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ABSTRACT

The question posed in the title of this paper is raised by a reexamination of
Cantor's diagonal argument. Cantor used the argument in its most general
form to prove that no mapping of the natural numbers into the rears could
have all the rears as its range. It has subsequently been used in a more
specific form to prove, for example, that the computable reals cannot be
enumerated by a Turing machine. The distinction between these two
forms of the argument can be expressed within a formal logic as a
distinction between using the argument with a parameter F, denoting an
arbitrary map from the natural numbers to the rears, and with a def:ined
term F, representing a particular defined map.

The setting for the reexamination is a natural deduction based set theory,
NaDSet, presented within a Gentzen sequent calculus. The form of NaDSet
employed generalizes an earlier form of the theory by replacing its first
and second order quantifiers by a single quantifier. The elementary and
logical syntax of NaDSet, as well as its semantics, is described in the paper.

Within NaDSet, Cantor's diagonal argument for F can be formalized as a
derived rule of deduction with two premisses <i,C[F]>:F-+ <i,C[F]>:Fand
<i,r>:F -+ <i,r>:F. Here C[F]is a term denoting the real number constructed
by the diagonal argument. The two sequents express that certain ordered
pairs necessarily are or are not members of F. These two premisses are
derivable when F is, for example, a mapping of the natural numbers into
the computable rears provided by a Turing machine. The two premisses
are not derivable, however, when F is a parameter. It is for this reason
that Cantor's general diagonal argument is said to be unsound within
NaDSet.

Very general forms of argument can, however, be expressed within aDSet.
The potential for NaDSet to provide logical foundations for category theory
is demonstrated by proving a theorem suggested by Feferman: The set of
structures <A,o'=A>for which 0 is a binary, commutative, and associative
operation on A with identity •A' is itself such a structure under cartesian
product and isomorphism.

To provide a basis for a discussion of the question posed in the title, a
formalization of G6del-Bernays set theory is provided within NaDSet.
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"So the logicians entered the picture in their usual style, as spoilers."
[Moschovakis f> 0]

I INTRODUCTION

The question in the title of this paper is raised by a reexamination of
Cantor's diagonal argument. Cantor used the argument in its most general
form to prove that no mapping of the natural numbers into the reals coutd
have all the reals as its range. It has subsequently been used in a more
specific form to prove, for example, that the computable rears cannot be
enumerated by a Turing machine. The distinction between these two
forms of the argument can be expressed within a formal logic as a
distinction between using the argument with a parameter F, denoting en
arbitrary map from the natural numbers to the rears. and with a defin(~d
term F, representing a particular defined map.

This paper could be subtitled "Logicism Revisited". The Frege-Russell
thesis of logicism is simply that number is a logical concept and that the
theorems concerning natural and real numbers are tautologies of logic.
This is in contrast to the axiomatic view of Hilbert that the theorems are
logical consequences of assumed nonlogical axioms.

But what is logic? For the axiomatic view, it is sufficient to identify logic
with first order logic. From the axioms of a set theory, such as those of
Zermelo-Fraenkel [Shoenfield67] or GOdel-Bernays [GOdeI40] ,a theory of
natural and real numbers may be developed. The axioms of the set theory
may be justified as expressing truths about a pre-existing or "constructed"
universe, as is done in [Schoenfield67]. for example.

To defend the thesis of logicism, however, first order logic is inadequate.
Logic must admit abstraction as a primitive concept, along with logical.
connectives and quantifiers. Like connectives and quantifiers, abstraction
is a sentence constructor. However, abstraction constructs sentences by
constructing abstraction terms from sentences. The effect of this is the
inclusion, in the domain of discourse, of the sets obtained by abstraction
from properties of objects in the domain of discourse. But it was this
inclusion that Russell exptoited to show that Frege's logic was inconsistent.
Thus a revtsttation of logicism requires a reexamination of the paradoxes of
set theory.

The semantics for first order logic described in [Tarski56] has become
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standard: An interpretation of the atomic sentences assign truth values to
them; nonatomic sentences are assigned truth values by semantic rules for
the logical connectives and quantifiers. A proof that every sentence
receives one and only one truth value can be completed by finite ind ction
on the definition of sentence. Since the truth values of nonatomic
sentences depend upon the truth values of simpler sentences, the
semantics can be said to be reductionist.

Treating abstraction as a sentence constructor, like the logical connectives
and quantifiers, means that semantic rules for abstraction must be
introduced that assign truth values to nonatomic sentences dependent
upon the truth values of simpler sentences. In the papers
[Gilmore7l,&O,&6]a resolution of the paradoxes has been proposed that is
based upon such a reductionist semantics for logic; it was first proposed
for an earlier logic [Gilmore671 The semantics for these logics differs from
the standard semantics for first order logic in only two respects: First,
transfinite induction must be used instead of finite induction; and second,
although each sentence receives at most one truth value, some sentences
receive none. A similar proposal for a resolution of the liar paradox has
been proposed in [Kripke751

That this semantics provides a successful resolution of the paradoxes is
demonstrated in [Gilmore7l,&O,&61A set theory with a logical syntax
presented in the calculus of sequents [Gentzen34,35L was shown to be
consistent. Further, the theory in its second order form is not trivial since
it is as strong as second order arithmetic. However, one weakness oi the
logic was noted in [Gilmore&6];namely, the diagonal argument, used by
Cantor to prove that there are more real numbers than there are natural
numbers, cannot be formalized. This paper undertakes a reexamination of
this argument.

The setting for the reexamination is a natural deduction based set theory,
NaDSet,presented within a Gentzen sequent calculus. The form of NaDSet
employed generalizes the earlier form of the theory, described in
[Gilmore71.&O,&6Lby replacing its first and second order quantitiers by a
single bounded quantifier in which the bound expresses the "type" of the
quantified variable. The bound is expressed by the abstraction terms of
the logic; these generalize conventional abstraction terms. The elementary
syntax for NaDSetis described in section 2, and the logical syntax in section
3. After some preliminary definitions and derived rules provided in
section 4, the semantics for the logic is described in section 5. Unlike the
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earlier form of the set theory, a consistency proof for NaDSet is not yet
known, although the consistency of the logic is shown in section 5 to fol ow
from a proof that the cut rule is redundant.

In section 5 an answer to the question "why second order logic?" is also
provided. Briefly the answer is that the first order theory of [Gilmore 6 6] is
inadequate for expressing the semantics of recursive definitions, while
third and higher order theories using a reductionist semantics similar to
that of NaDSet, are inconsistent.

In section 6, the main theme of the paper is addressed.

Consider the diagonal argument of Cantor. A real number in the closed
interval [0, t l can be represented as a sequence b l' b2, ... , bj, ... , where
each bj is 0 or 1. The real number represented by the sequence is

b 1* 1/2 + b 2*(1 /2 )2 + ... + b i*(1 /2)j + ...

Such a sequence can also represent a subset of a denumerable set, witt
bj =0 if the j'th element of the set is not a member of the subset, and bj =1

otherwise.

Let F be an enumeration of sequences of o's and Is: that is, for each i,
where i= 1, 2, ... , FU]is a sequence ibj of o's and Is. Define C[F]to be the

sequent Cj'where
c·= 0 if jb·= 1 andJ ' J'
c;= I, if jb;=O.

Cantor's diagonal argument uses the "diagonal" sequence C[F]to prove:

Cantor's Lemma: For each enumeration F of real numbers, there
is a real number not enumerated by F.

To prove the lemma, C[F]is shown to be a real number, and thet:l shown to
be not enumerated by F; the latter follows since for each j, Cj - Jbj.

A Simple instance of the lemma is helpful in clarifying the argument.
Define FBU]to be ibbj, where ibbj is 1 if i S L and is 0 if i ) j. Thus

Ibb is 1 0 ... 0 ...
2 b b is 1 1 0 ... 0 ...
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and C[FB]is 0 0 ... 0 ... , confirming the lemma in this case.

For any particular defined enumeration FB of sequences, the diagonal
argument demonstrates that C[FB]is not in the range of FB. But the
diagonal argument is used in a more general form to prove the lemma: For
any enumeration F of the reals, C[F]is shown to be a real number not
enumerated by F.

In a formal logic such as NaDSet, the distinction between these two forms
of Cantor's diagonal argument can be expressed as a distinction between
carrying out the argument for any defined term P, such as FB, and for a
parameter F of the logic representing an arbirary map. In section 6, the
more restricted use of the argument is formalized as a derived rule elf
deduction, called Cantor's rule.

Let F be a term representing the given mapping of the natural numbers
into the reals. Cantor's rule has two premisses ( i,C[F]>:F-+ ( i,C[F]>:Pand
( i,f):F -+ ( i,f):F; they express that certain ordered pairs necessarily are, or
are not, members of F. These two premisses are derivable When F is FB or,
for example, a mapping of the natural numbers into the computable reals
provided by a Turing machine. The two premisses are not derivable,
however, when P is a parameter needed to express the general form of
Cantor's diagonal argument used to prove Cantor's lemma.

Although Cantor's general diagonal argument cannot be formalized witntn
NaDSet, in section 7 it is demonstrated that one example of a common
argument of modern algebra can be.

Let a B structure be a set on Which a binary, commutative, and associative
operation is defined. The set of B structures, with cartesian product and
isomorphism, is a B structure. The proof of this theorem in section 7 makes
particular use of the generalized abstraction and quantification of NaDSet.
The theorem was suggested in [Feferman~4] as an example of why
type-free logics are needed to provide foundations for category theory.
That the theorem can be proved within NaDSet, suggests that it has the
potential for providing such foundations. This is briefly discussed in
section 7.4.

To provide additional background for answering the question posed in the
title of the paper, a formalization of GOdel-Bernays set theory is provided
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within NaDSet in section &. As with the B structures of section 7, the
formalization is accomplished by defining the set of structures that satisfy
the axioms of the set theory. Unlike an axiomatization of the set theory
within first order logic, however, such a formalization has no existential
implications for NaDSet; that is, the formalization does not postulate the
existence of any set that is not already postulated by NaDSet.

In section &.3 the concern of classical set theories with the question "what
sets exist 7", is contrasted with the concern of natural deduction based set
theories, such as NaDSet, with the question "What arguments are sound 7".
The question posed in the title is returned to in section 6.4.

It may be argued that a fundamental weakness of NaDSet is exposed by its
inability to formalize Cantor's diagonal argument in its most general form.
But that remains to be seen. That NaDSet does not require the explicit
assumption of an axiom of infinity, as do the Zermelo-Fraenkel or
Godel-Bernays set theories, for example, demonstrates the thesis of
logicism at least for the natural numbers. That the logic should not at the
same time support the full theory of transfinite ordinals and cardinals may
say more about the interpretation of that theory than it does about the
adequacy of the logic. The paradox of the greatest cardinal requires that
the diagonal argument fail at some point. That the diagonal argument fails
for NaDSet precisely at the point of introduction of the notion of
nondenumerability, it may be argued, is a point in its favour.
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2 ELEMENTARY SYNIAX
The essentials of the elementary syntax of NaDSet are provided in
definition 2.1 below. There are differences from the definitions of
[Gilmore66]. These differences will be discussed as the presentation ()f the
new logic proceeds.

6



One minor syntactic change in NaDSet is the replacement of 'E' by':'. The
main reason for the change is the preemption of the 'E' notation by set
theories in which an axiom of extensionality is admitted; since NaDSet is an
intensional logic, as demonstrated in section 4.5, a change of notation is
appropriate. The choice of ':' as a replacement for 'E' has been suggested by
the conforming usage in category theory and in some programming
languages.

To simplify the description of NaDSet, only a single logical connective '!'
and only a universal quantifier are taken to be primitive. Other logical
connectives and the existential quantifier will be freely used, however,
with their usual definitions assumed given. The connective is joint denial,
so that (Sta!Stb) has the same truth table as (-Stal\-Stb).

Definition 2.1 allows for only one type of quantifiable variable in NaDSet,
unlike the first order and second order variables appearing in the earlier
version. However, first and second order parameters are introduced to
play the role of unquantified quantifiable variables, and first and second
order constants are introduced as well. The manner in which they are used
in the logical syntax, and interpreted in the semantics, ensures that NaDSet
is a second order, not first order logic.

In addition to quantifiable variables, the logic NaDSet admits abstraction
variables as well. Abstraction variables are bound in abstraction terms.
This is also a change from [Gilmorea61, where no distinction was made
between first order variables and abstraction variables. The change
provides a more readable syntax.

The particular syntax used for quantifiable and abstraction variables, and
for first and second order parameters and constants is unimportant. In the
examples offered as illustrations in this section, strings of lower case Latin
letters and numerals beginning With a letter 'u', 'v', 'w', 'x', 'y' or 'a' will be
used as quantifiable variables, and other such strings will be used as first
order parameters and constants. Second order parameters and constants
Will be strings of upper and lower case Latin letters, beginning with an
upper case letter that is not an initial letter of a variable. Strings of lower
case Greek and Latin letters and numerals, beginning With a Greek letter,
will be used as abstraction variables. However, in the interests of
readability, a less restrictive syntax will be used in later sections.
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Definition 2.1. Elementary Syntax

1.1. A variable is a term. The single occurrence of the variable in the term
is a free occurrence in the term.

1.2. A first or second order parameter or constant is a term of the same
order. No variable has a free occurrence in the term.

