once for the image. Creating the chamfered image 

requires two passes in serial implementation. The forw<!-fd raster-order pass propagates distances 

downward; the backward pass ensures that the distance values for pixels above edge points are 

given the correct minimum distance, rather than a greater distance propagated down from an edge 

point above. Relaxation techniques could be used to compute the chamfered image in parallel. 

The chamfering process actually computes a medial axis transform [4], based on the image edge 

points. Chamfer matching is an unusual application for these transforms which are generally 

used to represent shapes based on their central skeletons and some weighting information. 

The synthetic image is created by projecting the lines of a three dimensional model into the 

image, using a known camera model and the current estimate for the parameter to be optimised, 

in this case(). For each chamfered image several estimates for () and thus several synthetic images, 

will be computed and matched, until E is minimised. Standard line scan conversion techniques 

from computer graphics select pixels in a raster grid which are marked in order to display a line 

[6]. The same techniques are used here to select the locations in the chamfered image array where 

the current model line will fall. The chamfer values from these locations are summed to give E 
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as illustrated in Figure 4. Given the likelihood of poor image data, another advantage of using E 

is that it interpolates well over gaps in image lines. Emin will have a slightly higher value than 

it would otherwise, but it will still occur when parameters are close to their actual values. 

However, chamfer matching alone only gives us an efficient method to compute E: it does 

not solve our problem. If we simply chamfer the entire image using all the edge data and search 

for model components, the system will be very slow to find the solution, and is much more likely 

to fall into a local minima. The chamfer error measure does not meet our requirements for such 

a measure as it is relatively high dimensional, it is prone to local minima, and will be slow to 

converge to the desired solution. As explained in section 6, several constraints from the problem 

domain must be used to make this technique feasible. 
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5 Image Processing 

The first step in determining arm position in this system is some basic image processing, which 

transforms an eight bit, grey-scale image into a more usable form. Chamfer matching is an edge 

based technique because it compares only the position of edge points in the image to those in the 

synthetic image. It does not use information based on other image cues such as shading, motion 

or texture. Methods for extracting edges from the grey scale image must therefore be applied 

before matching can proceed. 

A common strategy, first formalised by Marr and Hildreth [11] is to compute the Laplacian 

derivative of the image, smoothed with a Gaussian distribution function (V2 G). Since V2G is 

a second derivative operator, the points in the V2G image where intensity values 'change sign 

(zero crossings), represent points in the original image where intensity changes at a particular 

scale occurred. Such intensity changes generally arise from edges in the world and thus the zero 

crossings of V2G include the edges projected by objects as illustrated in Figure 5. 

More recent work on edge detection by Canny [5] has shown that directional derivatives 

at varying scales produce better localisation of edges than V2G. Canny edge detection has the 

disadvantage of requiring more computation and being only partially parallelisable. In the context 

of the arm monitoring vision system, the results obtained with Canny edges were not significantly 

better than those for V2G, so we chose V2G for early image processing in this system. 

The known problems of V2G include failures of detection and localisation near corners and 

other regions of high image curvature. It works best on 'detection and transverse location of 

straight edges, therefore any process using its results should not require accurate end point loca­

tions for image edges. Moreover edge tracking on V2G output is unreliable and computationally 

expensive. 
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Figure 5: Zero Crossings of (v'2G) ® I, u = 2 
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6 Problem Constraints 

The basic geometry of the manipulator itself provides a number of model-based constraints which 

can be exploited to help determine its position. The model used in the system is as simple as 

possible: it consists of only the three dominant straight edges for each of the boom, stick and 

bucket, as shown in Figure 6. The image is constrained by the location of the camera in the cab 

of the excavator. Only the left upper edge and two lower edges of the boom and stick will ever 

be visible in the image, and thus only these lines need be used in the model. This has the added 

advantage that hidden line removal is unnecessary. 

6.1 The Quasi-separability Constraint 

The nature of serial robot manipulators is such that the position of a link in space is dependent 

only on the positions and angles of the links and joints that come before it. This is true of the 

excavator arm and has the useful effect of making the 0 parameter space quasi-separable. The 

position of the boom in the image is dependent only on 02 , the stick position depends on 02 and 

03 and the bucket on 02, 03 and 04 • If we proceed by optimising E for each link sequentially, at 

each step we are searching for the best value of only one parameter 0i since: 

(2) 

The parameter space we are searching is essentially reduced to one dimension in 0 and one for E 

as illustrated in Figure 7. 

6.2 The Location Constraint 

Another constraint of articulated manipulator geometry is that each link has a limited range of 

motion if, for example, it has a fixed length and the proximal end is constrained to lie at the distal 

end of the previous link. The excavator arm components each move through their limited angle 

range in a single plane. These limitations on motion also limit the regions of the image where 

each component can appear. Attempting to match each manipulator component with edge points 
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Figure 6: Modelled Arm Components 
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from the entire image simply did not work, suggesting the use of an essential location constraint. 

