
USING DEFICIENCY MEASURE
FOR TIEBREAKING THE

MINIMUM DEGREE ALGORITHM
by

Ian A. Cavers
Technical Report 89-2

January 10, 198ft

Department of Computer Science

University of British Columbia

Vancouver, B.C. V6T 1W5 Canada

I.

Using Deficiency Measure
for Tiebreaking the

Minimum Degree Algorithm

Ian A. Cavers

Technical Report 89-2
January 10, 1988

Department of Computer Science
The University of British Columbia

Vancouver, British Columbia
Canada V6T 1 W5

Abstract

The minimum degree algorithm is known as an effective scheme for identify­
ing a fill reduced ordering for symmetric, positive definite, sparse linear systems.
Although the original algorithm has been enhanced to improve the efficiency of
its implementation, ties between minimum degree elimination candidates are still
arbitrarily broken. For many systems, the fill levels of orderings produced by the
minimum degree algorithm are very sensitive to the precise manner in which these
ties are resolved. This paper introduces several tiebreaking schemes for the mini­
mum degree algorithm. Emphasis is placed upon a tiebreaking strategy based on
the deficiency of minimum degree elimination candidates, which can consistently
identify low fill orderings for a wide spectrum of test problems. The tiebreaking
strategies are integrated into a quotient graph form of the minimum degree al­
gorithm with unelim.inated supernodes. Implementations of the enhanced forms
of the algorithm are tested on a wide variety of s_parse systems to investigate the
potential of the tiebreaking strategies.

1

1 Introduction

This paper discusses the solution of large systems of linear algebraic equations of the

form

Ax= b (1)

where A is a sparse, symmetric, positive definite matrix of size NxN. Such problems

arise from a broad spectrum of application areas found in many fields of science and

engineering. A wide range of different methods have been proposed for their solution

but this paper concentrates upon the ordering problem associated with direct methods

based on the Cholesky factorization method.

For many problems, finding a "good" ordering or permutation can significantly

reduce the computational effort and storage required when the equivalent system

PAPTPx = Pb (2)

1s solved directly. Here P denotes a permutation matrix. Many criteria have been

proposed as the basis of ordering algorithms including minimum arithmetic, minimum

storage and minimum fill-in. As discussed by Rose (10], minimization of fill-in is an

attractive goal because in practice it is a reasonable approximation of minimum arith­

metic and if full advantage is taken of the Cholesky factor's sparsity, primary storage

is minimized. Unfortunately, the minimum fill-in problem was shown by Yannakakis

(12] to be an NP-complete problem and as a result only good heuristic algorithms are

feasible for large sparse problems.

The minimum degree algorithm (or MDA), introduced by Tinney and Walker [11]

and by Rose [10] in its graphical form, is the symmetric analog of a general ordering

algorithm first suggested by Markowitz [9]. This heuristic algorithm has been widely

accepted as a practical approach to the minimum fill-in ordering problem, which is

effective in reducing fill and arithmetic costs for a wide range of problems.

The minimum degree ordering algorithm creates a fill reducing permutation by se­

lecting a minimum degree node at each stage of the algorithm from a graph modelling

2

the unfactored portion of the matrix. When more than one minimum degree node ex­

ists in the current graph, an arbitrary selection is made from the group of acceptable

elimination candidates. As will be demonstrated, the fill levels experienced by order­

ings produced by the MDA are sensitive to the precise manner in which these "ties"

are resolved. This paper introduces tiebreaking strategies which remove some of the

arbitrary nature of the MDA and result in orderings with improved characteristics.

A brief outline of the paper is as follows. Section 2 briefly reviews the MDA and

many of the approaches which have been proposed to improve the efficiency of its

implementation. After motivating the need for tiebreaking strategies in Section 3, a

tiebreaking strategy based upon node deficiency is introduced in Section 4. In the next

section several key issues central to a successful implementation of deficiency tiebreaking

are discussed. Three additional secondary tiebreaking schemes are briefly outlined in

Section 6. The performance of the tiebreaking schemes is demonstrated in Section 7

using a wide range of numerical experiments. Finally, some concluding remarks are

provided in Section 8.

2 An Overview of the MDA

In this section a brief overview of the current status of the MDA and its role in the

solution process is given, while identifying the particular form of the algorithm to which

the tiebreaking strategies of Sections 4 and 6 are to be applied. It is assumed that the

reader has a general knowledge of the graph-theoretic terminology associated with the

study of ordering algorithms for sparse systems. In addition, familiarity with the special

correspondence between the outer product form of the Cholesky method and elimination

graphs is assumed. A thorough discussion of this material is provided by George and

Liu in (6].

It is generally accepted that the complete solution process for sparse, symmetric,

positive definite systems using the Cholesky method can be broken into four distinct

and independent steps (4].

1. Ordering
• Determination of a good ordering or permutation matrix P for A.

3

2. Symbolic Factorization

• To exploit the general sparsity of the system, the nonzero structure of L is

identified and an appropriate data structure initialized in preparation for the

Cholesky factorization of P APT.

3. Numerical Factorization

• Decompose P APT into LLT using the Cholesky factorization method.

4. Solve

• Solve the factored system LLT Px = Pb, by solving two triangular systems.

The MDA has enjoyed increasing popularity as a practical, general purpose ordering

algorithm which can be used to perform the first step of this solution process. The

minimum fill-in heuristic approximates a local minimization of fill by minimizing the

worst fill level that can be experienced at each step of the factorization process.

In some fashion all forms of the MDA rely upon a graphical simulation of the

Cholesky factorization method. The simplest scheme is the elimination graph model.

(See (4] and [10].) An elimination graph, Gi, is used to model the nonzero structure of

the unfactored portion of the matrix at each step of the simulated process. The most

elementary form of the MDA can be described very simply using this basic model. In

the following algorithm G0 = (X, E) is the elimination graph representing the nonzero

structure of the original matrix, while Gi represents the elimination graph after i nodes

have been selected for the new ordering.

1. Form G0 ; i := 0

2. While i < N

(a) Choose a minimum degree node, x, from Gi

(b) Eliminate x from Gi to form Gi+I

(c) i:= i + 1

4

In step 2b the selected node, x, is eliminated from the current elimination graph to

form the new elimination graph. This transformation is accomplished by first removing

x and all incident edges from the current elimination graph. The transformation is

completed by adding edges to the graph so that the set of nodes adjacent to x in G;

form a clique in Gi+l•

Many different techniques have been employed to improve the modelling of the

Cholesky factorization and increase the efficiency of resulting MDA implementations.

One of the most successful models is the quotient graph model [4, 5, 6] in which quotient

graphs replace elimination graphs. Similar representation schemes have been referred

to as a generalized element model or superelements but this paper will augment with

tiebreaking a form of the MDA based on the formalisms of quotient graphs.

In the quotient graph model the Cholesky factorization is modelled by a sequence

of quotient graphs Gg, Gi, ... , G'J..,_1 . When an uneliminated node, x, is chosen to be

placed in the new ordering and eliminated from the current quotient graph, it is not

explicitly removed from the graph as in the elimination graph model. Instead it is simply

marked as a member of the set of eliminated nodes. To complete the transformation of

the current graph into its successor, xis coalesced with all adjacent eliminated nodes to

form a single eliminated supernode. The adjacency set of the new supernode is taken as·

the union of the adjacency sets of all nodes which were combined to from the eliminated

supernode. For the remainder of the elimination process the newly formed supernode

can be treated as a single eliminated node despite its origins.