1.3. A term in which no second order parameter occurs is a first order
term.

2.1. If ta and tb are any terms, then ta:tb is a formula. A free occurrence
of a variable in ta or in tb, is a free occurrence of the variable in the
formula. If ta is a first order term, and tb is a second order constant
or parameter, then ta:tb is an atomic formula.

2.2. If Fla and Fib are formulas then (FlaJ.Flb) is a formula. A free
occurrence of a variable in Fla or in Fib is a free occurrence in
(FlaJ.Flb ).

2.3. Let FI be a formula, vr a quantifiable variable, and T a term in which
vr has no free occurrence. Then [Vvr:T]FI is a formula. A free
occurrence of a variable in T or in FI, other than vr in Fl, is a free
occurrence of the variable in [Vvr:T]FI; no occurrence of vr in
[Vvr:T]FI is a free occurrence in the formula.

3. Let ta be any term in which there is at least one free occurrence of an
abstraction variable, and in which there is no occurrence of a
parameter, or no free occurrence of a quantifiable variable. Let Fl be
any formula. Then {taIFI}is an abstraction term and a second order
term. A free occurrence of a quantifiable variable in FI is a !rtt
occurrence in {taIFl}. A free occurrence of an abstraction variable in
FI, which does not also have a free occurrence in ta, is a ~
occurrence in {taIPI}. An abstraction variable with a free occurrence
in ta has no free occurrence in {taIFI};such an abstraction variable is
called an abstracted variable of {taIFI}. ta is called the abstractec_
term and PI the abstracted formula of the abstraction term {taIPI}.

4. A term in which no variable has a free occurrence is a constant U!.rnl.
A formula in which no variable has a free occurrence is a sentence.

By clause 3, no abstracted variable of {taIFI}has a free occurrence in that
term, although it does have a free occurrence in ta. For example, let
'[x,B,y1000,B,b)' be a substitution operator that replaces free occurrences of '0::',
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'B' and »: respectively, by 'x', 'B' and 'y'. Then
[x,B,y/cx,B,6]«cx,B>:{<cx,B>I cx:B1\ <B,6>:B})

is the formula
<x,B>:{<cx,B>I cx:B1\ <B,y>:B}

since the occurrence of '6' in
<cx,B>:{<cx,B>I cx:B1\ <B,6>:B}

is free, while only the first occurrence of 'cc' and 'B' is free. Here -ta.tt» is
the ordered pair of ta and tb as it is defined in 4.1 below. The quanti. iable
variables 'x' and v' are the only variables with free occurrences in
<x,B>:{<cx,B>Icx:B1\ <B,y>:B}.

Clause 1.3 applies to second order constants and to the abstraction terms
defined in clause 3; for example, the second order constant 'B' is a tirst
order, as well as a second order term, as is also the abstraction term
{<cx,B>I cx:B1\ <B,y>:B}.The justification for clause 1.3 is provided in section
5.

The abstraction terms admitted into NaDSet are a generalization of the
lamba abstractions of the lambda calculus of lcnurcn-t i l. Indeed, as was
described in the introduction to [Gilmorea61, NaDSet can be seen as a
solution to the problem posed by Church in section 2 1 of lcnurcn-t t l: In
NaDSet, unrestricted abstraction is combined with universal quantification.
That problem provided the title for [GilmoreaOl. The expansion rule of the
lambda catcutus that permits the conversion

[N/x]M ,*«).xM)N)
is generalized to the abstraction rule described in the next section that
allows the con version

[tm./~lFl '* [tm./~lta:{taIFl}
Here, ~ is the sequence of distinct abstraction variables with a free
occurrence in ta, and tm. is a sequence of terms with the same length as ,,-.
An instance of the generalized abstraction rule is:

a:B 1\ B:P •• <a,B>:{<cx,9>I cx:91\ 9:P},
where 'a' is a first order constant, '8' a second order constant that by 1.3 is
a first order term, and 'P' a second order parameter. The conversion is
correct because a:B " B:P is the formula [a,B/cx,9J(cx:91\ 9:P), and
[a,B/cx,B]<cx,9>:{<cx,9>I cx:91\ 9:P} is the formula <a,B>:{<cx,9>I cx:91\ 9:P}.

In clause 2.1, ta need not be a first order term in order for ta:tb to tIe a
formula. This is an important way in which NaDSet differs from its earner
version, since it has the effect of generalizing the abstraction rules. For
example, under the previous assumptions on 'a', 'B', and 'P', 'a:P' and
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'{cc] a:o:}:P' are atomic sentences, but 'P:P', 'P:B', or 'p:{o:la:o ]: are not.
However, 'p:{o:la:«}' is a formula; note that

a:P ~ p:{o:la.cc}
so that 'p:{o:la:cc}' can be reduced to the atomic sentence 'a.P'. Such an
application of generalized abstraction was not allowed in the original
NaDSet.

3 LOGICAL SYNTAX

Familiarity with the Gentzen sequent calculus as described in [Gentzen:34L
[Kleene52 Lor [Prawitz65] is presumed. This natural deduction calculus is
chosen for the formalization of NaDSet because it is one of the least
complicated to describe and justify. However, any natural deduction
formalization of first order logic, such as those presented in [Beth55L
[Prawitz65L or [Fitch52 Lcan be simply extended to be a formalization of
NaDSet.

Definition 3,1: The axioms and rules of deduction of NaDSet

1. The axioms are all sequents
ASt -+ ASt

for which ASt is an atomic sentence.

2, The rules of deduction for the introduction of the single logical
connective take their expected forms:

fj" Sta -+ A r, Stb -+ e r -+ Sta, Stb,e

fj" r -+ (StaJ.Stb), A, e r,(StaJ.Stb) -+ e

3. In each of the following rules for the introduction of the bounded
quantifiers, ta is a Single abstraction variable when T is a second order
parameter or constant, and is the abstracted term of T when it is a
constant abstraction term {talPa}. In the first case, «is ta; in the
second case, «e: SEQ[n,CtV]has elements that are the distinct abstracted
variables of {taIFa}. FI is a formula in which only the quantifiable
variable vr has a free occurrence.

In the first of the rules, R. is a sequence, with the same length as 2'", with
elements that are distinct parameters not occurring in any sentence of
the conclusion. In the second of the rules, tal. is any sequence, of the
same length as ~ with elements that are constant terms.
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r. [~I ~]ta:T -+ 9, [[~I ~]ta Ivr ]FI

r -+ 9, [Vvr:T]FI

r -+ 9, [tm./~]ta:T s, [[tm.1 ~]ta Ivr ]FI -+ A

r. s, [Vvr:T]FI-+ 9, A

4. Let {taIFa}be any abstraction term, and let ~ be the sequence, without
repetitions, of all abstraction variables with a free occurrence in ta. Let
tm be any sequence of constant terms of the same length as «. The two
rules of deduction for abstraction are the following:

r -+ [Yn.1«]Fa, 9 I', [tm./~]Fa -+ 9

r -+ [tm/«]ta:{taIFa}, 9 F, [tm./«]ta:{taIFa} -+ e

5. The thinning rules and the cut rule are unchanged:

r-+e r-+e

r -+ St, e I', St -+ 9

r -+ St, e s, St -+ A

s, r -+ A, 9

where St is any sentence.

The contraction and interchange structural rules are not presented; by
regarding the sequences rand 9 as sets of sentences, it is possible to, drop
these rules.

The rules 3.1.2, 3.1.3, and 3.1.4, will be referred to, in the order in which
they have been presented, as -+.1.,.1.-+,-+'1, '1-+, -+{}, and {}-+. The derived
rules for the defined existential quantifier [3vr:T]and the logical
connectives =. v, 1\, and o will be refered to by a similar notation. Cut and
thinning will be referred to by name.

A rule permitting the changing of bound variables cannot be derived in the
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logic as presented. Should such a rule be desired, it can be added and a
formula or term interpreted as a representative of the equivalent class of
its bound variable variants. Alternatively, the method used in
[Gilmore~O,~6) may be employed. However, because all applications of the
rules of deduction are to sequents of sentences, no application of a rule in a
proof requires the changing of any bound variable.

4 SOMEDEFINITIONS AND DERIVEDRULES

In this section some definitions and derived rules needed in the remainder
of the paper will be provided; they will, at the same time, illustrate
applications of the rules of deduction.

4.1. Ordered Pairs and Identity

4.1.1 -ta.tt» for {exl(ta:CJ.tb:C)},
where 'C' is a given second order constant. Any second order constant may
be used since the constant need not satisfy any assumptions apart from the
assumptions made for every second order constant.

This unusually simple definition of ordered pair is satisfactory in NaDSet
because NaDSet is an intensional logic. Two rules of deduction will be
derived for ordered pair in 4.1.7 and 4.1.~ below. As will be evident from
the derivations of the rules, the particular form of the term chosen as
ordered pair is unimportant: The rules can be derived as long as -ta.u» is
a first order term when ta and tb are first order terms. However, the
statement of the rules must wait upon the definition and development of
identity.

Triples and other tuples can be similarly defined directly, or can be derined
by nesting pairs.

4.1.2. = for {<ex,£hl[Vz:{vlex:y})9:z}
Since <ex,9>,where exand 9 are abstraction variables, satisfies the conditions
on ta in clause 3 of definition 2.1, {<oc,9>1[Vz:{vloc:v}]sz} is an abstraction
term. The definition provides an abbreviation for it.

Members of = are ordered pairs <ta,tb>. The conventional infix notation
ta=tb will be used instead of expressing membership by the formula
<ta,tb>:=.
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4.1.3 (~=)
For any constant first order term ta,

~ ta-ta
is a derivable sequent.

Here follows a derivation:

ta:p ~ ta:P

p:{vlta:v} ~ ta P

~ [Vz:{vlta:v}] ta:z

~ <ta,ta>:{<ex,8>1[Vz:{vlex:v}]8:z}

axiom

{}~
~V

The application of ~{} in this derivation i11ustrates an important feature of
the abstraction rules. Note that the ordered pair term <ta,ta> does not
appear in the premiss of the rule. That particular term is introduced in the
conclusion of the rule as a member of {<ex,8>1[Vz:{vlex:v}]sz}, because <ex,B>
is the abstracted term of that abstraction term.

The sequents of 4.1.3 can be regarded as instances of a derived rule of
deduction which introduces formulas ta-ta into the succedent of a
sequence; uses of 4.1.3 will therefore be justified as an application of ~=.
The following derived rule then is the dual rule =~, that introduces identity
into the antecent:

4.1.4. (=~)
Let F1by any formula in which only the abstraction variable exhas a free
occurrence, and let ta and tb be any constant terms. Then the renewing is
a derivable rule:

r ~9, [ta/ex]F1 [tb/ex]F1,A ~ A

r,A, ta=tb ~ 9, A

From the first premiss, r ~9, ta:{exlP1}can be concluded by~{}; from the
second premiss tb:{exlP1},A ~ A can be concluded by {}~. The conctusion of

. the derived rule follows by V~ from these two sequents.
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4.1.5. Under the assumptions of 4.1.4, the following is a derivable rule:

[ta/cx]Fl -+ [ta/cx]Fl [tb/cx]F1 -+ [tb/cx]Fl

ta=tb, [ta/cx]Fl -+ [tb/cx]Fl

The conclusion of the rule follows by one application of =-+.

4.1.6. (=axioms)
For constant first order terms ta and tb,

ta=tb -+ ta-tb
is a derivable sequent.

A derivation follows:

taP -+ ta.P tb:P -+ tb:P axioms (P 2 nd order parameter)

ta=tb, ta:P -+ tb:P

ta-te, P'{vlta.v] -+ tb:P

ta=tb -+ ta=tb

=-+

0-+
-+V, -n

With these results for =, it is now possible to return to the ordered pair
definition 4.1.1 and demonstrate that it has the desired properties of
ordered pair.

4.1.7. (-+<»
For constant first order terms ta I, tb I, ta2, and tb2, the following is a
derivable rule:

r -+ 9, ta 1=tb 1 6 -+A, ta2 =tb2

r, 6 -+9, A, -ta l,ta2 >=<tbl,tb2 >

Since ta 1, tb 1, ta2, and tb2 are first order terms, so are eta l,ta2>,
<tb l,ta2 >,and <tb l,tb2 >. Therefore from -axioms and 4.1.4, the renewing
two sequents are derivable

_ta 1=tb 1, -ta l,ta2 >=<tal,ta2 >-+ <ta l,ta2 >=<tbl,ta2 >
ta2 =tb2, -ta l,ta2 >=<tbl,ta2 >-+ <ta l,ta2 >-<tb l,tb2 >

The conclusion of the -+<>rule follows from its premisses and -+=by four
applications of cut.
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4. 1.~. (<>-+)
For constant first order terms ta I, tb I, ta2, and tb2, the following are
derivable rules:

r, ta I =tb 1 -+e

I', -ta l,ta2 >=<tbl,tb2 >-+e

[, ta2 =tb2 -+e

I', -ta l,ta2 >=<tbl,tb2 >-+e

Here is a derivation of the first rule:

-+ ta I =ta I (-+=)

-+ -ta l,ta2 >:{<ex,9>lex=ta I}

r. -ta l,ta2 >=<tbl,tb2 -+e (=-+)

[, ta I =tb I -+e
r, <tb l,tb2>:{<ex,9>lex=ta1} -+e

A similar derivation of the second rule can be provided.

