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Abstract 

Although there are many arguments that logic is an_ appropriate 
tool for artificial intelligence, there has been a perceived problem with 
the monotonicity of classical logic. This paper elaborates on the idea 
that reasoning should be viewed as theory formation where logic tells 
us the consequences of our assumptions. The two activities of pre­
dicting what is expected to be true and explaining observations are 
considered in a simple theory formation framework . Properties of 
each activity are discussed, along with a number of proposals as to 
what should be predicted or accepted a.s reasonable explanations. An 
architecture is proposed to combine explanation and prediction into 
one coherent framework. Algorithms used to implement the system 
as well as examples from a running implementation are given. 

Key words: defaults, conjectures, explanation, prediction, abduc­
tion, dialectics, logic, nonmonotonicity, theory formation 
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1 Introduction 

One way to do research in Artificial Intelligence is to argue that we need a. 
certain number of tools and to augment these only when they have proven 
inadequate for some task. In this way we can argue we need at least 
the first order predicate calculus to reason about individuals and relations 
among individuals (given that we want to indirectly describe individuals, 
as well as describe the conjunction, disjunction and negation of relations) 
[Hayes77,Moore82,Genesereth87). 

Non-monotonicity has often been cited as a problem with using logic as 
a basis for commonsense reasoning. In [PGA87] it was argued that instead 
of deduction from our knowledge, reasoning should be viewed as a process 
of theory formation. In [Poole88a) it was shown how default reasoning can 
be viewed in this way by treating defaults as possible hypotheses that can 
be used in an explanation. 

It has also been recognised (e.g., [Charniak85,PGA87,Cox87,Reggia83]} 
that abduction is an appropriate way to view diagnostic and recognition 
tasks. In diagnosis, for example, the diseases and malfunctio~ are the 
possible hypotheses that can be used to explain some observations. 

We can argue we want to use logic and do hypothetical reasoning. This 
research considers the simplest form of hypothetical reasoning, namely the 
case where the user provides a set of possible hypotheses they are prepared 
to accept as part of a theory. This is the framework of the Theorist system 
[Poole88a,PGA87]. The distinctions outlined in this paper were found from 
experience by using the system, explaining to others how to use the system 
and in building applications [Poole87b]. 

1.1 Theorist Framework 

We assume we are given a standard first order language over a countable 
alphabet [Enderton72]. By a formula we mean a well formed formula in 
this language. By an instance of a formula we mean a substitution of terms 
in this language for free variables in the formula. In this paper the Prolog 
convention of variables starting with an upper case letter is used. 

The framework [Poole88a] is defined in terms of two sets of formulae: 

A is a set of closed formulae which we are taking as given, and 
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H is a set of (possibly open) formulae which we take as the "possible hy­
potheses" . 

Definition 1.1 A scenario of (A, H) is a set D of ground instances of 
elements of H such that D U A is consistent. 

A scenario is a set of hypotheses that could be true based on what we 
are given. 

Definition 1.2 If g is a closed formula, an explanation of g from (A, H) 
is a scenario of (A, H) which (together with A} implies g. 

Thus D is an explanation of g from (A, H) if D is a set of ground 
instances of elements of H such that DU A is consistent and DU A I= g. 

Definition 1.3 An extension of (A, H) is the set of logical consequences 
of A together with a maximal (with respect to set inclusion) scenario of 
(A,H). 

The following theorem was proved in [Poole88a] and follows from the 
compactness theorem of the first order predicate calculus [Enderton72]. 

Theorem 1.4 There is an explanation of g from A, H ii! g is in some 
extension of A, H. 

In [Poole88a] it was shown that o E H corresponds exactly to the normal 
default : o/o of [Reiter80]. It was also argued that the extra power of 
Reiter's defaults was not needed. Both [Reiter80] and [Poole88a] showed 
how their systems can be used for default reasoning, but not what such 
reasoning was for. 

1.2 Explanation and Prediction 

There are two activities we will consider, namely explaining observations 
and predicting what is expected to be true. These are both considered to 
be instances of the Theorist framework. 

I make the assumption that we do not need more than the Theorist 
framework. This may turn out to be incorrect, but if it is, we will have 
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found a good reason to add extra features to our system. I make no a priori 
assumption that the same hypotheses should be used both for explanation 
and prediction; in fact there are good reasons for not making them the same. 
H we later find out they coincide, again we will have lea.mt something. 

As such, the following sets of formulae are provided by the user:1 

F is the set of facts, which are taken as being true of the domain; 

D. is the set of defaults, possible hypotheses which ca.n be used in prediction; 

II is the set of conjectures, possibly hypotheses which can be used in ex-
plaining observations; 

0 is the set of observations that have been made about the actual world. 

2 Prediction 

A problem many people in AI have been working on is the problem of 
predict~g what one expects to be true in some (real or imaginary) world 
based on the information one has about that world. 

The most conservative form of prediction is logical consequence from our 
knowledge. H axioms A are true in some world, any logical consequence of 
A must also be true in that world. This is the essence of classical logic. 

Many people have argued that such a notion is too weak for common 
sense prediction; sometimes we want to make assumptions as to what we ex­
pect to be true. This is the basis of much work on nonmonotonic reasoning 
[Bobrow80]. 

We consider defaults as assumptions one is prepared to make about the 
world, unless they can be shown to be wrong. In the Theorist framework, 
defaults are possible hypotheses used for prediction [Poole88a]. 

What should be predicted based on such hypothetical reasoning seems 
to be uncontroversial if there are no conflicting defaults (i.e., there is only 
one extension). In this section, we discuss what should be predicted when 
there are conflicting defaults. 

1 Aa far a.a the preceding semantics are given, the possible hypotheses, H, will in some 
ca.sea be A and in some cases n U A; the given A will sometimes be F and sometimes F 
together with an explanation of the observations. 
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We assume there is no other information on which to base our decision 
(e.g., specificity [Poole85), probability [Neufeld87), temporal considerations 
[ Goebel87]). 

Example 2.1 Consider the following example2 

H = { republican(X) * hawk(X), 

quaker(X) * dove(X), 
hawk(X) * support-star-wars(X), 

hawk(X) * politically-motivated(X), 

dove(X) * politically-motivated(X) 

quaker( X) * religious( X)} 
F = { \IX ,(dove(X) A hawk(X)), 

quaker(dick), 

republican( dick) } 

Based on the above facts and defaults, there are questions as to which 
of the following should be predicted: · 

dove(dick) 

hawk(dick) 

dove(dick) v hawk(dick) 

dove(dick) I\ hawk(dick) 

support-star-wars( dick) 

politically-motivated(dick) 
religious(dick) 

The rest of this section discusses four proposals of what should be pre­
dicted. There are based on the answers to the following question: 

If we have an explanation for p and and an explanation for q, but we 
know both cannot be true (i.e., FI= ,(p I\ q)), what should we predict? 

1. Either p or q but not both. 
2 This example is based on an example by Matt Ginsberg, which is based on an example 

of Ray Reiter. 
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2. Neither p nor q. 

3. pVq. 

4. Nothing; we have detected an inconsistency in our knowledge base. 

The following sections consider the consequences of each choice. 

2.1 Predict if explainable 

The first definition of prediction where we predict p or predict q corre­
sponds to predicting whatever is explainable (predicting what is in some 
extension3

). 

