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Computer vision is the science and technology of obtaining models, meanings 
and control information from visual data. Inputs of a computer vision system 
typically are scanner outputs, usually in the form of digital images, rangefinder 
outputs, or images reconstructed by medical imaging equipment. Vision science 
and technology have grown more and more varied in recent years. The range 
of applications has been widening, and it includes many uses in manufacturing, 
medicine, and remote sensing. 

As with artificial intelligence in general, work in vision falls mainly into two 
camps. The first kind of work seeks a coherent theory of visual perception and 
understanding ( this approach is called "computational vision"), and researchers 
in this group often develop computational models of biological vision processes. 
The second camp of people do research and development directed towards useful 
applications (this is sometimes called "machine vision"). Their emphasis is 
on working, economical solutions to industrial, medical and military problems 
rather than the discovery of new theories or knowledge about human perception. 

Perhaps the most significant development of the last five years on the compu
tational vision side has been the emergence of "regularization theory" as a means 
for making mathematically ill-posed surface-inference problems well-posed. This 
technique has applications in many kinds of vision problems including recon
struction of intensity maps from a limited set of samples, analysis of stereo pairs 
of images, and the computation of optical flow in dynamic imagery. 

During the same period, the applications side of the field has seen impor
tant advances in three-dimensional modelling and model construction, expe-

1 



rience with methods like those of "mathema ical morphology," (resulting in 
better methodologies for applying such techniques), and exciting improvements 
in parallel computer architectures tailored to vision applications. 

There has also been an in terplay between c0mp1,1tationa) vision and machine 
vision . The stereo algorithms, developed largely within the computational vi
sion camp, have moved out into the realm o{ industrial application. Computer 
architectures, developed with industrial vision in mind , are influencing studies 
in computational vision-for example in the development of parallel a lgorithms 
for solving reconstruction problems on meshes . 

Because of the large amount of activity in these two areas of computer vision, 
and because of page limitations here, the scope of this article is necessarily lim
ited . The major advances in low-level vision, computational vision, and vision 
architectures are emphasized. Relatively little is said about specific software 
implementations (this is in contrast to the vision coverage in Volume 3 of the 
Handbook) . 

2 Low-Level Vision 

Underlying some approaches to computational vision and to machine vision are 
basic tasks of breaking up an image into component regions. This segm e11ta.t1on 
problem can be tack led before the determination of 3-D surface characteristics 
or the recogni tion of objects i_n the scene. A large variety of methods ha e been 
inven ed and stud ied for this initia l analysis task. The nex· subsection gives an 
overv iew of this subfield e>..--pandi_ng upon tbe descr iption of region analysis of 
Volume 3, pages 225-229 . 

2.1 Segmentation Techniques 

What should a good image segmenta tion be? While this depends largely upon 
the appUcat.ion, it can be answered in an application-independent way to a 
certain extent. Let us attempt to do so. 

Regions of an image segmentation should be homogeneous-uniform with 
respect to some characteristic such as gray tone or texture. Region interiors 
should usually be simple and without many small holes. Adjacent regions of 
a segmentation should have signillcanlly different values with respect to the 
characteristic on which they a re uniform. Boundaries of each segment should 
be simple, not ragged, and must be spatially accurate. 

Achieving all these desired proper ties is difficult because strictly uniform and 
homogeneous regions are typicaUy full of small holes and have ragged bound
aries . Insisting thal ·adjacent regions have large differences in values can cause 
regions to merge wruch ought to be kept separated, with a loss of the 'intervening 
boundaries. 

2 



Just as there is no generally accepted theory of clustering in statistics, there 
is no well-accepted theory of image segmentation. Image segmentation tech
niques tend to be ad-hoc. They differ in the ways in which they emphasize one 
or more of the desired properties and in the ways they balance and compromise 
one desired property against another . 

Image segmentat ion tec hniques can be classified into one of the follow
ing groups: measuremen t-space-guided spa tial clus tering, single-linkage region
growing schemes hybrid-linkage region-growing sc hemes, centroid-li nkage region
growing schemes, spatial clustering schem es, and split-and-merge schemes. As 
this brief typology suggests, image segmentation can be vie wed as a clustering 
process. The difference between image segmentation and clustering is that in 
clustering, the grouping is done in measurement space (e.g., the space of gray 
values rather than the space of pixel coordinate pairs). In image segmentation, 
the grouping is done on the spatial domain of the image and there is an inter
play in the clustering between the (possibly overlapping) groups in measurement 
space and the mutually exclusive groups of the image segmen tation. 

The single-linkage region-growing schemes are the simplest and most prone 
to the unwanted region-merge errors . The hybrid and centroid region-growing 
schemes are better in this regard. The split-and-merge technique is not as 
subject to the unwanted region-merge error. However, it suffers from large 
memory usage and excessively blocky region boundaries. The measurement
space-guided spatial clustering tends to avoid both the region-merge errors and 
the blocky boundary problems because of its primary reliance on measurement 
space. But the regions produced are not smoothly bounded, and they often have 
holes , giving the effect of salt-and-pepper noise. The spatial clustering schemes 
may be better in this regard, but they have not been well enough tested . The 
hybrid linkage schemes appear to offer the best compromise between having 
smooth boundaries and few unwanted region merges. 

The remainder of this section describes the main ideas behind the major 
image segmentation techniques . Additional image segmentation .surveys can be 
found in Zucker (1976), Riseman and Arbib (1977), Kanade (1980), and Fu and 
l\Iui (1981), and Haralick and Shapiro (1985). 

Measurement-Space-Guided Spatial Clustering: This technique for im
age segmentation uses the measurement-space clust ering process to define a 
partition in measurement space. Then each pixel is assigned the label of the cell 
in the measurement-space partition to whic h it belon gs: T he image segments 
are defined as the connected components of the pixels having the same label. 

The accuracy of the measurement-space-clustering image segmentation pro
cess depends directly on how well the objects of interest on the image separate 
into distinct measurement-space clusters. Typically the process works well in 
situations where there are a few kinds of distinct objects having widely different 
gray-tone intensities (or gray-tone intensity vectors, for multi-band images) and 
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these objects appear on a nearly uniform background . 
Clustering procedures whic h use the pixel as a unil and compare eac h pixel 

va lue with every other pixel value can require excessively large computation 
t imes because of the large number of pixels in an image. Iterative part ition 
rearrangement schemes, such as ISODATA, have to go through the image data 
sel many times and if done without sampling can also take excessive computa
t ion time. Histogram-mode seeking, because it requires only one pass t hrough 
the da ta, probably involves the least computation time of the measurement
space clustering techniques, and it is the one we discuss here. 

Histogram-mode seeking is a measurement-space clustering process in which 
it is assumed that homogeneous objects on the image manifest themselves as 
the clusters in measurement space. Image segmentation is accomplished by 
mapping the clusters back to the image domain where the maximal connected 
components of the mapped back clusters constitute the image segments. For 
image whi ch are sing! -band image , cakula t-ion of this histogram in an array is 
d irect. The measurement-space clus tering can e accomplished by determining 
ll~e va llevs in ibis histogram and declaring t he clusters to be the interval of 
values between valleys. A pixel whose value is in the ith interval is labeled with 
index i and the segment it belongs to is one of the connected components of all 
pixels whose label is i. 

Ohlander (1975) refines the clustering idea in a rec ursive way. He begins by 
defining a mask selecting all phels on the image. Given any mask, a hist0gram 
of the masked image is computed. Measurement-space clustering enables the 
separation of one mode of the histogram set from another mode . Pixels on the 
image are then identified with the cluster to which they belong. If there is only 
one measurement-space cluster, then the mask is terminated. If there are more 
than one cluster, then each connected component of all pixels with the same 
cluster is, in turn, used to generate a mask which is placed on a mask stack. 
During successive iterations the next mask in the stack selec ts pixels in the 
histogram-computa tion process. Clustering is repeated for each ~ew mask until 
the stack is empty. The process is illustrated in Fig. 1. 

Single-Linkage Region Growing: Single-linkage region-growing schemes 
regard each pixel as a node in a graph. Neighboring pixels whose properties 
are "similar enough" are joined by an arc. The image segments are maximal 
sets of pixels all belonging to the same connected component. Single-linkage 
image-segmentation schemes are attractive for their simplicity. They do, how
ever, have a problem whh chaining, because it takes only one arc leaking from 
one region· to a neighboring one to cause the regions to merge. 

The simplest single-linkage scheme defines "similar enough" by pixel dif
ference. Two neighboring pixels are similar enough if the absolute va'lue of 
the difference between their gray-tone intensity values is small enough. Bryant 
(1979) defines "similar enough" by normalizing the difference by the quantity 
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Figure 1: The recursive histogram spatial clustering method of Ohlander. 
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.../i, times the root-mean-square value of neighboring pixel differences taken over 
the entire image. 

For pixels having vector values, the obvious genexalization is to use a vector 
norm of the pixel-difference vector . Instead of using a Euclidean distance, Asano 
and okoya (1081) suggest. that two pixels be joined together if the absolute 
value of their di.1Tere11ce is small enough compared to the average absolut valu 
oft.be center pi...xel minus neighbor pixel for each of the neighborhoods tl1e pixels 
belong to. The ease with which unwanted region chaining can occur wiLh this 
technique limits its potential on complex or noisy data. 

Hybrid-Linkage Region Growing: Hybrid single-linkage techniques are 
more powerful Lban Lhe simple single-linkage technique. The hybrid techniques 
seek Lo assign a properly vector to each pixel where the property vector depends 
on th neighborhood of the pixel. Pixels which are similar are so because their 
neighborhoods in some special sense are similar . Similarity is bus established 
as a function 0f neighboring pixel alues and Lhis makes the technique better 
behaved on noisy data. 

One hybrid single-linkage scheme relies on an edg operator to establish 
wh her two pixel are joined with an arc. Here an edge operator is applied Lo 
the imag labelling each pixel as edge or non-edge. Neigbbor.ing pixels , n it..her 
of which are edges, are joined by an arc. The initial segments are the connected 
components of t.he non-edge labelled pixels. The edge pixels can either be left 
assigned edges and be considered as background or they can be assigned to the 
spatially nearest region havi11g a label. Successful use of this technique may 
require closing edge gaps befor performing the region growing. 

F.igure 2 illustrates an image of a section of an F-15 aircraf bulkhead. Fig
ure 3 illustrates a second directional derivative zero crossing operator applied 
to the image of Fig. 2. Figure 4 shows th segmentation which results from 
connecting together the non-edge pixels. The method is thus a hybrid link
age region growing scheme in which any pair of neighboring pixels, neither of 
which are edge pixels, can link together. The resulting segmentation consists of 
th connected components of the non-edge pixels and where eaich edge pixels is 
assigned t.o its nearest connected component. 

Centroid-Linkage Region Growing: ln centroid-linku1g region growing, in 
cont.rasL with single-linkage region growing, pairs of neighboring pixels are not 
compared for similarity. Rather, the image is scanned in some predetermined 
manner such as left-to-right, top-to-bottom. A pixel's value is compared to the 
mean of an already exis ing but not necessarily completed neighboring segment. 
ff its value and the segmenL's mean value are close enough , then the pixel is 
added to the segment and the segment's mean is updated. If there is more than 
one region which is close enough , then it is added to the closest region. However, 
if the means of the two competing regions are close enough, the two regions are 
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Figure 2: Image of a bulkhead of an F-15 aircraft . 

Figure 3: Directional derivative zero-crossing operator applied to the F-15 im
age. 
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Figure 4: Segmentation of the F-15 image. 

merged and the pixel is added to the merged region. If no neighboring region 
has its mean close enough, then a new segment is established having the given 
pixel's value as its first member. The scan geometry for the centroid-linkage 
region-growing scheme is shown in Fig. 5. 

Keeping track of the means and scatters for all region as they are being 
determined does not require large amounts of memory space. There cannot be 
more regions active at one time than the number of pixels in a row of the image. 
Hence, a hash table mechanism with the space of a small multiple of the number 
of pixels in a row can work well. 

One way of performing the region growing is by the use of the T-test. Let R 
be a segment of N pixels neighboring a pixel with gray-tone intensity y. Define 
the mean X and scatter 5 2 by 

1 
X= N L I(r,c) 

(r,c)ER 

(10) 

and 
5 2 = L (I(r,c)-X) 2

• (11) 
(r,c)ER 

Under the assumption that all the pixels in R and the test pixel y are inde
pendent and identically distributed normals, the statistic 

1 

T= [(N- l)N (y-X)2/52 ] :i

(N + 1) 
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Figure 5: Region-growing geometry for the one-pass scan, left-right, top-bottom 
region growing. 

has a TN-1 distr ibution. If Tis small enough y is added to region R and the 
mean and scatt rare updated using y . The new mean and scatter are given by 

X new +- ( N X old + V) / ( N + 1) (13) 

and 
S;ew +- sJld + (y - X)2 + N(Xnew - X old)2. (14) 

If T is too l1igh the value y is not likely to have arisen from the population of 
pixels in R. If y is different from all of its neighboring regions then it begins its 
own region . A slightly stricter linking criterion can require that not only musty 
be close eneugh to the mean of the neighboring regions, but that a neighboring 
pixel in that region must have a close enough value toy. This combines a centroid 
linkage and single linkage criterion. 

The Levine and Shaheen scheme (1981) is similar. The difference is that 
Levine and Shaheen attempt to keep regions more homogeneous and try to 
keep the region scatter &:om getting too high. They do this by requiring the 
differences to be more significant before a merge takes place if the region scatter 
is high. For a user specified value e, Lhey define a test statis tic T where 

T = Iv- Xnewl- (1- S/Xnew)B (15) 

If T < 0 for the neighboring region R in which IY - XI is the smallest, then y is 
added to R. If T >" 0 for the neighboring region in which Iv-XI is the smallest, 
then y begins a new region. 

f'igure 6 illustra.t.es the app lication of the centroid-linkage region-growing 
technique to the bulkhead image. In this applicat ion there are two successive 
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Figure 6: The two-pass top-down centroid segmentation of the bulkhead image. 

scans of the image. The first is a left-right top-down scan, and the second is a 
right-left bottom-top scan. 