4.2. Extensional Identity

4.2.1 =e for {<ex,9>HVu:ex]u:9/\ [Vu:9]u:ex}

Extensional identity provides a means for illustrating important aspects of
bounded quantification within NaDSet.

4.2.2. Four Universal Sets

Consider the following defined 'universal' sets:
V 1 for {exlex-ex}
V2 for {yIY=eY}
V22 for {yl{<ex,9>I<ex,9>:Y}=e{<ex,9>I<ex,9>:Y}}
Cl for {<ex,9>1ex:9}

For each of these terms tm, it is possible to derive the sequent
-+ [Vu:tm]u:tm

and therefore derive the sequent
-+ tm=etm

But the derivations take on a very different character in each case. In the
following derivations, p and q are first order parameters, and P is a second
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order parameter:

For V 1:

-+ p=p

p=p -+ p=p

p:V 1 -+ p:V 1

-+ [Vu:V 1] u:V 1

For V2:

p:P -+ p:P

-+ [Vu:P]u:P

-+ [Vu:P]u:P /\ [Vu:P]u:P

-+ <P,P>:{<cx.fhHVu:cx]u:B /\ [Vu:B]u:cx}

-+=

thinning

axiom

-+/\

-+{}

-+ P= Pe defn

-+ P:V2

P:V2 -+ P:V2

-+ [Vu:V2 ]u:V2

For V22:

thinning

-+V

<p,q>:P -+ <p,q>:P axiom

<p,q »{ <cx,B>I<cx,B>:P}-+ <p,q>:{ <cx,B>I<cx,B>:P} {}-+,-+ {}

-+ [Vu: {<cx,B>I<cx,B>:P}]u:{<cx,B>I<cx,B>:p} -+V

-+ [Vu:{ <cx,B>I<cx,B>:p} lu.] <cx,B>I<cx,B>:P}/\ [Vu:{ <cx,B>I<cx,B>:P}]u:{<cx,B>I<cx,f3>:P}

-+/\

-+ <{<cx,B>1<cx,B>:p}, {<cx,B>I<cx,B>:P}>:{ <cx,B>HVu:cx]u:B /\ [Vu:B]u .cc}

-+0
-+ {<cx,B>I<cx,B>:P}=e {<cx,B>I<cx,B>:P}

-+ P:V22

P:V22 -+ P:V22

-+ [Vu:V22]u:V22

defn

thinning

-+V
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For Cl:

p:P ...•p:p

<p,P>:{<o:,lhl0::9}...•<p,P>:{<0:,9>10::9}

...•[Vu:Cl]u:Cl

axiom

4.2.3. A Class of Second Order Universal Sets
The term, {<0:,9>1<0:,9>:v}.in the definition of V2 2, provides the bound on the
quantified variable 'u'. It specifies its "type" to be <0:,9>.Consider a more
general example, where ta is assumed to satisfy the conditions of clause 3
of definition 2.1:

V2 (ta) for {v I{talta:v }=e{talta:v}}
Here '(' and ')' are used instead of 'l' and']' because of the conditions placed
on ta: only terms satisfying those conditions may replace it.

A derivation for the sequent ...•[Vu:V2(ta)]u:V2(ta), similar to the
derivation for the sequent ...•[Vu:V2 2]u:V22, can be provided.

That V2(ta) is the "type" for abstraction terms {taIFa}. can be seen from
the following derived rule:

[ll/~]Fa ...•[ll/~]Fa

...•{taIFa}:V2(ta)

V2, V2 2, and V2 (ta), are examples of domains for second order quantifiers.

4.3. Quantification and First and Second Order Logic

First order quantification in NaDSet is represented by the quantifier
[Vvr:V 11. The following are derived rules of deduction:

f ...•9, [p/vr]FI r, [tm/vr]F1 ...•9 ...•tm:V 1

r ...•9, [Vvr:V I ]FI r. [Vvr:V 11F1...•9

Here p is a first order parameter not occuring in any sentence of the
conclusion of the ...•'1 I rule.

Apart from the additional premiss for the V...•rule, these are the rules for
first order quantification in the sequent calculus.
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Quantification in the monadic second order logic can similarly be
represented by [Vvr:V2]. The following are derived rules of deduction:

r -+ 9, [P/vr]F1 r, [tm/vr]F1 -+ 9 -+ tm:V2

r -+ 9, [Vvr:V2]F1 I', [Vvr:V2 ]F1 -+ 9

Here P is a second order parameters not occuring in any sentence of the
conclusion of the -+V2 rule. Again, apart from the additional premiss, these
are the usual rules.

The following are derived rules of deduction for the second order "type"
V2 (ta ):

r -+ 9, [P/vr]Fl r, [tm/vr]Fl -+ 9 -+ tm:V2 (ta)

r -+ 9, [Vvr:V2(ta)]Fl I', [Vvr:V2(ta)]Fl -+ 9

Thus quantification over any of the types of the second order domains of
second order logic, as well as many domains that are not of second order
logic, can be represented in NaDSet.

4.4. Natural Numbers

Some definitions are provided here for the development of arithmetic
within NaDSet:

o for {a:I-a:=a:}
Succ[tm] for {a:la::tm}
C1Succ for {vllvu:v]Succ[u]:v}
N for {a:UVz:CISucc](O:z:>a::z)}
1 for succlol
N 1 for {a:HVz:CISucc](l:z :> a::z)}
s for {(a:,fhHVz:C1Succ](a::Z:>e:z)}

Explicit definitions for I, N I, and s are introduced here for use later in the
paper. It is unnecessary to repeat here the development of arithmetic,
since a sketch is provided in [Gilmore66L and since it follows closely the
usual development within second order logic.
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4.5. The Inconsistency of Extensionality

As was remarked earlier, NaDSet is an intensionallogic. This will be
demonstrated by showing that both ...•<0,1>lI:e<1,0> and <0,1>=<1,0> -+ are

derivable in NaDSet. A derivation of the first sequent follows:

O:C...•O:C l:C ...• l:C axioms

...•(O:C.1.i.c), O:C, l:C

...•(O:C.1.ic), ic. O:C

(1 :C.1.0 :C) ...•(0 :C.1.1:C)

...• .1.

interchange structural rule

.1. ...•

p:<1,0> ...•p.eo, 1>

(a) ...•[Vu:<1,0>]u.so, 1>

(b) ...•[Vu:<O,1>]u« 1,0> derivation similar to (a)

...•/\

A derivation of the second sequent follows:

...• 1=1

...•<1,0>:{<cdhlo:= l ]

0= 1 ...•

<0,1>:{<o:,B>lo:=I} ...•

arttnmetic

=-+

The failure of extensionality within NaDSet is not to be regretted. Such a
principal would be undesirable for some of the proposed applications for
the logic. The models considered in applications of logic to mathematics are
static; that is the extension of a set is not expected to change over time.
But in the applications of logic to data modelling [Gilmorea7a,a7b,aat the
extension of a set such as, for example, the set of employees of a particular
corporation, is expected to change over time, although its intension remains
fixed. As a consequence two sets with distinct intensions may have the

. same extension at one time, and different extensions at another time.

4.6. On Parameter Occurrences in a Derivation

There are three ways in which a parameter may be introduced into a
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derivation:

(I) An axiom tm:P ~ tm:P introduces the second order parameter 'P', and
any first order parameter occurring in tm. Several examples of such
axioms are given in the derivations provided in 4.1.

(H) Parameters may appear in a sentence introduced by thinning. For
example, an occurrence of 'P' is introduced by thinning in the derivation of
~ [Vu:V2] u:V2 in 4.2. This introduction of 'P' is typical of such
introductions: 'P' already occurs in a sentence of the premiss of the
thinning rule.

(Hi) Applications of ~{} and {}~can introduce occurrences of parameters.
For example, in the derivation of the sequent ~<O,l >=e <1,0>in 4.5, the
parameter 'p' appears in the sequent p:<1,0>~ p.eo, 1>as a consequence of
an application of ~{} and of Il-.

Instances of parameters introduced by thinning or abstraction do not have
an order determined by the derivation; that is, a correct application of
thinning or abstraction, which introduces instances of a parameter, remains
correct when those instances are replaced by a parameter of the opposite
order. An instance of a parameter introduced in an axiom, on the other
hand, may not have its order switched: In an atomic sentence, a parameter
appearing to the right of ':' must be second order, and a parameter
occurring in the term to the left of ':' must be first order.

Three rules of deduction can remove instances of parameters, ~V, V~, or
cut. Instances of parameters introduced into a derivation can be traced
through a derivation until they are removed by an application of one of
these rules.

In an application of ~{} and of {}~two or more instances of a single
parameter in the premiss of the rule may be reduced to a Single instance of
the parameter in the conclusion. The multiple instances of the parameter
in the premiss may be traced back to different origins; that is, one may
have been introduced by an axiom, and another by thinning or abstraction.
In this case the single instance of the parameter in the conclusion has
multiple origins. However, if one of its origins is an axiom, then its order
cannot be switched.

It is this property of derivations that preserves the second order character
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of NaDSet.

4.6.1. Changing parameters in a derivation
Consider a derivation, and consider all occurrences of a given parameter
within the derivation. All such occurrences may be replaced by another
parameter of the same order that is new to the derivation.

5 SEMANTICS

The traditional sernan tics for classical logics is described in [Tarski 561. It is
a reductionist semantics in the following sense: An interpretation of the
atomic sentences assign truth values to them; nonatomic sentences are
assigned truth values by semantic rules for the logical connectives and
quantifiers. These semantic rules express the truth value for a nonatomic
sentence in terms of the truth values already assigned to its parts. A proof
that every sentence receives a truth value is completed by finite induction
on the number of occurrences of connectives and quantifiers in the
sentences.

Here a traditional semantics will be provided for NaDSet. However, as with
earlier logics, [Gilmore67,7l,aO,a61, finite induction no longer suffices, and
not all sentences receive a truth value.

An atomic sentence of NaDSet has the form
tm:'f,

where tm is a constant first order term and T is a second order constant or
parameter. Interpretations of atomic sentences are conventional: Given a
domain of discourse J.9,an interpretation assigns an object in J.9to tm and a
subset of J.9to T. The sentence is true in the interpretation, if the object
assigned to tm is a member of the subset assigned to T.

The following notation is helpful for the remainder of this section:

Definition 5.0.1. J9, P[J9l, CtV, ., CU", SEQ[n,Ctvi SEQ[n,.] and
SEQ[n,C U"].
1. J.9is defined to be the set of constant terms in which no parameter has

an occurrence. lP[J.9]is the set of all subsets of J.9.
2. CtV is the set of abstraction variables;

P is the set of parameters, both first and second order;
'CU"is the set of all constant terms, both first and second order.

3. SEQ[n,,6l,where ,6 is one of CtV, P, or 'CU",is the set of all finite
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sequences of length n of members of ~.

Definition 5.0.2: Assignments
1. An assi~nment ~ is a mapping of the first order parameters and

constants into members of JSJ,and the second order parameters and
constants into members of lP[JSJ].For a first order parameter or constant
P. ~[p] is the member of JSJto which p has been assigned. For a second
order parameter or constant P, ~[P] is the member of lP[JSJ]to whict. P
has been assigned.

2. Let tm be a constant first order term, and let R. £ SEQ[n,'fI]be a sequence
of the distinct first order parameters occurring in tm. Let
~[R.]E SEQ[n,JSJ]be the corresponding sequence of members of J9
assigned to the first order parameters R.. Then ~[tm] is [~[R.]/R.]tm, and
is necessarily a member of JSJ.

3. Two assignments ~ and e: are said to differ for R.E SEQ[n,'fILif ~[ql is
C([q] for each parameter q that is not an element of R..

5.1. Truth Value Assignments for Atomic Sentences

5.1.1. Let ~ be a given assignment. Then 1['o[~] is the set of atomic
sentences tm:T for which ~[tm] £ ~[TL the "true" sentences of ~; and
lFO[~] is the set of atomic sentences tm:T for which ~[tm] ¢ ~[TL the
"false" sentences of c.

A sentence tm:T, where T is an abstraction term, is not an atomic sentence
and therefore is assigned a truth value, if one is assigned at all, by the
semantic rule for abstraction stated in 5.2.3 below. Thus an abstraction
term, unlike second order parameters and constants, is not assigned a
subset of JSJdirectly by e.

5.2. The Semantic Rules

Assume that 1[')..l[~]and IF)..l[~]have been defined for a given ordinal
number )..l.

5.2.1. The semantic rules for .I..
Let Sta and Stb be any sentences. Then

Sta, Stb € IF)..l[~]~ (StaJ.Stb) € 1[')..l+l[~t
Sta € 1[')..l[~]~ (StaJ.Stb) € IF)..l+l[~t and
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5.2.2. The semantic rules for V.
In the following rules, ta is a single abstraction variable when T is a second
order parameter or constant, and is the abstracted term of T when it is a
constant abstraction term {taIFa}. In the first case, ~ is ta; in the second
case, ~ E: SEQ[n,CtV] has elements that are the distinct abstracted variables
of {taIFa}. For both rules, Pl is a formula in which only the quantifiable
variable vr has a free occurrence.

5.2.2.1. The first semantic rule for V is: Let R.E: SEQ[n,'f] have elements
that are distinct from each other and from all parameters occurring in T, or
in Fl.