In example 2.1, we would predict either 

politically-motivated(dick) A hawk(dick) A supports-star-wars(dick) 
or 

politically-motivated(dick) A dove(dick) 

but not both. This can be claimed to be reasonable because we were told 
we could assume Dick is a hawk given no evidence to the contrary (the 
only evidence to the contrary being an internal inconsistency), and so can 
conclude he is politically motivated and supports star wars. We can also 
assume he is a dove and so is politically motivated. We just cannot assume 
he is both a dove and hawk, as this is inconsistent. 

This has the peculiar property that we both predict hawk(dick) and pre­
dict -.hawk(dick) (although in different extensions). The following shows 
this turns out to be general. 

Theorem 2.2 There are multiple extensions if and only if there is some a 
such that a is explainable and -.a is explainable. 

Proof: Suppose there are two extensions, E 1 and E2• Dif­
ferent extensions are mutually inconsistent, so FU E1 U E2 is 
inconsistent. By the compactness of the first order predicate 

3 [Reiter80J uses membenhip in one extension, but does not claim that he is formal­
ising prediction, but rather "an acceptable set of beliefs that one may hold a.bout an 
incompletely specified world• [Reiter80, p. 88J. 
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calculus, there are finite subsets Di and D 2 of Ei and E 2 re­
spectively such that FU Di U D2 is inconsistent. Di is such an 
a as Di is in extension Ei and ,Di is in E 2 ( as FU D2 ~ ,Di). 

Conversely, suppose a is explained by Di and ,a is explained 
by D2. Extend Di to extension Ei and D2 to E2. E1 and E 2 
are mutually inconsistent, and so are different. Thus there are 
multiple extensions. □ 
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As it seems wrong to both predict a and predict ,a, membership in an 
extension seems like a strange notion of prediction. It corresponds more to 
"may be true" than to prediction. 

2.2 Incontestable Scenarios 

When both p and q can be explained, but are mutually inconsistent, it 
seems reasonable to predict neither; we were told we could assume p given 
no evidence to the contrary, but q is evidence to the contrary, so we should 
not assume p. 

This notion of prediction, corresponds to predicting what can be ex­
plained using an "incontestable scenario". This is a very sceptical form of 
prediction where we predict some goal only if we have an argument why 
the goal should be true (i.e., the goal in explainable) and we cannot find 
an argument why the argument for the goal should not be true. 

In example 2.1, of the conclusions suggested only religious(dick) is pre­
dicted. We can't assume he is hawk since, as far as we know, he could be 
a dove, and we can't assume he is a dove, as he may as well be hawk (and 
he can't be both), so nothing that depends on these is predicted. 

Definition 2.3 Scenario D of (F, ~) is an incontestable scenario if ,D 
is not explainable from ( F, ~). 

The following lemma shows that being in an incontestable scenario is a 
local property of instances of defaults and does not depend on other defaults 
in an explanation. 

Lemma 2.4 Scenario D of (F, ~) is an incontestable scenario if! for all 
d ED, ,d is not explainable from (F, ~). 
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Proof: Scenario S explains ,D iff there is some minimal 
subset D' of D such that F U S F ,D'. 

The lemma follows from noticing that if D' ={di, ... , dn}, 

if f 
FUS U {di, ... ,dn-1} F ,dn 

and the left hand side of each formula is consistent (by the 
minimality of D'). □ 
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Thus being pa.rt of an incontestable scenario is a local property of in­
stances of defaults and so there is a unique incontestable extension, defined 
as: 

Corollary 2.5 g is incontestably explainable from (F, A) iff g logically 
follows from F U D where 

D = { d : d is a ground instance of an element of A and ,d is not• explainable from (F, A)} 

For the ground case, if we can explain the negation of a default, it can be 
removed at compile time. A new knowledge base can be built by removing 
any default from A for which we can explain its negation (from F and the 
initial A), and then computing logical consequences of the facts and the 
remaining defaults (i.e., those for which we cannot explain their negations). 

For the non-ground case, however, this does not work as we cannot 
remove a default just because the negation of some instance of it is ex­
plainable. In this case the set D may be infinite, however we can still check 
explainability dynamically. 

2.3 Membership in all Extensions 

The third response to the question posed in section 2 was to predict the 
disjunction p V q. 

We do not predict something if we can just explain it, as we may be 
able to explain it and its negation. It seems wrong to both predict some 
proposition and also predict its negation. It is also not adequate to predict 

I 
t· 
r 
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some proposition because we can explain it and cannot explain its negation. 
Consider an example where we can explain a and can also explain -,a, We 
do not want to predict a is true. Suppose the only rule about g is a ~ g; 
if we can't predict a, we do not want to predict g, even though there is 
no way to explain -,g, Such considerations lead to the idea of predicting 
what is in every extension (or, equivalently what logically follows from the 
disjunction of the maximal scenarios). 

In this section we discuss different properties of such prediction; in 
section 5.2 we show how it can be implemented. 

In example 2.1, we predict 

religious(dick) I\ politically-motivated(dick)/\ 
((hawk(dick) I\ supports-star-wars(dick)) V dove(dick)) 

This is the formula which is in all extensions (together with the facts, it 
is equivalent to the disjunction of the extensions). Whichever extension is 
true in a world, this formula will be true in that world. 

The following theorem gives a characterisation of membership in all 
extensions: 

Theorem 2.6 The following are equivalent: 

1. g is in every extension of (A, H). 

2. for all scenarios S of (A, H), there is an explanation of g from (AU 
S,H). 

9. there does not exist a scenario S of (A, H) such that there is no ex­
planation of g from ( A U S, H). 

4. there is a set e of (finite) explanatiom of g from (A, H) such that 
there is no scenario S of (A, H) incomistent with every element of e. 

5. there is an explanation D of g, and if there exists d ED such that -,d 
is explainable by E, then g is in every extemion of (AUE, H). 

Proof: 2 ~ 1. H g is explainable from all scenarios, it is 
explainable from all maximal scenarios, that is it is in every 
extension. 

2 # 3. These are rewritings of the same statement. 
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4 => 2. Suppose 4 holds, and there is a scenario S from which g 

is not explainable. Each E E e is inconsistent with S ( otherwise 
EU Sis an explanation of g from (AUS, H)). 

1 => 4. Suppose 1 holds. The set of all maximal scenarios 
has the property given in 4 ( except the finite membership). By 
the compactness theorem of the first order predicate calculus 
[Enderton72) there is a set t composed of finite subsets of the 
maximal scenarios which imply g. H some S were inconsistent 
with all elements oft it would be inconsistent with the maximal 
scenarios, and we know such an S cannot exist. So t is a set 
which satisfies 4. 

4 => 5. Suppose 4 holds, the set t is countable (as it is a 
subset of the set of finite strings in a language with countable 
generators). Let D be the minimum element of t according to 
some ordering. We know A I\ D F g. As g is in every extension 
of A, H it is in every extension of A I\ E, H. 

5 => 2. Suppose 5 holds and there is some scenario S such that 
g is not explainable from S. D is inconsistent with S ( otherwise 
S U D is an scenario of S, H which explains g), so there is some 
d E D which follows from consistent S' = S U D' where D' f; D 
and so by 5, g is in every extension of S', and so is in one 
extension of S', a contradiction to g not being explainable from 
s. □ 
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This theorem shows that membership in all extensions is also a sceptical 
theory of prediction. 

When predicting what is in all extensions, we can think of starting with 
all explainable propositions. We eliminate a proposition if its negation can 
be explained, or if its derivation rests on removed propositions. Suppose 
a is explainable; if ,a is explainable (by scenario S), a is not in every 
extension. H /3 was derived from a, to be in all extensions /3 must be 
explainable from S . 