Hybrid Linkage Combination Techniques: The centroid linkage and the • 
hybrid linkage can be comb,ined in a way which takes advantage of their relative 
strengths. The strength of the single linkage is that boundaries are placed in 
a spatially accurate way, Its weakness is that edge gaps result in excessive 
merging. The strength of centroid linkage is its ability to place boundaries 
in weak-gradient areas. It can do this b cause it does not depend on a large 
difference between I.he pixel and its neighbor to declare a boundary. It depends 
on a. large differenc between the pixel and the mean of the neighboring region 
to declare a boundary. 

The combined centroid-hybrid linkage techniqlle does the obvious thing. 
Centroid linkage is only done f!:)r non-edge pixels, that is region growing is 
not. permiLLed across edge pixels or saying it another way edge pixels are not 
permitted to be assigned to any region l;l.nd cannot link to any region. Thus 
if the parameters of cent roid linkage were set so tl1at any d iJference, however 
large, b tween pixel value and region mean was considered small enough to 
permit merging, the two pass hybrid combination technique would produce a 
connected componen of the non-edge pixels. As the difference criterion is 
made more strict, the centroid linkage will produce boundaries in addition to 
those produced by the edges. 

Figure 7 illustrates the application of the hybrid-linkage technique to the 
bulkhead im ge. 
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Figure 7: Segmentation using the one-pass combined centroid and hybrid linkage 
method. 

Split-and-Merge: The split-and-merge method for segmentation begins with 
the entire image as the initial segment. Then it successively splits each of 
its current segments into quarters if the segment is not homogeneous enough. 
Homogeneity can be easily established by determining if the difference between 
the largest and smallest gray-tone intensities is small enough. Algorithms of 
this type were first suggested by Roberston (1973) and Klinger (1973). Kettig 
and Landgrebe (1975) try to split all non-uniform 2 x 2 neighborhoods before 
beginning the region merging. Fukada (1980) suggests successively splitting a 
region int9 quarters until the sample variance is small enough. Efficiency of the 
split-and-merge method can be increased by arbitrarily partit ioning the image 
into square regions of a user selected si ze and then splitting ~hese further jf they 
are not homogeneous. 

Because segments are successively divided into quarters, the boundaries pro
duced by the split technique tend to be squarish and slightly artificial. Some
times adjacent quarters corning from adjacent split segments need to be joined 
rather than remain separate. Horowitz and Pavlidis (1976) suggest a split-and
merge strategy to take care of this problem. Muerle and Allen (1968) suggest 
merging a pair of adjacent regions if their gray-tone intensity distributions are 
similar enough. They recommend the Kolmogorov-Smirnov test. 

Chen and Pavlidis ( 1980) suggest using statistical tests for uniformity rather 
than a simple examination of the difference between the largest and smallest 
gray-tone intensities in the region under consideration for splitting. The unifor
mity test requires that there be no significant difference between the mean of 
the region and each of its quarters. The Chen and Pavlidis tests assume that 
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the variances are equal and known. 
Let each quarter have J( pixels, Xij be the jth pixel in the ith region, Xi be 

the mean of the ith quarter and X .. be the grand mean of all t,he pixels in the 
four quarters. Then in order for a region to be considered homogeneous, Chen 
and Pavlidis require that 

i = 1, 2, 3,4. (16) 

We give here the F-test for testing the hypothesis that the mean and vari
ances of the quarters are identical. The value of variance is not assumed known. 
Under the assumption that the regions are independent and identically dis
tributed normals, the optimal test is given by the statistic F which is defined 
by 

F _ I< I:i:1. (X,. - X . .)2 /3 
- Et=1 Et=1(X;k - xi.) 2 / 4(I< - 1) 

(17) 

It has a F3,4(K -l) distribution . If F is too high the region 1s declared not 
uniform. 

The data structures required to do a split-and-merge on images larger than 
512 x 512 are very large. Execution of the algorithm on virtual-memory com
puters results in so much- paging that the dominant activity may be paging 
rather than segmentation. Browning and Tanimoto (1982) give a description 
of a split-and-merge scheme where the split-and-merge is first accomplished on 
mutually exclusive subimage blocks and the resulting segments are then merged 
between adjacent blocks to take care of the artificial block boundaries. 

2.2 Edges 

If an image is successfully segmented into regions, then the contours of the 
regions are available for shape analysis. However, it is sometimes more expedi
ent to compute the contours directly from the image, rather than go through 
one of the above-described segmentation processes. In order compute contours 
directly from the image, it is necessary to perform "edge detection." In this 
subsection, the important characteristics of edges are discussed. Edge detection 
continues to be a subject of intense research attention. Elementary methods for 
edge detection, including the Roberts cross operator and the Sobel operator are 
described in Volume 3, pages 216-220. 

The difficulties of finding the contours of objects in an image: What is 
an edge in a digital image? The first intuitive notion is that a digital edge occurs 
on the boundary between two pixels when the respective brightness values of 
the two pixels are significantly different. "Significantly different" may depend 
upon the distribution of brightness values around each of the pixels. 

We often point to a region on an image and say this region is brighter than 
its surrounding area, meaning that the mean of the brightness values of pixels 
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inside the region is greater than the mean of the brightness values outside the 
region. Having noticed this we would then say that an edge exists between each 
pair of neighboring pixels where one pixel is inside the region and the other is 
outside the region. Such edges are referred to as step edges. 

Step edges are not the only kind of edge. If we scan through a region in a left
to-right manner observing the brightness values steadily increasing, and then 
after a certain point observe that the brightness values are steadily decreasing, 
we are likely to say that there is an edge at the point of change from increasing 
to decreasing brightness values. Such edges are called roof edges . 

Thus, in general an edge is a place in an image where there appears to be a 
jump in brightness value or a jump in brightness value derivative. 

In some sense , this summary statement about edges is quite revealing, since 
in a discrete array of brightness values there are jumps (in the literal sense) 
between neighboring brightness values if the brightness values are different, even 
if only slightly different . Perhaps more to the heart of the matter, there exists 
no definition of derivative for a d iscrete array of brightness values. The only way 
to interpret jumps in value and jumps in derivatives when referring to a discrete 
array of values is to assume that the discrete array of values comes about as some 
kind of sampling of a real-valued function of defined on a bounded and connected 
subset of the real plane R 2 . The jumps in value and jumps in derivative really 
must refer to points of discontinuity off and to points of discontinuity in the 
partial derivatives off. 

Edge finders should then regard the digi Lal picture funct ion as a sampling of 
the underlyi.ng function f , where some kind of random noise has been added to 
the true function values. To do this, the edge finder must assume some kind of 
parametric form for the underlying function f, use the sampled brightness val
ues of the digital picture function to estimate the parameters, and finally make 
decisions regarding the locations of discontinuities and the locations of discon
tinuities of partial derivatives based on the estimated values of the parameters. 

Of course, it is impossible to determine the true locations of discontinuities 
in value or derivatives based upon samplings of the functions. The locations 
are estimated by function approximation . The location of the estimated dis
continuity will be where the first derivative has a relative maximum. This is 
where the second derivative will have a negatively shaped zero crossing if the 
ed ge is being crossed from low value t o high value. Sha rp discon t inui ies will 
reveal themselves in high values for estimates of first partia l deriva tives. Sharp 
discontinuities in derivative will reveal themselves in high values for estimates of 
the second partial derivatives. This means that the best we can do is to assume 
that the first and second derivatives of any possible underlying image function 
have known bounds. Therefore, any estimated first or second order partials 
which exceed these known bounds must be due to discontinuities in value of the 
underlying function . The location of the estimated discontinuity in derivative 
will be where the second derivative has a relative extremum and this will be 
where the third derivative has an appropriately-shaped zero crossing. 
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Recent Developments: Marr and Hildreth (1980) used for the second deriva
tive the isotropic Laplacian. Haralick (1984) and Canny (1986) used, for the 
second derivative, the second directional derivative taken in a direction which 
extremizes the first directional derivative. The implementation of each of these 
zero-crossing edge operators is quite different. 

Since the differentiation of a sampled signal is, properly speaking, an ill
posed problem, it has been proposed that edge detection be performed by first 
filtering the image ( or "regularizing" it) and then differentiating it . Details 
may be found in Torre and Poggio (1986). A good overview of edge detection 
including a discussion of regularization may be found in Hildreth ( 1987). 

Overview: The objective in many computer vision problems is to reconstruct 
a three-dimensional surface representation of a scene from the image information 
output by cameras. Video cameras provide only 2-D images, and it is necessary 
to use stereo methods to obtain dep th information. The use of two ( or more) 
images of the same scene, taken from different positions can permit the deter
mination of depth using parallax-the analysis of each triangle formed by some 
notable surface point in the scene and the two camera viewpoints. With two 
such images, the method of depth determination is called binocular stereo. With 
three, it is trinocular stereo. With more, it is sometimes called multiple-image 
stereo . For an introduction to binocular stereo, see Volume 3, pages 249-253 , or 
see Barnard and Fischler (1987) . 

The usual sequence of steps needed in binocular stereo is the following: (1) 
input of images either from two cameras, or from one camera at two differ
ent times and positions; (2) the determination of camera parameters-position, 
orientation, focal length , etc.; (3) detection/selection of feature points in the 
images th at are candidates for matching ( e.g., edge _points); ( 4) match ing of 
feature points by consb ucting a correspondence between feature points of the 
two images; (5) computing depth values at the locations of the matched feature 
points; and (6) interpolation of depth values at all or many of the points in the 
image that are not locations of matched feature points . 

Feature Point Detection/Selection: With a simple camera geometry we 
may assume that the two images of a point in the scene have a positional 
disparity along the x axis of the image but not along the y axis . In order to 
determine this disparity, using feature-based or edge-based stereo, the points 
must be detected in each image and then put into correspondence . Generally 
speaking, only certain points in the image are capable of being matc hed directly; 
these are prominent locations in the image that are eas ily distinguished from 
neighboring points.' In most cases the feature points can be obtained using 
ed ge-detection methods. 

A popular method for finding feature points for stereo matching requires 
that the Laplacian operator be applied to the image . Then, the zero-crossing 
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contours of the resulting image are identified. The points on the zero-crossing 
contours are taken as the feature points. Since the digital images have a limited 
number of scan lines, the number of zero-crossing points is generally manageable . 

Because the disparities occur in the x direction, it is usually sufficient to 
perform the differentiation ( or apply the Laplacian) in one dimension, along 
each scan line of the image. This is computationally inexpensive in comparison 
with two-dimensional Laplacians. 

If general camera geometries are used, the feature points must be distin
guis hable in both the x and y directions. Although the detec t ion of these points 
is t.herefore more computationally expensive, the resulting number of points is 
usually less than for one-dimensional analysis, and this can speed up the match
ing process . Scene points that generate good feature points with distinction in 
both dimensions are corners (vertices) of polyhedra and bright spots and corners 
of 2-D patterns painted on the surfaces of objects in the scene. 

It is also possible to match areas rather than features. In area-based match~ 
ing, correspondences are typically established using cross-correlation. This tends 
to be computationally more expensive and also less accurate than feature or 
edge-based matching. However, area-based stero can be more robust in cases of 
noisy images or images with poorly-defined edges. 

Matching: While matching for stereo is similar in spirit to model matching 
for object recognition, it is also somewhat different. 

In the case of horizontally-constrained displacement, we have a collection of 
one-dimensional matching problems, one for each scan line . We can expect the 
disparity function along the scan line to exhibit some coherence as we move to 
each successive scan line, as well as along the line. Therefore the solutions to 
each 1-D matching problem are not completely independent. 

Some of the approaches to matching are the following: (1) coarse-to-fine 
(see Marr and Poggio, 1977, and Grimson , 1985) (2) dynamic programming 
(see Baker and Binford, 1981) , (3) energy minimization (see below), and (4) ad 
hoc correspondence building. 

Interpolating Depth Values: The problem of obtaining a full set of depth 
values from the sparse set obtained from feature-based stereo can be solved 
with interpolation. However, this interpolation should satisfy both smoothness 
on surfaces and maintain sudden depth changes at surface boundaries. In the 
case of natural terrain , quadratic surface fitting may be appropriate (see Smith, 
1984). For rapid interpolation subject to smoothness constraints, multigrid 
methods may be used (see section 4.6). 

Direct Matching with Simulated Annealing: A method of matching a 
stereo pair of images using simulated annealing has been proposed by Barnard 
(1987). This is an area-based, rather than a feature-based approach. An energy 
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measure E is to be minimized through the adjustment of disparity values D;,j: 

I= I:(l~I;; I+ Ajv7 D;j I) 
i,j 

where Al;; = li ('i, j) - l R(i, j + D;1) ; h and In a re the left- and right-image 
intensity values; and D;; is the disparity value for location (i , j). This measures 
the dilference in intensity between each two matched points as well as the un
smoothness of t he disparity func tion . If both of these terms are zero, t.hen the 
two images match perfectly, except for a transla.tion, and the scene must be fla t. 

Starting from an init.i al high-energy state, the disparity values are adjusted 
stochast ically according to the 1etropolis algorithm (see page 49) or with an 
alternative method proposed by Barnard. 

Non-Binocular Methods: Trinocular stereo employs three images of a scene 
to obtain 3-D surface data. The third image, taken from a viewpoint not colinear 
with the other two, greatly reduces the number of incorrect matches and it 
can increase the accuracy of the resulting depth information. A method that 
permits the three cameras to be in arbitrary positions is described by Ayache 
and Lustman (1987). One that requires the viewpoints to form a right triangle is 
given by Ohta et al (1 986). Others are given by Yachida et al (1986) Ito and Ishii 
(1986), and Pietikainen and Harwood (1986). The number of viewpoints need 
not be limited to three. Multiple-image stereo allows additional improvements 
in accuracy at the expense of higher computational cost (see Yachida, 1985). 