For all assignments e: differing from Ctonly for R-
[~/cx]ta:T ( IFp.[Ct'] or [[~/~]ta/vr]Fl ( ']['p.[Ct']
=* [Vvr:T]Fl ( ']['p.+ l[Ct].

5.2.2.2. The second semantic rule for V is:

For som e tm. E: SEQln. 'CCJ"L
[tm/cx]ta:T ( ']['p.[Ct] and [[tm/~]ta/vr]Fl ( IFp.[Ct]
=* [Vvr:T]Fl ( IFp.+ l[Ctl.

5,2.3. The semantic rules for 0:
Let {taIFa} be any abstraction term, let ~ E: SEQ[n,CtV] have elements that
are the distinct abstracted variables of {talPa}, and let
tm € SEQ[n,'CCJ"].The semantic rules for 0 are:

[tm./cx]Fa ( 11"p.[Ct] =* [Yn./~]ta:{taIFa} ( ']['p.+ l[CtL and
[Yn./~]Fa ( IFp.[Ct] =* [tmJ~]ta:{taIFa} ( IFp.+ l[Ctl.

5.2.4. For a limit ordinal v,
11"v[Ct]is U{ ']['p.[Ct] Ip. < v}. and
IFv [Ct]is U{ IFp. [Ct] I p. < v}

5.2 .5. ']['[Ct]is U{ ']['p. [Ct] Ip. ~ O},and
IF[Ct]is U{ IFp.[Ct] Ip. ~ O}.
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The sets 1r[Ct] and IF[Ct] are well defined since
1rp.[Ct] ~ 1rv[Ctl, for p. ~ v, and
IFp.[Ct] ~ lFv[Ctl, for p. ~ v,

while 1rv[Ct] and lFv[Ct] are subsets of the denumerable set of all sentences
of NaDSet.

5.3. Satisfiability and Validity

5.3.1. A sequent r -+ e of sentences is satisfied by an assignment Ct if at
least one of r n F[Ct] and e n 1r[Ct] is not empty. The sequent is valid it it is
satisfied by every assignment Ct.

5.3.2. Theorem: Every sequent with a cut-free derivation is valid.

The proof proceeds quite simply by induction on the number of
applications of rules of deduction in the cut-free derivation.

The consistency of NaDSet would follow either from a proof that cut
preserves validity, or from a proof that cut is a redundant rule of
deduction.

5.4. Why must NaDSet be second order?

5.4.1. First order is not adequate.
The original first order form of NaDSet described in [Gilmore&6] cannot
express the semantics of recursive definitions. For example, the definition
of the set N of natural numbers given in section 4.4 takes the form:

N for {cxI[Vz:ClSucc](O:z::>cx:z)},
where ClSucc is the set of sets closed under successor. The definition
expresses that N is the smallest set with 0 as a member that is closed
under successor. The quantifier [Vz:ClSucc]is second order.

The importance of such a recursive definition is that all properties of the
set defined by it, can be derived from the definition. In a first order logic
it is necessary, for example, to assume all of Peano's axioms as nonlogical
assumptions in order to develop arithmetic.

Another example of importance to computer science arises from the
recursive definitions of a programming language like Prolog that provides
recursive definitions by means of collections of Horn clauses. A trivial
variant of the above definition of N is:
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NN for {cxUVz:CISucc](O:z1\ t z o cx:z)}.
Without additional assumptions, it is not possible to prove within a first
order logic that Nand NN are extensiona11y identical.

That recursive definitions are entirely self contained is important for some
of the intended applications of NaDSet. The recursive definitions needed
for expressing the semantics of some computer programs can take complex
forms, and the discovery and justification of induction axioms needed to
prove the programs correct can be difficult. Further, for a theoretical
result showing that a conjecture, such as P.NP, is not derivable in NaDSet, it
is essential that the logic be self contained.

5.4.2. The third order form of NaDSet is inconsistent.
One of the ways in which NaDSet differs from the monadic second order
logic is in anowmg second order terms, in which no second order parameter
appears, to be first order. It is natural to ask if third and higher order
forms of NaDSet, based on a similar principal, are consistent. In a tmrd
order form of NaDSet, for example, third order terms in which no third
order parameter occurs would be second or first order depending upon
whether a second order parameter did, or did not, occur in it. But, as the
following derivation shows, this third order form of the logic is
inconsisten t.

Define
R for {cxHVu:{f3lcx=f3}]-cx:u}.

Derivations for both -+ R:Rand R:R -+ are provided below. The rules used in
each step of the derivation are not cited since they are obvious from the
principle sentence introduced into the conclusion of the rules. Also, in
some cases, several steps are expressed as one when the reconstruction of
the missing steps is obvious.

In the following derivation, P is necessarily a second order, and Q a ithird
order, parameter.

P:Q -+ P:Q R:Q-+ R:Q

P:Q,P.R -+ R:Q

P.R -+ P·R R:P -+ R:P

P••.R -+ P:{f3If3••.R} -R:P -+ -R:P

[Vu:{f3If3=R}]-Rru, P·R -+ -R:P
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-+ R=R

R:R, p:{818=R}-+ -R:P

R:R -+ [Vu:{818=R}l -R:u

R:R -+ R:R

-+ R:{818=R} -R:R, R:R -+

[Vu:{818=R}l-R:u, R:R -+

R:P -+ R:P

R:P, P=R -+

P""R -+ -R:P

-+ [Vu:{818=R}l -R:u

R:R -+

-+ R:R

Thus the principal that distinguishes NaDSet from the monadic second
order logic cannot be used to define third and higher order forms of
NaDSet.

Incidentally, this is the contradiction found in the earliest form of NaDSet
presented in [Gi1more6~l. In that form of the logic, "atomic" was not
correctly defined, permitting the derivation of the sequent P=R -+ P=R.

5.4.3. The atomic sentences of NaDSet have clear interpretations
Consider a given assignment o. In the renewing discussion, a sentence is
said to be true if it is a member of ']['[~l, and is said to be false if it is a
member of IF[~l, as these sets have been defined in 5.2.5.

The atomic sentence
{exlex=ex}:P

is true or false according to whether '{exlexl:ex}'is or is not a member of the
set assigned to 'P'. In the displayed sentence '{exlex=ex}'is being mentioned,
while 'P' is being used. The sentence could, therefore, equally well be
written

'{exlex=ex}':P.

The abstraction term '{exlex-ex}'is, however, also a second order term. The
sentence

{exlex=ex}:{exlex=ex}
is true. For it receives the same truth value as the sentence
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{a:: Ia::=a::} = {a:: Ia::=cc },
which, by definition 4.1.2, is the sentence

<{a:: Ia::=a::}, {a:: Ia::=a::}): {<a::,fhl [Vz: {v I<x:v}] sz}.
This sentence receives the same truth value as

[Vz: {v I {a:: Ia::=a::}:v}] [cc Ia::-a::} :Z.
This last sentence is true, because no matter what set is assigned to the
second order parameter 'P', the sentence

{a:: Ia::=a:: }:P,
which can be written

'{ce Ia::=a::} ':P,
is either true or false. Carrying the single quotes back through the
applications of the semantic rules, the sentence {a::la::=a::}:{a::la::=a::} can be
written

'{ a::Ia::= a::}' : {a:: Ia::-a::}
to emphasize that the first occurrence of '{a::la::=a::}' in the sentence is oeing
mentioned, while the second occurrence is being used.

In NaDSet, an abstraction term occurring to the left of ':' in an atomic
sentence is always interpreted as a name for itself and could therefore be
enclosed in single quotes. But, because such occurrences of these terms are
uniformly regarded as names for themselves, single quotes are not needed
to avoid confusions of use and mention.

The systematic dropping of quotes must not be abused. Both Church and
Tarski have warned of the possible abuse of the quote notation; see, for
example, footnote 136 on page 62 of [Church561, or the discussion of quotes
in the first section of [Tarski561. Treating quotes as a function from
subsets of J9 to names of J9 is an abuse of quotes.

Each second order constant C has a pair of subsets of J9 associated with it:
The set of terms ta 4[ J9, for which ta:C 4[ ']['[~l, and
the set of terms ta 4[ J9, for which ta:C 4[ F[~l.

The union of these two sets is J9. Similarly, each second order term tm
that is a member of J9 has a pair of subsets of J9 associated with it:

The set of terms ta 4[ J9, for which ta:tm 4[ T[~l, and
the set of terms ta 4[ J9, for which ta:tm 4[ F[~l.

However, the union of these two sets may, or may not, be J9. Nevertheless,
each such term tm may be used as the name of a pair of subsets of 19, just
as a second order constant may be used.

No means has been provided for supplying an arbitrary pair of subsets of
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J.9with a name that is a member of J.9. Therefore, since second order
parameters are variables that may be assigned any subset of J.9,sequerits
of the form

P:Q -+ P:Q
cannot be given an interpetation when 'P' is second order: A parameter 'P'
cannot act as a function from subsets of J.9to members of J.9.

The nominalist interpretation of second order terms to the left of ':' in
atomic sentences as names for themselves, requires, therefore, that there
be both first and second order parameters in NaDSet. For a parameter
cannot be assigned an arbitrary subset of J.9,and at the same time be
interpreted as a name for the subset in the set J.9. Further, it justifies
allowing a second order term to be first order when no second order
parameter occurs in it.

In the first description of the original form of NaDSet [Gilmore7l L the
underlying reason for the logic being second order was reinforced by
calling first order variables, variables of mention, and second order
variables, variables of use.

A consequence of accepting this nominalist interpretation is that NaDSet is
necessarily an intensional logic, as was shown in section 4. Another
consequence is the failure of the general Cantor diagonal argument, as will
be shown next.

6 CANTOR'S DIAGONAL ARGUMENT

As described in the introduction, a real number v in the interval [0,1] can
be represented as a total single valued function with arguments from N I,
and values that are 0 or 1:

R for {vi [Vn:N l][&u:B](<i,u>:v" [Vv:B]«n,v>:v :> v=b »t
where B is defined:

B for {exIex=Ov ex=t}.
N 1, 0, and 1 are defined in 4.4, and ••in 4.1.2.

Identity =Rbetween real numbers is necessarily extensional identity.
=R for {ev 1,v2>I{<v,8 >I<v,8>:v1}=e{<v,8 >I<v,8 >:v2}}

As with = and =e' the usual infix notation will be used.

A single valued map ¢ of N 1 into R is a member of the set
MapN lR for {¢IM[¢]},
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where, for any term F,
M[F] for [Vn:N l][~x:R]«n,x>:F " [Vy:R]«n,y>:F ::>y=Rx».

In the informal diagonal argument of section 1 used to prove Cantor's
lemma, a real number C[F] is defined from a member F of MapN lR. ~hat
number is defined here for any term P:

C[F] for {<v,9>I[Vx:R]«v,x>:F::>[Vv:B]«v,v>:x::> -v=9»}.
The argument proceeds by proving that C[F] is indeed a real number if F is
a member of MapN lR, and then by proving [Vn:N I] -<n,C[F]>:F, providing
an instantiation for the existential quantifier of Cantor's lemma.

A derivation of the following rule of deduction provides a full formalization
of Cantor's diagonal argument within NaDSet:

6.1. Cantor's Rule of Deduction

<i,f>:F-+ <i,f>:F <i,C[F]>:F-+ <i,C[F]>:F

F:MAPN IR -+ [~x:R][Vn:N 1] -<n,x>:F

Here 'i' is any first order parameter, 'r any second order parameter, and F
a constant term in which there are no occurrences of 'i' or 'r.

6.2. A Derivation of Cantor's Rule of Deduction

The following abbreviations will be used in derivations provided in this
section:

AU,r] for d,f>:F" [Vy:R](d,y>:F ::>Y=Rr)
Sri,b,r] for <i,b>:r" [Vv:B](d,v>:r ::>v=b)
TU,x,9] for (d,x>:F ::>[Vv:B](d,v>:x ::>-v=9»

With these abbreviations, the following abbreviations are possible:
M [F) for [Vn:N I ][~x:R]Aln.xl
R for {vi [Vn:N 1][~u:B]S[n,u,v]}
C[F] for {<v,9>I[Vx:R]T[v,x,9]}.

6.2.1. The following rule of deduction is derivable:
M[F] -+ C[F]:R C[F]:R,i:N I, d,C[F]>:F -+

F:MAPN lR -+ [~x:R][Vn:N 1] -<n,x>:F
where 'i' is a first order parameter, and P is a constant term in which 'i'
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does not occur.

A derivation of this rule follows:

C[F]:R,i:N 1. <i,C[F]>:F-+

C[F]:R,i:N 1 -+-<i,C[F]>:F

M[F] -+C[F]:R C[F]:R-+ (Vn:N 1] -<n,C(F]>:F

M[F] -+C(F]:R M[F] -+ (Vn:N 1] -<n,C(F]>:F cut

M[F] -+ [3:x:R][Vi:N1] -<n,x>:F -+3:

F:MAPN lR -+ [3:x:R][Vn:N1] -<n,x>:F

6.2.2. For any first order parameters 'b ' and '1', and second order
parameter 'r ', the following sequents are derivable:

b:B -+b:B
i:N 1 -+ i:N 1
r:R -+ r:R
[Vv:B](<i,v>:r:::>-v=b) -+ [Vv:B](<i,v>:r:::>-v=b)

The need for derivations of sequents such as these is typical of NaDSe:.
The construction of a derivation for such a sequent is generally an
elementary exercise in Gentzen's sequent logic. When that is the case ..a
derivation of the sequent will be omitted.