Theorem 2.6 tells us that if g is not in every extension of A,~, there is 
some scenario S of A,~, such that g is not explainable from S, ~- Based 
on defaults being normality conditions (i.e., conditions that we expect to 
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be true given no evidence to the contrary) we cannot rule out S, and so we 
should not predict g. 

The difference between predicting what is in all extensions and pre­
dicting what is incontestably explainable, is that the latter requires one 
explanation of the goal which is consistent with all scenarios, whereas the 
former allows a set of explanations of the goal which must be consistent 
with all scenarios. 

Example 2. 'T Suppose we are using the default reasoning system for recog­
nition. Suppose also that we can explain Polly being an emu and also 
explain Polly being an ostrich. It cannot be both an emu and an ostrich. 

H = { f eathered(X) A big(X) A runs(X) => emu(X), 

f eathered(X) A big(X) A runs(X) => ostrich(X)} 
F = { VX ,(emu(X) A ostrich(X)) 

VX emu(X) => bird(X), 
VX ostrich(X) => bird(X), 

f eathered(polly), 
big(polly), 

runs (poll y)} 

Predicting what is incontestably explainable would not allow us to con­
clude anything about the identity of Polly. Neither default is usable; they 
effectively neutralise each other. It seems more reasonable to conclude that 
Polly is either an emu or an ostrich, in either case concluding Polly is a 
bird. This latter result is produced by membership in every extension. 

If every extension contains one element of a set {°'i} then the disjunct 
of the a, is in every extension. Although scenarios are conjunctions of 
formulae, what is predicted is the disjunction of each extension. 

In section 5.2 we show how theorem 2.6 leads to a dialectical view 
of prediction which can be exploited to implement membership in every 
extension. 
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2.4 Breaking Conventions 

H we equate defaults with conventions, as exemplified in Autoepistemic 
logic [Moore85J, it is reasonable that multiple extensions indicate a bug in 
the knowledge base [Poole89]. The "convention" view of a def a ult says that 
if there is an exception to a default it must be explicitly listed. H there are 
multiple extensions, we should debug the knowledge base rather than solve 
the multiple extension problem. 

H we can explain p and explain q, where p and q are mutually inconsis­
tent, the knowledge base must have an error. One of p and q must be false 
in the world being axiomatised so the exception should be explicitly given 
in the database. 

In example 2.1, the system would say that there is a bug in the database. 
Under the convention reading, the first default says "Unless told explicitly 
otherwise, if some individual is a republican they are a hawk". We know 
one of the first two defaults are false, so we know the user has mislead the 
system. The user must cancel one of the defaults [Poole88a], to say that 
we cannot assume Dick is a dove or we cannot assume Dick is a hawk. 

Section 6.3 shows how multiple extensions can be automatically de­
tected. This is probably useful whether or not the strict convention view 
of defaults is taken. 

2.5 Prediction Summary 

In summary, without any preference criteria for scenarios (for example 
[Poole85]), there is a sequence of less sceptical prediction mechanisms based 
on default reasoning: 

1. predict only the logical consequence of the facts 

2. predict what is incontestably explainable 

3. predict what is in every extension 

4. predict what is in any extension 

5. predict what is not inconsistent with the facts 
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It does not seem reasonable to be less sceptical than (5) or (unless 
solving problems of logical omniscience) be more sceptical than (1). As 
discussed earlier, based on using defaults, and no preference for scenarios, 
it seems as though (3) is the most reasonable definition of prediction; this 
definition will be used for the rest of this paper. 

3 Explaining Observations 

When explaining actual observations, we want to build an explanation of 
why those observations could have occurred. 

Dating back to C. S. Peirce's use of abduction, many people have consid­
ered the problem of finding explanations of observations. In AI there have 
been many abductive systems ( e.g., [Reggia83,Popl73,Cebulka88,Josephson87]), 
but those that have been based on logic have either been based on the prin­
ciple of hypothesising whatever cannot be proven (e.g., [Cox87,Popl73]) or 
use non-classical logics as the basis for abductive reasoning [Console89]. 

This section has two main aims: 

1. to show that the Theorist conception of logical arguments from a 
predefined set of possible hypotheses is a simple, powerful and useful 
way to view explanation; 

2. to show how explanation and prediction can be combined into one 
coherent framework. 

The basic idea is that given some observations of the world, the system 
builds a theory of the world which would explain those observations. In the 
Theorist framework, the user provides a set of building blocks ( the "possible 
hypotheses") from which the theory can be constructed. In diagnostic tasks 
the building blocks may be assumptions of normality and abnormality. In 
recognition tasks the building blocks a.re models of objects that could appear 
in the domain. 

As prediction and explanation are different activities, I am proposing 
a separate set of possible hypotheses that can be used for explaining ob­
servations. These will be known as "conjectures". These are hypotheses 
available to explain observations, but cannot be assumed given no evidence 
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(e.g., that some component is malfunctioning, that there is a tiger under 
the table). 

A proposition being a def a ult means it can be hypothesised to predict 
what is expected to be true. It seems reasonable to also be able to use 
defaults to explain observations; one explanation of an observation may be 
that everything is acting normally. Thus, I would expect the set of defaults 
to be used for explaining observations as well as for prediction, but the 
conjectures can only be used for explaining observations•. H defaults have 
the reading "typically" , conjectures should have the reading "possibly" . 

Note that conjectures are different to negations of defaults from which 
we predict our explanations. We are not assuming that a person does not 
have a disease, we are just not assuming that a person has the disease. For 
example, if we have a set of disjoint and covering descriptors of the weather 
outside, we don't want to assume that the weather is not like each of them 
(which would be inconsistent), nor do we want to assume what the weather 
is like, we just want to be able to describe the weather once we encounter 
it. The differences between these two approaches is discussed in [Poole88c]. 

H we are given facts F, conjectures II and defaults A, and O is !Jbserved, 
we want to explain O from F, II U A. That is, we want sets P and D, 
instances of elements of IT and A respectively, such that 

F U P U D I= 0 and 
F U P U D is consistent 

P U D is an explanation of O. 

3.1 Existential Explanations 

Consider the following example (adapted from [Kautz87]). 

Example 3.1 Suppose we want to hypothesise goals for an agent, and one 
of the possible goals an agent can have is to go hunting with a gun in a 
forest. If they go hunting, they get the gun and go to the forest. This can 
be represented as 

IT = {hunt(W, P)} 
4 The use of defaults for explaining observations is not central to the thesis of this paper; 

I ca.nnot think of a case where one would not wa.nt to use them for explaining observations. 

, 
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F = {VW'v'P hunt(W,P) => get(W) I\ goto(P)} 

Suppose we observe them getting gun g; there are infinitely many explana­
tions of the form 

{hunt(g, a)} 

for each ground term of the language in the place of a. This is not unrea­
sonable, in that we want to hypothesise they are going hunting somewhere. 
The set of the explanations is the set of things that could be true to make 
the observations true. There is a difference, particularly when comparing 
explanations, between the infinite set of explanations represented by the 
schema 

{hunt(g, a)} 

and the formula 
{3X hunt(g,X)} 

It seems as though the formula better represents the explanation of the 
observations. This is especially important when there are exceptions, for 
example when we know one cannot go hunting in a city park, and have the 
following also as facts: 

V PVW city_park( P) => -,hunt (W, P) 
city_park( stanley_park) 

In the schema representation we have to list such exceptions; for the ex­
istentially quantified scenario, we do not need to consider such exceptions 
until we want to hypothesise a particular instance of the quantified variable. 