The use of quotient graphs to model the Cholesky factorization is permissible be­

cause the MDA only requires that the degrees of all uneliminated quotient graph nodes

in the corresponding elimination graph can be correctly determined, The reachable set

of an uneliminated node in a quotient graph environment is equivalent to the node's

adjacency set in the corresponding elimination graph and can be used for degree deter­

mination. The reachable set of node x in a quotient graph G1, which has an associated

set of eliminated nodes Si, can be formally defined by the following equation. (The

adjacency set of x in Gf is represented by adjG.,(x).)
I

5

reacho'f(x, Si) = { y EX - Si - {x} I
I

(y E adia'f(x)) V ((3z)(z E Si I\ z E adja9(x) I\ y E adia'f(z)))}
I I I

(3)

Less formally, the reachable set of x in Gf consists of all adjacent uneliminated nodes

and those uneliminated nodes connected to x by a eliminated node path.

A more formal discussion of quotient graphs can be found in any of the references

previously cited for the quotient graph model. Three aspects of this more formal treat­

ment of the model will be used in subsequent presentations of the MDA and are briefly

outlined at this point. It is assumed that G = (X, E) represents the graph of the

nonzero structure of the system's original matrix.

The component partitioning C(Si) can be defined by

C(Si) = { Y ~ Si I G(Y) is a connected subgraph} (4)

where G(Y) is a subgraph of G consisting of nodes in the set Y. Each member of the

component partitioning is a connected subset of eliminated nodes. As a result, each

member of C(Si) corresponds to a single eliminated supernode in quotient graph Gl,

(The coalesced set represented by an eliminated supernode may be a singleton set.)

In turn the partitioning of X induced by Si can be defined as

(5)

Each member of Q(Si) is simply a node in the quotient graph G1. The quotient graph

of G with respect to Q(Si) by definition produces G1 [4].

Gf = G/Q(S,) (6)

There are several advantages to using quotient graphs as the underlying model of

an MDA implementation. The most significant benefit is that the storage requirements

of the algorithm can be determined a priori. Unlike the elimination graph model the

original data structure used to represent the graph of the original matrix provides an

6

upper bound on the storage requirements of the entire modelling process(4]. In addition,

the performance of the algorithm does not suffer as a consequence of obtaining good

storage characteristics and efficient degree determination is also possible.

The efficiency of the quotient graph form of the MDA can be enhanced by the

identification of indistinguishable sets and the formation of uneliminated supernodes[5].

Uneliminated supernodes are also used by the symmetric code of the Yale Sparse Matrix

Package [2] but the term prototype node is used in place of uneliminated supernode. A

similar scheme employing supervariables is also used by Duff and Reid (1].

Two nodes x, y E X - Si are said to be indistinguishable in quotient graph G1 if the

following expression is true.

(7)

Two important theorems have been proven by George and Liu [5] which permit the

successful integration of the concept of indistinguishable nodes, in the form of unelimi­

nated supernodes, into the MDA. Firstly, it was shown that once a group of nodes are

identified as indistinguishable they will remain indistinguishable throughout the elimi­

nation process until eliminated themselves. Secondly, it was shown that if one node of

an indistinguishable set was chosen for elimination, that all remaining members would

be of minimum degree after the elimination of the first node. As a result when one node

of an indistinguishable set is targeted for elimination, the entire set can be eliminated

in a single step of mass elimination.

These two results, together with the fact that indistinguishable nodes must have the

same degree, permit an indistinguishable set to be treated as a single unit throughout

the elimination process. Once an indistinguishable set of uneliminated nodes has been

identified they can be coalesced to form an uneliminated supernode by choosing a rep­

resentative from the set and removing all other members, and incident edges, from the

current quotient graph. When the representative is selected for elimination all members

of the indistinguishable set are placed in the new ordering. If an uneliminated node

encounters an uneliminated supernode in its reachable set during a degree calculation,

the degree value must, of course, be incremented by the number of nodes represented

by the supernode.

7

The identification of all indistinguishable sets in a quotient graph is a very difficult

task. Fortunately, George and Liu [5] have proposed an efficient mechanism which can

be used to identify sets of indistinguishable uneliminated nodes after each elimination

step and associated quotient graph transformation. Although the scheme can not guar­

antee to identify all indistinguishable sets, in practice the scheme has been shown to

find an acceptable proportion.

Once a group of indistinguishable nodes has been identified and coalesced into a

single supernode, several aspects of the MDA benefit from their formation. The presence

of uneliminated supernodes in a quotient graph generally reduces the number of costly

degree updates that are required. Only the degree of a supernode's representative ever

needs recalculation. In addition, when a supernode is eliminated in a mass elimination

step only one set of degree updates and one quotient graph transformation is required

for the entire group of indistinguishable nodes. Finally, the formation of uneliminated

supernodes helps to reduce the number and complexity of search paths required by

reachable set determination.

If the node selection criteria of the MDA is to be strictly observed the degree of

an uneliminated supernode should take into account the number of indistinguishable

nodes associated with the representative. The choice of a minimum degree node by

the MDA, however, can be thought of in terms of choosing the node whose elimination

will result in the formation of the smallest clique. When a supernode is deleted by a

single mass elimination step the size of the resulting clique is independent of the number

of indistinguishable nodes actually represented by the supernode. This motivates the

use of external degrees as introduced by Liu [8], for uneliminated supernodes. Liu has

shown that the use of external degrees improves the quality of orderings produced by

the modified form of the MDA.

The MDA based upon a quotient graph model with indistinguishable nodes and

external degrees is the form of the algorithm to which tiebreaking strategies are to be

applied. The following pseudo-code algorithm summarizes this existing form of the

MDA. It should be noted that step 3d should only be considered as a formalism used

to simplify the presentation of the algorithm. Each quotient graph is not formed from

the original graph of the matrix but from its quotient graph predecessor. A formal

8

algorithm for successive quotient graph formation can be found in [5), as well as an

algorithm for the identification of indistinguishable sets.

Let

MDA: Quotient Graph Model With Uneliminated Supernodes

Di = the degree of node i

S = the set of eliminated nodes

G (= (X, E)) = the graph of the system's original coefficient matrix

Gq (= (Xq,Eq)) = the current quotient graph

save = variable for saving a reachable set

expand(x) = { x} U { all other members of the supernode represented by x}

size(W) = the number of members in set W,

with each supernode x E W counting lexpand(x)I

l. S := 0, Gq := G

2. For all nodes k E X

Dk:= ladja(k)I

3. While S =J X do

(a) Choose a node t E Xq, for which

Dt = minieXq-c(s)(Di) (ties arbitrarily broken)

(b) save:= reachaq(t,C(S))

(c) S := SU expand(t)

(The nodes of a mass elimination are recorded in an arbitrary order.)

(d) Gq := G/Q(S)

(e) Identify all sets of indistinguishable nodes amongst the members of save and

form a supernode for each set. Update Gq and Xq appropriately.

(f) For each y E save

Dy := size(reachaq(y, C(S)))

9

min deg=3
► eliminate I

Unellmlnated
Supemode ►
formed from
nodescandd

external
deg=2

min deg=2
► ellmlnate g

0

min deg=3

► eliminate a

Unellmlnated
N;de

Fill Path

0-0

Figure 1: Application of the MDA to a small example.