6.2.3. From the premisses of Cantor's rule, the following sequents can be
derived:

<i,b>:C(F]-+ <i,b>:C[F]
C[F]:R -+C[F]:R

Derivations for these sequents follow. They, as well as all subsequent
derivations, take the following form: The main branch of the derivation
appears on the left. When a two premiss rule is applied, in which one of
the premisses is an axiom or has been previously derived, that premiss
appears on the right. When neither premiss is an axiom or has been
previously derived, the two premisses are numbered or lettered, and
separate derivations provided for them. Only occasionally will a ruts of
deduction be referenced since the derivations are only rarely abbreviated
and the rule or rules being applied in any step should be apparent. ~0

assist in identifying the rule being used, the principal sentence in tho
conclusion of the rule will sometimes be identified with a prefixed *.
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Derivations of sequents judged to be elementary will be omitted wihout
comment.

A derivation of <i,b>:C[F] -+ <i,b>:C[F] follows:

[Vv:B]«i,v>:r ::>-v=b) -+ [Vv:B](<i,v>:r ::>-v=b) <i,r>:F -+ <i,r>:F

*(<i,r>:F::> [Vv:B](<1,v>:r::> -v-b», <1,r>:P-+ [Vv:B](<1,v>:r::> -v=b)

(<i,r>:F::> [Vv:B](<i,v>:r::> -v-b» -+ *(<i,r>:F::> [Vv:B](<1,v>:r ::>-v=b»

T[i,r,b] -+ T[i,r,b] r:R -+ r:R

[Vx:R]T[i,x,bl, r:R -+ T[i,r,b]

[Vx:R]T[i,x,b] -+ [Vx:R]T[i,x,b]

<i,b>:C[F] -+ <1,b>:C[F]

A derivation of C[P]:R -+ C[F]:R follows:

<1,c>:C[F]-+ <1,c>:C[F] c=b -+ c=b

«i,c>:C[F] ::>c=b) -+ (<i,c>:C[P]::>c=b) c:B -+ c:B

*[Vv:B](<i,v>:C[F]::> v=b), c:B -+ (<1,c>:C[F]::>c=b)

[Vv:B](<i,v>:C[F]::> v=b) -+ *[Vv:B](<i,v>:C[F]::> v=b) <1,b>:C[F]-+ <l,b>:C[F]

<1,b>:C[F]1\ [Vv:B](<1,v>:C[F] :::>v=b) -+ <i,b>:C[F] 1\ [Vv:B](<i,v>:C[F] :::>v=b)

S[i,b,C[F]] -+ S[i,b,C[Pll b:B -+ b:B

b:B, S[i,b,C[Fll -+ *[Ru:B]S[i,u,C[P]]

*[Ru:B]S[i,u,C[F]] -+ [Ru:B]S[i,u,C[P]] i:N 1 -+ i:N 1

*[Vn:N 1][Ru:B]S[n,u,C[F]l, i:N 1 -+ [Ru:B]S[i,u,C[F]]

[Vn:N 1][Ru:B]S[n,u,C[Pll -+ *[Vn:N 1][Ru:B]S[n,u,C[Pll

C[F]:R -+ C[F]:R

6.2.4. Using the premisses of Cantor's rule, the following sequent is
derivable:

C[F]:R, i:N I, <1,C[P]>:P-+

A derivation follows:

-+ b=b

-b=b -+ <1,b>:C[F]-+ d,b>:C[F]
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<i,b>:C[Fl, *(<i,b>:C[F]::> -b=b) -+ b:B -+ b:B

b:B, <i,b>:C[Fl, *[Vv:B](<i,v>:C[F]::> -v=b) -+ <i,C[F]>:F -+ <i,C[F]>:F

b:B, <i,b>:C[Fl, *(<i,C[F]>:F ::>[Vv:B](<i,v>:C[F] ::>-v=b», <i,C[F]>:F -+

b:B, <i,b>:C[Fl, *T[i,C[Fl,bl, <i,C[F]>:F -+ C[F]:R -+ C[F]:R

b:B, <i,b>:C[Fl, *[Vx:R]T[i,x,bl, C[F]:R, <i,C[F]>:F -+

b:B, <i,b>:C[Fl, *<i,b>:C[Fl, C[F]:R, <i,C[F]>:F -+

b:B, <i,b>:C[Fl, C[F]:R, <i,C[F]>:F -+

b:B, <i,b>:C[Fl, *<i,b>:C[Fl, C[F]:R, <i,C[F]>:F -+ -+ b=b

b:B, <i,b>:C[Fl, *(<i,b>:C[F]::> b-b), C[F]:R, <i,C[F]>:F -+

b:B, <i,b>:C[Fl, *[Vv:B]«i,v>:C[F] ::>v=b), C[F]:R, <i,C[F]>:F -+

b:B, *<1,b>:C[F] 1\ [Vv:B]«i,v>:C[F]::> v=b), C[F]:R, <1,C[F]>:F -+

b:B, *Sli,b,C[F]l, C[F]:R, <i,C[F]>:F -+

*[Hu:B ]Sli,u,C[F]l, C[F]:R, <i,C[F]>:F -+

*[Vn:N 1][Hu:B]S[n,u,C[F]l, C[F]:R, i:N 1, <i,C[F]>:F -+

*C[F]:R, C[F]:R, i:N 1, <i,C[F]>:F -+

C[F]:R, i:N 1, <i,C[F]>:F -+

i:N 1 -+ i:N 1

6,2,5, Using the premisses of Cantor's rule, the sequent
M[F] -+ C[F]:R

can be derived from the sequents
(ta) [Vv:B](<1,v>:t::> v=O), [Vx:R](<1,x>:F::> X=Rt) -+ <i,l>:C[F]

(1 b) [Vv:B]( <1,V»t ::>v = 1), [Vx:R]( <i,x>:F ::>x=R t) -+ <i,O>:C[F]

(za) t:R, <1,O>:t,<i,t>:F -+ [Vv:B]( <i,v>:C[F]::> 1=v)
(2b) t:R, <i,i>:t, <i,t>:F -+ [Vv:B]«i,v>:C[F] ::>O=v)
Note that (1b) is obtained from ( ra), and (zb) from (za), by replacing '0' by
'1' and '1' by '0', A derivation follows:

(1a) [Vv:B]( <i,v>:t ::>v ••O), [Vx:R]( <i,x>:F ::>x':R t) -+ <1,l>:C[F]

(za) t:R, <i,O>:t, <i,t>:F -+ [Vv:B](<i,v>:C[F]::> 1-v)

t:R, [Vv:B](<i,v>:t::> v ••O), [Vx:R](<i,x>:F ::>x':Rt), <i,O>:t, <i,t>:F -+
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*<i.l>:C[F] 1\ [Vv:B]«i,v>:C[F]:> 1=v)

t.R, *<i,O>:t 1\ [Vv:B]«i,v>:t:> v-O), *<i,t>:F 1\ [Vx:R](<i,x>:F:> X=Rt) -+ *Sli,l,C[F))

t:R, =su.o.u, *A[tt] -+ Sli,1.C[F))

t.R, *b=O, *S[i,b,tL Ali.tl -+ Sli,1.C[F]]

(a) t:R, b=O, Sli.b.tl, Ali.tl -+ *[Ru:B]S[tu,C[F]]

-+ l:B

Derivation of (b): Interchange '0' and '1' throughout derivation of (a)

(a) t.R, b=O, Sli.b.tl, Ali.tl -+ [Ru:B]Sli,u,C[F]]

(b) t:R, b= 1, Sli,b,tL Ali,t] -+ [Ru:B]Sli,u,C[F))

t.R, *b=O v b= 1, Sli.b.tl, Ali.tl -+ [Ru:B]Sli,u,C[F]]

t:R, *b:B, Sli,b,tL Ali,t] -+ [Ru:B]Sli,u,C[F]]

t:R, *[Ru:B]Sli,u,tL Ali.tl -+ [Ru:B]Sli,u,C[F]] i:N 1 -+ i:N 1

t:R, i:N 1, *[Vn:N 1][Ru:B]S[n,u.tL A[i,t] -+ [Ru:B]S[i,u,C[F]]

i:N 1, t:R, *t:R, Ali.t] -+ [Ru:B]Sli,u,C[F]]

i:N 1, *t:R, Ali,t] -+ [Ru:B]Sli,u,C[F]]

i:N 1. *[!Ix:R]Ali,x] -+ [Ru:B]Sli,u,C[F]] i:N 1 -+ i:N 1

i:N 1, i:N 1, *[Vn:N 1][Rx:R]A[tx] -+ [Ru:B]Sli,u,C[F]]

[Vn:N 1][Rx:R]Ali,xL *i:N 1 -+ [Ru:B]Sli,u,C[F]]

*M[FL i:N 1 -+ [Ru:B]Sli,u,C[F))

M[F] -+ *[Vn:N 1][Ru:B]S[n,u.c[F))

M[F] -+ C[F]:R

6.2.6. Using the premisses of Cantor's rule, the sequents (ra), (lb), (2a)
and (2b) of 6.2.5 can be derived.

Derivations of ( ia) and (za) follow. Derivations of (lb) and (2b) can be
obtained from these by interchanging '0' and '1'.
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A derivation of (Ia) follows:

b=O, b= 1 -+ <i,b>:t -+ d.b-.t

*(<i,b>:t:::> b=O), ci.bs.t, b= 1 -+

«i,b>:t:::> b=O), *<l/b>:{<v,lhl<v,lh:t}, b= 1 -+ <l,b>:r -+<i,b>:{<v,lhl<v,B):r}

(<i,b>:t:::>b=O), *[Vx:{<vIB>I<v,B>:r}]x:{<v,B>I<v,B>:t},<i,b>:r, b= 1 -+

«i,b>:t:::> b=O),

* [Vx:{ <v IB>1<v IB>:r} lx:{ ev ,B>1<v,B»t} 1\ [Vx:{ <v,B >I<v,B>:t}lx:{ <v ,B>1<v,B>:rL
<i,b>:r, b= 1 -+

(<i,b>:t:::>b=O), *r=Rt, <i,b>:r, b= 1 -+

*[Vv:B]«i,v>:t:::> v=O), r=Rt, b:B, <i,b>:r, b= 1 -+

b:B -+ b:B

d.r >:F-+ d ,f>:F

[Vv:B]«i,v>:t:::> v=O), *(<i,f>:F:::> r=Rt), <l,f>:F, b:B, <i,b>:r, b= 1 -+

r:R -+ r:R

[Vv:B]«i,v>:t:::> v=O), *[Vx:R](d,x>:F :::>x=Rt), r:R, <i,f>:F, b:B, d.b s.r, b= 1 -+

[Vv:B]«i,v>:t:::> v=O), [Vx:R](<i,x>:F :::>x=Rt), r:R, d,f>:F, b:B, d,b>:r -+ *-b= 1

[Vv:B]«i,v>:t:::> V=O), [Vx:R](<i,x>:F :::>x"Rt), r R, <i,f>:F, b:B -+ *(d,b>:r :::>-b:: 1)

[Vv:B](<i,v>:t:::> v=O), [Vx:R](<l,x>:F ::>x=Rt), r:R, <l,f>:F -+ *[Vv:B]«i,v>:r :::>-f/= 1)

[Vv:B](<i/v>:t::> v-O), [Vx:R](<l,x>:F ::>x-Rt), r:R -+

*( <l/f>:F ::>[Vv:B]( <i/v>:r ::>-V= 0)

[Vv:BI(<i,v>:t::> v-O), [Vx:R](<i/x>:F ::>x=Rt), r:R-+

*[Vx:R](<i,x>:F::> [Vv:B](<i,v>:x::> -Va 1)

[Vv:B](<i,v>:t::> v-O), [Vx:R](<l,x>:F::> x-Rt), r:R -+ -rur.n
[Vv:B]«i,v>:t::> v=O), [Vx:R](<l,x>:F::> xaRt) -+ *[Vx:R]Tli,x,ll
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(I a) [Vv:B]«i,v>:t::) v ••O), [VX:R](<i,X>:~ ::) x=Rt) -+ *<i,l>:C[F]

A derivation of (2a) follows:

b=O -+ O=b

b=O -+ * 1=b, O••b

b=O, *-O=b -+ 1=b <i,O>:t-+ d.Os.t

<i,O>:t,b=O, *(<i,O>:t::) -O=b) -+ l=b

<i,O>:t,b=O, *[Vv:B](<i,v>:t::) -v=b) -+ l=b

d.Os.t, b= I, [Vv:B](<i,v>:t::) -v=b) -+ l •••b

-+ O:B

from b= 1 -+ l=b

by thinning

<i,O>:t,*b=O v b= I, [Vv:B](<i,v>:t::) -v=b) -+ l=b

<i,O>:t,*b:B, [Vv:B](d,v>:t::) -v=b) -+ l=b <i,t>:F -+ <i,t>:F

<i,O>:t,<i,t>:F,b:B, *(<i,t>:F ::) [Vv:B](<i,v>:t::) -v=b» -+ l=b

t:R, <i,O>:t,<i,t>:F,b:B, *T[i,t,b] -+ l=b

t:R, <i,O>:t,<i,t>:F,b:B, *[Vx:R]T[i,x,b] -+ 1=b

t:R, <i.Ox.t, <i,t>:F,b:B, *<i,b>:C[F] -+ l=b

t:R, <i,O>:t,<i,t>:F,b:B -+ *(<i,b>:C[F]::) l=b)

(2a) t:R, <i,O>:t,<i,t>:F -+ *[Vv:B]«i,v>:C[F]::) l=v)

t:R -+ t:R

6.3. An Application of Cantor's Rule

Consider the enumeration ib of real numbers defined in the introduction.
It is the enumeration FB:

FB for {<v,p>1 v:N 1 1\ P"RB[v) l, where

B[i) for {<p.,9>1p.:N 1 1\ (p. S i ::)9 ••1) 1\ (p. ) i ::)9 ••0)}.