The definition of an explanation will be extended to allow existentially 
quantified variables in an explanation6• Formally an instance of a hypoth­
esis can be obtained by substituting any term for a variable, free variables 
being implicitly existentially quantified. 

6This avoids the difficult problems that arise when we allow universally quantified 
variables aa well aa existentially quantified variables in explanations [Poole87a]. 
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3.2 Comparators for Explaining Observations 

As noticed by William of Ockha.m. at the start of the fourteenth century, 
not all explanations are born equal ("What can be done with fewer [as­
sumptions] is done in vain with more" [Edwards67, Vol. 8, p. 3071). 

In this paper three different comparators for explanation, each of which 
could be argued for in terms of simplicity, are discussed: 

1. preference for the minimal ezplanation; we prefer the explanations 
that makes the fewest (in terms of set inclusion) assumptions6 • 

2. the least presumptive ezplanation. Explanation E1 is less presumptive 
than E2 if FU E2 F E1• That is, if E1 makes less (in terms of what 
can be implied) assumptions than E2 • 

3. the minimal abnormality explanation. Explanation E 1 with conjec­
ture assumptions P1 and default assumptions D1 is less abnormal 
than E2 with assumptions < P2, D2 > if FU E 2 F P1 and either 
FU E1 ~ P2 or (FU E1 F P2 and FU E2 F D1), That is, if it makes 
less abnormality assumptions or it makes the same abnormality as­
sumptions and fewer normality assumptions. 

The first two can both be seen as preferring the minimal explanation. 
The first is the syntactic minimal explanation, where we treat a scenario 
as a set of axioms, and the second is the semantically minimal explanation 
where we equate a scenario with its logical theory (or its set of models). 

The third definition is more heuristic and depends on how the domain 
is represented. It can be seen as a formulation of the maxim "if there is 
nothing wrong, don't fix it"; we don't even want to hypothesise errors unless 
there is evidence for them. There may, however, be a correct explanation, 
which is not one of the minimal abnormality explanations (see example 
3.4). 

I cannot think of a situation where one would not want the minimal ex­
planation (i.e., why one would want to make extra unneeded assumptions). 

61 am not advocating comparing scenarios by counting the number of usumptions in 
them. Such comparators have too many problems of slight changes to the representation 
of the problem domain giving different answers. For example it is not reasonable to always 
prefer one rare disease over two common diseases. 

.. 



\ 

Explanation and Prediction 17 

If there is a correct explanation, there is a minimal explanation which is 
also correct, as the following lemma indicates: 

Lemma 3.~ If there is an explanation true in an interpretation, there is a 
minimal explanation true in that interpretation. 

Proof: Suppose explanation E of g is true in interpretation 
I. By the compactness theorem of the predicate calculus, there 
is a finite subset of E which is also an explanation of g. If we 
consider all of the subsets of E, one is a minimal explanation of 
g, and it is true in I. □ 

Thus, by restricting ourselves to the minimal explanations we will not 
remove the only correct explanation. 

Although there are cases where no least presumptive explanation ex­
ists (example 3.7) as well as cases where it can be argued that the least 
presumptive explanation may not be the "best" explanation (example 3.8), 
it seems as though the least presumptive explanation is often the desired 
explanation. 

Example 3.3 Let 

IT= {broken(leg), broken(tibia)} 

fl. = {broken(leg) ⇒ sore(leg)} 

F = {broken(tibia) ⇒ broken(leg)} 

if we observe sore(leg) there is one least presumptive explanation: 

{broken(leg), broken(leg) ⇒ sore(leg)} 

That is, we conjecture that the person has a broken leg and that the broken 
leg caused the sore leg. The explanation: 

{broken(tibia), broken(leg) ⇒ sore(leg)} 

is another minimal explanation, however it is not a least presumptive ex­
planation. There is no evidence that the tibia is broken over the leg is 
broken; assuming the tibia is broken implies that the leg is broken. 
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Example 3.4 Consider the following system 7: 

A = { bird-so-fties(X), 
emu-so-doesn't-flu( X), 
ftying-emu-so-fties(X), 
bird-so-feathered( X)} 

I1 = { bird(X), 
emu(X), 
flyingemu(X)} 

F = { VX bird(X) A bird-so-fties(X) ⇒ flies(X), 
VX emu(X) A emu-so-doesn't-fty(X) ⇒ -,Jlies(X), 
VX flyingemu(X) A ftying-emu-so-fties(X) ⇒ flies(X), 
VX emu(X) ⇒ bird(X), 
VX flyingemu(X) * emu(X), 
VX bird(X) A bird-so-feathered(X) * f eathered(X) 
VX emu(X) * -,bfrd-so-fties(X), 
VX flyingemu(X) * -,emu-so-doesn't- fly(X)} 
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If we observe that Polly is feathered, there is one least presumptive expla­
nation, namely 

{bird(polly), bird-so-feathered(polly)} 

There are other explanations for the observation, for example 

{ emu(polly), bird-so-feathered(polly), ftying-emu-so-fiies(randy)} 

but each of these makes extra assumptions for which there is no evidence 
(and, together with F, imply the least presumptive explanation). 

If we observe that Tweety flies, there a.re two least presumptive expla­
nations: 

1. Tweety is a bird, and Tweety flies because birds fly. This is given by 
the explanation 

{ bird( tweety), bird-so-flies( tweety)} 

7 Here we are using the technique of naming possible hypotheses [Poole88aJ. 
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2. Tweety is a. flying emu, and Tweety flies, because flying emus, by 
default, fly. This is given by the explanation 

{/ lyingemu( tweety), flying-emu-so-flies( tweety)} 

The first explanation is the minimal abnormality explanation, as it makes 
less assumptions about Tweety than the second ( as it only assumes Tweety 
is a bird, not that she is a flying emu). AB fa.r as we ha.ve evidence, either 
explanation could be correct; we do not want to ma.ke any abnormality 
assumptions for which we do not have evidence. We have evidence that 
Tweety is a bird, but we do not have the extra evidence that Tweety is a 
flying emu. 

The following two theorems give relationships between the three com­
parators. 

Theorem 3.5 A least presumptive explanation is always logically equiva­
lent to a minimal explanation. 

Proof: Suppose E is a lea.st presumptive explanation and sup­
pose that E' is an explanation such that E' CE, then E p= E', 
so E' p= E otherwise E' is less presumptive than E. So if there 
is a smaller explanation than a lea.st presumptive explanation, 
they are equivalent. □ 

That this does not mean that a lea.st presumptive explanation ( as de­
fined) is always a minimal explanation. We can add hypotheses and con­
jectures implied by a lea.st presumptive explanation to the explanation; it 
is still lea.st presumptive, but no longer minimal. The above theorem shows 
that nothing is lost by assuming that all lea.st presumptive explanations are 
minimal; in the rest of this paper this assumption is made. 

Theorem 3.6 A minimal abnormality explanation is always a least pre­
sumptive explanation. 

Proof: Suppose Eis a minimal abnormality explanation with 
assumptions < P, D >. We need to prove that there cannot 
be an explanation which is strictly less presumptive than E. 
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Assume that explanation E', with assumptions < P', D' >, is 
strictly less presumptive than E (i.e., E I= E' and E' ~ E); we 
want to show that E' is strictly less abnormal than E. 

