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ABSTRACT 

This paper presents a new approach to test sequence derivation from 
formal protocol specifications for protocol conformance testing. The approach is 
based on a model of External Behaviour Expression (EBE) which specifies only 
the external behaviour of a protocol in terms of the input/output sequences and 
their logical (function and predicate) relations, and can be obtained from formal 
protocol specifications in either Estelle or L0T0S. A basic test derivation theory 
is defined for the pwpose of formalizing test sequence derivation strategies. 
Based on the EBE of a protocol, a test sequence derivation method is proposed 
to identify associations between inputs and outputs through the interaction paths 
and their 1/0 subpaths. Generic Test Cases generated from these 1/0 subpaths 
are based on specific testing purposes. Abstract Test Cases are selected in 
terms of panicular test methods and additional requirements. Comparison to 
other existing schemes shows the method proposed here is simple and concise, 
and the resulting set of test sequences is complete and effective. It is our belief 
that this approach to test sequence derivation can provide the basis of a 
formalized framework for protocol conformance testing. 

I. 
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1 Introduction 

One of challenging and important problems in the field of protocol testing is the 
derivation of test sequences from formal protocol specifications for the purpose of testing 
implementations for conformance to their specifications. Based on the various test 
architectures for OSI conformance testing which have been proposed [1,2], an 
implementation under test (IUT) is tested locally or remotely as a black box by observing its 
external behaviour to the stimuli provided by test sequences. A test sequence is a sequence 
of inputs and expected outputs for the IUT. The inputs are applied to the IUT, and outputs 
from the IUT are compared to those expected in the test sequences. If the outputs match the 
expected ones, then the IUT is said to conform to the formal protocol specification the IUT 
implemented; otherwise, the IUT contains one or more faults. The test sequences test the 
data flow as well as the control flow of an IUT. Exhaustive testing (i.e., testing for all 
possible input and/or output sequences) is practically infeasible because the input domain is 
often infinite. Consequently, a great deal of attention has been given to deriving test 
sequences which are minimal but provide good coverage. 

Most of the existing test sequence derivation methods are based on some formal 
models such as the Finite State Machine (FSM), Extended Finite State Machine (EFSM), 
or state transition systems (e.g. [8,9,10,11,12,13,14,15]). Some of them assume that the 
formal protocol specification is given in a particular Formal Description Technique (FDT) 
such as Estelle [10] or LOTOS [11,12,13]. Generally, these methods do not take into 
account the Protocol Data Unit (PDU) and service primitive parameters, and only derive test 
sequences to test the control flow portion of an IUT. 

Recently, some test sequence derivation methods taking into account the PDU and 
service primitive parameters have been proposed [4,5,6,7]. They assume that protocol 
specifications are given in Normal Form Specification (NFS) which is a variation of Estelle 
with a single module. The first method [4] applies the principles of functional program testing 
to generate test sequences. However, it requires considerable effort to identify functions and 
their relationships for non-trivial protocols. The second method [5,6) is based on the 
principles of data flow analysis techniques and generates a set of test sequences to cover all 
definition and usage pairs satisfying certain constraints; it is less comprehensive than the 
third method [7] which uses a structural test sequence selection method and seems to be 
better in path coverage. However, the scheme presented in [7] has difficulty distinguishing 
between feasible and infeasible paths. 

All three methods mentioned above make use of the internal structure and variables 
related to protocol implementation that are contained in the formal protocol specifications. In 
our opinion, this is unnecessary and complicates the procedure for test sequence derivation. 
As well, the test sequences obtained are generally less effective in terms of coverage and 
some protocol behaviour could be covered more than once. 

We also observe that few researchers have considered the selection of test cases on 
the basis of different test methods, or studied the relationships between test sequence 
derivation and the PICS (Protocol Implementation Conformance Statement) and the PIXIT 
(Protocol Implementation Extra Information for Testing). 

This paper presents a new approach to test sequence derivation from formal protocol 
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specifications. The approach is based on an External Behaviour Expression (EBE) which 
specifies only the external behaviour of a protocol in order to derive test sequences, and can 
be obtained from formal protocol specifications in either Estelle or LOTOS. In EBE, the data 
flow portion and the control flow portion of a protocol are represented by externally 
observable input/output sequences and their logical (function and predicate) relations. A 
basic test derivation theory is given for the purpose of formally defining the test derivation 
strategies. Our test derivation strategy is defined in three steps: Test Generation for generic 
test cases, Test Selection for abstract test cases, and Test Choice for executable test cases. 
A test generation and selection method is proposed to identify associations between inputs 
and outputs in the EBE of a protocol through interaction paths and their 1/0 subpaths. 
Generic test cases obtained from these 1/0 subpaths are based on specific testing purposes 
of a protocol. Abstract test cases are selected in terms of a particular test method and 
additional requirements specified in the PICS and the PIXIT. 

Comparing with other methods, our test sequence generation and selection method is 
quite simple and more concise. As well, the resulting set of test sequences is complete and 
effective. It is our belief that this approach to test sequence derivation can provide the basis 
of a formalized framework for protocol conformance testing. 

The rest of the paper is organized as follows. Section 2 gives a formal definition of EBE 
and illustrates it by an example. Section 3 presents the basic test derivation theory, and the 
details of the proposed test sequence generation and selection method. Comparisons of the 
proposed method with some existing methods such as (4,5,6,7] are presented in Section 4 
using the ISO Class O Transport protocol. Finally, Section 5 concludes the paper. 