Consider the premisses of Cantor's rule when FB replaces F:
<i,n:FB -+ <i,n:FB
<i,C[FB):FB -+ <i,C[FB»:FB

That each is derivable for any first order parameter 'i' and second order
parameter 'r' follows quickly from the definition of FB. Therefore, by
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Cantor's rute, the following sequent is derivable:
FB:MAPN 1R-+ [Rx:R][Vn:N1) -<n/x>:FB

That -+ FB:MAPN 1Ris derivable is shown below, so that by cut,
-+ [Rx:R][Vn:N1) -<n/x>:FB

is derivable.

A derivation of -+ FB:MAPN lR from sequents (1) and (2) follows:

( 1) i:N 1 -+ xu.eun
(2) i:N 1 -+ BU]:R

i:N 1 -+ *[RX:R]A[i/x]

-+ *[Vn:N 1HRx:R]A[n/x]

-+ *M[FB]

-+ *FB:MAPN lR

A derivation of (1) follows:

r=RBU] -+ r=RBU])

i:N 11 r:R, i:N 1 1\ r=RBU) -+ rmRBU]) thin, 1\ -+

i:N 11 r:R, *<i/f>:FB -+ r=RBU))

i:N 11 r:R -+ *(<i/r>:FB ::> r=RBU))

(a) i:N 1 -+ *[Vy:RJ(<i/y>:FB ::> y=RBU))

(b) i:N 1 -+ <i/BU»:FB «b) follows easily from -+ BU)=RBU))

i:N 1 -+ *<tB[i»:FB 1\ [Vy:RJ(<i/y>:FB ::> y=RBU))

(1) i:N 1 -+ *A[tBU))

A derivation of (2) from two sequents (3) and (4) follows. The derivation
makes use of the following derivable sequents of the arithmetic introduced
in section 4:
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i:N I, j:N 1-+j ~i v j >i, and i:N I, j:N I, j ~I, j >i -+

(3) i:N I, j:N I, j s i -+ [3:u:B]S[j,u,B[i]]

(4) i:N I, j:N I, j >i -+ [3:u:B]S[j,u,B[i]]

i:N I, j:N I, *j s i v j >i -+ [3:u:B]S[j,u,B[i]]

i:N 1, j:N 1 -+ [3:u:B]S[j,u,B[ill

i:N 1 -+*[Vn:N 1][3:u:B]S[n,u,B[i]]

(2) i:N 1 -+*B[il:R

A derivation of (3) from sequents (5) and (6) follows:

(5) i:N I, j:N 1, j s i -+ -L l>:BU]

(6) j s i -+ [Vv:B]«j,v>:B[i] ~ v-1)

i:N I, j:N 1 -+ j s i v j >i

cut

i:N I, j:N 1, j s i -+*<j, l>:B[i] " [Vv:B]«j,v>:B[i] ~ v= 1)

i:N I, j:N I, j ~i -+*S[j, I,B[i)) -+ l:B

(3) i:N 1,j:N I, j ~i -+*[3:u:B]S[j,u,B[i]]

A derivation of (5) follows from the first three sequents:

j:N 1 -+j:N 1

-+ (j ~i ~ 1=1) (from -+ 1=1by thinning and -+~)

i:N I, j:N I, j ~i -+ (j >i ~ 1=0) (from i:N I, j:N I, j ~i, j >i -+by thinning and -+::»

i:Nl,j:Nl,j ~i-+*j:Nl" (j s t o 1=1)" (j >i::> 1=0)

(5) i:N I, j:N I, j s i -+*<j,1>:B[i]

A derivation of (6) follows:

j s i -+j ~ i b= 1-+b ••l

j s i, *(j s i ::>b= 1) -+b= 1

j ~ i, (j s i::> b= 1), *j:N I, *(j ) i::> b=O) -+b= 1 thin

j s i, *j:N 1" (j s i::> b=1)" (j >i::> b=O) -+b=1

j s i, *<j,b>:B[i] -+b= 1
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j ~ i ...•*(-Lb >:B[U ::> b = 1)

j s i, *b:B ...•«j,b>:BU) ::> b= 1)

(6) j s i ...•*[Yv:B)«j,v>:BU)::> v= 1)

A derivation of (4) can be adapted from the derivation of (3).

This application of Cantor's rule is typical of applications made in computer
science. For example, the rule may be applied to prove that the
computable real numbers, that is the sequences of o's and ts generated by
Turing machines, cannot be enumerated by a Turing machine. In this case,
as with FB, a particular enumeration of rears is defined for which the
premisses of Cantor's rule can be derived.

6.4. Cantor's General Diagonal Argument Fails

A proof of Cantor's lemma within NaDSet requires a derivation of the
sequent:

..,. ...•[Yw:MapN lR)[:~x:RJ[Yn:N1) -xn.x-rw
A derivation of this sequent could be provided with one application of ...•Y
from a derivation of the sequent:

F:MapN lR ...•[~x:RJ[Yn:N1) -<n,x>:F
where 'F' is a second order parameter. Note that this sequent differs from
the sequent

F:MapN lR ...•[~x:RJ[Yn:N1) -<n,x>:F
that is the conclusion of Cantor's rule. In the latter, F is any constant term
in which neither of the parameters 'i' and 'r have occurrences, while in the
former, 'F' is a second order parameter.

Cantor's rule of deduction is taken to be a formalization of his diagonal
argument when applied to particular maps F. This rule of deduction cannot
be applied to the more general case in which 'F' is a second order
parameter, because neither <i,n:F ...•<i,n:F nor <i,C[F]>:F...•<i,C[F»:Fis an
axiom of NaDSet. The first is not an axiom because 'r' is a second order
parameter so that '<i,n' is not a first order term. The second is not an
axiom because 'F' is a second order parameter so that '<i,C[F»'is not a first
order term. Therefore, Cantor's general diagonal argument cannot be
formalized within NaDSet.

It does not follow, of course, that a derivation for Cantor's lemma cannot be
found in NaDSet; it only follows that Cantor's diagonal argument cannot be
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used for the derivation.

7. ALGEBRAIC STRUCTURES

In section A I of [Feferman64t motivation is provided for considering set
theories other than the widely accepted Zermelo-Fraenkel and
Godel-Bernays set theories. The example <A, 0, =A> of structures with a
commutative and associative binary operation 0 and an identity =A over a
set A, is discussed. Let B be the set of all such structures, PR the Cartesian
product on B, and ISOisomorphism between members of B. Then the triple
<B,PR, ISO> is itself a member of B.

Feferman suggested the set B as a simple example of a common argument
in modern algebra. A set of structures is defined, and the set itself Is
shown to be one of the structures under appropriate definitions of
operations. Category theory provides richer examples of the argument. As
Feferman noted, however, the argument cannot be formalized withir. the
Zermeto-Fraenkel or GOdel-Bernays set theories, since these theories do not
permit the triple <B,PR, ISO>to be a member of B. NaDSet, however, faces
no such difficulty:

7.1. Theorem: The sequent
~ <B,PR,ISO>:B

is derivable in NaDSet.

The definitions of B, PR and ISO,together with a sketch of how the theorem
may be proved, are given below. In the definitions, the allowable notations
for abstraction and second order variables will be greatly expanded to
include more conventional algebraic notations. At the same time, the same
notation may be used in one context for abstraction variables, in another
context for second order variables, and in bold in a third context to
represent variables over second order terms. Although context will 'always
make clear the meaning of the notation, explanations will be offered at the
same time to ensure that there is no misunderstanding.

Although a functional notation for NaDSet was introduced in [Gilmore66L
that notation will not be used to avoid an unecessary digression. Th as, for
example, a binary function is represented by a ternary relation.

7. 1.1. Definition of B Structures:
B for {<A,o'=A>IBStr[A,o'=Alt where
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BStr[A,o,. A] for axioms.
Here axioms is the conjunction of all the sentences listed below in 7.1.2.

In the first definition A, 0 and =A are used as abstraction variables, whne
in the second definition, A, • and •A are used as metavariab1es over
second order terms; that is, as variables in the metatnecry of NaDSet.

The definition of B is typical of the formalization of an axiomatic theory
within NaDSet. The axioms of the theory are used to define the set of
structures satisfying the axioms; theorems in the axiomatic theory are
sentences of NaDSet stating properties of structures in the set, or in the
example at hand, stating that a particular structure is a member of the set.
Further details are provided in 6.2 below.

It is important to recognize that the definition of B, like all definitions
presented within NaDSet, have no existential content. 'B' is offered as an
abbreviation for a rather long string of symbols that form an abstraction
term of NaDSet. The role of the definition is to focus attention on the
abstraction term 'B' abbreviates, and to suggest an interpretation for it.
Models of NaDSet are not affected in any way by the definitions, neither
increased nor decreased in number. This is in sharp contrast to the
standard formalizations of axiomatic theories within first order logic .. he
nonlogical axioms, necessary for the formalization of an axiomatic theory,
restrict the models of the first order theory.

7.1.2. Axioms
In the axioms listed here, multiple bounded quantifiers are used with their
usual meaning. For example, a sentence

[Vu,v,w:A]FI
is an abbreviation for

[Vu:A][Vv:A][Vw:A]Fl.
Further, A is used as the name of unary set, 0 as the name of a ternary set,
and -A as the name of a binary set. The customary infix notation is used
for the latter, rather than the postfix notation of NaDSet.

The axioms are in two groups:

1. Axioms asserting 0 is a binary, commutative and associative single
valued function on A:
[Vu,v:A][~w:A] <U,V,w>:.
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Ivu.v.w.Alt-u.v.w», ~ <v,u,w>:.)
[Vu,v,w,wa, wb ,za,zb:A]

(eu.v.wa-» A <wa,w,za>:. A <u,wb,zb>:o A <v,w,wb>:o ~ za -A zb )
[Vu,v,wa,wb:A]«u,v,wa>:o A -u.v.wt»:« ~ wa -A wb )

2. Axioms asserting -A is an identity with respect to A and 0:
[Vu:A]u-Au
[Vu,v:A]( u -A v ~ v -A u)
[Vu,v,w:A]( u -A v A v -A w » u -A w)
[Vua,ub,v,w:A]«ua,v,w>:o A ua -A ub ~ <ub,v,w>:o)
[Vu,v,wa,wb:A]«u,v,wa>:o A wa -A wb ~ eu.v.wt»:«)

7.1.3. Definitions of PRA, PRo, and PR=.
In the following definitions, A I, A2, 0 I, 02, -A 1 and - A2 are being used
as meta variables over terms. These definitions, together with those for I SO
and PR below, provide rich examples of the use of the generalized
abstraction terms of NaDSet.

PRA[A I,A2] for {<exl,ex2>1exl:A 1 A ex2:A2}
PRo[o1,02] for {«exl,ex2>,<f31,f32>,<h i.sa» 1

<ex1,f3i.s 1>:01 A <ex2,f32,h2>:02}
PR=[-A l'-A2] for {«ex1,ex2>,<f3l,f32»1exI-A If31 A ex2-A2f32}

7.1.4. Functor and Isomorphism
'Functor' is used in the sense of [Barr,Wells65l. It is defined in two steps.
The conjunction of the following three sentences expresses that F is a
functor from <A1,01,- AI> to <A2,02,- A2 >. In these definitions, F, AI, A2,
01, 02, -A 1 and - A2 are used as metavariables over second order terms.

FA [F,A 1,A2] for [Vxl:A l][3:x2:A2] <xl,x2>:F
Fo[F,A 1,01,A2,02] for

[Vx l,y l,z l:A 1][Vx2,y2,z2:A2]( <xl,y 1,21>:.1 A
<X1,x2 >:FA <yl,y2 >:FA <Z l,z2 >:F~ <x2,y2,z2 >:02 )

F=[F,A 1,- A 1,A2,- A2] for
. [Vxl,y I:A l][Vx2,y2:A2]( xl-A lY 1 A ex 1,x2>:F A <Yl,y2>:F ~ x2-A2y2 )

Using these definitions, the set of functors from <A1,01,- AI> to
<A2,02,- A2 >is defined. In this definition, F is an abstraction variabl.e.
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FNR[<A1,0I,. Al >,<A2,02,. A2 -l for
{FIFA[F,A l,A2] 1\ Fo[F,A 1,01,A2,02] 1\ F=[F,A I,. A l,A2,. A2] }

The composition of functors on a common domain is defined next:
Comp[P,G,A] for {<O(,9>U~u:A]«O(,u>:P1\ <u,9>:G)}

This definition is used in the proof of the theorem in 7.3 below.

In the next definition, AI, 01, -A I' A2, 02 and •A2 are being used as
abstraction variables, while w is being used as a quantifiable variable.