Figure 1 illustrates the application of the quotient graph form of the MDA with

indistinguishable nodes to a small example in which the first node has already been

eliminated. When a supernode is formed it will be represented for the process by one

member chosen from the group of coalesced nodes. Each fill path corresponds to a fill

entry in L.

Although not considered by the tiebreaking discussion of this paper, two additional

enhancements of the MDA have been proposed. The Yale Sparse Matrix Package [2]

uses a technique referred to as incomplete degree updating to delay degree updating of

outmatched nodes until absolutely necessary. Using the multiple elimination scheme

10

introduced by Liu [8], degree updating is delayed until an entire independent set of

minimum degree nodes has been eliminated. It should be emphasized that forms of

the MDA enhanced by the multiple elimination scheme will not necessarily produce a

minimum degree ordering.

3 Tiebreaking Motivation

For a tiebreaking strategy to have a significant impact upon the quality of orderings

produced, there must be sufficient opportunity to apply a tiebreaking criterion. In the

majority of practical test problems considered in Section 7 a significant fraction of node

selections require an arbitrary choice between two or more minimum degree elimination

candidates. As an example, consider the nine point problem of Section 7, consisting

of 4225 nodes. When the MDA with indistinguishable nodes is applied to the graph

of this problem, with its original labelling, 2181 node selections were made. (Each

selection of a supernode contributes one unit towards this total.) From this total 2167

tiebreaking opportunities were identified. Because the choice between minimum degree

candidates is arbitrary, this large number of tiebreaking opportunities means that there

is a profusion of valid minimum degree orderings for this problem.

In an actual MDA implementation the choice between minimum degree candidates is

not random. One particular node from a group of minimum degree candidates is always

selected; perhaps the first candidate of the original ordering is chosen. As a result, the

fill levels of several different minimum degree orderings for the same problem can be

observed by applying the MDA implementation to graphs of the same problem with

different initial labellings.

Table 1 summarizes the fill values observed for six different minimum degree or­

derings of the 4225 node nine point problem. Each fill value records the number of

new nonzero entries introduced into the factor L. The initial labelling used for the first

ordering was the standard lexicographic ordering of the finite differencing problem,

while the five remaining fill values correspond to orderings produced when this initial

labelling was randomly permuted. From this relatively small sample of the problem's of

minimum degree orderings, the potential impact of an effective tiebreaking strategy is

11

j Ordering I MD A Fill I
1 99644
2 108222
3 1 13026
4 J ,_1345
5 110660
6 115643

Table 1: Fill Fluctuations of Minimum Degree Orderings

immediately apparent. The fill value of ordering 1 is approximately 14% smaller than

the fill value observed for ordering 6. These results demonstrate the sensitivity of fill

levels to the particular manner in which ties between minimum degree candidates are

resolved.

Due to the complexity of the factor and solve steps of the solution process, even a

small reduction in fill can lead to a substantial reduction in the effort required by the

remainder of the solution process. To illustrate this effect, the numerical solution of

the 4225 node nine point problem was computed using orderings 1 and 6. Timings of

the explicit factorization and solve steps of the solution process were recorded. (See

Section 7 for a description of the testing environment.) Ordering 6 required 816 CPU

seconds for the factorization and 50 CPU seconds for the solution of the resulting tri­

angular systems. The fill reduced ordering reduced the factorization CPU requirements

by 24% to 621 seconds, while the number of CPU seconds required for the triangular

solutions was reduced to 44.

4 Primary Tiebreaking of the MDA

This section discusses the development of a tiebreaking strategy for the MDA and the

integration of this scheme into the version of the MDA outlined in Section 2. The

node selection criterion forming the basis of this strategy relies upon the comparison of

deficiency values for the minimum degree candidates. The primary goal of the strategy

is to produce an enhanced MDA which can consistently select fill-reduced orderings. A

12

secondary goal of the strategy is to stabilize the fill levels of orderings with respect to

a particular problem's initial labelling.

4.1 Other Tiebreaking Research

Other than the ideas proposed by this paper, the only other known active research into

the tiebreaking problem is that of George and Liu [7]. Their approach to tiebreaking

the MDA is very different from the strategy to be subsequently discussed. They suggest

the use of a profile reduction algorithm on the matrix before applying the MDA. Their

preliminary results have shown that this method is effective on a 180-by-180 square

grid problem using a nine point differencing molecule.

4.2 The Deficiency Tiebreaking Strategy

When Rose [10] first described a graph theoretic form of the MDA, a second heuristic

algorithm for the ordering problem was also proposed. In a similar fashion to the MDA,

the minimum deficiency algorithm approximates a global minimization of fill using a

local minimization. Instead of eliminating the nodes of minimum degree at each stage,

however, the node selected by this alternate algorithm must have minimum deficiency.

Assuming that the minimum deficiency algorithm uses a quotient graph model of

the factorization process, the deficiency of node x E Xq, def{x), can be defined in the

following manner. To simplify this initial discussion it is assumed that uneliminated

supernodes were not implemented by the modelling process.

defaq(x) = { {z,y} ~ xq - C(S) I
(z =/:- y) A ({z,y} ~ reachaq(x,C(S))) A (z ft reachaq(y,C(S)))} (8)

Alternatively, the deficiency of node x in the corresponding elimination graph consists

of the set of all pairs of nodes in adj(x) which are not adjacent. In other words, the

deficiency of xis the set of new edges amongst members of its adjacency set which are

required to make adj(x) into a clique.

The number of edges needed to make a node's adjacency set a clique is precisely

the amount of fill that will be experienced if that node is eliminated. Thus by selecting

13

an elimination candidate of minimal deficiency, the minimum deficiency algorithm is

actually choosing the node whose elimination produces the least fill. Although the cost

of maintaining an updated record of the size of each active node's deficiency throughout

the factorization process is prohibitive, the notion of deficiency can be used in a more

restricted fashion as the basis of a tiebreaking strategy for the MDA.

Each cycle of the basic MDA arbitrarily selects the next node for elimination from

the group of minimum degree nodes in the current quotient graph. In terms of an

elimination graph modelling, a minimum degree node x is chosen because its adjacency

set will form the smallest clique upon x's elimination. This approximates the local

minimum fill criteria by minimizing the worst case of possible fill damage resulting

from an elimination. The worst possible fill damage is realized when no edges already

exist amongst the members of adj(x) before x's elimination. Thus with respect to the

local minimization of fill, the best minimum degree candidate to choose for elimination

is the node which has the most edges already existing amongst members of its adjacency

set. This corresponds to the minimum degree node which has the smallest deficiency

set. This observation forms the basis of the primary tiebreaking strategy.

At each stage of the modelled factorization, the proposed tiebreaking strategy directs

that the node with the smallest deficiency be selected for elimination from the group

of minimum degree candidates. As a small example, consider the two subgraphs of

an elimination graph illustrated by Figure 2. Assuming that the minimum degree of

all nodes in the current elimination graph is 4, both x and y would be candidates for

elimination. However, in this case the new tiebreaking strategy would choose node x

because it has the smaller deficiency set.

The tiebreaking scheme can be viewed in an alternate fashion. As mentioned previ­

ously, a rigorous local minimization of fill at each stage of the elimination process proves

very costly. An application of the MDA's minimum degree criterion can be thought of

as a step in which the set of all uneliminated nodes is reduced to a more manageable

subset within which a minimum fill node is likely to be found. The tiebreaking strategy

then applies the minimum fill criterion to this smaller set, hopefully finding a minimum

or near minimum fill candidate.