In addition to binocular, trinocular, and multiple-image stereo, surface ori
entation may be computed using two images from the same viewpoint, but taken 
under illumination by a light source in two different positions. This method is 
called photometric stereo and is described briefly in Volume 3, on page 134. 
The change in shading at a surface point from one image to the other gives an 
indication of the surface gradient at that point. Such methods are described in 
Woodham (1980). 

2.3 Mathematical Morphology for Image Analysis 

A class of techniques called "mathematical morphology" has found a variety 
of applications in industrial machine vision. This section presents the primary 
operations of mathematical morphology: dilation, erosion, opening, and closing. 
In addition to their definitions, some properties of these operations are also 
given. 

Introduction Mathematical morphology provides an approach to the pro
cessing of digital images which is based on shape. Appropriately used, these 
techniques can simplify image data, preserving essential shape characteristics 
and eliminating irrelevancies . Since the identification of objects, features, and 
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manufacturing defects depend closely upon shape, this approach is natural for 
such tasks. 

Although the techniques are being used in the industrial world, the basis 
and theory of binary morphology are no · covered in many texts or monographs. 
Except.ions are the highl. mathemat ical books by Matheron (1975) and Serra 
(1982). 

The language of mathematical morphology is that of set theory. Sets in 
mathematical morphology represent t he shapes wruch are manifested on b-inary 
or gray tone images. The set of all the b lack pixels in a black and white image 
(a binary image} constitutes a complete description of the b inary image . Sets 
in Lwo-dimensional Euclidean space a.re represented by foreground regions in bi
nary images. Sets in t,hree-d imensiona) Euclidean space may actually represent 
time varying binary imagery or static grayscale imagery as well as binary solids. 
Set,s in higher dimensional spaces may incorporate addjtional image informa
Lion such as color, or multiple per . p ctive imagery. Mathematical morphology 
transformations apply to sets of any dimensions, inc luding those in Euclidean 
' -space and its discrete or digitized equi ·alents, the set of N-tuples of integers, 

zN . For the sake of simplici ty we will refer to eit.her of these sets as£"' . 
Those points in a set being morphologically transformed are considered as 

the selected set of poinls and Lhose in the complement set are considered as not 
selected. Hence, morphology from this point of view is binary morphology. We 
begin ou r discussion wi th ihe morphologica l operation of dilation. 

Dilation: Dila ion is a morphological transformation which combines two sets 
using vector addition of seL elements. If A and B are sets in N-space (EN) with 
elements o and b respectively, o = (a 1 ... . , aN) and b = (bi, ... , bN) being N
t uples of elemen coordioat.es 1 then the dilation of A by B is the set of a ll 
possible vector sums of pairs of elements ·o·ne coming from A and one coming 
from B. Denoting dilation by EB, 

A EBB= {c E ENjc =a+ b for some a EA and b EB} 

Dilation as a set theoretic operation was proposed by Minkowski (1903) 
to characterize integral measures of certain open (sparse) sets. Dilat ion as an 
image processing operation was employed by several early investigators in image 
processing as smoothing operations: Unger (1958) Golay (1969), Preston .(1961, 
1973) . Dilation as an image operator for shape extraction and estimation of 
image parameters was explored by 1atheron (1975) and Serra (1972). 

Mathematica!Jy, the roles of the sets A and B are symmetric; the dilat ion 
operation is commut.ative because addition is commutative.. Hence A EB B = 
B EB A. In practice A and Bare handled quite differ.ently. The first operand, A, 
is considered as the image undergoin g ana lysis, while the second operand, B, is 
referred to as the structuring element , to be thought of as constituting a single 
shape parameter of the dilation transformation. 
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Figure 8: Dilation by an octagonal structuring element. 

Dilation of a se by a structuring element in the shape of a disk resu]Ls in an 
isotropic swell ing or expansion of the set. Approximating the disk by a sma ll 
square, (3 x 3), the expansion can be implemented as a neighborhood operation 
on a mesh architecture or pipelined image-processing architecture. Some exam
ple dilation ransformations are illustrated in Figures 8 and 9. fn the upper left 
is the inpu image consisting of two objects. The lower r ight shows a11 octagonal 
structuring element. The upper right shows he input image dilated by the oc
tagonal structuring element . In figure 9, the upper left contains the input image 
consisting of two objects. The upper right shows the input image dilated by 
Lhe structuring element {(0 , 0), {14,0)}. The lower left. shows t.he input image 
dilaLed by the structuring element {(0,0), (0, 14)) . The lower right right shows 
the input image dilated by the structuring element {(O; 0) , (14, O), (0 , 14)} . 

Since addition is associative, the dilation of an image A by a structuring 
element D, which is itself a dilation D = B $ C, can be computed as 

A·EBD = AEB(BEBC) = (AEBB)$C. 

That is, dilation is associati.:e. The form (AEBB)t:BC gives a considerable savings 
in number of operations to be performed when A is the image and B EB C is the 
structuring element: The savings come about because a brute force dilation by 
B $ C might take as many as N 2 , operations whlle first dilating A by B artd 
then dilating the result by C could take as few as 2N operations, where N 1s 
the number of elements in B and in C. 
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Figure 9: Dilation with a additional structuring elements. 

The dilation of A by B can be computed as the union of translations of A 
by the elements of B. That is, A EBB= LJ (A)b. 

bEB 

Erosion: Erosion is the morphological dual to dilation. It. is normal ly used 
to eliminate small protrusions on a shape or islands in an image . I ca.n widen 
cracks and holes. Erosion combines two set-s using vector subtraction of set 
elements. If A and B are sets in Euclidean N-space, then the erosion of A by 
B is t.he se of all elements :c for which x + b EA for every b E. B. 

Let us denote the erosion of A by B as A e B. Erosion is thus defined by 

AeB={xEENlx+bEA for every bEB} 

The utility of the erosion transformation is better appreciated when the 
erosion is expressed in a different form (that given by Matheron 1975). The 
erosion of an image A by a structuring element B is the set of all elements x of 
EN for which B translated to x is contained in A. 

A e B = {x E EN I (B)., ~ A} 

Erosion is illustrated in Figure 10. The upper left shows the input image 
consisting of two blobs. The upper right shows the input image eroded by the 
structuring element 

{(0,0), (-14,0)} 
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Figure 10: Erosion of an image of two blobs. 

The lower left shows the input image eroded by the structuring element 

{(0, 0), (0,-14)} 

The lower right shows the input image eroded by the structuring element 

{(0,0), (0,-14), (-14,0)} 

0 penings and Closings: [n practice, dilations and erosions a"re usually em
ployed in pai.rs, either dilation of an image followed by the erosion of the dilated 
resu lt, or image erosion followed by dilation . 1n either case, the resu lt of iter
atively applied dilations and erosions is an elimination of specific image detail 
smaller than the structuring element without the global geometric distortion 
of un suppressed features. The opening of image B by structuring elemen /( 
is denoted by B o I( and is defined as B o K = (B e H) $ J(. The closmg 
of image· B by structuring element K is denoted by B • J( and is defined by . 
B • I< = (B@ K) 9 JC 

For example, opening an image with a disk structuring element smooths 
Lhe contou.r , breaks narrow isthmuses, and eliminates small islaods and sharp 
peaks or capes. Closing an image with a disk structuring element smooths the 
contours, fuses narrow breaks and long thin gulfs, eliminates small boles, and 
fills gaps on the contours. 
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Of particular significance is the fact that image transformations employing 
iteratively applied dilations and erosions are idempotent, that is, their reap
plication effects no further changes to the previously transformed result. The 
practical importance of idempotent transformations is that they comprise com
plete and closed stages of image analysis algorithms because shapes can be 
naturally described in terms of under what structuring elements they can be 
opened or can be closed and yet remain the same. 

If B is unchanged by opening it with K, we say that B is open with respect 
to I{, while if B is unchanged by closing it with K, then B is closed with respect 
to K. 

Sets which can be expressed as some set dilated by K are necessarily open 
under K . 

A EB K = (A EB K) o K K 

Similarly, images which have been eroded by J{ are necessarily closed under 
I{, 

A e J{ = (A e K). I{ 

From these two facts , the idempotency of opening and closing follows . Openings 
and closings have other properties. For example, it follows immediately from 
the increasing property of dilation and the increasing property of erosion that 
both opening and closing are increasing. 

There is a nice geometric characterization to the opening operation . This 
characterization justifies why mathematical morphology provides material for 
extracting shape information from image data. The opening of A by B is the 
union of all translations of B that are contained in A. The closing of A picks 
up all points in the reflection of a translation of the structuring element which 
has non-empty intersection with A. 

Discussion: Dilation, erosion, opening and closing can be used as the basis 
of image algebras. These algebras allow the definition of shape ~ransformations 
that are customized for particular applications. A sequence of these operations, 
with suitable structuring elements, can be used to identify gear teeth in images 
of gears,or holes of particular sizes in images of machine parts. These techniques 
have been successfully applied to the problem of visually detecting shorts and 
open circuits in the wiring of printed circuit boards. This is illustrated schemat
ically in Figure 11. Opening removes small protrusions, isthmuses and islands. 
Closing removes small cracks, bays and holes. Taking the exclusive-Or of the 
resulting image with the original gives an image in which only potential defects 
remain. 

These operations can be efficiently computed with appropriate hardware. 
The 1985 IEEE Computer Society Workshop on Computer Architecture For Pat
tern Analysis and Image Database Management had an entire session devoted to 
computer architecture specialized to perform morphological operations. Papers 
included those by McCubbrey and Lougheed (1985), Wilson (1985), Kimmel, 
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Figure 11: Application of opening and closing to PC board inspection . 

Jaffe, Manderville, and Lavin (1985), Leonard (1985), Pratt (1985), and Haral
ick (1985). Gerritsen and Verbeek (1984) show how convolution followed by a 
table lookup operation can accomplish binary morphology operations. 

Mathematical morphology is being extended to encompass more and more 
general classes of operators. Gray-scale extensions have been studied. Efforts 
have been made to cast morphology operations into a digital signal processing 
framework. 

A tutorial article presenting many more of the details of mathematical mor
phology is the paper by Haralick, Sternberg, and Zhuang (1987). 

3 Computational Vision Advances 

3.1 Shape Representation and Analysis 

Introduction: The task facing a computational vision system is to compute 
descriptions of a 3-D scene given projections of that scene into 2-D images. 
The current paradigm for computational vision research assumes that a sys
tem must be structured into levels or modules with various special purpose 
representations at each level, and process these transform descriptions in one 
representation into descriptions in another. Each representation serves to make 
explicit some properties· of the image or scene and leave others implicit. The 
choice of a representation for each particular level constitutes the determining 
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design decisions for a pa rLicular vision system . A wide var iety of criteria enter 
in to these choices; it is imp0rtant to discover and explicate these criteria, 

For vision , we can dist inguish four varieties of domains that need explicit 
shape representation: 

1. Functions of one variable, as occur in, say, examining the intensity profile 
across a discontinuity in an image. 

2. 2-D shapes such as the contour of an image region. 

3. Functions of two variables, such as the depth map of a visible surface 
which gives depth as a function of x and y. 

4. 3-D shapes such as the bounding surface of a solid object. 

This section will be structured around descriptions of some advances in rep
resentation techniques for each of these domains. 

3.2 Criteria for Shape Representation 

Given that the concept of "shape" is intuitive rather than formal and the fact 
that for any shape domain there are infinitely many possible representations 
of the "shape" of an object, many researchers have felt the need to explicate 
adequacy criteria for shape representations. These necessary criteria allow one 
to make sensible design decisions and tradeoffs when choosing a "good" shape 
representation. Here we shall provide a set of criteria based on the current state 
of the art (Marr and Nishihara, 1978; Binford, 1982; Brady, 1983; Mokhtarian 
and Mackworth, 1986; Mackworth, 1987; Woodham, 1987a, 1987b). 

Representations of shape should be: 

Computable: Given the input data and model assumptions, the representa
tion should be efficiently computable on a suitable serial. or parallel ar
chitecture. That is, the computational complexity should be a low-order 
polynomial in time, space, and number of processors. 

Local: If the parts of the representation depend only on data in a defined 
neighborhood of the object, then it has local support. If only some of 
the neighborhoods are present in the data, then a useful representation 
can still be computed for occluded or distorted objects. Also the inherent 
parallelism can be exploited by using special purpose architectures that 
process the neighborhoods in parallel. 

Stable: A small local change in the object should induce a small local change 
in the representation . This is required for resistance to noise and in order 
to make possible the matching of shape. 
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Unique: For a given object , ther must be a unique representation. Tl1e map
ping from object to representation must be a single-valued function from 
the object domain to he representation domain. This rules out schemes 
that make arbitrary choices about the mapping. 

Complete: For a large and important domain of objects, the function from 
object to representation should be "total." That is, for each and every 
object there is a corresponding representation. 

Invertible: Ideally, the mapping from object to representation should be in
vertible ( also called nch or information preserving). If the object-t0-
representation mapping is many-to-one, then different objects cannot be 
distinguished on the basis of their representation. Thus the mapping must 
be one-to-one; that is, a representation specifi es a unique object . lf the 
one-to-one mapping is computationally invertible (which it might noL be, 

ven if the mathematical mapping is one-to-one) then, for example, Lhe 
visual appearance of an object can be predicted from its representaLions . 

Inval'iant: If a pair of 2-D objects or a pair of 3-D objects diff'er only by a rigid 
translation or rot.aLion or by a magnificat ion (a uniform change in scale) 
w would say that they have Lhe same shape. Accorclingly we required that 
the shape representa tion be essentially invariant under these transforma
tions. This tequirem~nL is apparently in conflic wi h the requiren 1ent for 
invertibility; two objects seem to have the .same representation. However , 
if this representation includ.es translation, rotation, and magnification pa
rameters as components, the conflict with invertibility is resolved. 