I SO for {«A 1,01,=A 1>,<A2,02,••.A2 »1
[~w:FNR[<A1,0l,c A 1>,<A2,02,=A2 -n

Inv[w]:FNR[ <A2,02,=A2 >,<A1,01,=A 1>]}
where, the inverse of functors, Inv, is defined:

Inv[F] for {<9,O(>I<O(,9>:F}

7.1.5. The product PR defined on B
In this last definition, A 1~0I, =A I- A2, 02, =A2' A3, 03, and =A3' are being
used as abstraction variables:

PR for
{«A 1,01,=A 1>,<A2,02,=A2 >,<A3,03,=A3 »1

<A1,01,=Al >:B1\ <A2,02,=A2 >:B1\ <A3,03,=A3 >:B
«A3,03,= A3 >,<PRA[Al,A21,PRo[01,021,PR=[=A 1'=A2 ]»:1 SO}

7.2. Lemma for Theorem:

The following notation will be used in the statement and derivation 01 the
lemma, and in the derivation of the theorem: AI, 01, =A l' A2, 02, and =A2'
are used as second order parameters. '1' will abbreviate the sequence A 1,
o1, "A l' and '2' the sequence A2, 02,=A2; 'lx2' will abbreviate the
sequence PRA[Al,A21, PRo[01,o21,PR-[=Al'-A2].

Lemma: The sequent
<1>:B,<2>:B~ <lx2 >:B

is derivable.

Let Ax[A, 0, • A] be one of the axioms listed in 7.1.2, and let Ax[ 1] be the
result of replacing A, ., and •.A, respectively by A 1, 01, and =A 1· Let Ax[2]
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and Ax[ ixz lbe similarly defined. From the definition of B, and etementary
logic, it follows that from derivations of

Ax[ 1], Ax[2] -+Ax[ ixz l.
for each of the axioms Ax, a proof of the lemma can be obtained. Exa.mp1e
derivations for this sequent will be provided for two axioms only, since
derivations for the other axioms are similar.

7.2.1. The sequent Ax[ 1], Ax[2] -+Ax[ ixz l is derivable when Ax is th e first
of the axioms of group (1).

Ax[ I] is [Vu:A 1] [Vv:A 1] [Rw:A I l-u.v.w-» I,
Ax[2] is [Vu:A2] [Vv:A2] [Rw:A2]<u,v,w>:02 , and
Ax[ ixz l is

[Vu:PRA[A l,A2]] [Vv:PRA[A I,A2]] [Rw:PRA[A I,A2 ]]<u,v,w>:PRo[o1,02]

A condensed derivation ofAx[ 1], Ax[2] -+Ax[ ixz l follows. In this
derivation several applications of the rules of deduction may be
represented as one application. The practice of prefixing with an * the
principal formula in the conclusion of a rule is continued here. When the
application of more than one rule is represented as the application 0:[ one,
more than one sentence may be prefixed.

<pl,q l,r 1>:0I, <p2,q2,r2 >:02-+ <pl,q i.r 1>:0I 1\ <p2,q2,r2 >:02

<pl,q l,r 1>:0I, <p2,q2,r2 >:02-+*«p l,p2 >,<ql,q2 >,<rl,r2 »:PRo[o 1,02]

r I:A I, r2 :A2 -+ -r l,r2 >:PRA[AI,A2]

r I:A I, <pl,q l,r 1>:0I, r2:A2, <p2,q2,r2>:02 -+

*[Rw:PRA[A I,A2 ]]«p l,p2 >,<ql,q2 >,w>:PRo[o1,02]

*[Rw:A 1]<pl,q l,w>:o I, *[Rw:A2 ]<p2,q2,w>:02 -+

[Rw:PRA[A I,A2 ]]«p l,p2 >,<ql,q2 >,w>:PRo[o1,02]

with axioms: p I:A 1 -+P I:A 1 q I:A 1 -+q 1:A 1

p2 :A2 -+p2 :A2 q2 :A2 -+q2 :A2

P 1:A I, q l:A I, *Ax[ 11,p2:A2, q2:A2, *Ax[2]-+

[Rw:PRA[A I,A2 ]]«p l,p2 >,<ql,q2 >,w>:PRo[o1,02]
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Ax[ I], Ax[2], *<p l,p2 >:PRA[A I,A2], *<q tq2 >:PRA[A I,A2] -+

[Hw:PRA[A I,A2 ]]«p tp2 >,<ql,q2 >,w>:PRo[o1,02]

Ax[ 1], Ax[2] -+

*[Vu:PRA[A I,A2]] [Vv:PRA[A I,A2]] [Hw:PRA[A I,A2 ]]<u,v,w>:PRo[o 1,02]

Ax[ 1], Ax[2] -+ Axl ixz l

7.2.2. The sequent Ax[ It Ax[2] -+ Ax[ Ix2] is derivable when Ax is the last
of the axioms of group (2).

Ax[ I] is
[Vu,v,wa,wb:A l]«u,v,wa>:o 1 "wa =A 1 wb o eu.v.wt»:« I)

Ax[2] is
[Vu,v,wa,wb:Al]«u,v,wa>:ol" wa =Al wb » -u.v.wb..s l )

Ax[ lx2] is
[Vu,v,wa,wb:PRA[A I,A2 ]]«u,v,wa>:PRo[o 1,02] " <wa,wb>:PR=[= A I' =A;~]

::> <u,v,wb>:PRo[o 1,02])

An abbreviated derivation follows:

«p l,q l,ra 1>:01 " ra 1=A 1rb 1 ::> <p i.q l,rb 1>:01 ), <p l,q i.ra 1>:0I,

ral=Alrb1-+ <pl,ql,rb1>:ol (With axioms)

(a) p 1:A I, q I:A I, ra 1:A I, rb 1:A r. *Ax( 1), <p l,q l,ra 1>:0I, ra 1=A 1rb 1

-+ <p l,q l,rb 1>:01

(b) p2:A2, q2:A2, ra2:A2, rb2:A2, Ax(2), <p2,q2,ra2>:02, ra2=A2rb2

-+ -pz.q 2,rb2 >02

(derivation of (b) similar to that of (a»

Ax[ 1.],Ax[ 2], p 1:A I, P 2 :A2, q 1:A I, q 2 :A2, ra 1:A I, ra 2 :A2, rb 1:A I, rb 2:) 2,

<p l,q l,ra 1>:0I, <p2,q2,ra2>:02,

ra 1=A 1rb I, ra 2 =A 2rb 2,

-+ *<p l,q l,rb 1>:01 " <p2,q2,rb2 >:02
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Ax[ 11.Ax[21. p 1:A I, p2:A2, q l:A I, q2:A2, ra l:A I, ra2:A2, rb 1:A I, rb2:A2,

<p l,q l,ra 1>:0I, <p2,q2,ra2 >:02,

*«ra l,ra2 >,<rb l,rb2 »:PR-[ ••A I' -A2]

...•<p l,q l,rb 1>:01 " <p2,q2,rb2 >:02

Ax[ 1L Ax[2 l, pl:A I, p2 :A2, q I:A I, q2 :A2, ra I:A I, ra2 :A2, rb I:A I, rb2 :A2,

*«p l,p2 >,<ql,q2 >,<ra l,ra2 »:PRo[o 1,02]

«ra l,ra2 >,<rb l,rb2 »:PR=[= A I' ••A2]

...•«p l,p2 >,<ql,q2 >,<rb l,rb2 »:PRo[o 1,02]

Ax[ t l, Axlz l,

*<p l,p2 >:PRA[A l,A2 l, *<q l,q2 >:PRA[A l,A2],

*<ra l,ra2 >:PRA[A l,A2 1.*<rb l,rb2 >:PRA[A l,A2 l,

«p 1,p2 >,<ql,q2 >,<ra 1,ra2 »:PRo[o 1,02]

«ra l,ra2 >,<rb l,rb2 »:PR=[= A I' =A2]

...•«p l,p2 >,<ql,q2 >,<rb l,rb2 »:PRo[o 1,02]

Ax[ 1], Ax[ 2] ...•

*[Vu,v,wa,wb:PRA[A I,A2]]«u,v,wa>:PRo[0 1,02]" <wa,wb>:PR=[=A I' =A2]

::> <u,v,wb>:PRo[o 1,02])

Ax[ 1L Ax[2] ...•*Ax[ ixz l

7.3 Proof of Theorem

A derivation of ...•<B,PR,I SO>:Bcan be obtained from a derivation of
...•BStr[B,PR,ISO] by one application of ...•{}, using the definition of B. To
provide a derivation for the latter sequent, it is necessary to provide a
derivation for each sequent of the form

...•Ax[B,PR,ISOL
where Ax[A,o'-A] is one of the aXioms listed in 7.1.2. Derivations wi.ll be

providedJor two axioms in 7.3.1 and 7.3.2.

7.3.1. The sequent ...•Ax[B,PR.I SO] is derivable when Ax is the first of the
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axioms of group (0; Ax[B,PR,ISO] is [Vu:B][Vv:B][Hw:B]<u,v,w>:PR.

In the following derivation, <1>, <2>, and <lx2 >, have the meaning given to
them in section 7.2; "lx2 will abbreviate PR=[=A l'''A21.

The first sequent in the derivation follows from the axioms for B
structures, since <1x2 > is a B structure by lemma 7.2.

<1>:B, <2>:B -+ [Vx1,y 1,z l:PR[< 1>,<2>]][Vx2,y2,z2:PR[< 1>,<2>]]

«x l,y l,z 1>:PRo[o1,02] A

<X1,x2 >:=1x2 A <y 1,y2 >:=1x2 A <z1,z2 >:=1x2 :::> <x2,y2,z2 >:PRo[o1,0~~])

(a) <1>:B, <2>:B -+ Fo[= 1x2'< 1x2>,< 1x2>]

(b) <1>:B, <2>:B -+ FA[= 1x2'< 1x2>,< 1x2>] similar to (a)

(c) <1>:B, <2 >:B -+ F=[= 1x2 ' <1x2 >,<1x2 >] similar to (a)

(d) <1>:B, <2>:B -+ = 1x2:FNR[< 1x2>,< 1x2>]

(e) <1>:B, <2>:B -+ Invl- 1x2 ]:FNR[ <1x2 >,<lx2 >] similar to (d)

<1>:B, <2>:B -+ *[Hw:FNR[ <1x2 >,<1x2 >]]Inv[w]:FNR[ <lx2 >,<1x2 -l
<1>:B, <2>:B -+ *« lx2 >,<1x2 »:1 SO < 1>:B -+ < 1>:B <2>:B -+ <2>:B

<1>:B, <2>:B -+ *< 1>:B A <2>:B A «lx2 >,<1x2 »:1 SO

<1>:B, <2>:B -+ *« 1>,<2>,<1x2 »:P <l>:B, <2>:B -+ <lx2>:B (lemma 7.2)

<l>:B, <2>:B -+ *[Hw:B]« l>,<2>,w>:PR

-+ *[Vu:B][Vv:B][Hw:B]<u,v,w>:PR

7.3.2. The sequent -+ Ax[B,PR,ISO] is derivable when Ax is the last of the
axioms of group (0; Ax[B,PR,1 SO] is

[Vu,v,wa,wb:B]«u,v,wa>:PR A <u,V,wb>:PR :::> <wa,wb>:ISO ).

A derivation follows:
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<p3,<p l,p2 »:F, =P l,p2 >,p4>:Inv[G] -+ «p3,<p l,p2 »:F 1\ «p l,p2 >,p4>:InvIG])

<p l,p2 >:PRA[A l,A2] -+ <p l,p2 >:PRA[A 1,A2]

<p l,p2 >:PRA[A l,A21, <p3,<p l,p2 »:F, «p l,p2 >,p4>:Inv[G] -+

*[au:PRA[A l,A2]]( <p3,u>:F 1\ <u,p4>:Inv[G])

<p l,p2 >:PRA[A l,A21, <p3,<p l,p2 »:F, «p l,p2 >,p4>:Inv[G] -+

*<p3,p4>:Comp[F,Inv[G l,PRA[A l,A2]] p4:A4 -+ p4:J 4

<p l,p2>:PRA[A l,A21, <p3,<p l,p2»:F, p4:A4, «P l,p2>,p4>:Inv[G]-+

*[ax2 :A4]<p 3,x2 >:Comp[F,Inv[G l,PRA[A l,A2]]

<p l,p2>:PRA[A l,A21, <p3,<p l,p2»:F, *[ax2:A4]«p l,p2>,x2>:Inv[G]-+

[ax2 :A4]<p 3,x2 >:Comp[F,Inv[G l,PRA[A l,A2]]

<p l,p2>:PRA[A l,A2] -+ <p l,p2>:PRA[A 1,A2]

<p l,p2>:PRA[A l,A21, <p3,<p l,p2»:F,

*[Vx 1:PRA[A l,A2 ]][ax2 :A4]<x l,x2 >:Inv[G] -+

[ax2 :A4]<p3,x2 >:Comp[F,Inv[G l,PRA[A l,A2]]

*[ax2 :PRA[A l,A2 ]]<p3,x2 >:F,

[Vx 1:PRA[A l,A2 ]][ax2 :A4]<x l,x2 >:Inv[G] -+

[ax2 :A4]<p3,x2 >:Comp[F,Inv[G l,PRA[A l,A2]] P3:A3 -+ P3:A3

p3:A3, *[Vx 1:A3][ax2 :PRA[A l,A2 ll-x l,x2 >:F,

[Vx 1:PRA[A l,A2 ]][ax2 :A4]<x l,x2 >:Inv[G] -+

[ax2 :A4]<p 3,x2 >:Comp[F,Inv[G l,PRA[A l,A2]]