14

Deliciency(X)= {(2,4} ,(2,3}}
Deflclency(Y)=

{{1,4},{2,3},(2,4},{3,4}}

Figure 2: Deficiency Tiebreaking Example

It should be noted that even with the new tiebreaking strategy, "ties" may still exist

between elimination candidates. In such cases a minimum degree, minimal deficiency

node is arbitrarily selected. (Secondary tiebreaking schemes are briefly discussed in

Section 6.)

4.3 Deficiency Calculations

As discussed in Section 4.2, the deficiency of a node is a set of edges. The MDA requires

only the size of deficiency sets rather than their actual membership. As a result, in

subsequent discussion the term deficiency will also be used to refer to the number of

edges in the set. A preliminary algorithm for the calculation of deficiencies in quotient

graphs, without indistinguishable sets, is considered before extending the algorithm to

include uneliminated supernodes.

The calculation of a node's deficiency is fairly straightforward. A count of the

number of edges needed to make the reachable set of a node, x, into a clique in the

corres~onding elimination graph is required. From an implementation standpoint, it is

easier to count edges which already exist amongst the nodes of x's elimination graph

adjacency set. In quotient graph terms, this corresponds to the number of pairs of

15

nodes in x's reachable set which are adjacent or connected by an eliminated node path.

This value is essentially the complement of deficiency and will be referred to as a node's

connectivity.

Once its connectivity is calculated, a node's deficiency can be determined by sub­

tracting the actual connectivity observered from the maximum connectivity value pos­

sible for a node of its degree. (The degree and connectivity of node x are referred to as

deg(x) and conn(x) respectively.)

def(x) - maxconn(x) - conn(x)

- (deg(x) * (deg(x) - 1))/2 - conn(x) (9)

To calculate the connectivity of a node x, the reachable set of each node in x's

reachable set can be searched for other nodes which are also members of x's reachable

set. This observation is formalized in the following pseudo code algorithm for calculating

the connectivity of node x in a quotient graph Gq = (Xq, Eq) without uneliminated

supernodes.

1. conn(x) := 0

2. For each y E reachaq(x, S)

conn(x) := conn(x) + lreachaq(x,S) n reachaq(y,S)I

3. conn(x) := conn(x)/2

This form of the connectivity calculation algorithm neglects the added complications

introduced when an uneliminated supernode is encountered in x's reachable set. When a

supernode is found in a node's reachable set during a degree determination, all members

of the indistinguishable set contribute towards the degree value. This allows the MDA

to successfully predict the size of the clique that would be formed upon the node's

elimination from the corresponding elimination graph. While the MDA attempts to

minimize the size of clique formed by each elimination, the tiebreaking scheme attempts

to choose the node for which the fewest new edges are required to form the minimal

clique. Thus when calculating a normal node's connectivity in a quotient graph, all

16

supernodes encountered should be considered in their expanded form so that all paths

explicitly and implicitly represented in the quotient graph are accounted for.

The following pseudocode algorithm presents a revised form of the connectivity

calculation which allows for uneliminated supernodes. This form of the algorithm is

intended for the calculation of a normal uneliminated node's connectivity. The con­

nectivity of supernodes themselves will be considered during the following subsection.

(The function size was declared in Section 2.)

Let

superlength(x) = the number of indistinguishable nodes represented by x

1. conn(x) := 0

2. For each y E reachaq(x, S)

(a) conn(x) := conn(x)

+ superlength(y) * size(reachaq(x, S) n reachaq(y, S))

(b) If superlength(y) > l then

conn(x) := conn(x) + superlength(y) * (superlength(y) - l)

3. conn(x) := conn(x)/2

Step 2a of the algorithm performs the basic step of connectivity accumulation and

is an obvious extension of the previous algorithm. Step 2h of the algorithm, however,

was introduced so that the internal connectivity of all supernodes in x's reachable set

is included. As a trivial example, in Figure 3 nodes 4 and 6 both have a maximal

connectivity of 6 while the connectivity of node 5 is 9.

As can be seen from equation 9, the minimization of deficiency corresponds to a

maximization of connectivity. This permits the formulation of the tiebreaking strategy

in terms of connectivity values. Because slightly fewer calculations are required to de­

termine connectivity values, the implementation developed for testing used connectivity

maximization. As a result, in subsequent discussion connectivity may replace deficiency

when discussion of issues close to the implementation are considered.

17

Quotient Graph With
Indistinguishable Node

Corresponding Elimination
Graph With Indistinguishable

Node Expanded

Figure 3: Supernode Expansion for Connectivity Calculation

11111 .,11
11111

0111uu11nn11111111111111111m1111111•

11 ,,,1

Figure 4: Elimination of a Supernode Representative

18

4.4 The Deficiency, Degree and Elimination of Supernodes

With the introduction of the new tiebreaking strategy, it must be determined if su­

pernodes may still be considered as a single unit when chosen for elimination. The

resolution of this situation will dictate whether the external or true degree of a super­

node should be considered by the selection process of the tiebreaking MDA. In addition

the calculation of a supernode's deficiency must be considered to decide how the other

indistinguishable nodes represented by the supernode should influence its own deficiency

calculation.

Assume for the moment that the nature of a supernode's degree and deficiency have

been settled upon. The introduction of the tiebreaking scheme may hamper the mass

elimination of uneliminated supernodes. Although all remaining nodes of a coalesced set

will be indistinguishable and of minimum degree after their representative's elimination,

they may not be of minimal deficiency as well. Momentarily ignoring the constraints

of minimum degree, consider the elimination of the representative of the supernode

illustrated in Figure 3. (Node 1 is assumed to be the representative.) The resulting

elimination graph is shown in Figure 4. After the elimination of node 1, the adjacency

set of each member of the remaining indistinguishable set, {2, 3}, now forms a clique.

As a result, the elimination of the entire indistinguishable set, originally represented

by the supernode, cannot result in more fill than if the representative were eliminated

alone. Although this is a trivial example, it motivates the following theorem which

allows the generalization of this observation to all uneliminated supernodes. (The size

of the deficiency set of node X in quotient graph er is referred to as defm(x).)
I

Theorem 1 Let Y represent a set of f indistinguishable, uneliminated nodes

{Y1, Y2, ... , Yt} in the quotient graph Gf = (Xt, El), which have not been coalesced

to form a supernode. (Y ~ Xq - Si,) If Yk E Y is eliminated from er to form Gf+i,
for all remaining nodes of Y, Yi E Y - {yk}, defai+/Yi) = 0.

Proof: During the course of this proof elimination graphs are considered instead of

quotient graphs because of their simpler but equivalent representation of the unfactored

portion of the matrix under consideration. It can easily be shown that the degree,

19

deficiency and indistinguishable properties of uneliminated nodes are invariant under

the transformation from a quotient graph into its equivalent elimination graph.

Two nodes, x and y, are indistinguishable in an elimination graph Gi if the following

expression is true.

(10)

Let Gi = (Xi, Ei) and Gi+1 = (Xi+i, Ei+i) be the elimination graphs corresponding to

the quotient graphs G1 and G1+i respectively. As well, let T = adfo;(Yi)- Y, 1 s; is; l.
By the definition of indistinguishable nodes given in equation 10, the membership of

set T is independent of the particular value of i selected.