2 External Behaviour Expression 

Estelle (Extended State Transition Model) and LOTOS (Language of Temporal 
Ordering Specification) are two FDT's developed by ISO (International Organization for 
Standardization) for the formal specification of open distributed systems, in particular the 
services and protocols of the layers of the Open Systems Interconnection (OSI) architecture 
defined by ISO. Estelle may be used to specify a protocol in terms of externally observable 
behaviour as well as internal actions of possibly more than one module (17]. LOTOS may be 
used to specify a protocol in terms of the temporal relation among the interactions that 
constitute the externally observable behaviour of the protocol and their internal modules 
[18]. In theory, either Estelle or LOTOS may be used to specify only the external behaviour 
of a protocol. However, applications of these FDT's to ISO protocols have always included 
internal structures, variables and actions of the protocols [24, 25]. 

In order to obtain a formal specification which describes only externally observable 
behaviour of a protocol for the purpose of test sequence derivation and which is also FDT 
independent, we propose and describe a new formal specification model called External 
Behaviour Expression (EBE) as follows. 

2.1 Basic definition of EBE 

The External Behaviour Expression (EBE) models the externally observable 
behaviour of a system in terms of possible sequences of interactions exchanged between the 
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system and its external environment, and possible logical relations among elements (input 
and/or output primitives and their parameters) of these sequences. 

Definition 2.1 
An External Behaviour Expression (EBE) is a quadruple EBE= <.S, So, T, R>, where: 

S is a set of external finite states of the system; 
s0 is the initial external state of the system; 

T is a set of transitions of external states; and 
R is a set of logic relations of transitions. 

Definition 2.2 
A system described by the EBE has/our types of external states: 

1) equivalent state Se -states with identical succeeding behaviour; 

2) tenninal state St-a state in which there is no transition to other external states; 

3) nested state Sn - a state in which there are some nested sub EBE' s; and 

4) common state Sc - a state which is not equivalent, terminal or nested. 

For the case of equivalent states, the succeeding behaviour for only one of the states is 
specified in EBE. The external terminal states St do not have any succeeding behaviour, but 

a special action @ will allow a system to return to its initial state. The hierarchical and 
parallel compositions within a system may be mirrored externally in terms of the external 
nested states. 

Definition 2.3 
A transition of external states is the interactions exchanged between the system and 

its external environment in tenns of input and/or output primitives and their parameters. 
The genera/form of a transition is given by T ij = (I, 0), where: 

1) I is a set of input primitives from the external environment, and each input 
primitive is denoted by: IP (Xpl' ... , Xpn), where "I/ is the input primitive identifier, and 

Xpl' ... , Xpn (n ~ 0) are parameters of the input primitive IP. 

2) 0 is a set of output primitives to the external environment of the system, and each 
output primitive is denoted by: 0 q (Yql' ... , Y qm), where "O q" is the output primitive 

identifier, and Yql' ... , Y qm (m ~ 0) are parameters of the output primitive 0 q· 

3) The absence of an input primitive or an output primitive is denoted by " - ". Thus, 
a transition can be in one of three forms: 

a. Tij = (I, 0); 

b. Tij = (-, 0); and 
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Definition 2.4 
The set of logical relations of a transition Rij = (Si, Sp F, P) holds if and only if there 

exists a transition Ti1from state S; to state Si' 

1) F is a set of function relations of a transition. The output primitive parameter {Y qpl 
of a transition will be produced if and only if there exists a group of elements Z which 
satisfies a function of {Y qpl = F(Z), where q = 1, ... , k and p = 1, ... , m .. 

2) P is a set of predicate relations of a transition. The transition will happen if and 
only if there exists a group of elements Z which satisfies the property P(Z). 

3) Z refers to those elements (usually input primitives or parameters) which occur in 
this transition and/or the preceding transitions, and may include those mentioned in the 
PICS and the PIXIT. 

The basic definitions of EBE are given above. There are two ways to describe the 
formal EBE model. One way to describe this model is by a directed graph which we call 
Behaviour Tree oriented EBE (EBE-BT), the another method is by a set of syntax rules and 
its operational semantics, called Normal Form oriented EBE (EBE-NF). 

2.2 Behaviour Tree Oriented EBE 

The Behaviour Tree Oriented EBE describes a system in terms of a directed graph 
with tree structure. In the EBE-BT, tree nodes represent externally observable states of a 
system (i.e., the set S). In particular, the tree root of EBE-BT is the initial state S 0. Tree 

branches linking tree nodes represent transitions among the external states of the EBE (i.e., 
the set T). Logical relations associated with a transition of the EBE may be described in 
terms of additional specifications (i.e., the set R). Thus it can be seen that there are clear 
mappings between the basic definitions of EBE and the EBE-BT. 

2.3 Normal Form Oriented EBE 

The Normal Form Oriented EBE is another form of describing a system using the EBE. 
The typical structure of system specification and process definition in the EBE-NF is shown 
below: 

SPECIFICATION system_name [input/output primitive and their 
parameter list] 

system implementation statement list 
type definition 

BEHAVIOUR 
external behaviour expression 

WHERE 
type definition 
process definition 

ENDSPEC 
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process process name [input/output primitive and their 
parameter list] := 

external behaviour expression 
WHERE 

type definition 
process definition 

ENDPROC 

In EBE-NF, an essential component of a system specification or a process definition is 
its external behaviour expression. The process definition may be used to describe 
hierarchical or parallel behaviour of a system. An external behaviour expression is built by 
applying syntax rules of the EBE-NF which is simpler than the FDT's such as Estelle or 
LOTOS because it describes externally observable behaviour only. 

Table 1. Syntax rules of EBE-NF 

Name 

Inaction: 

Transition: 

Transition Choice: 

Process Instantiation: 
Termination: 

Notation 

STOP 
Si [ Tij(k) I Rij(k)] * Sj 

Si [ Tijl(k) I Rijl(k)] * Sj! 