For example the range of 82 and the shape of the boom, allow it to appear only on the right 

side of the image, thus we only need chamfer and search this much smaller region in our effort 

to locate the boom. The stick and bucket windows are similarly limited, but their position and 

size vary depending on the optimum values for 02 and for 82 and 83 respectively. 

6.3 The Orientation Constraint 

An attempt to apply chamfer matching to a synthetic image derived from the arm and camera 

models and the zero crossing edge image of V 2G, using the quasi-separability and location con­

straints, failed due to the huge number of extraneous edge elements creating local minima in E. 

It became evident that as many of the irrelevant edge points as possible had to be removed before 

chamfer matching would become viable. More information about the image had to be included 

to exploit the problem constraints and refine the edge. image before chamfering. The key is to 

use local context, in a model-based but bottom-up approa~h, to efficiently eliminate as many as 
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possible of the image edge elements that could not belong to the component to be located. 

Our approach is to use the camera and arm models to create a filter marking each pixel in a 

component's location window with the overall minimum and maximum orientation of all model 

lines falling on it. The resulting range can be used to quickly accept or reject edge elements in 

the window, based on their gradient orientation. The filter is computed by sweeping each model 

component through its valid range of joint angles at fine increments of 0, updating the range for 

each filter pixel on which a model line falls. In this way only edge elements which can potentially 

be part of the arm component are retained. 

Figure 8 shows the result of filtering the window in the image where the boom can appear. 

There is an obvious improvement over the same region of the "v2G zero crossing image in Figure 5. 

The boom filter is the most time consuming to compute, but fortunately can be precomputed for 

a known camera position in the cab. The position of the stick and bucket in the image depend on 

the proximal joint angles, and their filter size and shape vary depending on image position. At 

present their filters are computed for each image processed, although potentially a finite number 

of filters for a range of image positions could be precomputed for these two components. 

The nature of the problem then allows us to reduce its complexity, by modelling only easily 

manipulated straight lines, by determining only one parameter at a time, and by searching for 

each component in only a limited window in the image. We can further refine the image data 

by attending only to edge points whose orientation is compatible with that of the current arm 

component at that position. 
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7 Matching 

The input to the implemented system is a digitized image of the excavator arm, taken from 

the cab. Image processing includes computing (V2G) ® I, (V xG) ® I and (VyG) ® I. The zero 

crossings of 'v2G are marked with their gradient orientation to produce the oriented zero crossing 

map. For each arm link in turn, given the angle(s) for the previous link(s), an orientation filter 

is used to select only those zero crossings from the component window whose orientations fall 

within the allowable range for the component model lines. Using this refined data a chamfered 

edge window is computed. Optimisation techniques are used to adjust 0 until a minimum error 

measure E, is reached for the current joint angle. The diagram in Figure 9 illustrates this process. 

As proposed, the matching process proceeds by finding one angle at a time, beginning with 

92 • Figure 10 illustrates such a solution. Minimising E implies adjusting the current 0i until the 

total distance between the synthetic image points and the actual image points is minimised, thus 

E acts as an L1 norm. An initial guess for the current joint angle is used to predict the location 

of component features in the image. The joint angle is then adjusted until the prediction matches 

the observed image; increases and decreases in the similarity measure indicate how the parameters 

should be adjusted. For each component edge window chamfered then, several synthetic images 

will be computed based on adjusted 0 values, until the best match (lowest E) is found. 

It is important to examine the effect of the constraints the system uses. Basically quasi­

separable, local chamfer matching is a single variable optimisation in E - () space, where () is 

adjusted to minimise E. Without orientation filtering the parameter space is as illustrated in 

Figure 11, with no clear minimum, particularly at the true 93 value of 1.3 radians. The necessity 

and effectiveness of the orientation filtering process is illustrated by comparing Figure 11 with 

Figure 12, where there is a clearly defined minimum very close to the true 83 value. 
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8 Results 

The goal of the arm monitoring vision system is to demonstrate the viability of passive vision 

techniques for arm position sensing. There are three basic results to be illustrated to establish 

that the system is useful. Accuracy requires showing that the system will converge to accurate 

values for the joint angles. Speed is essential if the system is to run at close to frame rates. 

Although the prototype implementation uses serial techniques, arguments for speedups through 

the use of equivalent parallel techniques will be presented. Finally, an argument can be made 

that the system is reliable and robust, although the limited amount of data presented here makes 

this difficult to verify. 