Scale-sensitive: The representation should incorporate informalion about he 
object at. varying levels of detail, coarse-to-fine. This usually correspond 
to varying the size of the "neighborhood of local support." It also con
tributes to the required stability and matching properties of tb repre
sentation. By suppressing the fine detail in the representation one may 
concentrate on the broad , overall shape features and save on storage and 
processing time at the expense of accuracy and the invertibility criterion. 

Composite: 2-D and 3-D objects have a natural recursive part-whole compo
siLion structure which should be explicit in the representation. 

Matchable: The representation should be designed o support a matching pro
cess that compares two shape descriptions (one, for example, from the 
image, the other a stored prototype) and returns a descrip·tion of their 
difference. Tl1is includes computing properties of an object. using the 
representation . For e,"'(amp le, whether an object is symmetric can be de
termined by matching its description with the description of a generic 
symmetric object. 
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Generic: A shape represenlalion should suppor Lhe description of a generic 
class of objects as well as specific objects (perhaps through parameteriza
tion). Thus if the representation is invertible as well as generic, it can be 
used in generic, symbolic prediction of appearances. 

Refinable: If the representation supports generic descriptions, they should be 
refinable with the acquisition of more constraints (from the image or else
where) to characterize a more specific object class. 

These dozen criteria serve as useful tools not only for the evaluation of 
existing shape representations, but also for their elaboration and the discovery 
of new methods. We now turn to examine their applications t.o the four levels 
of object domains found in most vision systems. 

Descriptions of Functions of One Variable: Suppose one wishes to de
scribe a noisy one-dimensional signal, /(x), in order, say, to find in ensity 
changes. A Fourier decomposition of the signal has many desirable proper-
ies. It satisfies many of our criteria, but cru.cia.lly, fails to satisfy the criterion 

of locality : each of the Fourier basis functions has an inftnHe neighborhood of 
support. Suppose we want to use the description to find edges characterized by 
abrupt changes of intensity. Jf the sigi1al has undergone significant degradation 
du e to blurring and noise processes, then an edge can be said to exist at location 
x and scaler, if the slope at point x and scale u achieves a local maximum with 
respect to x . To make this precise, the slope at point 1· and scale r, can be 
defined to be the result of differentiating the funclion F(x , r,) that arises from 
convolving f(x) with the Gaussian G(x, r,). 

F(x,r,) G(x, r,) ® f(x) 

Joo l e-(:r-u),/2"2 f(u)du 
-oo .,.)5';' 

An "edge" exists at location x and r, wherever F:r(x, r,) reach.es a maximum 
or minimum or where 

F:r:r(x, u) = 0 and F:rr:r(X, o-) #- 0 

This technique, introduced by Stansfield (1980) and , most effectively, by 
Witkin (1983), is known as scale-space filtering . It plays an important role in 
many new techniques for shape representation. The (x, r,) space known as scale 
space, can be used to represent a binary image, the scale space image of /(x), 
with a mark wherever F.::r (x, r,) = 0 and P:r:r:r -f= 0 

We note the following: 

Fxx(x, r,) = #l,-[G(x, u) ® f(x)] 
= GuJ(x,r,) ® f(x). 
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Thus the scale space image can be computed by precomputing the masks, 
G:r:r(X, tr) . 

For an ex tensive disc ussion of scale-space methods wit h good examp les see 
Witkin (1987 ). T he Gauss ian is the only filter thaL does not create generic zero 
crossin gs as the scale increases, and this is t rue in any dimension. (Babaud et 
al, 1986, Yuille and Poggio, 1986) . This key monotonic property means that 
the scale space image of a function of one variable is hierarchically structured. 
In the scale space image the contours of F:z:z(x, tr)= 0 only have maxima-not 
minima. This property allowed Witkin (1983) to define the interval tree in scale 
space. The "edges" whose scales exceed any given value of tr partition the x-axis 
into intervals. As tr is decreased from a coarse scale, new edges appear in pairs 
dividing the containing intervals into three subintervals. 

This subdivision process continues as tr is decreased down to the finest avail
able scale (Witkin, 198i). This interval tree can be used as a representation of 
the shape of the function that satisfies many of the criteria of Section 3.2. It 
is not as stable as one might like-small changes in the function can produce 
large changes in the topology of the interval tree. Surprisingly, it is invertible. 

Yuile and Poggio ( 1984) show that the scale space image uniquely charac
terizes the curve modulo a multiplicative constant and a linear additive compo
nent, but the inversion may not be "computat ionaJly well-conditioned" even if 
the slope or strength of each zero crossing is known (Hummel, 1986) . 

Mokhtarian and fac kworLb (1986) show how o match scale space images 
using the A* a lgor ithm (cf. Volume 1) . 

Clark (1 987) observes that t he "edges" marked in th e scale space image can 
be classified as "authentic edges" and "phantom edges." "Authentic edges" 
correspond to posi li ve maxi ma and negative minima of Fa: ( x, u) w bile so-ca lled 
"phantom edges" correspond to negative maxima and p osi tive minima of Fr:: (x tr ). 
These can be simply discrimina ted based on t he sign of Fr (x, u)Frn(x tr ). T he 
removal of the phantom edges from the scale space image produces a reduced 
scale space image which is not as well-behaved as the scale space image. 

Cann.y (1983) presen ts an edge detector tha t is almost optimum with respec 
to the t radeofT of detectabili ty in the presence of noise and localization based 
on similar mul tiscale ·ec hniques. His opera tor detects local maxima in the 
convolution with the first derivative of a Gaussian. Deriche (1987) improves on 
Canny's results. 

Descriptions of Two-Dimensional Shapes: An arbitrary curve in 2-D 
space is the simplest generalization possible beyond a function of one variable. 
A 2-D connected region in a binary image may be represented by t he simpl 
closed curve corresponding to the exterior bounda.ry and zero or more closed 
curves corresponding to the boundaries of any holes. It is , therefore, impor
tant to have shape representations for open and closed curves that satisfy our 
criteria. 
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Figure 12: Point O lies on an axis of local symmetry. 

l\Iany current vision systems use global 2-D shape-dependent features such 
as the number of holes, aspect ratio, the ratio of perimeter squared to the area, 
moments of inertia and the like (Brady, 1983) . Although such properties can 
be computed efficiently and can be used in simple industrial inspection jobs 
(where the lighting can be controlled and the context is narrowly limited), hey 
are not sufficiently local, stable, invertible scale-sensitive, composite, •eneric 
or refinable to handle more general vision tasks such as interpreting O'ltdoor 
scenes. 

Brady and Asada (1984) proposed smoothed local symmetries as a represen
tation of 2-D shape. Essentially, a local symmetry exists for a pair of points A 
and B on a simple smooth closed curve if and only if the right bisector of the 
straight line joining A and B serves as an axis of symmetry for the tangents to 
the curve at A and B. 

In Fig. 12 the point O lies on an axis of local symmetry. In theory one 
computes for all pairs of points on the curve the set of all poillts that lie on 
axes of local symmetry. Then one computes the maximal smooth loci of those 
points, Each locus is a candidate axis. A local symmetry constitutes a locally 
plausible way to describe a portion of the contour and the region it subtends, 
ca lled Lhe "cover" of that axis. Each axis whose cover is properly contained in 
the cover of another axis is deleted to give the final ~epresentation. 

In practice, the algorithm must contend with incomplete and noisy data and 
so is more complicated and must be optimized for better efficiency. Brady and 
Asada (1986) propose placing knots at points of high curva ture on the bound
ing contour, constructing a piecewise smooth approximation to the curve using 
straight lin e-S and circles, then computing the smoothed local symmetries of the 
approximation to the contour. Asada. and Brady (1986) propose using the scale 
space image of the curvature as a function of a.re length to recognize the existence 
of certain primitives 'that embody orientation and curva~ure discontinuities. 
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Figure 13: Rubin's Vase. 

The smoothed local symmetrJes representation is a development of the sym
metric axis transform (Blum and Nagel, 1978) and the 3-D generalized cylinder 
representation (see Section 3.2) . The symmetric ax.is transform is the locus of 
the centers of maximal circles contained within the region . Such circles must 
touch the boundary at two points, at least. 

Hoffman and Richa.-ds (1982) also used curvature, proposing that knots be 
placed at negative minima of curvature and that a dic tionary of "codons" be 
used as prim1tives between Lhe kno~s. This has the advantage of nice ly explain
ing figur -ground reversal segmentation phenomena as occur in Rubin's Vase 
(see Fig. 13), for example, but does not satisfy the need for scale-sensitive and 
stable representations. 

In searching for ways to generalize the scale-space transform from func;tions 
of one variable to two-dimensional shape analysis there are several possible 
approaches. We have already mentioned the use of smoothing of he curvature 
of the boundary as a function of arc length (Asada and Brady, 1986) . Another 
approach would be to smooth 1.he 2-D image of the region with a 2-D Gaussian 
filter and extract the zero crossings of the Laplacian operator(/;,-+ /ir) ( larr , 

1982 ). Unfortunately, as YuiUe and Poggio (1986) show, as the scale of the 
filter is increased a zero crossing contour so obtained can split into two, or t wo 
contours can merge in to one. Babaud et a l (1986) show a dumb-bell shaped 
region that exhibits both of these behaviors. The si ngle initial contour splits 
i.nto two as the scale increases, but as it increases still furth er hey merge back 
again into a single contour. Although the monotonic property discussed earlier 
holds for 2-D smoothing in the sense that no new contour can appear ( wit,hout 
splitting off an existing contour), this behaviour is non-monotonic in the sense 
that the number of regions defined goes from 1 to 2 and back to 1 as u increas s. 
This is not satisfactory from the point of view of scale-sensitivity. 

Accordingly, Mokh arian and Mack worth ( 1986) propose a boundary smooth~ 
ing aproach. It is not appropriate to smooth y = y(x) as a function of x for 
several reasons, one of which is simply that a smoothed version of the curve and 
the smoothed version of the curve rotated through 1r/2 would have radically 
different shapes violating our invariance criterion . They propose smoothing in 
a natural path-based coordinate frame. The cu.rve is described parametrically 
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as 
{(x(t), y(t))lt E [O, l)} 

where t is a linear function of path length. Then the curve is smoothed by a 1-D 
Gaussian kernel G(t, a-). The resultant smoothed curve represents the original 
curve at coarser detail. If the original curve is closed, the smoothed curve is 
closed. The zeros of curvature (the inflection points) on the smoothed curves 
can be displayed as a map in (t, a-) space as a generalized scale space image of the 
curve. This hierarchically structured scale space image is a useful representation 
of the shape of the curve or the region contained in the curve if it is closed. 
!\Iokhtarian and l\1ackworth (1986) show how to use this representation to match 
landforms in a map and a Landsat satellite image using a coarse-to-fine strategy. 
The major disadvantage of this representation is that all simple convex curves 
ha'!·e the same representation, the empty scale space image, since they have no 
points of inflection. Compared with the alternative of smoothing the curvature 
function (Asad a and Brady, 1986), it has the advantage of preserving the closure 
of closed curves (Horn and Weldon, 1986). 

Horn and \Veldon (1986) propose a representation called the extended circu
lar image for simple closed convex curves. This is the 2-D analog of the extended 
Gaussian image representation for convex 3-D objects (see Section 3.2). In the 
extended circular image one is given the radius of curvature R as a function 
of normal direction 'lj>. For a circle radius R we have R('l/J) = R. In general 
R('lj)) = l/1e(s) where 1e(s) is the curvature as a function of path length. The 
integral of the extended circular image over a range of angles is the length of 
the portion of the curve with a normal direction within that range. The ex
tended circular image of a closed convex curve is unique and invertible. One 
may smooth a closed convex curve by convolving its extended circular image 
with a smoothing filter (such as the Gaussian) and inverting the result to pro
duce a smoothed , closed convex curve. This representation has most of the 
properties of a good shape representation. With regard to completeness its do
main is complementary to that of Mokhtarian and ackworth ,vit,h respect to 
the set of all closed curves. 

Descriptions of Functions of Two Variables: It is important to have 
good shape descriptions of single-valued functions of two variab les-surfaces in 
3-space. Describing the image intensity surface l(x, y) and the visible surface 
depth map z(x, y) are two examples of where this is needed , The depth map 
z(x, y) may be an intermediate stage of description of the scene or it may be 
obtained directly as a range image from an active sensor using sonar or struc
tured light from, say, a laser. Besl and Jain (1985) survey some recent work in 
the description of surfaces. 

Haralick et al (1983) survey several papers on topographical classification 
of digital surface features , and propose a descriptive scheme based on a set of 
ten labels that include features such as peak, ridge, saddle, planar, pit and 
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the like. At each pixel in the intensity image, the parame ers of an analyLical 
facet model are estimated to give the best local fit . Those parameters can then 
be u ed to determine slope the principal directions of curvature and the two 
principal curvatures which determine the pixel labe ls. Nackman (1984) proposes 
a si.rni la.r scheme for segmenting surfaces based on critical point (local maxima 
local minima and saddle points) . 

Scale-sensitive descriptions of functions of two variables may be obtained 
using the 2-D scale space approach with the drawbacks discussed in the previous 
section . 

R ecovery of the depth map z(z, y) from the image intensity function l(x, y) 
is in general an ill-posed problem (Tikhonov and Arsenin, 1977) because the 
solution is not unique - the imaging process is not uniquely invertible. If, 
however, the imaging model is simple then one can recover the ' bes ' surface 
which could have produced the given image, under known illuminat ion and 
imaging geometry and radiometry conditions . Suppose the image intensity at 
a point on the surface imaged is known to depend only on the surface gradient. 
(p, q) (Mackworth, 1983) then the image irradiance equation takes t,he form 
(Horn , Hl86) : 

I(x, y) = R(p, q) 

Clearly given J(x , y) on a digital grid as lij = J(:z: 11 Yi) and the functional 
form of R(p, q) we cannot determine {Pii} and {q,·1} since they are und ercon
strained. The extra constraint necessary can be provided by insisting that the 
surface found be the one that minimizes a weighted sum of the squared error 
in the image irradiance eq uation and a quadratic measure of the smoothness of 
the surface (Ikeucni and Horn , 1981). This functional essentially selects a single 
surface from the set of all possible surfaces. One can determine this su-rfac by 
setting the partial derivatives of this functional with respect to the orientation 
parame ers equal to zero and solving t}1e large sparse set. of linear equations by 
an ilerative re laxation method. Terzopoulos (1986, 1987) has shown t.hat the 
convergence of this process can be accelerated using multigrid relaxation meth
ods again demonstrating the importance of scale~sensitive descriptions. (Fur
ther details on rnultigrid methods are given in Section 4.6 .) '\\ oodham (1987a) 
and Horn (1986) provide recent excellent overviews of the shape-from-shading 
metJ10d and the use of multiple light sources, photometric stereo (Woodham, 
1980) to overconstrain the surface gradients. 