A node in an elimination graph will have a nonzero deficiency if at least two members

of its adjacency set are not adjacent to each other. From the alternate definition of

indistinguishable nodes given in equation 10, any pair of nodes Yn, Ym E Yin Gi must

be adjacent. Thus no new fill edges are possible between the members of Y. As well,

independent of the particular node chosen for elimination, no new fill edges are possible

between a pair of nodes {ti, Yi}, where ti E T and Yi E Y. By the definition of set T,

each member of Y is already adjacent to all members of T. Thus when a member of

Y, Yk, is chosen for elimination, the only possible source of new edges is amongst pairs

of nodes in T.

When Yk is eliminated, fill edges are added amongst pairs of nodes in T which are

not already adjacent and adfo;(Yk) becomes a clique in Gi+l· The number of fill edges

introduced depends upon the value of defai(Yk). In any event, after the elimination all

possible edges must exist amongst the members of T, Y - {Yk} and between all node

pairs with one node from each of these sets. As a result, for all possible Yi E Y - {yk},

adja;+i (Yi) is a clique and def G;+i (Yi) = 0. S

Without the results of Theorem 1 it might have been necessary to eliminate each

member of a supernode separately. After the removal of each indistinguishable node,

the deficiency of the smaller supernode would have had to have been reevaluated in

preparation for the next minimum degree node selection. Having to follow such a

scheme would negate many of the advantages observed for uneliminated supernodes in

20

Section 2.

Fortunately, Theorem 1 allows the complete integration of the MDA, using quotient

graphs and uneliminated supernodes, with the proposed deficiency tiebreaking strat­

egy. When a supernode is selected for elimination it can be treated as a single unit and

eliminated with one step of mass elimination. In addition, since uneliminated supern­

odes are manipulated in their compressed form, the notion of external degrees will be

employed by the deficiency tiebreaking version of the MDA.

The only unresolved issue is the calculation of a supernode's deficiency. As far as

the tiebreaking strategy is concerned, all that matters is the number of new fill entries

a supernode's elimination will create. As shown in the proof of Theorem 1, any new

fill paths created must be amongst members of the representative's reachable set in the

current quotient graph. (A new fill path in a quotient graph is equivalent to a new fill

edge in the corresponding elimination graph.) Thus the deficiency of the representative

is the same regardless of whether or not the other members of the coalesced indistin­

guishable set are considered. As a result the deficiency of a supernode can be calculated

from its compressed structure using the algorithm presented in Section 4.3, as though

the representative was a normal uneliminated node in the quotient graph.

4.5 Degree and Connectivity Updating

As previously mentioned, the cost of maintaining the current deficiency (or connectivity)

value for all uneliminated nodes throughout the elimination process is unacceptable. As

will be discussed in Section 5.1, only a very restricted subset of uneliminated nodes will

actually have their connectivity value recorded at any particular time. The discussion

in the remainder of this subsection ignores this possibility and assumes that all affected

nodes need connectivity updating. The resulting updating algorithm is easily modified

to reflect the constraints of a particular connectivity maintenance scheme.

The introduction of the deficiency tiebreaking extension has increased the complex­

ity of updating required after each step of the MDA. Although the subset of unelim­

inated nodes requiring degree updating remains the eliminated node's reachable set,

connectivity updating must be applied to a broader class of nodes.

21

recak:ulate degrees -~=k::::-,--..
and oonnectlvltlea

Ellmlnate

Update Connectivities
Only

Figure 5: Connectivity and Degree Updating

Consider the elimination of node t from the portion of the quotient graph, Gl,
illustrated in Figure 5. With respect to degree and connectivity updating, the remaining

nodes of the quotient graph can be grouped into three categories. Letting S, represent

the set of eliminated nodes in Gf, labelled as "E" nodes, the first category consists of

all nodes in reach0 ,(t, S,). The nodes of this set have their own reachable sets altered
'

by the elimination of t and therefore need their degree recalculated. A node's reachable

set also plays a central role in the calculation of its connectivity. Consequently the

nodes of this first category also require a reevaluation of their connectivity.

The second category of uneliminated nodes are those which require a recalculation

of their connectivity value but not being members of reacha'l(t, S,), have unaffected
'

reachable sets. Formally, the members of this category consist of all nodes in the set

(LJ (reachar(x, S,))) - (reachar(t, S,) u { t}). (11)
xereach G'I (t,Si)

'

Because of their distance from the elimination node t, members of this category will

often be referred to as satellite nodes.

From the formal definition given above, the reachable set of each satellite node must

contain ·one or more members of reacha'l(t, S,). When the reachable sets of category
I

one nodes change upon t's elimination, their contribution to a satellite node's connec­

tivity may change. However, it is impossible for t's elimination to decrease a satellite

22

node's connectivity because by definition a satellite node may not be a member of

reacha'f(t, Si),
I

Finally, the third category of uneliminated nodes are those which do not have their

degree or connectivity affected by the elimination. Each of these nodes is insulated

from the elimination by at least two uneliminated nodes in all paths connecting them

to node t.

For all nodes of category one, it is necessary to completely recalculate their con­

nectivity. Instead of recalculating the connectivity of each satellite node, however, it is

possible to modify their current connectivity value to reflect the connectivity changes

resulting from those nodes with altered reachable sets. As an example, when t is elim­

inated from G1 to form the new quotient graph Gl+I, the reachable set of b is altered,

possibly changing the connectivity of node y. If the reachable set of b in G1 is still

available, the connectivity of y can be modified in the following manner to reflect the

change in b's reachable set. (The functions size and superlength were introduced in

Sections 2 and 4.3 respectively.)

conn(y) := conn(y) -1/2 * superlengtha'f(b) * size(reacha'f(Y,Si)
I I

n reachar(b, Si))+ 1/2 * superlengthar+i (b)

*Size(reachar+1 (y, si+i) n reachar+1 (b, Si+1)) (12)

The origin of this modification is clear upon consideration of step 2a of the final

algorithm presented in Section 4.3. The factors of 1/2 are required in the modification

formula to avoid double counting. If such a correction is performed for each node

of y's reachable set whose own reachable set has been altered by t's elimination, the

connectivity updating of node y can be accomplished without using the calculation

algorithm outlined in Section 4.3.

The correction of y's connectivity by node b can only increase the connectivity

total or leave it unchanged. The potential difference in y's connectivity is dependent

upon the change in b's reachable set upon t's elimination. Momentarily ignoring the

possibiiity that new indistinguishable sets might be identified upon t's elimination,

the only node which can be removed from b's reachable set is node t itself. Because

a satellite node's reachable set can not contain t by definition, this change cannot

23

affect y's connectivity value. The elimination oft can increase the number of nodes

in b's reachable set, however, by providing a new eliminated node bridge to additional

uneliminated nodes. It is this potential increase in b's reachable set that may cause an

increase in y's connectivity.

Based on these observations, the update step of equation 12 can be simplified by

introducing the difference set

dif f(b) := reachac, (b, S;+i) - reachac,(b, S;) •+I I

:= reachac,(t, S;) - reacha,,(b, Si)
I I

(13)

and by assuming that the superlengths of nodes have not changed.

conn(y) := conn(y)

+1/2 * superlengthai(b) * size(dif f(b) n reachaf+i (y, S;+i)) (14)

The assumption that superlengths have not changed requires that the updating of

satellite connectivity values is performed before the search for new indistinguishable

sets. This is a realistic implementation assumption. In practice, it has been confirmed

that the modification of the connectivity values for satellite nodes is more efficient than

a total recalculation of their values.