[Vx 1:A3][ax2 :PRA[A l,A2 ]]<x l,x2 >:F,

[Vx 1:PRA[A l,A2 ]][ax2:A 4]<x l,x2 >:Inv[G] -+

*[Vx 1:A3][ax2 :A4]<x l,x2 >:Comp[F,Inv[G l,PRA[A l,A2]]
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(a) *FA[F,<3>,< ixz-L *FA[Inv[G],< lx2>,<4>]-+

*FA[Comp[F,Inv[G ],PRA[A 1,A2 ]],<3>,<4>]

(b) Fo[F,<3>,< ixz-L Fo[Inv[G],< lx2>,<4>]-+

Fo[Comp[F,lnv[G l,PRA[A I,A2 ]]'<3>,<4>]

(c) F=[F, <3>,<Ix2 >IF =[In v[G 1,<Ix2 >,<4>] -+

F=[Comp[F,lnv[G ],PRA[A I,A2JL<3>,<4»

similar to (a)

similar to (a)

(d) F:FNR[ <3>,<Ix2 >], Inv[G ]:FNR[ <Ix2 >,<4>] -+

Comp[F,Inv[G 1,<Ix2 >):FNR[ <3>,<4»

(e) G:FNR[ <4>,<lx2 >1, Inv[F):FNR[ <lx2 >,<3» -+

lnv [Comp[F,lnv[G 1,<Ix2 >)]:FNR[ <4>,<3>] similar to (d)

F:FNR[ <3>,<Ix2 >1, Inv[F):FNR[ <Ix2 >,<3>1,

G:FNR[ <4>,<Ix2 >1, Inv[G ]:FNR[ <Ix2 >,<4» -+

*[Hw:FNR[ <3>,<4>]Inv[w]:FNR[ <4>,<3»

*[Hw:FNR[ <3>,<Ix2 >]Inv[w]:FNR[ <Ix2 >,<3>1,
*[Hw:FNR[ <4>,<Ix2 >]Inv[w]:FNR[ <Ix2 >,<4>] -+

IHw:FNR[ <3>,<4>]Inv[w]:FNR[ <4>,<3>]

*«3>,< Ix2>,>:ISO, *«4>,< Ix2»:IS0 -+ *«3>,<4»:IS0

<1>:8, <2>:8, <3>:8, <4>:8, «3>,< Ix2 »:1 SO, «4>,< Ix2 »:1 SO -+ «3>,<4»:1 SO (thin)

<1>:8, <2>:8, <3>:8, <4>:B, «1>,<2 >,<3»:PR*, «1>,<2 >,<4»:PR* -+ «3>,<4 »:1 SO

-+ *[Vu,v,wa,Wb:8]«u,v,wa>:PR 1\ <u,v,Wb>:PR:> <wa,Wb>:ISO )

7.4. Category Theory

No matter how category theory is regarded, either as a theory with its
foundations in set theory, or as an axiomatic theory that provides an
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alternative to set theory, a logic must be provided for drawing conclusions
from its axioms. As the theory of B structures developed above has
demonstrated, there are advantages to using NaDSet as the logic.

Category theory involves many more primitive concepts than does the
theory of B structures. Only very preliminary research has been
undertaken of its formalization within NaDSet. This work suggests that it
may be possible to prove within NaDSet that the category of categories is
itself a category. Other tentative conclusions can also be made.

The formalization of a theory, like category theory, within NaDSet has no
existential implications for NaDSet. This fact may help to provide an
answer to the question posed in [Blassa4]: Does category theory
necessarily involve existential principles that go beyond those of oth er
mathematical disciplines? When Zermelo-Fraenkel, or GOdel-Bernays, set
theory is used as a foundation for category theory, it is necessary to
distinguish between small and large categories.[Mac Lane71] That may no
longer be necessary when category theory is formalized within NaDSet.

a SET THEORY

Zermelo-Fraenkel and GOdel-Bernays have come to be regarded as tne
standard axiomatizations of set theory. They have been shown to be
equivalent, the main difference between them being that GOdel-Bernays
set theory has only finitely many axioms. In this section an axiomatization
of Gc5del-Bernays set theory is provided within NaDSet, based on the
axioms provided in [GOde140]. The main purpose of the exercise is to
provide a basis for a continuation of the discussion of the question posed in
the title of the paper.

To maintain a close adherence to the notation of [GOde1401,'cis' and 'M' will
be used as abstraction variables. Also, '£' will be used as an abstraction
variable for a binary relation, and the usual infix notation for it will be
employed.

Here is the definition of the set of structures satisfying the axioms elf
GOdel-Bernays set theory:

GBST for {<Cls,M £) Iaxioms}
Here axioms are the sentences corresponding to the axioms of the rour
groups A, B, Cand D of [GOde140]described next.

49



a.l. The axioms of GOdel-Bernays set theory
Several changes of notation from [GOdel40] are necessary. The practice
followed there of having upper case variables range over Cls, and lower
case variables range over M will not be followed, since all the axioms
involve first order quantification only. However, quantifiable variables za,
zb, and zc will be used where GOdel has used A, B, and C.

The axioms of the theory use first order bounded quantifiers over M and
C1s. These quantifiers are represented in NaDSet as follows:

[Vvr£M]F1 for tvvrv 1](vr£M :::>Fl),
with lvvrecisl, [avr£Ml, and [avr.:Cls] similarly defined.

The identity used in GOde1-Bernays set theory is not the identity of NaDSet,
but is defined here in terms of e:

x=£y for [Vz£C1s](x£z:::>y£z)
Finally, to avoid confusion with the use of the ordered pair notation of
NaDSet, 'Ix.yl' will be used where GOde1uses '<xy>'.

Group A
1. [Vx£Mlxects
2. [Vx,y£C1s](x£y:::>x£M)
3. [Vx,y£Cls]([Vu£M](u£x:: UEY):::>X=EY)
4. [Vx,YEM][az£M][Vu£M](u£z:: (u=£Xv u=£y»

Group B
1. [aza£Cls][Vx,yeM]([x,y]£za :: XEY)
2. [Vza,zb£Cls][azc£Cls][Vu£M](u.:zc E ueza " ueab)
3. [Vza£Cls][azbECls][Vu£M](u£zb Ii - ueza)
4. [Vza£Cls][azb£Cls][Vx£M](x£zb E [ay:M] ly.xleza)
5. [Vza£Cls][azb£Cls][Vx,YEM]([y,x]EzbE xeza)
6. [Vza£Cls][azbECls][Vx,YEM]([x,y]£zbE ly.xleza)
7. [VzaECls][azbECls][Vx,y,zEM]([x,y,z]EzbIi Iy.z.xleza)
a. [VzaECls][azbECls][Vx,y,zEM]([x,y,z].:zb• lxz.vleza)

Group C
1. [azEM]([aUEM]u.:z" [VxEM](XEZ::>[ay.:M](YEZ" xc y»)
2. [VX£M][aYEM][Vu,v.:M](UEV" V.:X::>UEY)
3. [VX£M][aYEM](u~ x :::>UEY)
4. [Vx£M][VzaECls](Un[za] ::>[aYEM][Vue:M](u£yE [avEM](VEX" [u,v]£:~a»)

In 4 of group C, the following abbreviation was used:
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Axiom D
[Vzae:C1s]([~u£M]u£za::>[~u£M]( ueza /\ [Vv£M] -Iveu /\ ve:za»)

The axiom of choice may be added to the set theory:
Axiom E

[~zae:C1s](Un[za]/\ [Vx£M]([~u£M]u£x::>[~ye:M](ye:x/\ [y,x]e:za»)

a.2. The theorems of GMel-Bernays set theory
Let now 'C1s','M', and '£', be second order parameters. Using these
parameters, the first two as unary, and the third as binary, a subset of the
sentences of NaDSet can be defined from the logical connective .I., and the
bounded quantifiers [Vvre:M]Fl, [Vvre:C1s],[~vre:M],and [~vre:Clsl. Call
these sentences GOdel-Bernays sentences. The theorems of the set theory
are then those GOde1-Bernays sentences gbst for which

<C1s,M,e:>:GBST-+ gbst
is a derivable sequent of NaDSet. But such a sequent is derivable if and
only if the sequent

-+ axiorns o gbst
is derivable. The bounded quantifiers of the gbst sentences are first order
quantifiers, with derived rules of deduction that are standard, as
demonstrated in 4.3. Therefore, if gbst is a theorem of GOdel-Bernays in
its conventional first order formalization, then it is also a theorem in the
NaDSet formalization. The converse is not necessarily true.

a.3. Existence of Sets vs Correctness of Arguments
Set theories such as GOdel-Bernays were developed in response to the fact
that simple instances of the naive comprehension axiom scheme

[~y][Vx](xe:y= FI)
are contradictions in first order logic; here FI is a formula in which 'x', but
not v: occurs free. The existential quantifier [~y] postulates the existence
of the set {cxllcx/x]Fl}in the domain of the variables. The construction of
such set theories involves a compromise between adequacy and
.consistency. Enough instances of the axiom scheme must be theorems to
meet the goals of the theory, but not so many as to threaten consistency.
As a consequence, the axioms of such set theories take on an ad hoc
character.

Perhaps this is the reason Gray wrote the following in the introduction to
[Graya4]: "The paradoxes of naive set theory showed that the Cantorian
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version was inadequate, but the various axiomatizations that soon wero
devised, while serving their purpose, have never been of particular
interest to mathematicians. They now function mainly as talismen to ward
off evil."

Instances of the naive comprehension scheme can be derived in NaDSet
using the following derivable rule of deduction:

[p /x]FI -+ [p /x]FI

-+ [Hy:VI][Vx:Vl](x:y 5 FI)
Here FI is a formula in which 'x' is the only variable with free occurrences,
and in which no second order parameter occurs; P' is a first order
parameter not occurring in the conclusion. But the primary concern of
natural deduction based set theories is not what sets exist; rather it is the
characterization of correct arguments involving sets.

Consider the Russell set, defined as {cxl-cx:cx}. A correct argument can be
provided to prove that 0, the null set, is a member of the Russe11set, since
the nu11set is not a member of itself. Similarly, a correct argument can be
provided to prove that the universal set V I is not a member of Russett set
since it is a member of itself. Thus correct arguments involving the Russell
set do exist. However, incorrect arguments involving the set also exist; for
example, the arguments used to prove that the Russell set is both a
member of itself and not a member of itself are not correct. But this is no
reason to discard the Russell set; only the incorrect arguments need be
discarded. A natural deduction based set theory such as NaDSet provides
the means for determining whether or not an argument is correct.

a.4. How many real numbers are there?

In NaDSet, it can be demonstrated that there are as many real numbers as
there are natural numbers, for the natural numbers can be mapped
one-to-one onto the sequences ibb defined in the introduction. But cantor's
diagonal argument, as it is applied to prove Cantor's lemma, is not a correct
argument. Therefore in NaDSet, it is not possible to prove, in that way, that
there are more real numbers than there are natural, as these numbers are
defined within NaDSet; although another way might be found.

The real numbers defined within GOdel-Bernays set theory can be shown,
in that theory, to exceed the number of natural numbers defined within
the theory. The diagonal argument used to prove this result can be shown
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to be correct within NaDSet,as can any argument deriving a theorem from
the first order axioms of the theory. But the argument is only correct as it
is applied within GOdel-Bernaysset theory to the real numbers and natural
numbers defined in that theory. The concept of real number is relative to
the theory in which it is defined; the real numbers of NaDSetare not the
real numbers of GOdel-Bernaysset theory. Skolem's comments on his
"paradox" are relevant here.

Skolern demonstrated in [Skolem22] that Zermelo-Fraenkel set theory must
have a denumerable model, if it has a model at all. He then drew attention
to the paradoxical nature of the result: The theory is intended as a
foundation for transfinite number theory, among other concepts, yet these
numbers must have a denumerable representation in a model for the
theory. But he concluded:

The explanation [for this paradoxical result] is not difficult to find.
In the axiomatization, 'set' does not mean an arbitrarily defined
collection; the sets are nothing but objects that are connected
with one another through certain relations expressed by the
axioms. Hence there is no contradiction at all if a set M of the
domain B [of the set theory] is nondenumerable in the sense of
the axiomatization; for this means merely that within B there
occurs no one-to-one mapping t of M onto Zo (Zermelo's number
sequence). Nevertheless, there exists the possibility of
numbering all objects in B, and therefore also the elements of M,
by means of the positive integers; of course, such an enumeration
too is a collection of certain pairs, but this collection is not a 'set'
(that is, it does not occur in the domain B).

Since the concepts of real number and enumeration are relative to the
theory within which they are formalized, Skolem's "paradox" is not a
contradiction, but a property of formal systems. This paper reinforces
Skolem's relativistic view. It is possible to prove within the NaDSet
formalization of GOdel-Bernaysset theory, that no GOdel-Bernays
enumeration of the GOdel-Bernaysreal numbers can be defined within the
theory. But within NaDSetitself, it is not possible to prove by means of
Cantor's general diagonal argument, that a NaDSetenumeration of the
NaDSetrears cannot exist.
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