+ ... 
+ [ Tijn(k) I Rijn(k) ] * Sjn 

P (e1, ... ,en) 

EXIT 

The complete list of basic syntax rules of the EBE-NF is given in Table 1. In the table, 
symbols "Si", "Sj'', "Sjq" are external states of a system; symbol "Tij(k)" represents the kth 
transition from Si to Sj; and symbol "Rij(k)" stands for the logical relations associated with 
Tij(k). Basically, the EBE-NF includes three kinds of operators, i.e., nullary operators 
(Stop and EXIT), sequence operator "*", and parallel operator "+". A deterministic 
transition is built by using the sequence operator "*" between a state Si with Tij(k) I Rij(k) 
and another state Sj, where "I" represents a condition relationship between the transition T 
and the logical relation R. Nondeterministic transition (i.e., conditional on the inputs ) is built 
by using parallel operator "+" among multiple possible sequence transitions. Only one of 
such possible sequence transitions can be enabled because of the assumption that a system 
responses to external events in sequence. A process instantiation P (e1, ... ,en) is formed 
by a process identifier "P" with an associated list (e1, ... ,en) of input and/or output 

primitives and their parameters, where { ei} ~ T. 

The operational semantics of the EBE-NF is given in Table 2 and provides a means to 
derive the actions that a system or a process may perform from the external behaviour 
expression itself. By applying axioms and inference rules of the operational semantics we 

can derive an action tree, also called a transition tree. The transition tree obtained from EBE

NF is just another form of specifying EBE which we have called EBE-BT. Thus there is a 

simple mapping between the two forms of the EBE model. 



- 8 -

Table 2. Operational semantics of EBE-NF 

Notation 

STOP 

EXIT 

Si [ Tij(k) I Rij(k)]. Sj: 
Si[ Tij1(k) I Rij1(k)] • Sj1 

+ ... 
+ [ Tijn(k) I Rijn(k) ) • Sjn : 

P (e1, ... ,en): 

2.4 EBE of a Protocol 

Meaning 

none 

EXIT-@ ➔ STOP {@ is the termination action} 

Si- [ Tij(k) I Rij(k) ] ➔ Sj 

Si - [ Tijq(k) I Rijq(k) ] ➔ Sjq { n ~q ~ 1 } implies 

Si-[ Tij1(k) I Rij1(k)] 
+ ... 
+ [ Tijn(k) I Rijn(k) ] ➔ Sjq { n ~ q ~ 1 } 

If "process P (e1, ... en) := EBE endproc" 
is a process definition then 

P (81, ... ,en) -[ t e T' Ire R'] ➔ S' 
{ s· is a state set of P. T' is a transition set of P 

and R' is a relation set of P } 

The EBE of a protocol may be produced directly from the protocol document in English. 
However, this paper will focus on derivation from FDT's such as Estelle or LOTOS. 

The formal structures of Estelle are very close to those of EBE. The tree structure of 
the EBE associated with states and transitions can be formally obtained from the finite state 
machines in Estelle. Logical relations of the EBE can be formally produced by searching the 
operation part associated with each transition of Estelle. Thus, formal protocol specification 
in Estelle can be directly transformed into EBE-BT by using formalized algorithms. The 
operational semantics of LOTOS provides a means to derive a transition tree from its 
behaviour expression. This transition tree has the same structure as EBE-BT. Logical 
relations of the EBE can also be obtained by examining the description of data structures and 
value expressions in LOTOS. Therefore, formal protocol specification in LOTOS can best be 
transformed into EBE-BT. However some formalized algorithms may also be used to 
transform specifications in LOTOS into EBE-NF directly. Details of obtaining an EBE from 
formal protocol specifications in Estelle and LOTOS are given in [ 19]. 

An EBE for the ISO Class O Transport Protocol is given in the Appendix. Its EBE-BT 
is shown in Appendix A and its EBE-NF is given in Appendix B. 

3 Test Sequence Derivation Strategy 

In this section, we present a basic test derivation theory for protocol conformance 
testing and outline the steps of the test derivation strategy. A test generation and selection 
method is proposed to generate generic test cases from formal protocol specification, and 
select abstract test cases based on particular abstract test methods. 

L 
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3.1 Basic test derivation theory for protocol conformance testing 

As protocol testing is a special case of software testing, much can be learned from the 
theory of software testing. The following test derivation theory for protocol conformance 
testing has incorporated some concepts from software testing (see for example [20] and 
[21]), and is based on the concepts for protocol conformance testing [l] . 

Definition 3.1 

PS is a generic specification of a protocol in terms of the externally observable 
behaviour with the input sequence domain D and the intended output PS(D) on D. PI is a 
conceptual conformance implementation of PS if there exists a finite test sequence set TS ~ 
D such that 

Pl(x) = PS(x) for all x e TS => Pl(x) = PS(x) for all x e D. 

Note that since PS is a generic specification, in the absence of implementation specific 
information such as those contained in PICS and PIXIT, it is nondeterministic and so are PI 
and TS. In other words, since there are implementation variables whose values are 
unspecified in PS and Pl, some outputs of TS are nondeterministic. 

Definition 3.2 

PI; is a particular real implementation of PS based on information specified in some 

given implementation statements. The protocol specification that Pl; implements is PS; and 

its associated input sequence domain is D;, Pli is a conformance implementation of PSi if 

there exists a TS;, where TSi ~ TS and TS;~ Di, such that 

Pl/x) = PS/x) for all x e TSi => Pl/x) = PS/x) for all x e Di. 

Pl; is deterministic as a real implementation must resolve any nondeterministic 

specification based on the PICS and the PIXIT. Thus PSi and TSi are also deterministic. 

Test sequence TSi with the property in definition 3.2 is known as a reliable test sequence 

set. In other words, TSi is reliable for Pli if TSi reveals that Pli is incorrect whenever Pl; 

contains a conformance error (i.e., Pli(x) ~ PSi(x) for some x e TSi). The rest of this section 

is concerned with the derivation of test sequences from formal protocol specifications. 

Definition 3.3 

Test derivation strategies TDS are procedures for generating test sequence set TSi 

from formal protocol specification PS. A test derivation strategy is reliable for a protocol 
implementation Pli if it produces a reliable test sequence set TSJor Pli. 