Another approach Lo determining shape-from-Xis based on fractal modell ing 
of the surface (Pentland, 1983). If we assume that a surface has isotropic frac
tal characteristics, lhen under certain imaging assumptions the image intensity 
surface will also have fractal characteristics . By measuTing those charac eristics 
one can arrive at estimates of the 3-D surface characteristics. 

Another class of shape-from-X methods is shape-from-contour. The blocks 
world scene domain was the development ground for many of these methods 
as documented in Volume 3 of the Handbook. Despite the fad that most re-
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searchers abandoned the blocks world, many important theoretical and practi
cal problems remained unsolved. Sugihara (1986) has continued to attack those 
problems. His book is an excellent summary of his results. It is organized 
around the exposition of a four-module procedure for the interpretation of line 
drawings as polyhedral scenes. The first module is the classical Huffman-Clowes 
labelling. However, Huffman-Clowes labelling may generate specious labellings 
that are not realizable as polyhedral scenes (Mackworth, 1977a). Accordingly, 
the second module determines which of the proposed labellings are realizable. 
This test of geometric feasibility is carried out by reducing the problem to the 
determination of a feasible solution to a linear programming problem. The third 
module allows tolerance in the definition of geometric feasibility by removing 
redundant constraints and "correcting" the original line drawing (moving ver
tices and the like) . The fourth module allows the use of additional information 
sources such as 3-D range finding, surface shading and texture to pick a unique 
scene interpretation from the infinite number of possible scenes in the equiva
lence class of interpretations depicted by the image. 

There were at least four main open issues at the end of the first decade 
of blocks world research. First , procedures such as Huffman-Clowes-Waltz la
belling and gradient space reasoning applied necessary but not sufficient tests 
for realizability. Second, it was not clear how to characterize the degrees of free
dom in the scene equivalence class. Third, the computational complexity of the 
problems and their algorithms was not understood (see section 3.2). Fourth, 
it was not known how to apply these methods to "real" images, integrating 
these methods with other shape-from-X methods and coping with noisy data. 
Sugiha ra has contributed substantially to t he solu tion of each of these problems. 

The old question as to whether this approach will genera lize outside the 
blocks world must be faced . Obviously the tec hniques will not work on images 
of tea cups or clouds. But, just as with the gradient space approach, the under
lying methodology does apply generally. It is a demonstration of the power of 
characterizing the equivalence class of scenes in terms of the cc:instraints from 
the image imposed on the a priori degrees of freedom of the scene (Mackworth, 
1983), and, furthermore of finding a unique scene by minimizing a functional 
over the equi valence class. Moreover, Sugihara contributes to the theme of rigid
ity of st ructures by developing the analogy between the duali ty principle behind 
grad ient space structures and the corresponding dua lity principle behond force 
diagrams of rod and pin structures. These ideas will generalize far beyond the 
blocks world as we design and build large space frame structures on earth and 
beyond. The developments in this book depend on recent advances in matroid 
theory which makes them somewhat inaccessible to many readers . 

Representing Three-Dimensional Shapes: As discussed in Volume 3 (pages 
268-278), three dimensional object shape representations can be vertex and 
edge-oriented , surface-or iented, or volume-oriented . The most common volume-
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oriented representation is the generalized cylinder. As Binford (1982) demon
strates, it satisfies many of our shape representation criteria. But notice that 
it may not be unique - often an arbitrary choice of axis must be made . Shafer 
and Kanade (1983} provide a very useful categorization of generalized cones and 
cy lind ers. Brady and Asada's (1984) smoothed local symmetries can be seen as 
a 2-D generalized cone representation. It may be useful for accessing s ored 3-D 
representations. 

The ext.ended Gaussian image (EGI) is an important 3-D object representa
tion tool that has received attention recently (Horn, 1986, Chapter 16). For a 
convex solid object this is an invertible shape representation. It can be derived 
from the needle map produced by photometric stereo or a depth map produced 
either by binocular stereo or by a direct depth sensor. 

The extended Gaussian image of an object is defined on the unit Gaussian 
sphere that corresponds to the set of all possib.le normals on tbe object. For a 
polyhedron the EGI is a set of impulses. Each impulse corresponds to the fac 
with the appropriate normal. The weight of the impulse is the area of the fa e. 
Litt.le ( I 983) shows how to invert the representation; he reports on an iterative 
algorithm ha reconstrucLs a polyhedron given the areas and orientations of 
he faces. 

For a smooth convex object its EGI must be approximated by tessellating 
the Gauss ian sphere. Each facet on the sphere has a weight equal to the surface 
area on the object for which lhe normals lie within the facet. Coarse-to-fine 
EGl representations can be constructed using successively finer tessellations. 
The extended circular image discussed in sec ion 1.4 is the 2-D analog of !.11e 
EGL 

An interesting proposal for 3-D shape modelling is the superquadrics ap
proach (Barr, 1981) advanced by Pent.land (1986). This can be seen as an 
attractive alternative to the genera lized cones approach. The primitives in this 
approach are chosen from a parameterized fami ly of superquadric 3-D shapes. 
A simple superquadtic is a shape described by the following equations: 

x(T), w) = 
y(1],W) 
2(1),W) = 

(cos1))f 1 (cosw)<> 
(cos7])< 1 (sinw)<> 
(sinw)<> 

where (x(f/ 1 w), y(1], w), z(17, w)) is a 3-D vector that sweeps out a surface param
eterized by latitude 1) and longitude w. The shape of the surface is controlled 
by the parameters e1 , and c2, For example if £ 1 = £2 = l, then the shape is a 
sphere . But the complete family ofsuperquadrics also includes cubes diamonds, 
pyramids and cylinders. The complete modelling system allows these parts to be 
stretched, bent , twisted and tapered , and then combined using Boolean combi
nations (ands, ors and nots) to form new prototypes that can then, recursively, 
be again deformed and combined with other prototypes. From the perspective 
of our adequacy criteria for shape represen ation, this proposal offers several 
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advantages. The completeness of the domain of coverage is high. Most other 
proposals, such as generalized cones, are essentially subsumed by it. 

3.3 Object Recognition 

Bolles and Cain (1982) present the "local-feature-focus method" for recognizing 
and located 2-D possibly occluded objects. An object model consists of a graph 
whose vertices represent features such as corners and holes and whose edges are 
labelled with the distance and relative orientation of the two features related by 
the edge. The edge constraints help to control the matching process. 

Similarly, Grimson and Lozano-Perez (1984) show how to use local measure
ments of 3-D positions and surface normals to identify and locate objects in a 
scene from a set of known objects. The objects are modelled as polyhedra with 
three degrees of rotationa l fr eedom and three degrees of translational freed om. 
The local measurements could come from a set of tactile sensors or 3-D range 
sensors. The measurements are assumed to have a small range of possible er
rors; although the normal measurements are assumed to be less reliable than the 
position measurements. The problem can easily be formulated as an exhaustive 
search problem; the trick is to reduce the search space to one of manageable 
size . For each object in the repertoire, the system searches an ·interpretation 
tree. If there are s measurements and n faces for the object, then the tree has 
s levels and a branching factor of n at each level. The tree has, potentially, 
n• leaves each corresponding to a set of assignments of the s measurements to 
the n faces. However , the search tree may be cut off above the leaf level using 
binary constraints such as: 

1. Distance constraint . The distance between a pair of measurements must 
be a possible distance between the pair of faces assigned to them. 

2. Angle constraint. The range of angles between measured normals must 
include the angle between the pair of faces assigned to them. 

These and other constraints are used very effectively to prune the interpretation 
trees as early as possible. Considerable data is provided to demonstrate the 
power of using such local constraints to control the global object matching 
process. 

Grimson (1986) provides careful combinatorial analysis of the efficacy of 
various constraints . Grimson (1987) extends the approach to the recognition of 
objects that can vary in parameterized ways, with parts that may have rota
tional, translational, scaling and stretchi.ng degrees of freed om. 

Bolles and Horaud (1986) describe 3DPO, a system for determining the 3-D 
position and location of parts in a jumbled bin of identical par ts. It genera es 
hypotheses about part locations using 3-D edge features extracted from range 
data and then matches distinctive features to confirm or refine the match. 

33 



Another successful approach to the bin-picking problem has been reported 
by Ikeuchi and Horn (1984) (see also Horn (1986), Chapter 18). This approach 
does not used irect range data, relying instead on photometric stereo (Woodham, 
1980) (Handbook Volume 3, p . 13 ), Mult,ip le images are captured, changing 
the position of the light source but keeping the camera in place . These images 
combined with a reflectance map model of the imaging situation and the surface 
reflectance provide sufficient constraints to extract an image-registered map of 
surface gradients ( the needle diagram) . 

The needle diagram can then be mapped onto a ·tessellated Gaussian sphere 
giving an orientation histogram where each facet contains the sum of the object 
surface areas corresponding to that range of orientations. This is a discrete 
approximation to the visible half of the extended Gaussian image (Section 3.2) . 
This shape representation can be ma ched against a stored hist.ogram obtained 
from a prototype model of the part. The best match gives the atti tude (but not 
the distance away) of the object to be picked up. The object gripper is moved 
out along the ray from the camera on which the object is known to lie until a 
proximity sensor is triggered at which point the gripper can be oriented for the 
known attitude of the object. The object is th en grasped and removed . 

Advances in 3-D objec t recognition from a single intensity image beyond 
ACRONYM (Brooks , 1981) (Handbook Volume 3, pp. 313-321) have been re
ported by Goad (1983) and Lowe (1985, 1987). Goad presents an interesting 
\·iew of recognition as special-purpose automatic progranuning. His assumption 
is that a program to recognize a particular object can be optimized off-line for 
that object by considering all possible views of the object to minimize actual 
recognition time. Recognition is seen as a process of searching for the cam
era viewpoint in an object-centered coordinate system. As with Grimson and 
Lozano-Perez ( 1986) this process is seen as a tree search matching image data 
to model data. In this case the data matched are lines from the image with 
edges in the model. The order of matching is precomputed to minimize search 
times. Recognition times of the order of one second are report~d on a 1 .MIP 
machine. 

Lowe (1987) has also descTibed a system SCERPO, that can recognize and 
locate 3-D objects in single grey scale images. The system first extracts edge
based features and forms perceptual groups (based on collinearity, parallelism 
and proximity) that are likely to be invariant over a wide range of viewpoints. 
These are then matched against object structures with a probabilistic matching 
structure used to reduce the size of the search space. Finally the unknown view
point and model parameters are determined by an iterative process of spatial 
correspondence based on ewt.on's method. Results on an image of a bin of 
disposable razors show robustness in the presence of occlusion and poor seg
mentation data. 

Bes! and Jain (1985) provide an extensive survey of 3-D object recognition 
systems and techniques with a particular emphasis on the use of range images. 

34 



3.4 Constraint Satisfaction 

Introduction: The term constraint satisfaction is used both to describe a 
class of problems and to name a method of solving these problems. Constraint 
satisfaction problems have considerable importance in vision and other areas 
of AI (l\Iackworth, 1987b). We shall briefly survey the two main approaches, 
emphasizing some recent results. Boolean constraint satisfaction problems, as 
typified by H uffman-Glowes-Waltz labelling, are one main class. The other is the 
class of optimization problems that used to be known as probabilistic relaxation 
problems. 

Boolean Constraint Satisfaction Problems: A Boolean constraint satis
faction problem (CSP) is specified if one has a set of variables 

and a set of Boolean constraints limiting the set of allowed values for specified 
subsets of the variables. Each variable takes on values in some domain. The 
set of solutions to the CSP is the largest subset of the Cartesian product of the 
domains of the n variables such that each n-tuple in the set satisfies all the given 
constraint relations. One may be required to list or describe all the solutions, 
find one or just report if the solution set contains any members-the decision 
problem. (Mackworth, 1977b; Haralick and Shapiro, 1979). 

For example, deciding if an image can be labelled using the Huffman-Clowes 
labels is a CSP decision problem. There the variables can correspond to the 
junctions, the domains to the set of possible corners allowed for each junction 
type and the constraint relations to the binary constraint that the corners at 
each end of an edge must have the same label for the edge. Or, dually, one could 
set up a CSP with the variables corresponding to the edges, the domains to be 
the set of possible edge labels allowed and the constraint relations to the k-ary 
relations corresponding to the set of possible corners allowed by each junction 
type. 

Determining if a planar map can be colored with three colors is a Boolean 
CSP that is NP-complete; therefore, efficient (polynomial) algorithms are un
likely to be found for the general class. Moreover, it has recently been shown 
that even the Huffman-Clowes labelling CSP is NP-complete (Kirousis and Pa
padimitriou, 1985). 

Since the general problem may well require exponential time to solve, ap
proaches have concentrated on polynomial approximation algorithms that en
force necessary but not sufficient conditions for the existence of a solution. 

Waltz's (1975) filtering algorithm is one of the arc consistency approxima
tion algorithms. These algorithms are members of a class of network consistency 
approximation algorithms (Mackworth, 1977b) furthfir generalized by Freuder 
(1978) . Mackworth and Freuder (1985) settled a long-standing debate by prov-
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ing that Wall.z's arc consistency algorithm requires time linear in the number 
of constraints, at most. 