To formalize the discussion presented in this subsection, the following algorithm is

proposed to coordinate all necessary degree and connectivity updating required after

each elimination. It is assumed that the selected node, t, has already been eliminated

from the quotient graph but that the reachable sets of all category one nodes before

the elimination are available. (The functions size and superlength were introduced in

Sections 2 and 4.3 respectively.)

Let

Dz = the degree of node x

1. F~r each b E reacha'!(t, S;)
I

24

(b) For each y E (reach0 9(b,Si) - (reach0 ,,(t,Si) U {t}))
' '

conn(y) := conn(y) + 1/2 * superlengthaq(b)
'

* size(diff{ b) n reachar+i (y, Si u { t}))

2. For each b E reach0 ,,(t, Si)
'

(a) Db:= size(reachar+/b,Si U {t}))

(b) Recalculate the connectivity of b using the algorithm of Section 4.3.

The updating of category one and two nodes is performed separately so that in the

enhanced MD A, the search for indistinguishable sets can be performed between the two

stages of the updating process. The modification of satellite connectivities is carried

out before the formation of new supernodes so that the superlengths are unchanged

from the previous graph. The recalculation of degree and connectivity of nodes in

category one is performed after the search so that advantage can be taken of newly

formed uneliminated supernodes.

4.6 The MDA With Deficiency Tiebreaking

The tiebreaking version of the MD A presented in this section is a modified form of the

quotient graph MDA with indistinguishable nodes discussed in Section 2. Following the

tiebreaking extension, a node from the minimum degree set with maximal connectivity,

in comparison to other minimum degree nodes, is selected for elimination at each stage.

Both external degree and external connectivity values are used for all uneliminated

supernodes. The degree updating section of the original algorithm has been expanded

to handle connectivity updating as described in Section 4.5. Finally, it is assumed that

all connectivity values are originally calculated or recalculated using the algorithm of

Section 4.3.

As previously mentioned, to maintain the connectivity of every uneliminated node

throughout the simulated factorization would be unacceptable. Section 5.1 will describe

the maintenance of a data structure referred to as the connectivity list which will store a

strictly limited subset of node-connectivity pairs. Connectivity updates will actually be

performed for only those nodes which are included in the connectivity list. (Functions

25

size and expand were introduced in Sections 2, while superlength and diff were defined

in Sections 4.3 and 4.5 respectively.)

MDA Enhanced With Deficiency Tiebreaking

Let

D :z: = the degree of node x

minD = set of minimum degree nodes

conn(x) = the current connectivity value of node x

S = the set of eliminated nodes

G (= (X, E)) = the graph of the system's original coefficient matrix

Gq (= (Xq, Eq)) = the current quotient graph

saverch(x) = storage for the reachable set of node x

1. S := 0, Gq := G

2. Initialize the connectivity list

3. For each node k EX

Dk := ladja(k)I

4. While S # X do

(a) minD := { x I (x E Xq - C(S)) A (D:z: = minieX"-c(s)(Di))}

(b) Choose a node t E minD, for which

conn(t) = maxieminD(conn(i))

(c) saverch(t) := reacha"(t,C(S))

(d) For each x E reach0 .,(t,C(S))

saverch(x) := reach0 "(x, C(S))

(e) S := SU expand(t)

(The nodes of a mass elimination are recorded in an arbitrary order.)

(f) Gq := G/Q(S)

(g) For each x E saverch(t)

26

1. diff(x) := saverch(t) - saverch(x)

11. For each y E (saverch(x) - (saver ch(t) U { t}))

conn(y) := conn(y) + 1/2 * superlength(x)

* size(diff{x) n reachaq(y, C(S)))

(h) Identify sets of indistinguishable nodes amongst the members of saverch(t)

and form a supernode for each set. Update Gq and Xq appropriately.

(i) For each x E saverch(t)

1. Dx := size(reachaq(x, C(S))

11. recalculate the connectivity of x

Figure 6 illustrates the 'application of this enhanced algorithm to a small example.

In each successive quotient graph, the minimum degree nodes are identified by a small

asterisk beside each potential candidate, along with its current connectivity. The appli­

cation of the tiebreaking MDA to this graph results in three fills. Each is illustrated by

a dashed path between two uneliminated nodes. The application of the normal MDA

with arbitrary tie breaking to this example could produce up to a maximum of five fills.

5 Important Implementation Considerations

The introduction of deficiency tiebreaking results in a substantial increase in the com­

plexity of the enhanced MD A's implementation. This section briefly discusses two of the

most sensitive implementation issues. In addition, the particular approach taken for the

implementation of reachable sets is shown to permit a modification of the tiebreaking

MDA which ~ramatically increases the efficiency of an implementation.

5.1 Connectivity Lists

As first discussed in previous sections, it would be impractical to maintain an updated

connectivity value for each uneliminated node throughout the elimination process. An

alternative is to keep up to date the connectivity of a smaller subset of nodes, which is

guaranteed to include all minimum degree elimination candidates. To assist in the node

27

►

►

Uneliminated
Superno'I:

formed from
nodes i and I

►

►

►

k ~o· mlnde~2 m j *b I'!'\
• eliminate I _,. \!!!.r\J.I
I i

external
deg= 2

Figure 6: MDA Example Using Deficiency Tiebreaking

28

1w Q Eliminated
Node Q =iminated

""''~ FIii P

selection process, this subset of nodes is grouped together into a central connectivity

list sorted according to decreasing connectivity values. At each step of the algorithm a

node is selected for elimination using a sequential search for the first minimum degree

candidate in the connectivity list. It is important to reemphasize that after a node

is eliminated, connectivity updating is only conducted for nodes which will remain

members of the connectivity list.

The connectivity list was actually implemented as a doubly linked list. As the

elimination process proceeds, degree and connectivity values change, requiring nodes

to be inserted into or deleted from the connectivity list. If the connectivity list is not

implemented as a doubly linked list, the deletion of nodes becomes very inefficient for

large problems. As an example, if a tiebreaking MDA implementation with a singly

linked connectivity list is applied to the 10,000 node five point problem of Section 7,

an increase in execution time of approximately 25% is observed.

To further increase the efficiency of the deletion and insertion operations, an index

for the connectivity list was introduced. The index consists of a linked list of index

nodes, each of which records the length and position of blocks of the connectivity list

with a common connectivity value. Experience has shown that for a typical problem,

the connectivity list consists of relatively small number of different blocks of nodes with

common connectivity values. The index nodes are sorted within the linked list of the

index by decreasing connectivity block values.

The performance of the tiebreaking MDA implementation is very sensitive to the

precise manner in which membership of the connectivity list is regulated. An integer

variable, referred to as maxcondeg, was introduced to manage the restricted subset of

nodes included in the connectivity list. The connectivity list is guaranteed to consist of

all active uneliminated nodes, whose degree is less than or equal to maxcondeg.

When the ordering program begins, maxcondeg is set equal to the minimum degree

of all nodes in the quotient graph of the original system. The initial connectivity list

is cons_tructed from all nodes, and their corresponding connectivities, which possess

this minimum degree. As nodes are eliminated from the sequence of quotient graphs

or absorbed into uneliminated supernodes they are removed from the connectivity list.