The test sequence derivation strategies for prot9Col conformance testing have also 
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been called test generation in [10,14,15], test selection in [6,7] and test design in [3,4]. In 
[1,2], test sequences for protocol conformance testing are known as Test Suites. Test suites 
have a hierarchical structure in which the basic unit is the Test Case. Each test case has a 
narrowly defined purpose. Three kinds of test cases are used in protocol conformance testing, 
i.e., Generic Test Cases, Abstract Test Cases and Executable Test Cases. Their detailed 
definitions can be found in [2]. 

Definition 3.4 

Let PS be the formal specification of a protocol. We subdivide the test derivation 
strategy TDS for protocol conformance testing into three steps: 

( 1) Test Generation TDSG by which generic test cases TS are generated from PS, i.e., 

(3 TDSG) (TDSG(PS) = TS ~ D) ; 

(2) Test Selection TDSS by which abstract test cases TSi are selected from TS on the 

basis of some additional statements AS a, i.e., 

(3 TDSS) (TDSS(TS, AS a)= TSi ~TS); 

(3) Test Choice TDSC by which executable test cases TS e are chosen from TSi on the 

basis of some additional statements AS e' i.e., 

From the results of [21], it can be shown that TS, TSi and TSe exist for a protocol 

implementation. The problem to address next is how to formulate TDSG, TDSS and TDSC 
for TS, TSi and TSe respectively. In this paper, we focus our attention on an approach to test 

sequence generation and selection for abstract test cases from formal protocol specifications. 
The approach assumes that the protocol specification is given in EBE ( EBE-BT or EBE
NF) only. First, generic test cases are generated from the EBE by using the test generation 
method presented in the next subsection. Given a particular abstract test method, abstract 
test cases can then be selected from the generic test cases. 

3.2 Test generation for generic test cases 

The key idea in the method proposed here is the concept that all associations between 
each output primitive and those input primitives (as well as their parameters) that influence 
them are examined during testing. The same is done also for each output primitive 
parameter. All of these associations can be obtained through the interaction paths and their 
1/0 subpaths (defined below) of a protocol which can easily be identified from the EBE. The 
1/0 subpath is the basic unit of test cases. On the basis of a specific protocol testing 
purpose, a set of 1/0 subpaths are identified and grouped into a test group (following ISO 
terminology). Test cases are completed by the addition of some statements such as those 
producing test verdicts. The following subsections describe the details of the method. 

3.2.1 Identifying all interaction paths and their 1/0 subpaths 
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Definition 3.5 (interaction path) 

An interaction path IP is the externally observable track on which a sequence of 
interactions between the protocol and its external environment occurs, starting from the 
initial external state S0 of the protocol and ending in the same state. Any interaction path IP 

is different from another one, i.e., 

Definition 3.6 (1/0 subpath) 

An //0 subpath SIP is the externally observable subtrack ( e 1, ... , ek ), where 

(1) e 1 is an input primitive IP with its parameters X pq and ek is an output primitive 

0 q with its parameters Y qp; 

(2) ek is influenced by some logical relations which satisfy 

a) property P(Z) ; and/or 

b) a set of functions {Yqpl = F(Z). 

Definition 3. 7 

Each interaction path IP includes one or more independent 1/0 subpath SIP' s. Each 
1/0 subpath SIP can belong to one or more different interaction path IP' s. 

If a protocol specification is given in EBE-BT or EBE-NF, the following algorithm is 
used to identify all interaction paths. 

Algorithm A (Identifying all interaction paths) 

Input: EBE of a protocol. 

Output: IPx,x =1, 2, ... (The set of interaction paths). 

Initialization: x := 0, all states and all transitions are set to "unmarked". 

Step 1. Let x := x + 1, i:= 0, and s0 ➔ IPx (" ➔ "means" appended to"). 

Step 2. Find an "unmarked" Tij(k) with minimum j and k (i.e., the lowest numbered 

transition from state i to the lowest numbered state J). If none exists, go to Step 6; 
otherwise, go to Step 3. 

Step 3. If j = 0, then the end of this interaction path has been reached, Tij(k) ➔ IP X' So 

➔ IPx, Tij(k) is set to "marked", and go to Step 5. If j ~ 0, then Tij(k) ➔ IP X' Sj ➔ IPx, and go 

to Step 4. 

Step 4. Find an "unmarked" Tij(k) with minimu°:1 j and k. If found, then go to Step 3; If 

not, check the status of S;, If Si is "unmarked", then a transition loop has occurred in this 
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interaction path. The state Si is set to "marked" and this interaction path is marked as a 

"loop transition"; go to Step 5. 

Step 5: Traverse this IP x backward. ·For each Tij(k) of the IP X' if Sj is "marked" or if j=O 

then set Tij(k) to "marked". If a Si does not have any "unmarked" Tij(k)• then Si is set to 

"marked". An elementary interaction path has been obtained, and go to Step 1 for the next 
interaction path. 

Step 6: For each IP with transition loops at any state along the path, a sequence of 
transitions @ from the last state on the path going back to s0 is added. Then all interaction 

path IP x's obtained are output. 

The application of Algorithm A to the EBE of the ISO Class O Transport Protocol is 
shown in Table 3. There are two kinds of interaction paths - those with and those without 
transition loops from a state to itself. In the case of two or more transition loops in the same 
state, some paths of the transition loops may be inexecutable. Also the length of an 
interaction path may be infinite if it contains transition loops. These problems must be dealt 
with by the test derivation strategies. 