Although in the past it was felt that CSPs are amenable to parallel solu
tion, Kasif (1986) showed that arc consistency is "inherently' a serial problem. 
Precisely, he has shown that arc consistency is log-space complete for P. (Log
space complete problems for P are those problems solvable on a single Turing 
machine tn polynomial time.) The implication of that fact is that it is very 
unlikely t hat arc consistency can be solved in time polynomfal in log n with a 
po.lynomial number of processors. This somewhat counterintuitive result can 
be understood better if one realizes that one can set up CSP's with serial data 
dependencies. A local inconsistency can be discovered by one processor at a 
vertex which when removed causes an inconsistency at an adjacent vertex and 
so on. Since this propagation is serial, all but one of the processes may be idle 
all the time. 

Nadel ( 1986) bas shown some tight results on e.xpec Led time complexjty for 
classes of CSP on a single processor. Mackwort.h, 1ulder and Havens (1985) 
have described a new algorithm, hierarchical arc consistency, that exploits the 
situation where the values within a domain can be organized hierarchically with 
common properties. They describe the application of the algorithm in a schema
based recognition system for maps and provide theoretical and experimental 
complexity results. Malik ( 1987) descr ibes the application of the hierarchical 
approach to line labelling. 

Optimization Problems: In computational vision one is often not. just sat
isfying a set of Boolean constraints, rather one is optimizing the degree to which 
the solution satisfies a variety of possibly conflict ing constraints: trading one 
constraint off against another. For example, Zucker, Hummel and Rosenfeld 
(1977) (Handbook , Volume 3, pp. 298-300), in a curve enhancement applica~ 
tion attach weights or "probabilities" in [0 , l] to each of nine labels ( correspond
ing to eight compass orientations and "no line") and the relation matrices or 
"compatibilities" have entries in [-1, l] which measure the extent to which two 
values from related domains are compatible. This scheme, known as probabilis
tic relaxation iterates the application of a parallel updating rule modifying the 
weights in eac h domain until a fixed point is reached or some other stopping 
rule applies. For an excellent overview of applications of t,hjs paradigm see the 
survey by Davis and Rosenfeld (1981). 

he probabi listic interpretation has problems of semantics and convergence
other interpretations are now preferred (Ullman , 1979; Hummel and Zucker, 
1983) . Algorithms in this class have been called cooperative algorithms (Julesz, 
1971; Marr, 1982) . Compatible values in neighboring domains can cooperatively 
reinforce each other while incompatible values compete, trying to suppress eath 
other. Each value in a domain is competing against each of the other values in 
that domain. Cooperative algorithms are attractive because they are inherently 
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parallel, requiring only local neighbourhood communication be ween uniform 
processors which need only simple arithmetic operations and limited memory 
such as is available on the Connection Machine (Hi llis , 1985) . These features 
suggest implementations for lower level perception (such as stereo vision) in 
artificial and biological systems (Marr, 1982; Ikeuchi and Horn, 1981; Zucker, 
1983; Ackley et al, 1985; Little et al, 1987). 

The design of these algorithms is best based on the minimization of a figure
of-merit. Ikeuchi and Horn (1981), as described in Section 3.2, carry out shape 
from shading using a figure-of-merit based on a combination of a measure of de
viation from the image data and a measure of surface smoothness. The iterative 
relaxation solution corresponds to using gradient descent on the figure-of-merit, 
searching for the best set of orientation values for the surface elements. It should 
be noted that the domains do not consist at a finite set of values each with a 
weight in (0, 1] but simply one value that is the current best estimate of the 
local value of the solution. 

Gradient descent techniques are only guaranteed to find the global minimum 
of the figure-of-merit or "energy" surface if that surface is everywhere an upward 
concave function of the state variables of the system. In that case there is only 
one local minimum and it is the global minimum. If the surface has local minima 
that are not the global minimum, techniques such as "simulated annealing" 
based on the Metropolis algorithm and the Boltzmann distribution can be used 
to escape local minima (Kirkpatrick et al, 1983) (Ackley et al, 19 5) . Hopfield 
(1982) showed that neural ne works with symmetric connections between pairs 
of neurons can be modelled as minimizing an energy functional. 

Earlier, in Section 3.2, we described the shape from shading approach of 
Ikeuchi and Horn (Hl81) as an example of the use of regularization theory to 
solve an "ill-posed" problem. Regularization theory has been applied to a wide 
variety of early (low-level) vision problems (Poggio et al, 1985). For example, 
edge detection is an ill-posed prob lem because locating zeros of the numerical 
first derivative of the image is unstable: its solution does not. depend contin
uously on the input intensities. Smoothing the image regularizes the problem 
making discontinuity detection well-posed (Hildreth, 1987) . Poggio, Voorhees 
and Yuille (1984) and Torre and Poggio (1986) derive an optimal smoot.hing 
operator as follows. Suppose I(x) is the image intensity function and S(x) is 
the smoothed intensity fun ction required. S(x) should fit the image intensities 
closely and be as smooth as possible. In other words S( x) should minimize 

I)I(x1:) - S(x1c)]2 + ,\ j IS"(x)l 2dx 
k:1 

where ,\ is a constant controlling the tradeoff between fidelity to the image 
and smoothness. The solution to this minimization problem is equivalent to 
convolving the image with a cubic spline which is similar to the Gaussian . 

Hadamard defined a problem to be well-posed if its solution exists, is unique 
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and depends continuously on the initial data. An ill-posed prob! m, one that 
is no well-posed, fails to satisfy one or more of these conditions. A well-posed 
problem may, however, stiU be numerically. ill-conditioned and over-sensitive to 
nois in t.he ini i~I dala. (Poggio et al, 1985). 

One general approach to lbe regularization ofan ill-posed problem (Tikhonov 
and Arsenin, 1977) is as follows. Suppose we wish to solve the inverse problem, 
given Az = y find z given the data y. This is solved by determining the function 
z that minimizes 

IIAz - Y!l 2 + ~l!Pz!l2 

where A, the regularization parameter, controls the relative importance of the 
fit to the data and the degree of regularization of the solution. l~z ll2 is the 
regularization criterion-usually some measure of "smoothness." Poggio, Torre 
and I och (1985) discuss tbe regularization of seven ill-posed problems in early 
vision: edge detection, optical flow, surface reconstruction, spatiotemporal re
construction, colour, shape from shading and stereo. Difficulties arise when the 
regularization imposes a, smoothness constraint on he world that may be inap
propriate. They also discuss how linear analog electrical and chemical neuron
based networks could solve the minimization problems tha arise in a regular
ization approach. 

4 Vision Architecture 

4.1 Overview 

In the past decade the growth of interest in parallel computing within the com
puter vision community has been changing the field. l\1ore and more studies of 
machine vision are based upon or motivated by a particular computer architec
ture. In this section, the most influential architectural directions are discussed, 
along with their relationships with computer vision. 

Architecture's Influence on Algorithms: VVhile much research in com
puter vision is driven purely by the insights about vision that the r search com
munity has accumula ed, some research respond s directly to the possibilities 
that new computer architectures offer. Computing with cellular-logic proces
sors connection machines and reaJ-time video processors has a flavor sufficiently 
different from conventional mainframe, mini and micro compu t ing, that it has 
encouraged lines of research substantially different from the more traditional 
computational vision. 

Those who have programmed highly parallel machines such as the CL1P4 
and the Connection Machine say that after some experience, one begins to th ink 
"in parallel" on a whole new, higher, algorithmic plane than before. 
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There are two reasons for this. One is that the highly parallel machines 
offer relatively high-level primitives as the conceptual building blocks for alg~ 
rithm design. A typical instruction of such a machine causes two images to 
be added together, while an ordinary computer could only add two individual 
pixels together in one instruction (or it might even take several instructions). 
Therefore, the programmer is encouraged to work at a higher level of abstrac
tion than otherwise. Secondly, these machines perform such operations very 
quickly-in a matter of microseconds- rather than seconds. This means that 
the programmer/researcher can effectively interact with the system at this high 
level of abstraction, rather than work with it in a batch mode. 

Relationship with Data Structures: Some highly parallel computers are 
designed specifically to support operations on certain kinds of data structures. 
The CLIP4 operates on images. The Connection Machine can operate on images 
or pointer maps. Some pipelined systems such as Aspex 's PIPE operate on video 
data streams. P arallel pyramid machines operate on pyramid data structures 
(see Uh-r, 1987 for accounts of several pyramid machines). 

By operating on these data structures as units, many of these parallel archi
tectures have an organizing principle built-in; the data structure becomes the 
machine structure. 

4.2 Parallelism m Vision 

\,\ihile there has been a mass movement towards par.allel processing in the com
puting community generally, the case for parallelism in vision has been promoted 
with even greater strength. This is both because the human visual system seems 
to be a massively parallel system and because it is fairly obvious how images 
can be handled in regularly-structured parallel systems ( e.g., one processor per 
pixel). onetheless, there is a significant. variety of ways in which parallelism 
may be used in vision , and a review of these will make the essential architectural 
al terna ti ves clearer. 

4.3 Parallel Methodologies: 

SIMD versus MIMD Systems: As is customary, let us divide the realm of 
parallel architectures into two broad groups: (1) those in which there is a single 
program being executed and in which at. any one time all processors perform 
the same instruction on their own data, and (2) those in which processors follow 
different programs or different copies of the same program more or less inde
pendently on their own data. In the terminology of Floyd, the first class of ar
chitectures are' Single-Instruction-Stream/Multiple-Data-Stream' (SIMD) sys
tems while the latter are ''Multiple-Instruction-Stream/Multiple-Data-Stream' 
(MIMD) systems. This distinction is a mat.ter of processor autonomy; SIMD 
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systems utilize many processing elements with little autonomy-they are per
mitted their own data but must execute programs in lockstep with one another. 
On the other hand, MIMD systems have highly autonomous processors that 
may work independently except when their programs call for communication 
and synchronization with other processors. In reality, many systems to not fall 
at one end or the other of this spectrum of processor autonomy-their pro
cessors may have conditional instructions based on local conditions, or they 
may have highly autonomous addressing capabilities, etc. However, the SIMD
versus-MIMD distinction is very useful in examining the broad realm of parallel 
architectures. 

In the vision community, there are vocal proponents of both SIMD and 
MIMD architectures. Consequently, it is useful to know what the relative 
strengths and weaknesses of the two families are. 

First, we have the matter of cost. If cost were measured in the number of 
logic gates in a ·computer, one could provide more processing elements in an 
SIMD system than in an MIMD system for the same cost , because the SIMD 
system's processing elements do not require program counters and instruction
decoding logic. Proponents of MIMD systems argue that the flexibility of MIMD 
systems allows them to be manufactured and sold in larger quantities and there
fore more cheaply than the more special-purpose SIMD systems. 

Second, let us consider the programming problems these architectures present. 
The SIMD architectures tend to be structured according to some data structure, 
such as a two-dimensional image array, and programming them is relatively easy. 
Whereas with an MIMD system one has to write synchronization protocols and 
work out load-balancing arrangements, SIMD systems obviate most synchro
nization, and the programmer is not normally concerned with load bala ncing. 
This is because it is impractical to map computat ions onto Lhe array in a fashion 
that doesn 't follow the machine's special (e.g., image) structure. 

In some ways, SIMD system execute parallel computations more efficiently 
than MIMD systems: there is little communication overhead bet~een processing 
elements because their interactions are preprogrammed and pre-synchronized . 
Depending upon the interconnection network that links the processing elements , 
the overhead of routing data can be very low in SIMD systems. A limitation 
of SIMD systems, however , is that in computations where only one or a small 
number of processing elements are doing meaningful work , all the others must 
either operate on dummy or garbage data or they must wait idly. In MIMD 
systems, processors are not constrained by the architecture to wait idly if there 
are meaningful tasks ready to execute. 

Data Flow: Another way of th inking abou t parallel processing is in terms of 
the flow of data through a network of operations where it gets transformed. T he 
nodes of a data-flow network represent points in the process where the data is 
operated upon. It is not necessary that each node correspond o a processor; 
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however, at some point during the computation, each node must be assigned to 
some processor so that the operation(s) can actually be performed. Several data 
objec ts might fl ow to the same node; one operation involving severa l operands 
m ight take place there, or t here might be a s uccession of operations perfor med 
at the node. 

Data flow paradigms have not been used much in machine vision except 
to the extent that image-stream processing may be thought of as data-flow 
processing. However, this particular kind of data flow paradigm is better known 
as pipelining. 

In the future, general data-flow techniques may be appropriate for higher
level (symbolic) processing of visual information. 

MIMD Systems: Butterfly, Hypercubes, RP3, Warp: Computer sys
tems that incorporate multiple processors, each executing an instruction se
quence t ha t is independent of the others are of in terest because of t heir ub iq
uity and fl exibility, especia lly fo r vision-related compu ta tions at t he sym bolic 
leve l (rather than t he pixel level). Several p rominen t MIMD systems are these: 
the Butterfly developed by Bolt, Beranek, and Newman, Inc. , t he Cosmic Cube 
developed at the California Institute of Technology (Seitz, 1984), the RP3 devel
oped by IBM (Pfister et al, 1985), and the Warp at Carnegie-Mellon University. 
Of these, the two architectures designed principally for AI/vision applications 
are described here in more detail. 

The Butterfly architecture covers a family of MIMD para llel processor sys
tems that can have up to 256 processors in a system (C row ther et al, 1985). 
Each processor of a Butterfly has a local memory with access time about two 
microseconds, but the processor can also access the local memories of all the 
other processors through the network, and such an access takes approximately 
six microseconds. The Butterfly architecture works well on problems that can 
be decomposed for large-grain parallel processing with only modest amounts of 
interprocessor communication . . 