8.1 Accuracy 

There are several sources for error in the vision system. First, the data used by the system, 

including both camera and component models is currently quite crude. Image acquisition is 

another possible source of error in computing joint angles. In addition, for the distal joint angles 

any inaccuracy in computing 02 affects the accuracy of the estimate for 03 and so on, so the 

greatest error often occurs for the estimated 84 • Depending on the arm position the bucket is 

sometimes difficult to locate accurately, particularly when viewed nearly front on. Another factor 

affecting accuracy is image size. The larger the image the greater the imaged distinction for small 

changes in 0. The tradeoff, of course, is that large images take longer to process. 

Despite all of these potential problems the system performs quite accurately. Using the three 

joint angles for each of the eight images tested, we have twenty four sample points ( 0true - Best), 

The sample mean of this set is 0.0030 radians, the standard deviation is 0.0709 radians. Figure 13 

is the histogram of these difference values, and illustrates their roughly normal distribution. 

8.2 Speed 

In presenting the time required to process an image we note that the boom filter, which is the 

most costly to compute, is only computed once for each camera model. If we can assume the 
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camera will require only infrequent adjustment, the boom filter can be precomputed, and not 

included in the time required to process each image. Without the boom filter then, the entire 

process in the current implementation takes 92.2 secs per image on a Sun 4/260. 

Given our design, it is not surprising that 89% of this time (81.8 secs) is taken up by inherently 

parallel low level image processing tasks. V2G, V xG and "v yG are applied independently to the 

neighbourhood around each pixel, and given image processing hardware, such as a Datacube 

system, can be computed at frame rates. 

Computing the orientation filters, even excluding the boom, is time consuming: 5.6 secs on 

the Sun 4/260. Multiple processors would allow each to compute the filter ranges for a very small 

range of (J. Methods of interpolating between precomputed filters should be investigated. The 

chamfering process itself requires 4.4 secs on the Sun 4/260. This time can be reduced by parallel 

implementation so that for window dimension n, the algorithm complexity is reduced from the 

serial complexity of 0( n2 ) . The parallel complexity is the greater of the maximum distance of any 

edgepoint to a neighbouring window limit or half the maximum distance between neighbouring 

edgepoints. The maximum distance for any two such points will be y2n in the worst case. Since 
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there is still irrelevant data in the filtered edge image the number of iterations will in general be 

far less than n. 

The inner loop of the algorithm, the gradient descent search, requires only 0.4 secs in the 

prototype. This can be accelerated by computing E for each model line, or even segments of 

model lines in parallel. At frame rates the arm will not have moved far between images, and the 

search interval can be made small, which may also improve accuracy, and can be used to limit 

the extent of chamfering. 

In general, if all avenues for parallelising these techniques are exploited, near real time oper­

ation seems within reach, but this claim remains to be fully justified. 

8.3 Robustness 

Robustness is impossible to quantify, but we can say that our system was successful on the eight 

images tested to date. These are not toy images from a controlled laboratory environment, but 

natural scenes in a typical excavator environment covering a wide variety of arm configurations 

and lighting conditions. 

The initial angle estimates can deviate, on average, by as much as 0.087 radians for 82 , 

0.227 radians for 83, and 0.419 radians for 84 and still guarantee convergence to the correct joint 

angles. Estimates for 82 had to be quite accurate because machine geometry caused large changes 

in image position of the boom for small changes in the joint angle. These ranges seem reasonable 

for a system running at near frame rates, since the excavator is unlikely to move through larger 

changes in 8 from one image to the next. 

Further details on the implementation and results are available [12]. 
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9 Conclusions and Future Work 

In this paper a method for arm position sensing using passive model-based vision techniques on 

a single 2-D image has been described. Using quasi-separability, location constraints and edge 

based orientation filtering we have provided a simple and efficient method for determining the 

joint angles of an excavator arm. 

The goal of the arm monitoring vision system in the context of telerobotics is to achieve 

consistent, accurate, real time results. The results for the prototype system are encouraging. 

Relatively high accuracy and ranges of convergence have been achieved given the quality of mea­

surements and data available to the system. Arguments have also been made that the techniques 

used are highly parallelizable, and that near real time processing rates can be achieved, given 

the necessary hardware. In general our techniques have been shown to be fast, accurate, cheap, 

reliable and, apparently, novel [9]. 

Possible extensions to the existing prototype include adding a predictor for the joint angles 

to act as a feedforward component to the system. We could use more image information such as 

colour and optical fl.ow to help segment out the arm or we-could apply spatiotemporal operators 

to track arm motion. Other enhancements include using multiple orientation maps to separate 

ra~ges of valid orientations. The initial goal of this project was to provide a system for position 

monitoring of the excavator arm, but these techniques could perhaps be extended to track many 

other kinds of manipulators, and to form the basis for visually-guided manipulation. 
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