We know E I= P' and E I= D' (as E I= E'). E' ~ P or E' ~ D 
otherwise E' I= PI\ D and so E' I= E. So we know E p= P' and 
(E' ~ P or E' ~ D) and E p= D', and so EI= P' and E' ~ P 
or (E' ~ D and EI= D'), that is, E' is less abnormal than E. 

Suppose E is less abnormal than E'. In this case E' I= P and, 
as we know E I= P', E' I= D. We then have E' I= PI\ D so 
E' I= E, a contradiction to E' being strictly less presumptive 
than E. 

So if E is a minimal abnormality explanation, there is no strictly 
less presumptive explanation. □ 

Example 3.4 shows that the converse is not always true. 
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The following example shows that there is not always a. least presum~ 
tive explanation: 

Example 3. 7 Consider the following system: 

II= {p(X)} 
F = { V N p( N) => p( N + 1), 

int(O), 
VN int(N) => int(N + 1), 
VX (int(X) A p(X) => g)} 

There is no least presumptive explanation of g, but rather an infinite cha.in 
of less presumptive explanations. There a.re infinitely many minimal expla­
nations of g ( one for each integer). 

There a.re also cases where one can argue that the least presumptive 
explanation is not necessarily the best explanation: 

Example 3.8 Suppose we a.re building a user modelling system, a.nd want 
to be able to conjecture the interests of people and have the following 
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conject urea: 
II = { interested-in-hardware, 

interested-in-formal-AI, 
interested-in-logic, 
interested-in-CS} 

The defaults of the interests a.re given as defaults: 
A = { interested-in-hardware => interested-in-logic A interested-in-CS, 

interested-in-formal-AI=> interested-in-logic A interested-in-CS, 
interested-in-logic => borrows-logic-books, 
interested-in-CS=> writes-computer-programs} 
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If we observe that someone borrows logic books, it is reasonable to 
conjecture that they are interested in logic. This is the least presumptive 
explanation. If we observe that someone borrows logic books and writes 
computer programs, there is one least presumptive explanation, namely 
that they are interested in computer science and interested in logic. The 
alternate explanations, namely that they are interested in formal AI or 
interested in hardware are not going to be least presumptive, although one 
could argue that they are the best explanations on the grounds of simplicity. 
The disjunct of instances of a general law is always less presumptive than 
the general law, although it could be argued that the general law is a better 
explanation. It may be better to get to the root cause of a problem than 
to just give the weakest explanation. 

This is similar to what was argued in [Popper62, p. 219] that one does 
not always want the most likely explanation ( the most likely always being 
least presumptive). 

Some work has been done on defining appropriate scenario comparators. 
[Popper62] proposes a verisimilitude for comparing theories and [Quine78, 
chapter 6] defined five virtues on which to compare explanations. [Poole85], 
[Goebel87] and [Neufeld87] define different scenario comparators. Much 
more work needs to be done in this a.rea. 
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4 A Default and Abductive Reasoning Sys­
tem 

The architecture we are considering is one where the system is provided 
with facts, defaults and conjectures. We assume these provide the general 
knowledge about the domain being modelled (e.g., how diseases interact 
and how symptoms work in a diagnosis system, and general knowledge 
about objects, occlusion etc., in a recognition task). All specific knowledge 
about a particular case is added as observations. 

A sequence of observations is provided to the system. The system con­
structs the best (according to the explanation comparisons given) expla­
nations of the observations. From each explanation we can ask what is 
predicted. The system can also propose what observations it would like 
about the world in order to prune and refine its explanations. 

4.1 Interacting with the system 

When implementing Theorist we want a system in which we can add facts, 
defaults, etc., and give observations and ask predictions based on what the 
system has been told. 

The state of the system can be described as a tuple 

< F,~,II,0,6' > 

where 

F is the set of facts 

~ is the set of defaults 

II is the set of conjectures 

0 is the set of observations that have been made 

6' is the set of preferred ( according to some preference criteria) explanations 
of the observations 0. 
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The input language to the system is defined below. The syntax of each 
command is given, along with how the command affects the state of the 
system, assuming the current state is < F, ~, II, 0, e >. 

fact w. 
where w is a formula, means "Vw" 8 is a new fact. The resulting state 
is 

< FU{Vw},~,II,0,e' > 

where t' is the resulting explanations given Vw as a fact (section 6). 

default n. 
where n is a name (predicate with only free variables as arguments) 
means n is a new default. Formally this means that the new state is 

< F,~ u {n},II,0,e' > 

where t' is the resulting explanations given the new default. 

default n : w. 
where w is a formula, and n is a name, means that w is a default, 
with name n9• The new state is 

<FU {V(n => w)}, ~ U {n}, II, O, t' > 

conjecture n. 
where n is a name means that n is a new conjecture. The new state 
is 

< F, ~, II U { n}, 0, t' > 

conjecture n: w. 
where w is a formula, and n is a name, means w is a formula with 
name n. The new state is 

<Fu {V(n => w)}, ~, II u {n}, 0, e' > 
8Vw is the universal closure of w, that is, if w has free variables u then Vw means Vu w. 

Similarly 3w is the existential closure of w. 
9 See [Poole88a] for a discussion on naming defaults. 
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observe g. 
where g is a closed formula, means that g is a new observation. The 
new e is the set of preferred explanations of all of the observations 
(i.e., 0 I\ g). 

predict g, S. 
where g is a formula and S is a scenario (usually one of the elements 
of t), returns ues (together with the instance) if some instance of g 

is in every extension of S and no otherwise. 

predict g. 
where g is a formula returns yes (together with the instance) if some 
instance of g is in every extension of E, A for all E E e, and no 
otherwise. 

For prediction, if the answer is yes, the set of explanations of g for 
which there is no mutually inconsistent scenario (the set e of theorem 2.6) 
is returned. ff the answer is no, the scenario from which g cannot be 
explained ( the set S of point 3 of theorem 2.6) is returned. Note that the 
answer "no" does not mean we predict g is false, but rather we do not 
predict g is true. 

Example 4.1 Consider the following example: 

A person can possibly have a brain tumour, 
a person can possibly have a broken leg, 
a brain tumour typically produces a head ache, and 
a broken leg typically produces a sore leg and a bent leg. 

This knowledge can be represented as: 

conjecture brain-tumour. 
conjecture broken-leg. 
default tumoured-heads-ache: brain-tumour => head- ache. 
default broken-legs-are-sore: broken-leg => sore-leg. 
default broken-legs-are-bent: broken-leg => bent-leg. 

ff we make the observation 
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observe bent-leg. 

we have one minimal and least presumptive explanation: 

{ broken-leg, broken-legs-are-bent} 

If we subsequently ask: 

predict head-ache. 

the answer is no (it cannot be explained). If we ask 

predict sore-leg. 

the answer is yes; the returned explanation is 

{broken-legs-are-sore} 
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Example 4.2 (Pearl) [Pearl87, p. 371] gives the following example to ar­
gue that there should be a distinction between causal rules and evidential 
rules. Here we show how the problems he was trying to solve do not arise 
in our system. We add the causal rules as defaults (or facts if we do not 
want to consider them having exceptions) 

default rained-so-wet: rained-last-night => grass-is-wet. 
default sprinkled-so-wet: sprinkler-was-on => grass-is-wet. 
default wet-so-cold: grass-is-wet => grass-is-cold-and-shiny. 
default grass-wet-so-shoes-wet: grass-is-wet => shoes-are-wet. 