Table 3. All interaction paths for ISO Class O Transport Protocol 

All interaction paths: 

IP1: [SO,T00(1 ),SO] 
IP2: [SO,T00(2),SO] 
IP3: [SO,T01,S1,T13,S3,T30,SO] 
IP4: [SO,T01 ,S1,T14,S4,T40(1),SO] 
IPS: [SO,T01,S1,T14,S4,T40(2),SO] 
IP6: [SO,T01,S1,T14,S4,T40(3),SO] 
IP7: [SO,T01,S1,T14,S4, IT44(1),S4I, I T44(2),S4I, I T44(3),S41, I T44(4),S41, T40(1),SO ]* 
IP8: [SO,T01,S1,T14,S4, IT44(1),S4j, I T44(2),S4I, I T44(3),S4I, I T44(4),S41, T40(2),SO ]* 
IP9: [SO,T01,S1,T14,S4, IT44(1),S4j, I T44(2),S4I, I T44(3),S4j, I T44(4),S41, T40(3),SO ]* 
IP10: [SO,T02,S2,T24,S4, jT44(1),S4j, I T44(2),S4I, I T44(3),S4I, I T44(4),S4I, T40(1),SO ]* 
IP11: [SO,T02,S2,T24,S4, jT44(1),S4I, I T44(2),S4I, I T44(3),S4I, I T44(4),S4I, T40(2),SO ]* 
IP12: [SO,T02,S2,T24,S4, IT44(1),S4I, I T44(2),S4I, I T44(3),S4j, I T44(4),S4I, T40(3),SO ]* 
IP13: [SO,T02,S2,T20,SO] 
IP14: [SO,T02,S2,T25,SO,T50,SO] 

where the symbol • denote the interaction paths with transition loops ; the symbol I ... I 
denote a transition loop. 

Algorithm B (Identifying all 1/0 subpaths) 

Input : All of the IP x' s and the EBE of a protocol; 

Output: SIPy,Y =1, 2, ... (The set of J/O subpaths). 

Step 1. Traverse each interaction path backward . 
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For the output primitive in each trans1non, an 1/0 subpath can be obtained in the 
interaction path which tests the correctness of this output primitive. The 1/0 subpath ends at 
the output primitive and stans from: 

1) the earliest preceding transition if the output primitive is influenced by the input 
primitive and/or its parameters in this preceding transition; 

2) the input primitive in the same transition if the output primitive is influenced by this 
input primitive and/or its parameters, or by parameters defined in implementation statements 
such as PICS and POOT. 

If the output primitive is influenced by both the above conditions, then condition 1) 
takes precedence. 

This procedure is repeated for each output primitive parameter in every transition in the 
interaction path. 

Step 2. Those 1/0 subpaths containing states with executable transition loops can 
generate more 1/0 subpaths which contain alternately zero or one traversal of each 
executable loop for the purpose of avoiding infinite testing paths. 

Step 3. Combines those 1/0 subpaths which are identical even though they have 
different testing purposes into a feasible 1/0 subpath. Thus each 1/0 subpath will have one or 
more testing purposes. 

The 1/0 subpaths obtained by the application of Algorithm B to the interaction paths 
and the EBE of ISO Class O Transport Protocol are shown in Table 4. 

3.2.2 Combining 1/0 subpaths based on the specific testing purpose 

1/0 subpaths are selected on the basis of the specific testing purposes in order to 
combine them into some groups of test cases called Test Group (following ISO terminology). 
This is quite easy to do because each 1/0 subpath has been defined for one or more 
particular testing purposes. 

For an EBE with nested structure, a nested test group will be formed. In general, test 
groups may be nested to an arbitrary depth. A nested test group may be associated with a 
testing purpose for parallel compositions (e.g., multiple connection testing). 

3.2.3 Completion and notation of generic test cases 

The above test cases are completed by the addition of some statements ( e.g., testing 
verdicts of "pass", "fail", and "inconclusive"). Also, some additional primitives and their 
parameters may be considered for the purpose of testing some defensive behaviour not 
characterized in the formal protocol specifications. The generic test cases of a protocol are 
given in a standardized test notation such as the Tree and Tabular Combined Notation 
(TTCN). 

3.3 Test selection for abstract test cases 

Generic test cases are used as the common basis for selecting the corresponding 
abstract test cases for different abstract test methods [2]. The main factors that influence 
this selection is the abstract test method to be used and its testing environment. In addition, 
the specifications of a preamble and a postamble are also included in each abstract test case. 
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Table 4. All //0 Subpaths for ISO Class O Transition Protocol 

1/0 Subpaths: 

SIP1: [ TCREQ / TDIND] 
SIP2: [ TCREQ / CR ] 
SIP3: [ DR / NDREQ ] 
SIP4: [ DR / NDREQ, - / TDIND ] 
SIPS: [CC/ TCCON] 
SIP6: [ TDREQ / NDREQ ] 
SIP7: [ NDIND / TDIND] 
SIPS: [ NRIND / TDIND ] 
SIP9: [CR/ TCIND] 
SIP10: [CR/ DR] 
SIP11: [ TDREQ / DR ] 
SIP12: [ CR / TCIND, TDREQ / DR ] 
SIP13: [ TCRES /CC] 
SIP14: [ CR / TCIND, TC RES/ CC ] 
SIP15: [ TC RES/ DR] 
SIP16: [ CR / TCIND, TC RES/ OR, - / TDIND ] 
SIP17: [ TCRES / DR, -/ TDIND] 
SIP18 [ TDATR /-,-/ DT] 
SIP19: [DT/-,-/TDATI] 
SIP20: [ TCREQ / CR, CC/ TCCON, TDATR / DT1, -/ DT2, ... , -I OTn ] 
S!P2~: [ TCREQ / CR, CC/ TCCON, DT1 /-, DT2 /-, ... , DTn / TDATI] 
SIP22: [CR/ TCIND, TCRES / CC, TOATR / DT1, -/ DT2, ... , -/ DTn] 
SIP23: [CR/ TCIND, TCRES / CC, DT1 /-, DT2 /-, ... , OTn / TDATI] 
SIP24: [ TDATR /-,-/ DT, OT/-,-/ TOATI] 
SIP25: [OT/-,-/ TOATI, TDATR /-,-/ OT] 
SIP26: [ TDATR /-, DT /-,-/ DT,-/TDATI] 
SIP27: [ TDATR /-, DT /-,-/ TDATI,-/ OT] 
SIP28: [ DT /-, TDATR /-,-/ DT,-/TDATI] 
SIP29: [ DT /-, TOATR /-, -/ TDATI,-/ OT] 