The \Varp computer (Annaratone et al 1987) is a linear a rray of pro
grammable processors developed at Carnegie-Mellon University. In tended p ri
marily for computer vis ion , it can also be app lied to signal process ing and sci
entifk computation. A ten-processor prototype became operatio11al in 19 6. 
Originally, it was conceived of as a "systolic" system, in which data would be 
piped through the line of processors wi t h SIMD control. Later , it was decided 
to make the processors autonomous, and it became an MIMD system. The pro
cessors in the linear array operate on 32-bit words and they are interconnected 
with 16-bit wide data paths. The linear array is connected through an interface 
unit to a host (Sun-3 workstation plus additional processors). 

Multicomputers with Reconfigurable Interconnections: So as to avoid 
the limitations of any particular fixed interconnection structure, "reconfigurable" 
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systems have been proposed. At a cost of slightly more switching hardware, the 
data and control paths among processing elements and control units can be made 
programmable. The CHiP computer and the PASM are two specific systems 
that have been described in the literature. 

A CHiP ("Configurable Highly Parallel") computer is an array of processing 
elements interconnected with a system of wires and programmable switches 
(Snyder, 1982). Because the processing elements and switches are laid out on 
VLSI chips in an integrated manner, it is possible to achieve SIMD cellular array 
efficiency (including short data paths and synchronous communication). It is 
a lso possible to embed rich non-planar interconnection graphs in a CHiP system 
because the switches can also be programmed to produce long, convoluted data 
pa.ths containing crossovers. 

The "Partitionable SIMD/MIMD" (PASM) system permits the set of pro
cessing elements to be grouped (under program control) and each group as
sociated with a separate control unit (Siegel et al 1981), (Chu et al, 1987). 
The effect of this is to allow PASM to contain a multiplicity of SIMD parallel 
programs each executing independently of ( or communicating asynchronously 
with) the others. A number of simulations have been reported that give the 
predicted performance of PASM on image analysis tasks. 

Neighborhood Parallelism and Pipelined Systems: Another was to or
ganize the processing of image data for parallel computation is to treat the 
neighborhood as the atomic unit of computation. In a neighborhood-parallel, 
pipelined image processing system, one neighborhood (generally a 3 x 3 set of 
pixels is processed in a single machine cycle. The image data is shifted through 
the neighborhood processor so that every neighborhood ( of the given size) is 
processed in a single scan of the image. Examples of neighborhood-parallel 
pipelined sy terns include PICAP (Kruse, 1980), the Cytocomputer (Lougheed 
et al, 1980) and PIPE (Kent et al, 1985), among others. It has also been pro
posed that such systems be implemented optically (Huang et al,·1987). 

Let us describe PIPE ( "Pipelined Image Processing Engine") in more detail. 
It is a commercially available system oriented largely towards the processing of 
digitized video data io real time (30 frames/second). A PIPE consists of from 
three to eight "modular processing stages," each of which consists of a frame 
buffer , a neighborhood processing unit, and an address generator. In addition 
to these stages, there are an input stage, output stage, control unit, and control 
a1,1d data pa hs. Six. modular processing stages and their interconnections are 
diagrammed in Fig. 14 In typical operation, a stream of digitized video is passed 
from the input stage to the first processing stage, where a filtering operation is 
performed on it. By piping the image through the 3 x 3 neighborhood processor 
( which computes a single output value with the help of programmable lookup 
tables), the filtering is accomplished in a frame time. The result is then fed 
to the second stage where it is averaged with a similarly filtered picture from 
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Figure 14: Modular processing stages and data paths in .PIPE. (from Kent et 
al, 1985, courtesy of E. Kent). 

the video frame preceding the one th:is filtered image is based on. This outpu 
is then passed to a third modular processing stage where an edge template is 
applied . The final ou tput may be disp layed or passed to a host for addit.ional 
analysis. Because almost all aspects of the computation are progr:ammable 
(neighborhood operators, data paths address generators) , the programmer has 
substantial flexibility in designing algorithms for PIPE. 

While processing the nine points of a neighboi;hood in parallel can signifi
cantly speed up an image processing operation, an ai:ch.i ecture that provides a 
separat.e precessor for each pixel of an image can achieve much faster perfor
mance, albeit at an increased hardware cost. The mesh-based arch.itec ·ures of 
the next section demonstrate this. 

4.4 Mesh Architectures 

The period 1980 to 19 7 saw major ad vane es in the realization. of massively
parallel mesh-oriented processors. otable systems in this group include the 
CLIP4 , MPP and the Connection Machine. 

CLIP4: The first such machine, CLIP4 (Cellular Logic Image Processor, ver
sion 4), became operational in ear ly 1980 at the Dept. of Physics and Astronomy, 
University College London (Duff, 1980). The CLIP4 consists of a 96 x 96 array 
·or p_rocessing elements controUed by a single program-interpretation unit. Each 
processing element (PE) of the CLIP4 has one bit of input from each of its eight 
nearest neighbors . These inputs can be masked under program control and then 
logically OR'ed and further combined with boolean data from the PE's local 
memory. Thus each CLIP4 instruction performs a cellular-logic operation on an 
entire 96 x 96 binary image in one cycle. A conventional computer would have 
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to perform over 10 billion operations per second to keep up with the CLIP4 
(Preston and Duff, 1984). 

MPP: The Massively Parallel Processor or "MPP" became operational in 
1983. Developed by Goodyear Aerospace under sponsorship of the NASA God
dard Space Flight Center, the MPP contains a 128 x 128 array of processing 
elements roughly comparable in power to the CLIP4 PE's. Each PE in the 
MPP has a reconfigurable shift register which speeds up bit-serial arithmetic by 
a constant factor over the CLIP4; however, each PE in the MPP can only access 
a bit of data from one neighbor at a time, rather than eight at a time in CLIP4. 
The MPP augments the mesh with a "staging memory," which is provided to 
lessen the effect of the input/output bottleneck that both the CLIP4 and the 
MPP suffer from (Batcher 1980). By using later technology than the CLIP4 and 
a larger array, the MPP achieves approximately the equivalent of one trillion 
operations per second on a conventional computer (Preston and Duff, 1984). 

4.5 Multilevel Architectures 

Mesh-based architectures are highly efficient for computing transformations of 
images where the output at a pixel is only a function of the local neighborhood 
of that pixel. However, many computer vision problems require the computation 
of more global and symbo)jc represenLat.ions of an image. In order to make the 
more general kinds of computation efficient, meshes have been augmented in 
a variety of ways. The CLIP4 and MPP actually include a feature that lets 
the control unit know whether any PE has a non-zero value in its accumulator. 
However, this is a very minimal augmentation to a mesh. 

Pyramid Machines: A relatively straightforward augmentation to a mesh is 
some additional meshes. While it would be possible to build a three-dimensional 
mesh and thereby increase processing power and efficiency for 3-D spatial prob
lems, such a system would still lack the capability to efficiently gather data 
globally from an image. An alternative is to let the additional meshes get pro
gressively smaller, taperi.ng to a point, tbus forming a "pyramid." By c::onnecting 
each PE to four ''children" in the mesh below and a "parent" in the mesh above, 
a quad tree of interconnections is added to the mesh interconnections. The pyra
mid can then perform the computations of a tree machine if and when desired. 
For exam ple, aHer some filtering operation has been applied to the image in the 
largest (bottom-level) mesh, the average value can be obtained by lettin g each 
PE compute the average value from its four children, until the global average 
emerges at the apex; the value is obtained in O(log N) time, whereas a pure 
mesh would require O(N) time. Pyramid ma.chines.also efficiently support mul
tiresolution computations (Tanimoto, 1983) , (Rosenfeld , 1984), (Dyer , 1987) 1 

as well as hierarchical extensions to cellular logic (Tanimoto, 1984) . These sys
tems can also be thought of as specialized processors for manipulating pyramid 
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data structures (see Volume 3, pp.279-282) . Prototypes of pyramids have been 
constructed at the University of Washington (Tanimoto et al, 1987), George 
Mason University (Schaefer et al, 1987) and are under development elsewhere 
(Cantoni et al, 1987) . Closely related to the pyramid architecture is the mesh 
augmented by a t.ree without auxiliary meshes; an example of such a system i 
Non-Von, developed at Columbia University (Shaw, 1985). 

Darpa Image Understanding Architecture: Another multilevel architec
ture based on a mesh is one developed at the University of :\fassachusetts (Lev
i tan et al , 1987). This system was design cl specifically for vision applications 
in which computation is to proceed in real- time at three levels of abstraction : 
the pixel (or low) level the feature (or intermediate) level and the symbolic (or 
high) level. The architecture calls for three corresponding processor levels: a 
mesh of 512 x 512 PE's another mesh (64 x 64) of more powerful intermediaLe
leveJ processors, and a collection of 64 LISP processors. Shared between the 
lowest two levels LS a one-gigabyte dual-ported memory, while a 512-megabyte 
shared memory sits between the upper two levels. The system is designed lo 
efficiently support the algorithms developed for t he 'ISJONS syst m (Riseman 
and Hanson , 1986), among others. A prototype is currently under develop
ment with the cooperation of Hughes Aerospace and sponsorship of the Defense 
Advanced Research Projects Agency. 

The Connection Machine: Rather than augment a mesh with a tree or 
additional meshes, the Connection 1achine uses a data-routing network which 
is physically arranged as a hypercu be. The general arch itect ure of he system 
is given in (Hi llis, 1985) . The first version of the Connection 7v1achine, the 
C~f-1 became operational in 1986. That model allows eith er a 128 x 128 or 

a 256 x 256 array of processing elements to be insLalled. Each PE has 4.K 
bi Ls of local memory. The system operates from a 4 [Hz clock. The C . 1-2, 
a,•a ilab le since the Fall of 1987, uses 64K bits/PE and an MHz clock, plus 
optional floating point ha rdware. The hypercube-based router of each model 
is 12-dimensional, with each router node responible for 16 PE s. How ver Lhe 
user programs data transfers as if each PE were accessibl directly from any 
other . A good account of how the Connection Machine may be programmed for 
computer vision problems is given in (Little et al , 1987). 

Part of he inspiration for the Connection Machine was TE L (Fahlman, 
Hl79) which is a model for a large hardware system based on a semantic
network/neural-network paradigm. Neural networks have a lso inspired .research 
into a more amorphous family of information p~ocessing systems that are usually 
described as "connectionist." 
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4.6 Connectionist Architectures 

Introduction: The various models of computing that fall under the heading 
of "connectionist architectures" generally have their roots in observations of hu
man and other biological neural systems. In addition to the influence of neuro
physiology and experimental psychology, the "connectionist" approach benefits 
from a recognition of some inherent limitations of conventional computers. 

The "Von Neuman bottleneck" is the principal limitation of a conventional 
serial computer system. T here is only one processing unit , the CPU, and it can 
only perform one operation at a time. These operations only involve one word
sized <lat.a object at a Lime, and memory can be accessed directly only by using 
addresses (not by contents, by semantic associations, or by structure) . True, 
today's se.rial computers can perform an operation in 100 nanoseconds. eL 
these operations are comparat..ively simple, and those required for artificial in
telligence applications are complex enough to need thousands of he elementary 
operations; the res.ult is t.hal AI applications (and especially vision applications) 
run very slowly on Von-Neumann-style computers. 

Furthet underscoring the limitations of the traditional serial architecture is 
the fact that bio.logical systems succeed at complex tasks even though their 
neural computing elements run several orde.rs of magnitud e more slow.ly than 
the corresponding electronic elements. T he biological "proof" that paralle lism 
works s arts witb the observation that a neuron requires on the order of one 
millisecond to fire , whereas computer switching times are on the order of 1 o-s 
seconds (10 nanoseconds). In ord er to account for the comp uting power and 
intelligence of the human brain we are forced to rule out the speed of the 
neuron as the key ; the speed of human perception must be due to the brain's 
parallel architecture, nol the speed of individual computing elements. 

If we could have the same massive parallelism that we have in the brain. 
but with eledronic computing elements instead of neurons, then it seems that 
we shou ld be able to obtain intelligent systems with 1000 times the power of 
the brain . With systems of this power, what wou ld take a hum.an three years 
to learn might take such a computer only one day to learn , if the computer 
could somehow be provided with-an efficient enough learning environment. The 
hope that man will be able to improve machine intelligence by building highly 
parallel, high ly interconnected computer systems has stimulated considerable 
activity in 'connectionist" research. 

General Structure of a Connectionist System: A connectionist architec
ture consists of a specification for an el mentary processiJ1g element, called a 
'unit" plus a specification of the interconnections among. a collection of these 

units. 
A unit may be thought of as a processor: a computing element which takes 

one or more inputs, maintains a state, and which may produce one or more 
ouLputs. One of the inputs may be external, from outside the system, while 
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other inputs to the unit may be the outputs or the states of other units, which 
are tied to the unit by connections. The set of states that a unit can be in may be 
binary (i.e., the set {O, l}), or it may be the set ofreal numbers or some interval 
of the reals or the integers, or it may be some other set. Many connection ist 
architectures use units which sum their inputs and then compare the sum with 
a threshold. Other systems use units that compute other, sometimes more 
complex, functions . 

The connections among units are like the arcs of a graph; units are con
nected pairwise. Each connection from unit A to unit B is assigned a weight (or 
a strength). The weights are usually rea l numbers which regu late the influence 
that the state of one unit can have on the state 0f another. In some archi
tectures, connections are constrained to be symmetric; in a symmetric-weight 
architecture, the connection from A to B always has the same weight as the 
connection from B to A. 

An important aspect of some connectionist architectures is the manner in 
which the network changes over time. In addition to uni ts changing state, the 
weights on the interconnecting arcs may change value. 

Knowledge is represented in connectionist systems in different ways. In 
the "localist" approaches, each unit holds some knowledge. In the "wholistic" 
approaches, a given item of knowledge is represented as a configuration of several 
( and possibly all) units. 

In the remainder of this section, we present several well-known typ<:'s of 
connectionist networks and attempt to describe the manner in which they may 
solve problems. 

The terms "connecLionist architecture," "connectionist network," and "neu
ral network" are often used interchangeably. We will often use the abbreviations 
"network," or "net" to refer to such a system. 