Instead of adding the reverse of these rules as evidential rules [Pearl87], we 
make the possible causes we are considering as conjectures: 

conjecture rained-last-night. 
conjecture sprinkler-was-on. 

If we observe that it rained last night, we have one explanation: 

{ rained-last-night} 

From this we can predict that the grass is wet, that the grass is cold and 
shiny and that my shoes are wet. There is no way to predict that the sprin­
kler was on last night (which was the problem with having the evidential 
rules as explicit rules). 
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If we had instead observed that the grass is cold and shiny, there a.re 
two explanations: 

{ rained-last-night, rained-so-wd, wet-so-cold} 

{ sprinkler-was-on, sprinkled-so-wet, wet-so-cold} 

From both of these we predict that my shoes a.re wet. 

5 Implementation 

In this section we show how a theorem prover (see e.g., [Chang73]) can be 
used to implement this system. 

One of the things that is important is whether we can localise search 
rather than always having to do a full consistency check. We prefer to 
sea.rch only that part of the space relevant to what is being added or asked; 
we would like to know when pa.rts of the knowledge base are irrelevant. 

One way that this can be done is to assume only a limited form of 
completeness of the theorem prover. We want our theorem prover to be 
sound, but only require completeness in the sense that if there is a relevant 
proof of some goal, it can be found. A proof of g from A ( denoted A f- g) is 
assumed to be sound (i.e., if A f- g then A pg), but it need only be complete 
in the sense that if A is consistent and A pg then A f- g. Linea.r Resolution 
(Chang73] with head clause g is such a proof procedure. Such deduction 
systems can be more efficiently implemented than complete theorem provers 
as they do not need to consider irrelevant reasons for something following 
from a set of axioms. 

5.1 Explanation 

The following two theorems a.re important for implementing the system. 

Theorem 5.1 If A is consistent, g is explainable from A, H if and only if 
there is a ground proof of g from AUD where D = {d1, ... , dn} is a set of 
ground instances of elements of H such that A I\ {di, ... , d;-1} If ,d; for all 
i = 1 .. n. 
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Proof: H g is explainable from A, H, there is a set D of 
ground instances of elements of H such that A U D F g and 
A U D is consistent, so there is a proof of g from A U D. A U D 
is consistent so there can be no sound proof of inconsistency. 
That is, we cannot prove A A {di, ... , d;_ 1} r- -,<4 for any i. 

H there is a proof of g from A U D then A U D F g. H A U D 
is inconsistent there is some least i such that AU {di, ... , d;} 
is inconsistent. We know A U {di, ... , <4_1} is consistent and 
AU{d1, ... ,d,_1} f=-,d; so AU{d1, ... ,d;_1} r- -,<4, So, if there is 
no i such that AU {d1, ... , d;_i} r- -,d; then AUD is consistent. 

□ 

This leads us to the following algorithm to explain g from A, H: 
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1. Try to prove g from AU H; make D the set of instances of elements 
of H used in the proof. 

2. Reject D if it contains a Skolem function. This is enforcing the 
groundedness of explanations10• 

3. Ground D (substitute a new constant for each of the free variables in 
D)11 • We thus have created a ground proof of g from AUD. 

4. For each d; ED, try to prove -,d., from A A {d1, .. ,,d;-1}, Hall such 
proofs fail, D is an explanation for g. 

[Poole88b] gives the details of how explanation can be implemented 
by compiling Theorist into Prolog; [PGA87] gives a Prolog interpreter for 
explanation. 

There is a strong resemblance between this algorithm and negation as 
failure [Clark78]. We conclude hypotheses by failing to prove their neger 
tions. Apart from the more powerful logic ( disjunction and explicit nega­
tion) used here, the main difference is that we fail to prove the negation 

10See [Poole87aJ for a discusaion about relaxing the groundedneu of scenarios. 
11This is correct whether we interpret the free variables aa universally quantified, or 

as schema denoting each individual (as discussed in section 3.1). In the former case this 
grounding is Skolemisation [Chang73], in the latter case this is just chooeing an individual 
to assume. We will only be able to show inconsistency if we could show inconsistency for 
any instance. 
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in a simpler system than the top level system. Instead of failing to explain 
the negation of a hypothesis, we fail to prove the negation of a hypothesis 
from the facts and the previously assumed hypotheses. One advantage of 
Theorist is that in a decidable logic (e.g, the propositional calculus), ex­
plainability is also decidable. This is not the case for negation as failure 
( consider the formula p +- -,p). 

5.2 Prediction 

Consider the question of whether some proposition is in all extensions ( the 
other cases of prediction are straightforward to implement given the previ­
ous section). 

The naive way to do this (generating extensions and testing member­
ship) does not work for two reasons: 

1. extensions are infinite. Even if we consider the generators of the 
extensions (i.e., the maximal scenarios), we still get the same problem 
as these are also usually infinite. 

2. there are potentially an infinite number of extensions. 

Is there a way to implement this so that we only need to consider the 
relevant parts of the relevant extensions? What are the relevant parts and 
the relevant extensions needed to determine that g is in all extensions? This 
section provides answers to these questions. 

Point 4 of theorem 2.6 leads to the following dialectical view of mem­
bership in every extension. 

There are two processes Y and J./ that are having an argument as to 
whether g should be predicted. Process Y tries to find explanations of g. 

Process J./ tries to find a scenario inconsistent with all of Y ,s explanations. 
First Y tries to find an explanation D of g. Then )I tries to find a 

scenario inconsistent with D (i.e., an explanation of -,D). Y must then try 
to explain g given J./ ,s scenario. 

In general Y has a set of explanations t. )I tries to find a scenario S 
which is inconsistent with all members oft (i.e., explains the conjunction 
of the negation of the elements of t). When )I finds scenario S, Y must 
find an explanation of g from S. Whichever process, using a complete (in 
the sense of section 5) proof procedure, gives up first loses: 
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• H Y cannot come up with an explanation based on JI 's scenario S, 
then g is not in all extensions (in particular g is not in any extension 
of S). 

• H )I cannot come up with a scenario inconsistent with all of Y's 
arguments, every extension contains at least one of Y's arguments, 
and so g is in every extension. 

Example 5.2 Consider example 2.1, and the process of trying to deter­
mine pro-star-wars(dick). We have the following dialogue: 

Y republican(dick) * hawk(dick),hawk(dick) * pro-star-wars(dick) 

)I qu.aker(dick) * dove(dick) 

Y no explanation 

Y can find no explanation of pro-star-wars(dick) from the scenario given 
by )I. Thus, we do not conclude pro-star-wars( dick). 

Consider the process of determining political/y-motivated(dick): 

Y quaker(dick) * dove(dick),dove(dick) * po/itica/ly-motivated(dick) 

JI republican(dick) * hawk(dick) 

Y republican(dick) * hawk(dick),hawk(dick) * politically-motivated{dick} 

JI no explanation 

We conclude politically-motivated(dick). 

There are a few points to notice about this algorithm. 