29

If the connectivity list becomes empty during the elimination process, maxcondeg is

increased to the new minimum degree value, and the connectivity list is augmented

with all active, uneliminated nodes of this degree.

As the elimination process proceeds, the degrees of active uneliminated nodes can

vary quite substantially from their initial values. If the degree of a node becomes less

than or equal to the current value of maxcondeg, its connectivity is calculated and

the node inserted into the connectivity list. However, if the degree of a list member

rises above the current maxcondeg value, the node is removed from the connectivity

list. If such a node were to remain in the connectivity list, its connectivity value would

have to be totally recalculated. In addition, the node would have to be deleted from the

connectivity list and then reinserted with its new value. Essentially the same amount of

work is required if the node were to be removed from the connectivity list and reinserted

when it is of minimum degree once again later in the elimination process. However, by

removing the connectivity list entry all additional connectivity updating, which would

have been required before the node once again became a minimum degree candidate, is

also avoided.

Ignoring this aspect of the connectivity list maintenance scheme severely reduces the

overall efficiency of the tiebreaking MDA implementation. Consider, for example, the

nine point problem of Section 7 with 1089 nodes. During its simulated factorization,

if all nodes introduced into the connectivity list remain members until eliminated or

absorbed into a supernode as a nonrepresentative member, 72% of the connectivity

updates and 96% of the connectivity recalculations are performed on nodes with degrees

larger than maxcondeg. This translates into an increase in the overall execution time by

a factor of approximately two. If the graph's minimum degree falls below maxcondeg,

however, it does not pay to lower the maxcondeg value to match this change.

In all of the test problems considered in Section 7, the general trend during the

elimination process is towards the selection of nodes of increasing degree, with blocks

of nodes possessing a common degree eliminated without interruption. The number of

nodes eliminated with a degree less than the current maxcondeg value varies between

problems, but in each case this class of node selections was a definite minority. In

addition, it was found that when the minimum degree dropped below the maxcondeg

30

level, in general relatively few nodes were eliminated at this reduced value before the

minimum degree once again equalled maxcondeg. From these observations it is clear that

the maxcondeg value should not be lowered when the minimum degree of the current

graph is temporarily reduced. The connectivity list is kept intact and all necessary

updating is performed in anticipation of the minimum degree's return to the maxcondeg

level.

It is not difficult to create an artificial example in which the connectivity list consists

of a majority of the uneliminated nodes of the current quotient graph throughout the

elimination process, or a problem in which the overlying index becomes comparable

in length to the connectivity list itself. Fortunately, during the application of the

tiebreaking MDA to the more practical examples of Section 7, the connectivity list and

indexes did not exhibit these undesirable characteristics. In general the connectivity

list consisted of only a small fraction of the uneliminated nodes and the number of

different connectivity values was usually very small.

5.2 Reachable Set Storage

As a direct consequence of the introduction of connectivity values, the tiebreaking MDA

implementation exhibits a large increase in the number of reachable set requests when

applied to most problems. To calculate the connectivity of node x, its reachable set

and the reachable set of each member of x's reachable set is required. To avoid the

redundant calculation of reachable sets, long term storage of their membership was

introduced. Once a node's reachable set has been requested, it is stored in an updated

form until the node is eliminated or absorbed into an uneliminated supernode.

The introduction of long term storage of reachable sets substantially increases the

storage requirements of the tiebreaking MDA from those of the normal algorithm. For

each test problem considered by Section 7, however, the maximum level of primary

storage required for reachable sets was substantially less than the storage needed to

represeµt the lower adjacency structure of L using the uncompressed scheme discussed

in [6]. Between problems the maximum level of primary reachable set storage ranged

from 30% to 70% of L's storage requirements. As a result, the storage requirements of

31

the tiebreaking MDA are comparable to that of the symbolic factorization step, which

requires the simultaneous storage of A's adjacency structure and L's lower adjacency

structure.

Unfortunately, without prior experience the reachable set storage requirements for a

particular problem cannot be accurately predicted before the application of the tiebreak­

ing MDA. However, a general allocation rule is discussed in Section 7 to assist in the

allocation of reachable set storage for practical problems.

The elimination graph model experienced similar problems when allocating storage

for adjacency sets. In general it could not be guaranteed that sufficient storage was

allocated without attempting to order the particular problem. These difficulties resulted

in the rejection of the elimination graph model as a basis of MDA implementations.

The storage of reachable sets, however, does not present such a formidable problem.

If a shortage of storage is encountered, all saved reachable sets do not have to be

maintained. The necessary information to rebuild a reachable set is always stored

implicitly within the current quotient graph. In the current implementation of the

tiebreaking MDA reachable sets were only stored to help reduce execution times of the

resulting implementation.

Although they will not be discussed in detail in this paper, a number of possible

schemes could be introduced to alleviate the storage difficulties of the existing imple­

mentation. The most obvious scheme is to introduce a more sophisticated routine to

manage the central storage of reachable sets. If the free space list for set storage was

empty and more space required, reachable sets not currently in use could be selected

for destruction. Various criteria for this selection process could be developed. The only

restriction is that before each elimination step the reachable sets of the selected node

and all nodes whose connectivity may change after the elimination must be stored.

Using such a scheme it would be possible to reduce the storage allocation for reachable

sets when memory was a problem, or increase the allocation if a faster execution time

was desired. In addition, such an enhancement would essentially alleviate the problem

of whether a particular storage allocation was sufficient to allow the ordering program

to run to completion on a given problem.

32

5.3 Degree and Reachable Set Updating

When a node, t, is eliminated from the current quotient graph the reachable sets, and

hence degrees, of all nodes x E reachaq(t, S) are affected. To update the reachable

set and degree of each x, all affected reachable sets could be completely recalculated

using the new quotient graph. However, the reachable sets of each node x prior to the

elimination of node t must be recorded in reachable set storage. As a result, an alter­

native updating approach is possible in which each stored reachable set reachaq(x, S)

is simply modified by removing t and augmenting the set with any new members.

In step 4g of the enhanced MDA algorithm presented in Section 4.6, a difference set,

diff{x) := saverch{t) - saverch(x), is calculated for each member of t's old reachable

set during the updating of satellite connectivities. As described in Section 4.5, diff{x}

represents the new members of x's reachable set which are now reachable through the

eliminated node t. Instead of totally recalculating each reachable set, the difference sets

can be used to augment the stored reachable set of each node x.

The difference set degree updating approach was selected for the implementation

of the tiebreaking MDA. The degree updating shown in step 4(i)i of the algorithm

in Section 4.6 is expanded to include reachable set updating and moved to step 4g,

which was originally composed entirely of connectivity updating. The modified step is

illustrated in the following revised fragment of the original algorithm.

(g) For each x E saverch(t)

1. diJJ(x) := saverch(t) - saverch(x)

11. reachaq(x,C(S)) := (saverch(x) U diJJ(x)) - {t}

m. D:r: := size(reachaq(x, C(S))

iv. For each y E (saverch(x) - (saverch(t) U {t}))

conn(y) := conn(y) + 1/2 * superlength(x)

* size(diff{x) n reachaq(Y, C(S)))

If explicit recalculation is used in place of the updating schemes outlined above, the ex­

ecution times for the deficiency tiebreaking MDA recorded in Section 7 can be expected

to increase 14 to 18% for most problems.