Different parts of an 1/0 subpath in the generic test cases are identified on the basis of 
different abstract test methods. Thus, for the Remote Single-layer Test Method, the PDU's 
input and output for an 1/0 subpath, but not the interlayer service primitives, will be selected. 
For the Distributed Single-layer Test Method, the PDU's input and output as well as 
service primitives to the higher layer will be selected. In the ISO Transport Class O example 
(Table 4), [DR / TDIND] shall be selected from the SIP4 [DR / NDREQ, - / TDIND] 1/0 
subpath for the Distributed Single-layer Test Method; [CR / CC] and [CR / DR] shall be 
selected from the SIP14 [CR / TCIND, TC RES / CC] and SIP12 [CR / TCIND, TCREQ / 
DR) 1/0 subpaths respectively for the Remote Single-layer Test Method. 

Abstract test cases are also specified using the TTCN notation. 
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4 Comparison with other Test Derivation Methods 

Comparison of the various test derivation methods is difficult because there is no good 
evaluation standard available for this purpose. An attempt has been made in [7] to compare 
their test selection method, namely selecting test sequences to cover all simple Of-paths 
(Output and Input paths), with a method to cover all DU-paths (Definition and Usage paths) 
[5, 6], and with an approach to combined flow coverage/parameter variation (FCPV) [4]. 
Some interesting results have been obtained from this work which uses the ISO Class 0 
Transport Protocol as the basis of comparison. In this section, we compare our test sequence 
derivation method, namely to cover all 1/0 subpaths, with the method to cover all simple 01-
paths, and with the combined FCPV method. The method to cover all DU-paths is not used in 
our comparison, because [7] has shown that all simple Of-path coverage is much more 
comprehensive than all DU-paths coverage; both methods were proposed by the same 
researchers. 

The comparison is based on the same protocol, the ISO Class O Transport Protocol. 
We only deal with the feasible paths. The paths produced by applying these three methods 
are given in Table 4, Table 5, and Table 6. 

Our comparison examines test completeness and effectiveness based on externally 
observable behaviour, namely combined primitive and parameter coverage. The coverage 
checks the correctness of control flow concerned with input and/or output primitives as well 
as data flow concerned with input and/or output primitive parameters. 

4.1 Comparison with all simple 01-paths 
-

By comparing Tables 4 and 5, we can see that the method of all 1/0 subpaths is more 
complete and effective than that of all simple Of-paths. In the latter method, some duplicate 
paths and unnecessary paths can be found. For instance, 013 is a duplicate of 014, and 016 
a duplicate of 017. Moreover, as a result of 013 being a duplicate of 014, additional 
duplications occur between 0113 and 0114, and between 0121 and 0122. 0111, 0112, 
011 6 and O 11 7 are unnecessary due to the definition of internal variables. In the results of 
all /10 subpaths method, SIP19, SIP20, SIP21 and SIP22 are used to test the fragmentation 
and reassembly functions of data transfer; these paths are missing in the results obtained by 
the all simple Of-paths method. 

It is easy to see that the all simple Of-paths method generates many more paths than 
the all 1/0 subpaths method. Many of the paths resulting from the former method are not 
necessary and the rest are covered by the all /10 subpaths method in less paths. 

4.2 Comparison with Flow Coverage/ Parameter Variation 

It is not as straightforward to compare FCPV method with all 1/0 subpaths method. 
However, we are still able to discover differences between them on the basis of the 
differences in the generation procedures. 

The FCPV method assumes the decompositions of the NFS in terms of the subtours for 
the control graph (CG) and data flow functions ( function for short ) for the data flow graph 
(DFG). These functions are tested by parameter variations and covering all the control paths 
that exist in the specification. For each function, the subtours selected are those subtours of 
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the CG which include Normal Formal Transitions (NFr's) in the set of labels of the function 
block. These subtours are longer than necessary. Thus, FCPV coverage for testing a function 
is lower in effectiveness than all //0 subpaths which only includes paths necessary for 
testing the function. The subtours of the FCPV method are more like the interaction paths of 
our methods. In addition, an unbounded number of tests for subtours sb4 and sbS is clearly 
unacceptable. 

Table 5. All Simple OJ-Paths for ISO Class O Transition Protocol 

Simple 0I-Paths: 

011 : ( tcreq/cr] 
012: [ tcreq/tdind] 
013: [ cr/tcind ] 
014: [ cr/tcind ] 
015: [ cr/dr) 
016: [ ccttccon ] 
017: [ cc/tccon ] 
018: [ dr/ndreq,tdind ] 
019: [ dr/ndreq,tdind) 
0110: [ tcres/cc ] 
0111: [ (t3); tcres/cc] 
0112: [(t4);tcres/cc] 
0113: [ cr/tcind; tcres/cc] 
0114: [ cr/tcind; tcres/cc) 
0115: [ tcres/dr,tdind) 
0116: [ (t3); tcres/dr,tdind ] 
0117: [ (t4); tcres/dr,tdind ) 
0118: [ cr/tcind; tcres/dr,tdind] 
0119: [ cr/tcind; tcres/dr,tdind] 
0120: [ tdreq/dr] 
0121: [ cr/tcind; tdreq/dr) 
0122: [ cr/tcind; tdreq/dr) 
0123-0158: [ tdatr/(out.buff); C01; tdatr/(out.buff) ; CO2; (out.buff)/dt; C03 (out.buff)/dt] 
0159-0194: [ tdatr/(out.buff); C01; (out.buff)/dt; CO2; tdatr/(out.buff); CO3; (out.buff)/dt] 
0195-01130: [ dt/(in.buff); AB1; dt/(in.buff); AB2; (in.buff)/tdati; AB3; (in.buff)/tdati] 
01131-01166: [ dt/(in.buff); AB1; (in.buff)/tdati; AB2; dt/(in.buff); AB3; (in.buff)/tdati] 
01167: [ tdreq/ndreq ] 
01168: [ nrindltdind] 
where 
the concatenation of AB1; AB2; AB3 = (A; A; B; B) I (A; B; A; B), and 
the concatenation of CO1; CO2; CO3 • (C; C; O; 0) I (C; O; C; 0), and 
A denotes the string: tdatr/(in.buff); 
B denotes the string: (out.buff)/dt; 
C denotes the string: dt/(ln.butt); 
O denotes the string: (in.buff .)ltdatr; 
AB1, AB2, AB3, CO1, CO2, CO3 can be empty strings. 
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Table 6. Coverage of the FCPV Method for ISO Class O Transition Protocol 