1. Y's explanations of g from the S's generated by )I are explanations 
of g from A, H. Thus we can implement Y as finding successive 
explanations of g from A, H. We do not need to start from scratch 
when JI has found a contradictory scenario, but can just continue 
generating explanations. J./'s explanations can be used to prune this 
search, as any partial explanation that has already been shown to be 
inconsistent with a scenario generated by J./ can be pruned. 
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2. )I also does not need to start from scratch each time Y generates 
a new explanation of g. Suppose D1, ... , D,.+1 are the explanations 
generated by Y. E,.+1 is an explanation of ,D1 /\ ... /\ ,D,.+1 if and 
only if there is some E,., an explanation of ,D1 /\ ••• /\ ,D,., such 
that E,.+1 is E,. together with an explanation of ,D,.+1. from FU E,.. 
This implies that )I can generate the new explanatioilB from the old 
explanations, and the newly generated goal. 

ff the set of all explanations is maintained, this procedure is very 
much like a non-propositional, non-Hom ATMS [de Kleer86]. Both 
space coI1Biderations and the desire to do as little redundant work 
as necessary, would probably support the alternative of maintaining 
one search tree; each time Y comes up with a new explanation, )I 

continues the search to prove the negation of that goal. )I does not 
need to redo the work to find an explanation of the old explanations. 
)I may, however, need to find alternate proofs of the old explanations. 

Note that the set of explanations referred to in point 4 of theorem 2.6 is 
countable, but not necessarily finite. The following example has an infinite 
set of possible explanations to check. The preceding algorithm will not halt 
on this example. 

Example 5.3 Consider 

H = { p(X)} 
F = { q(O), 

VN q(N) => q(s(N)), 
pos(s(O)), 
VN pos(N) => pos(s(N)), 
\/N pos(N) => lt(O, N), 
VNVM lt(M, N) => lt(s(M), s(N)), 
VNVM lt(M, N) => ,(p(M) I\ p(N)), 
(3X p(X) /\ q(X)) => g} 

q is true of all non-negative integers, and p is true of at most one non­
negative integer. There are infinitely many extensions, one for each positive 
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integer (each one containing p(n) for some positive integer n). g is in all 
extensions, but there is no finite set of proofs which are applicable for all 
extensions, without jumping out of the system and arguing as we have done 
here. 

6 Building and Maintaining the Knowledge 
Base 

There are a number of choices that the designer of a system can make as 
to how the knowledge base is maintained. The following are possible: 

1. record just what was explicitly told and compute all answers when 
asked. 

2. maintain one explanation for the observations and build another if 
this one proves to be wrong (e.g., [Doyle79]}. 

3. maintaining multiple, but not all explanations. For example, main­
taining just those minimal abnormality explanations and only consid­
ering others if these prove inadequate. As example 6.4 below shows, 
it is often difficult to ensure that one is maintaining the minimal ab­
normality explanations without also maintaining all of the other least 
presumptive explanations. 

4. maintaining parts of all of the least presumptive explanations. This 
may make it easier to see when one explanation can be replaced by a 
better explanation. For example [Neufeld87] describes an algorithm 
which always maintains the most likely explanation by maintaining 
enough of other explanations to ensure that they will be less likely 
than the preferred one. 

5. maintain all least presumptive explanations ( or all minimal expl~ 
nations). This algorithm would correspond to a non-propositional, 
non-Horn ATMS [de Kleer86]. 

6. maintaining a representation of all extensions ( e.g., the generating 
hypotheses). This may make building the knowledge base inefficient, 
but may make it easier to query. 
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Which of these is better may depend on efficiency grounds ( minimising 
space, time or interaction with the user) as well as psychological grounds 
(e.g., wanting to model an agent who follows one line of belief and only 
changes their mind when they are forced to, or an agent that doesn't con­
sider some line of reasoning unless other lines have been exhausted). 

H we maintain explanations we do not want to recompute everything 
after each input. In the next sections we consider how adding facts, defaults, 
hypotheses and observations affects the explanations generated. 

6.1 Incremental Observations 

One of the things that would be nice to know is to what extent one can 
incrementally build explanations for observations as they come in. We are 
assuming that we do not just receive one big conjunction of all observations, 
but rather get our observations incrementally. We would like to know that 
the explanations built incrementally are the same as those built from the 
conjunction of the observations. In this section we show that this is the case 
if we maintain minimal explanations or least presumptive explana~ions, but 
not if we just maintain minimal abnormality explanations. 

Theorem 6.1 We can build minimal ezplanationa incrementally: 
If S1, ... , Sn are the minimal ezplanationa of 91 from (F, II U A) then the 
minimal elements of the set of ezplanationa of 92 from (Si, II U A) for some 
Si, are exactly the minimal ezplanationa of 91 /\ 92 from (F,II U A). 

Proof: H E is an explanation of 91 /\ 92 from F, II, A then E is 
an explanation of 91 from F, II, A, so there is some S £; E such 
that Sis a minimal explanation of 91, Then Eis an explanation 
of 92 from S, and is minimal. 

Similarly if E is an explanation of 92 from some Si, E is an 
explanation of 91 /\ 92 from F. Hence, the minimal explanations 
of 92 from the Si are the minimal explanations of g1 /\ 92 from 
F. □ 

Theorem 6.2 If Si, ... , Sn are the least presumptive ezplanationa for g1 

from F, IT, A, the following are equivalent 
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1. S is a least presumptive explanation of 91 /\ 92 from F, II, A. 

e. S is a least presumptive scenario of the explanations of 92 from S,, II, A. 
That is, it is a minimal element, in terms of least presumptiveness, 
of the set {E : E is an explanation of 92 from S,, II, A /or some i}. 

Proof: 1 => 2. Suppose S is a least presumptive explanation 
of 91 /\ 92 from F. S is an explanation of 91, so one s, implies 
S. S is an explanation of 92 from S,; we need to show that it 
is least presumptive. Suppose S' is a strictly less presumptive 
explanation of 92 from S1, then it is an explanation of 91/\92 from 
F less presumptive than S, a contradiction to the minimality 
of S. 

2 => 1. Suppose Sis a least presumptive explanation of 92 from 
S,. S is an explanation of 91 /\ 92 from F. We need to show 
that S is least presumptive. If S' is a strictly less presumptive 
explanation of 91 /\ 92 from F, it is also an explanation of 91 from 
F, so there is some S, which implies it (by the minimality of the 
S,). S' is an explanation of 92 from S,, which is less presumptive 
than S, a contradiction to the minimality of S, so no such S' 
can exist. □ 

This leads us to a way to think about the system, namely that there is a 
sequence of observations, and we collect all the minimal or least presump­
tive theories at each step. At the end of the observations, we know we have 
the least presumptive explanations for the conjunction of the observations. 

These theorems do not mean that we can build explanations in isolation 
of each other, without considering the other (minimal or least presumptive) 
explanations. Consider the following example 

Example 6.3 Let 

II= {a, b, c} 
A={} 
F = { a=> 91, 

b => 91 /\ 92} 
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If we observe 91 there a.re two minimal (and least presumptive) explana­
tions: {a} and {b}. If we subsequently observe 92, there is one minimal 
explanation, namely {b}. We can explain 92 from {a}, (using the expla­
nation { a, b}) but this explanation is subsumed by a simpler explanation 
from {b}. 

Theorem 6.2 does not work for minimal abnormality explanations. Con­
sider the following example: 

Example 6.4: Let 

II= {a,b,c} 
~ = {d1,d2,ds} 
F = { a A b A d1 => 91 A g,, 

a A d2 => g1, 

b Ac Ads => g2} 

The least presumptive explanations for g1 a.re 

{a,b,d1} 

{ a, d2} 

the second of which is the minimal abnormality explanation. The least 
presumptive explanations for g1 A g2 a.re 

{a, d2, b, c, ds} 

the first of which is the minimal abnormality explanation. 