Perceptrons: In the late 1950's and 1960's a class of connectionist networks 
called "perceptrons" were studied (Rosenblatt, 1962). In the exaitement of the 
day, great expectations were raised about the capabilities of perceptrons . Some 
nega ive results by Minsky and Papert (1969) triggered a backlash that subdued 
attention given to these systems for approximately a decade. Today, there is 
a better understanding of perceptrons tha·t makes it clear that many of the 
limitations cited by Minsky and Papert can be overcome by generalizing the 
model. (The introduction of "hidden units" into the networks is the key to 
increasing their power.) 

Perceptrons have been most commonly studied as layered systems in which 
computations proceed bottom-up. Typically, input signals from sensors are 
fed up into the first layer, in which combinations of the inputs are weighted, 
summed and thresholded to obtain a set of outputs from the first layer. These 
are subsequently weighted, summed and thresholded in a second layer, etc., 
until the desired level of abstraction is reached. At that level, the inputs are 
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classified (e.g., "Grandmother is in the picture") . 

Hopfield Nets: While a layered perceptron typically produces each classifi
cation on a single separate output unit and therefore represents results locally, 
another approach is to represent results as glo_bal states of the network. This 
notion is combined with an iterative relaxation approach in the model of Hop
field ( 1982). In a Hopfield net, the units are started in a pattern of states that 
represents the input vector. Each unit then continually examines the units to 
which it is connected and computes a local energy function. Whenever this en
ergy would be lowered by the unit's changing its state, it does so. Because the 
overall energy in the network decreases as long as there is activity, a Hopfield 
net must relax or converge. (An analogous convergence criterion for relaxation 
labelling has been given by Hummel and Zucker, 1983). The global state at 
which it converges represents the output. 

Let us describe the Hopfield model more precisely. For a network of units 
connected symmetrically, the connection between unit i and uniL j has a weight 
w,; which represents the extent to which the two units should attempt to be in 
the same state. There is a fixed ~hreshold 0i associated with each unit. Let s; 
denote the (current) state of unit i; that is, s; = 1 if unit i is on, and O if it is 
off. Then the energy of the net (for a given state vector) is 

E = - I:s;siwii + I:s;0;. 
i<j i 

Each unit can compute the effect that its changing state would have on the total 
energy, using the formula, 

AE = E;off - Ei on= L SjWij• 

j 

If the unit is off and AE is negative, then it should turn on. If the unit is on 
and AE is positive, then it should turn off. Otherwise, it should maintain its 
current state. 

In order to use a Hopfield net for pattern recognition , certain units can be 
designated as input units. After holding t he input units in t he input state until 
the rest of the system converges, the global state represents a Joe.al minimum 
configuration consistent with the input. This state may not be a global mini
mum. 

Boltzmann Machines: In order to overcome the tendency of a pu,re Hopfield 
net with hidden units to become trapped in local minima that are not global 
minima , the transition of each unit from one sta.te to another can be made proba
bilistic. By starting the relaxation at a high ''temperature" in which transitions 
are almost completely random, and then gradl.la.lly lowering the temperature 
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so that transitions tend more and more to only reduce the system's energy, the 
probability of finding the global minimum can be made close to 1. This method, 
known as simulated annealing, was developed by Geman and Geman (1984) and 
independently, with a different emphasis and name, "Boltzmann machine," by 
Fahlman, Hinton and Sejnowski (1983) . 

A Boltzmann machine is a computational system consisting of a set of el
ements called "units" each of which may either be in the "zero" state or the 
"one" state, and which changes its state at each iteration ( of a system cycle) 
stochastically according to the probability: 

1 
Pi= (1 + e-~E,/T) 

where AEi is the difference in energy between the 1 state and the O state of the 
ith unit, and T is a parameter analogous to temperature. 

One may think of a Boltzmann machine as a network of binary processors 
that use a form of the Metropolis algorithm (Metropolis et al, 1953) to up
date their states (Hinton and Sejnowski, 1987). The Metropolis algorithm is 
described below. 

The Metropolis Algorithm: The l\1etropolis algorithm is a general proce
dure for finding the minimal energy state of a system by stochastically making 
local adjustments to it. It is a precursor of simulated annealing. 

Randomly select a state S. 
Set T ..-- initial temperature (high). 
while T > 0 do 

Randomly generate an adjustment yielding state S' . 
Compute the energy difference: AE +- E(S') - E(S). 
If AE $ 0 then accept the state change: S +- S'. 

else accept it anyway with probability P: 
p +- e-~E/T. 

x +- random number in [O, 1]. 
if x < P then S +- S'. 

If there has been no significant decrease in E for many iterations 
then lower the temperature T. 

An important element of such a procedure is the temperature schedule, which 
controls the gradual lowering of the temperature from one iteration to the next. 
Geman and Geman (1984) suggest the following schedule, where k is the itera
tion number and C is an appropriate energy constant: 

T = C/log(l + k). 

Clearly, in early iterations, when T is large, the system energy is permitted 
to increase often, thus allowing the system to escape from local minima. As 
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□ 

Figure 15: Cell array for figure/ground resolution, showing (a) exci tatory and 
inhi biLory connections to a square (shaded) , and (b) excitatory and inhibitory 
connections to a triangle, also shown shaded ( diagram after Sejnowski and Hin
ton). 

T approaches zero, the system energy decreases almost monotonically; then 
the system "freezes" at a local minimum that is very likely to be the global 
mm1mum. 

Application to Figure/Ground Discrimination: In order to illustrate 
how a stoc hastic-relaxation approach (which is based on a neural-network model) 
can solve problems in machine vision, an example is presented in which a fig
ure/ground discrimination must be made. As demonstraLed in Kienker et al 
(1986) and in Sejnowski and Hinton (1987), a pa ra!Jel system can effi ciently 
solve th is problem even when the input information is noisy and incomple e. 

A classical problem of visual perception is to take a binary (black and white) 
image and decide whether the black regions are figure and white regions back
ground, or vice-versa. The chalice of Rubin (1915) is a particularly ambiguous 
case (see Fig. 13) . The problem is just as difficult or more difficult when the 
black/white information is gone and only edge information is available. 

Let us consider an array such as that shown in Fig. 15 . Each square or 
triangle in the figure represents one unit. Each unit is connected to those im
mediately adjacent to it. The square units may be thought of as small regions, 
while the triangles represent oriented edges. A triangle that is "on" (white) 
corresponds to a strong edge, while one that is off indicates the lack of the cor
responding edge. If a square is on, then it is interpreted as belonging to the 
figure; otherwise, it is taken to be background . 

The co·nnections among units embody constraints about what constitutes 
a reasonable figure/ ground interpretation. The weights are symmetric and 
isotropic (equivalent under 90-degree rotations). A square is connected to each 
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Figure 16: Display of initial input values for the figure/ ground problem ( cour
tesy of T. Sejnowski). 

of its eight nearest neighbors with weight +10. The weight between a t riangle 
and the square A it points to is +12, while for the one B it points away from 
the value is -12. For each of the two squares on either side of A , the weight 
with the triangle is +10, while for those on either side of B the w ight is -10. 
The weight between an adjacent pair of triangles (facing in opposite directions) 
is strongly .inhibitory (-15) . 

The input to the algorithm is an initial assignment of values to each unit,. 
The inputs to the t riangles represent the strengths of edges in .an image and 
they a.r called "bottom-up" inputs since they depend on the image data. On 
the other hand, the figure units are given initial weights "top-down" from an 
imaginary process hat con. rols the focus of attention. 

1n t.he example shown , the edge elements bordering on a 9 x 6 rectangle 
were given initial inputs of 60 ; since those with values over 41 are shown in 
Fig. 16, this rectangle is visible. The top-down inputs to the figure units were 
given values acco·rding to a Gaussian distribution centered on the uni just to 
the right of the rectangle's center. The figure units shown are those with values 
exceeding 1. 

Applying simulated annealing to this network , Sejnowski et al found that 
it consistently converged om the desired solution. Figure 17 shows their re
sults. While the method provides a useful demonstration of cooperative com
putation with simulated annealing, it breaks down on more complicated shapes 
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such as spirals, unless a very long annealing schedule is adopted. However, fig
ure/ ground distinctions are also difficult for humans to make in cases of highly 
convoluted shapes like spirals. 

M ultigrid Algorithms: A class of numetical techniques called multigrid meth
ods has been bro.ught to the attention of the vision community by Terzopoulos 
( 1984); these methods make the solu tion of certain field reconstruction problems 
computationally more attractive than they otherwise would be. 

As noted in the preeeding pages of this chapter, several vision problems boil 
down to computing a complete set of surface points or image pixels from sparse 
data. Stereo image analysis, for example, requires the determination of a depth. 
map from a sparse set of depth values that have been determined by matching 
fea.ture points in the two images (see, e.g., Grimson 1981, 1985). Since the 
sparse data is generally not suC£cient to completely constrain the desired surface. 
assumptions about continuity of the surface are usually brought to bear on th 
desired solution. The resulti ng problem is one of finding the optimal surface that 
obeys the surface continuity consLraints (which may allow for discontinuities) 
and the particular constraints imposed by Lhe sparse data. 

One formu lation of this general reconsLruclion problem is as follows: imagine 
the surface to be reconstructed as the equilibrium state of a flexible plate that is 
supported by vertical pins -of different lengths and attached to them by springs 
with different spring coefficients. The pins are irregu larly spaced. The solution 
o the problem can be obtained by using a "variational principle" (Courant and 

Hilbert, 1963) which states that. the equilibrium surface u(x, y) is one whi ch 
minimizes the po·tential energy of Lhe system which is comprised of the energies 
due to ~he deformation of the plate, the springs, general external forces (e.g., 
gravity), external forces on the boundary, and bending moments applied to the 
boundary .. 

After approximation and discretization, the use of a finite-differences method 
to solve such a problem results in a large and sparse system of linear equations, 

where uh is the vector of nodal variables on the mesh using spacing h. 
While it is sometimes possible to solve such systems directly using Gaussian 

elimination or other methods to obtain an exact solution ( up to machine preci
sion), direct methods are more often than not inapplicable to realistic problems. 
For these cases, iterati.ve techniques are required. Conventional iterative meth
ods such as the Jacobi and Gauss-Seidel iterations continually update the-ir cur
rent approximation, normally converging upon the solution. Such convergence, 
however, is slow. On the other hand multigrid methods perform their iterations 
at different levels of resolution in such a way as to accelerate the convergence. 

The reason that the Jacobi and Gauss-Seidel methods converge slowly (when 
they converge) is that each local updating operation works on the neighborhood 
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of a point iti t he mesh . Consequent ly, excess energy or a deficiency of energy 
in he current approximation can move onJy one grid unit per iteration . Thjs 
means that while high frequency components of the error surface can be damped 
rapidly, I.he low frequency portions require many iterations for I.heir attenuaLioo . 

11ultigrid relaxation achieves its acceleration of convergence by allowing the 
low frequency components of the error surface to move rapid ly across the space 
at coarse resolution levels. As in a pyramid data structure, a single neighbor
hood at a coarse level covers a large area in the finest level. Once a coarse 
level solution has been found, it can be projected into the next finer level as the 
starting approximation for a relaxation at that level. 

While the most obvious approach to multi-level relaxation (performing a 
sequence of conventional relaxat.ion operations starting at a coarse level and 
progressing to the finest level) improves upon uni-level relaxation, the best re-
ul ts are obtained by a more complex scheduJe of relaxation steps at different 

I veJs. Such sch edules a re discussed in Briggs (1987), and Hackbusch and Trot
Lenberg (Hl82) . One schedule is that imp licit in the following two procedures 
adapted from Terzopou]os (1986) : 

procedure FullMultiGrid 
uh•+- SOLVE(s,uh•,fh•); 
for I +- s + 1 to L do 

vh' +- EXPAND(uh 1- 1 ); 

:t\foltiGrid(/, vh 1 , fhi ); 

procedure l\IultiGrid 
if I= s then u +- SOLVE(s, u, g) 

else 
for i - 1 to n 1 do 

RELAX(/, u, g); 
v +- REDUCE(u); 
d +- A h,- 1 v + REDUCE(g - An, u); 
for i +- 1 to n2 do MultiGrid(l - 1, v, d); 
u - u + EXPAND(v - REDUCE(u)); 
for i +- 1 to n 3 do u +- RELAX(/, u, g); 

Here SOLVE applies uni-level relaxation long enough to achieve some desired 
degree of accuracy. RELAX applies a single uni-level iteration of the relaxation. 
The parameters n 1 , n2, and n 3 are set to obtain the best performance for a given 
class of problems. The coarsest level ( or "starting" level) is indexed by s, and L 
is the index of the finest level. The vector uh• holds the approximation to the 
solution at the starting level. Vectors u, and v hold current approximations at 
any level, with v one level coarser than u at any particular time. The matrices 
Ah, and Ah,_, represent versions of the original matrix Ah at resolution levels 
I and l - 1, respectively. 
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The function EXPAND(u) takes a current approximation at level l - I and 
produces an approximation at level l by using bilinear interpolation. Thus it 
maps data from one grid to the next finer grid. 

Similarly, the function REDUCE(u) takes the approximation at level land 
produces a reduced-resolution version of it at level l - I using simple injection. 

Multigrid methods have been applied by Terzopoulos to a variety of visual 
reconstruction problems including reconstruction of geometric surfaces, depth 
maps from stereo, lightness, and optical flow fields . The computational savings 
over uni-level relaxation were found to be quite significant; typically the time 
required for the multigrid approach was only two percent of that used by the 
non-multigrid method. 

For addition information on multigrid algorithms see Terzopoulos (1986, 
1984a), the tutorial by Briggs (1987), the collection of papers edited into a 
book by Hackbusch and Trottenberg (1982), and the seminal paper of Brandt 
(1977). For related work on relaxation in computer vision see Volume 3 pages 
292-300 and Glazer (1984). 
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