Subtours: 

sb1. (t2 I t5) 
sb2. t1 ; (ta I t9) 
sb3. (t3 I t4); (t11 I t12) 
sb4. t1; (t6 I t7); (t13 I t14 I t15 I t16) *; (t17 I t18 I t19) 
sbS. (t3 I t4); t10; (t13 I t14 I t15 I t16) *; (t17 I t18 I t19) 

where the symbols ; , I , and • denote the operations catenation, set union, 
and iteration, respectively. 

Block 

Connection Referencing: 
Addressing: 
Disconnection: 
Quality of Service: 
Data Transfer: 

SIL(block) 

t1,t3,t4,t10 
t1 ,t3,t4 
t2,t5,t8,t9,t11,t12,t17,t18,t19 
t1 ,t3,t4,t6,t7 
t6,t7,t10,t13,t14,t15,t16 

4.3 Comparisons of test derivation complexity 

Subtours of the block 

sb2,sb3,sb4,sb5 
sb2,sb3,sb4,sb5 
sb1 ,sb2,sb3,sb4,sb 
sb2,sb3,sb4,sb5 
sb4,sb5 

Because the definitions and operations of internal variables are involved, the FCPV 
method requires considerable effort to identify functions and their relationships, and is the 
most complex of the three methods. All simple Of-paths method assumes that a protocol 
specification is given in NFS. A flowgraph modeling both the control flow and data flow is 
constructed by identifying all associations between definition and usage of each variable 
employed in the specification which includes the internal structures and variables concerned 
with implementation. Based on this information, associations between each output and those 
inputs that influence the output are identified. Test sequences are selected to cover each of 
the associations at least once. This method appears to be less complex than FCPV method. 

Our test sequence derivation strategy is based on the EBE of a protocol which only 
describes externally observable behaviour through the external input/output actions and the 
logical relations associated with these actions. Thus unlike the other two methods, no work 
need be done involving internal implementation details. All interaction paths and their I/O 
subpaths can be identified easily by two formalized algorithms. Each I/O subpath is defined 
for one or more testing purposes. By combining and completing these I/O subpaths, generic 
test cases of the protocol can be obtained. The method appears to be the simplest of the 
three methods. 

5 Conclusions 
We have presented a framework for a new approach to test sequence derivation from 

formal protocol specifications. This approach is based on the EBE of a protocol which can be 
obtained from formal protocol specifications in either Estelle or LOTOS. A basic test 
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derivation theory for protocol conformance testing has been defined and forms the basis of 
the test sequence derivation .strategy. The strategy proposed uses the 1/0 subpaths in the 
EBE as the basic units of a test case. Algorithms have been outlined to identify all 
interactional paths and their 1/0 subpaths associated with specific testing purposes. By 
grouping and completing these 1/0 subpaths, generic test cases of the protocol can be 
obtained. Abstract test cases are selected from the generic test cases on the basis of the 
abstract test method specified and its testing environment 

Compared to the other test derivation methods proposed recently, this approach has 
the following advantages: 

(1) In the EBE, a protocol implementation under test is considered a black box and its 
internal structure need not be known. The EBE of a protocol includes all interaction paths 
and their 1/0 subpaths, which represent both the control flow and the data flow, and can be 
used to generate test sequences directly. Thus, the test sequence derivation strategy based 
on the EBE is simple and concise, and test sequences derived from it will be more complete 
and effective. 

(2) The EBE of a protocol can be obtained from either Estelle or LOTOS specification, 
while the formal models used by other methods can only be transformed from one FDT such 
as Estelle or LOTOS. 

(3) In our approach, both the Generic Test Cases and the Abstract Test Cases are 
produced . Other test generation methods have not addressed this issue. 

More research is needed for a tooi that implements this method. It may also be 
interesting to investigate whether the methodology is applicable to the area of function 
software testing. 

This approach is being validated in the UBC/IDACOM joint project for OSI 
conformance testing. We believe that this approach to test sequence derivation can provide 
the basis of a formalized framework for protocol conformance testing. 
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Appendix A 
EBE-BT for ISO Class O Transport Protocol 

(0 
Tl3 I Rl3 

Abbreviation: 

T00(1) = TCREQ / TDIND; 
T00(2) = CR/ DR; 
T01 = TCREO / CR; 
T02 = CR / TCIND; 
T13 =DR/ NDREQ; 
T14 =CC/ TCCON; 
T20 = TDREO / DR; 
T24 = TCRES / CC; 
T25 = TCRES / DR; 

T30 =-I TDIND: 
T40(1) = TDREQ / NDREQ; 
T40(2) = NDIND / TDIND; 
T40(3) = NRIND / TDIND; 
T44(1) = TDATR /-; 
T44(2) =-/ DT; 
T44(3) = DT /-; 
T44(4) =-I TDATI; 
TSO = -/ TDIND. 