This means that we cannot simply find the minimal abnormality explana­
tion by maintaining minimal abnormality explanations and using them to 
explain new observations. 



Explanation and Prediction 35 

6.2 Adding new facts 

In this section we wish to answer the question of how the set of explanations 
should be changed when a new facts is added. A new fact may remove old 
explanations (by making them inconsistent or making one explanation less 
presumptive than a previously least presumptive explanation) or add new 
explanations. 

The command 

fact w. 

means that the knowledge base is changed from 

< F, A, II, 0, e > 

to 
< Fu {Vw},A,II,O,e' > 

We would like to know how the set of explanations has changed by 
adding this new fact. We would like to build the new e I from the old e 
by only doing local search from the newly added fact. In general we would 
like to build e' by adding and removing elements from e. · 

For all EE ewe know 

FUEf=O 
F U E is consistent. 

If E' Ee' then FU {Vw} U E' F O so either 

1. FU E' F O in which case E' is an explanation of O from F. E' Ee 
as there can be no smaller explanation of O from F, otherwise it is a 
smaller explanation of O from FU {Vw }. We can thus carry over the 
old explanation from G. 

2. FU E' ~ 0 and so FU E' U -,Q is consistent and implies -,\/w. This 
is the only case where we will add explanations to e. 

The newly added fact may make some previous explanations inconsis-­
tent. Suppose E E e; E is not in e' if FU {Vw} U E is inconsistent. In this 
case FU E is consistent and implies -,Vw, and so there is a proof of -,\(w 
from FUE. 

This implies that when a new fact is added, we need to do three things: 
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1. try to explain -,',;/w from FU -,Q, AU II. The generated explanation 
should be checked consistent with FU {'vw}. Each explanation should 
be added to £. 

2. try to prove -,',;/w from FU E, for each E E £, and remove any 
explanation which is proven inconsistent. 

3. remove any explanations which are no longer minimal (as the first 
step may have created an explanation simpler than a previous expla­
nation). 

For each of these steps we only need to do a local search from the newly 
added fact. 

If we maintain least presumptive explanations, we have to consider that 
the newly added fact may make one explanation which was previously least 
presumptive no longer least presumptive. This can happen by the newly 
added fact adding an implication between two previously least presumptive 
explanations. Suppose E' is less presumptive than E when 'vw is a fact and 
is not otherwise. That is FU {'vw} U E p E' and FU E ~ E' and so -,',;/w 

can be proven from consistent F U E U -,E'. This can be recognised by 
trying to explain -,',;/w from Fu E, AU II for each EE e. 

6.2.1 Adding Defaults and Conjectures 

Consider the problem of adding the default 

default d: w. 

where dis a. new name (as we would normally expect it to be). Note that 
exactly the same analysis carries through for adding conjectures. 

Theorem 6.5 (Semlmonotonicity) If£ is the set of ezplanationa before 
the default was added and t' the explanations after, then t ~ e'. 

Proof: If E E t then FUE F O and so Fu{'vd * w }UE F 0. 
FU Eis consistent, and so has a model M. The model which 
is the same as M but with all instances of d false is a model 
for FU {'vd * w} U E. So E is an explanation of O from 
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Fu {'v' d => w}, a U d, II. It is minimal as any smaller explanation 
would also be an explanation of O from F, a, II, as "'v'd => w" 
cannot play a role if d does not appear in E, F, 0, a or II. □ 
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We now have to consider the case of there being a new explanation of 
0 by virtue of the default being added. Suppose EE t' - t. We know 

Fu {'v'd => w} u E F 0 

There is some instance 6 of din E (otherwise EE t). FU {'v'd => w} U 
(E - {«5}) U {,O} is consistent (otherwise Eis not minimal) and implies 
,6. 

Hence when a new default is added we need to try to explain ,d from 
FU {'v'd => w }u{ ,O}, au{d}UII, checking consistency with Fu {'v'd => w }. 

6.3 Detecting Multiple Extensions 

In section 2.4 it was argued that one reasonable way to handle multiple 
extensions is to regard them as a bug that must be fixed up. What is 
needed is a way to detect when we have multiple extensions. 

Suppose we have given A (these can be the facts or any other scenario 
we are interested in) and hypotheses H. As facts or hypotheses are added, 
the following theorems show how we can detect multiple extensions. 

Theorem 6.6 Suppose (A, H) has one extension; (AU/, H) has one exten­
sion if and only if whenever•/ is explainable from (A, H) by an explanation 
with more than one default, there is a subset of that explanation containing 
one default which is also an explanation of,/. 

Proof: Suppose E is a minimal explanation of -, / with more 
than one element. Choose h EE and let E' = E - {h}. We 
know AU{/} U E' is consistent (by minimality of E), and AU 
{/} U {h} is consistent, (by the minimality of E), but they are 
mutually inconsistent (as AU {/}UE is inconsistent). They can 
be extended to different extensions. 

Conversely suppose AU{/} has two extensions. Let E1 and 
E2 be the maximal sets of assumptions in each. A U E1 U E2 is 
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consistent (as A has only one extension). AU E1 U E2 U {/} is 
inconsistent, as two extensions are always mutually inconsistent, 
so 

A u E1 u E2 I= , I 
by the compactness theorem of the first order predicate calculus, 
there are finite subsets S1 and S2 of E 1 and E2 respectively such 
that 

A u S1 u S2 I= , I 
AU S1 U {/} is consistent (as it is a subset of an extension, so 
S2 =I- {}. Similarly S1 =/- {}. Thus there is an explanation of 
,/, namely S1 U S2 , for which there is no one element subset 
that is an explanation of,/. □ 
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Theorem 6. '1 Suppose (A, H) has one extension; (A, HU{ d}) has multiple 
extensions if and only if there is an instance d' of d, such that d' is consistent 
with A, and ,ff is explainable from (A, H). 

Proof: Suppose (A, HU{d}) has multiple extensions. Suppose 
E 1 and E2 are different extensions, then there are minimal sets 
of defaults S1 c E1 and S 2 c E2 such that A U S1 U S2 is 
inconsistent. Neither Si is empty, as the other is consistent 
with A. An instance d' of d must be in at least one of the Si 
as A, H has only one extension. So d' is consistent with A, and 
( S1 U S2) - { d'} is an explanation of ,(/. 

Conversely supposed' is consistent with A and ,d' is explainable 
from A,H. Then there is an explanation E of ,d'. AUE and 
A U '1 are both scenarios and are mutually inconsistent, so can 
be extended to different extensions. □ 

These two theorems give a straightforward way to automatically detect 
multiple extensions. 

7 Conclusion 

In this paper I presented an architecture for both explaining observations 
and for ma.king predictions. For each of these a number of possible defi-
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nitions was discussed and compared. It seems as though no definition is 
correct for all situations; this paper is an attempt to compare different no­
tions of each. An implementation was outlined which follows the semantics 
of minimal explanations and prediction being membership in all extensions. 

One problem with this, is that all of the "algorithms" a.re undecidable 
in the worst case; they a.re not guaranteed to halt. In our, albeit limited, 
experience this has not been a problem. By using our system, we a.re 
learning how to "program" the logic to give us answers quickly. This is the 
topic of another paper, however. 

An important feature of this work is that I have not proposed a new 
logic. I have tried to be careful in arguing that there are useful ways to use 
logic and have considered the consequences on building AI programs. 
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