(0 
T25 I R25 
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Appendix B 
EBE-NF for ISO Class O Transport Protocol 

SPECIFICATION Transport_classO [ inpuUoutput primitive and their parameter list] 
local.refer := ... ; { statements of transport classO implementation } 
tpdu.size := ... ; 
qts.estmate := ... ; 
tcreq.qts.req.ok := ... ; 
er.option.Ok := ... ; 
user.init.disc.reason := ... ; 
er.option.normal := ... ; 

BEHAVIOUR 
SO [ TCREO(to.t.addr, from.t.addr, qts.req), TDIND(ts.disc.reason, ts.user.reason) I 

function: TDIND.ts.disc.reason = ... ; 
TDIND.ts.user.reason = ... , 

predicate: TCREO.qts.req <> tcreq.qts.req.ok] * SO { T00(1) I R00(1)} 
+ [ TCREO(to.t.addr, from.t.addr, qts.req), CR(source.ref, option, calling.addr, 

called.addr, max.tpdu.size) I 
function: CR.source.ref = local.ref; 

CR.opiton = ' norma I ' ; 
CR.calling.addr = TCREQ.from.t.addr; 
CR.called.addr = TCREQ.to.t.addr; 
CR.max.tpdu.size = tpdu.size; 

predicate: TCREO.qts.req = tcreq.qts.req.ok] * S1 { T01 I R01 } 
+ [ CR(source.ref, option, calling.t.addr, called.t.addr, max.tpdu.size), 

DR(dest.refer, disconnect.reason) I 
function: DR.dest.refer = CR.source.ref; 

CR.disconnect.reason = ... , 
predicate: CR.option <> cr.option.ok] * SO { T00(2) I R00(2) } 

+ [ CR(source.ref, option, calling.t.addr, called.t.addr, max.tpdu.size), 
TCIND((to.t.addr, from.t.addr, qts.pro) I 
function: TCIND.to.t.addr = CR.called.t.add; 

TCIND.from.t.addr = CR.calling.t.addr; 
TCIND.qts.pro = qts.estimate, 

predicate: CR.option= cr.option.ok] * S2; { T02 I R02} 

S1 [ DR(disconnect.reason, add.clear.reason), NDREQ(disc.reason) I 
function: NDREO.disc.reason = DR.disconnect.reason, 
predicate: True]* S3 { T13 I R13} 

+ [ CC(max.tpdu.size), TCCON(qts.res) I 
function: TCCON.qts.res = qts.estmate, 
predicate: true]* S4; { T14 I R14} 

S2 [ TDREO(ts.user.reason), DR(dest.refer, disconnect.reason, add.clear.reason) I 
function: DR.dest.refer = CR.source.ref { T02 = CR, TCIND}; 

DR.disconnect.reason = ... ; 
DR.add.clear.reason = TDREO.ts.user.reason, 

predicate: true]* SO { T20 I R20} 
+ [ TCRES(qts.req), 
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CC(dest.refer, source.ref, calling.t.addr, called.t.addr, max.tpdu.size) I 
function: CC.source.ref .. local.refer; 

CC.dest.refer = CR.source.ref { T02 .. CR, TCIND }; 
CC.calling.t.addr = CR.calling.t.addr { T02 = CR, TCIND }; 
CC.called.t.addr = CR.called.t.addr { T02 = CR, TCIND }; 
if CR.max.tpdu.size <> nil then 

CC.max.tpdu.size .. CR.max.tpdu.size { T02 = CR, TCIND} 
else CC.max.tpdu.size = tpdu.size, 

predicate: TCRES.qts.req <= qts.estimate] • S4 { T24 I R24} 
+ [ TCRES(qts.req), DR(dest.refer, disconnect.reason, add.clear.reason) I 

function: DR.dest.refer = CR.source.ref { T02 -= CR, TCIND }; 
DR.disconnect.reason = ... ; 
DR.add.claer.reason = ... , 

predicate: TCRES.qts.req > qts.estimate] * SS; { T25 I R25} 

S3 [ - , TDIND(ts.disc.reason) I 
function: TDIND.ts.disc.reason = DR.disconnect.reason { T13 = DR, NDREQ} 

if DR.disconnect.reason = 'user.init.disc.reason' then 
TDIND.ts.user.reason = DR.add.clear.reason 

else TDIND.ts.user.reason = nil { T13 = DR, NDREQ }, 
predicate: true]* SO; { T30 I R30 } 

S4 [ TDREQ(ts.user.reason), NDREQ(disc.reason) I 
function: NDREO.disc.reason .. TDREQ.ts.user.reason 
predipate: true]* SO { T40(1) I R40(1)} 

+ [ NDIND(), TDIND(ts.disc.reason) I 
function: TDIND.ts.disc.reason = ... , 
predicate: true]* SO { T40(2) I R40(2)} 

+ [ NRIND(), TDIND(ts.disc.reason) I 
function: TDIND.ts.disc.reason = ... , 
predicate: true]• SO { T40(3) I R40(3) 

+ [ TDATR(tsdu.fragment), - I 
function: nil, 
predicate: true)* S4 { T44(1) I T44(1)} 

+ [ -, DT(user.data) I 
function: OT.user.data= TDATR.tsdu.fragment.user.data { T44(1) = TDATR, -} 
predicate: true]* S4 { T44(2) I T44(2) } 

+ [ DT(user.data), - I 
[ function: nil, 

predicate: true]* S4 { T44(3) I R44(3)} 
+ [ -, TDATl(tsdu.fragment) I 

function: TDATl.tsdu.fragment = OT.user.data { T44(3) = OT, - } 
predicate: true)* S4; { T44(4) I R44(4)} 

S5 [ -, TDIND(ts.disc.reason) I 
function: TDIND.ts.disc.reason = ... , 
predicate: true]* SO; 

ENDSPEC 

{ TSO I RSO} 