33

6 Secondary Tiebreaking Strategies

Even with the deficiency tiebreaking strategy proposed in Section 4, the enhanced

algorithm is still not completely deterministic. Opportunities for the application of

secondary tiebreaking strategies arise when more than one node is of minimum degree

of and minimal deficiency. In general such opportunities arose in approximately 45 to

70% of all node selections when the tiebreaking MDA was applied to the test problems

of Section 7. In the present form of the tiebreaking MDA a node is arbitrarily selected

from the group of qualified candidates at each elimination step. Although the defi­

ciency tiebreaking strategy will be shown to have improved the stability and fill level

of orderings, the precise manner in which these ties are broken still has a significant

impact on the quality of orderings produced for a subset of the problems.

Although deficiency tie breaking is the primary focus of this paper, the remainder

of this section briefly outlines three different criteria which were pursued as secondary

tiebreaking strategies for the deficiency tiebreaking MDA. The central goals of the

strategies are the same as those discussed in Section 4 for deficiency tiebreaking. No

attempt will be made to detail the implementation of these strategies.

The strategies outlined in this section are based upon criteria which emphasize the

importance of increasing the global nature of the complete algorithm. The tiebreaking

MDA is based upon the approximate local minimization of fill at each elimination

step. No consideration is made of how the elimination of a particular node affects

the uneliminated nodes of the remaining graph. Each secondary tiebreaking scheme

chooses the minimum degree, minimal deficiency node at each step whose elimination

most benefits the uneliminated nodes of the remaining graph. Different interpretations

of what is viewed as being the most beneficial results in the three different approaches

taken.

Although a secondary tiebreaking scheme cannot affect the level of fill suffered at

a particular elimination step, the introduction of the different sets of fill edges can

change the number of additional fills produced during the elimination of the graph's

remaining nodes. The first secondary tiebreaking scheme enhances the existing strategy

by selecting the minimum degree, minimal deficiency candidate whose set of new fill

34

edges results in the most positive change in overall connectivity of the remaining graph.

Using this additional criterion in the selection process, it is hoped that the general level

of connectivity in each successive elimination graph will be kept higher than if random

selections were made. By controlling the connectivity level in this fashion, it may be

possible to subsequently select minimum degree nodes with larger connectivities and

reduce the amount of fill experienced.

The second secondary tiebreaking scheme is essentially a refinement of the previous

strategy. If the tiebreaking scheme is to have any noticeable effect on the quality of

orderings produced, the elimination of each block of minimum degree nodes must be

disturbed in some fashion. In the strategy outlined in the previous subsection, among

all potential candidates the node chosen for elimination had to have the most positive

effect on the connectivity of the remaining graph. As a result, a node could be selected

based on the fact that its elimination would increase the connectivity level of a group

of higher degree nodes, whose elimination was not imminent. This would not directly

affect the nodes in the minimum degree block.

Instead of calculating the effect of a candidate's elimination on the connectivity of

all remaining uneliminated nodes, only minimum degree satellite nodes and members

of reachaq (candidate, S) whose degree after the elimination will not be larger than the

candidate's minimum degree are considered. The minimum degree, minimal deficiency

candidate whose elimination has the most positive effect on the connectivity of this

subset of uneliminated nodes will be selected.

The previously outlined secondary tiebreaking strategies have both concentrated

upon how a candidate's elimination would affect the connectivity of the remaining

graph. Connectivities, however, only form the basis of the tiebreaking scheme for a

node selection process which is dominated by nodal degrees. The criterion of the final

secondary tiebreaking strategy attempts to focus attention on the degree of the graph's

remaining nodes.

The elimination of different minimum degree, minimal deficiency candidates can

have a substantially different affect upon the distribution of degree values within the

remaining graph. The third secondary tiebreaking strategy selects the candidate whose

35

elimination would result in the most positive change in the size of the block of minimum

degree nodes. This helps to prolong the elimination of lower degree nodes. In general

it is more desirable to eliminate a minimum degree node with its smaller fill producing

potential. In addition, by keeping the minimum degree block as large as possible, the

primary tiebreaking scheme can be applied more effectively.

7 Numerical Experiments

This section summarizes the numerical experiments conducted to evaluate the MDA

enhanced by the proposed tiebreaking strategies. Although an emphasis is placed upon

the deficiency tiebreaking approach, implementations of the normal MDA and versions

of the algorithm enhanced by both primary and secondary tiebreaking strategies were

applied to a wide variety of test problems. In addition, the effect of an ordering's quality

upon the factor and solve steps of the solution process was investigated for a subset of

the test problems.

Three programs, referred to as norm, tie and sec, were developed to permit the test­

ing of the proposed tiebreaking strategies. The program norm is an implementation of

the normal minimum degree algorithm presented in Section 2 and follows many aspects

of the implementation approach suggested by George and Liu [6). The tie program is an

implementation of the normal algorithm enhanced by deficiency tiebreaking. Three im­

portant aspects of this implementation were discussed in Section 5. Finally the program

sec actually refers to a collection of three different programs in which tie is augmented

with one of the three secondary tiebreaking strategies of Section 6. An additional pro­

gram, referred to as solve, was implemented and encompasses the remaining three steps

of the solution process. A brief description outlining the particular algorithms selected

for this program is given in Section 7.4.

7 .1 Testing Environment

All testing discussed in this section was carried out on a Sun 3/50, running SunOS

3.2. All code for programs under analysis was written in Sun Pascal. Timings of the

36

programs were carried out using the built in Sun Pascal function clock.

7.2 Test Problems

A wide variety of symmetric, sparse matrices were selected for the testing of the ordering

algorithms. In some cases only the nonzero structure of the system was provided, while

for other problems the complete system was available. This subsection provides a brief

description of each group of test problem and its origins.

For the first test problem only the nonzero structure of the matrix was available.

The graph was created by randomly selecting an initial size, r, for each node's initial

adjacency set and by choosing r nodes of the graph at random to be members of its

adjacency set. The average degree of the 400 node graph created in this fashion was

2.49 and is referred to as the random graph in subsequent discussion.

The next two groups of problems arise from the solution of partial differential equa­

tions on an nxn grid. Each problem results in a graph of N = (n + 1)2 nodes. The

first set of problems arises from the solution of the Poisson equation on the unit square,

using Dirichlet boundary conditions and a five point finite differencing molecule. The

four values n = 19, 29, 39 and 99, were selected to produce graphs of 400, 900, 1600 and

10000 nodes respectively.

The second set of problems arise from the application of finite elements to a partial

differential equation. The resulting system has a banded matrix, which is equivalent in

structure to a matrix arising from the application of finite differences to a differential

equation using a nine point molecule. Only grids with n = 2t were considered. The

four values t = 4, 5, 6 and 7 were selected to produce graphs consisting of 289, 1089,

4225 and 16641 nodes respectively.

For both the five and nine point problems the initial labelling of their corresponding

graph was based upon a standard lexicographic ordering of the grid's unknowns.

The next pair of problems consist of the nonzero structures of two systems used by

George and Liu [3, 6) when testing their implementations. The graphs are typical of

those that may be found in the study of heat conduction or structural analysis. The

37

3hole Problem

6hole Problem

Figure 7: The Initial Mesh of 6hole and 3hole

triangular mesh structures illustrated in Figure 7 were used to derive the 6hole and

3hole test problems. Each triangle of the basic structures is subdivided by a factor of 3

resulting in 9 smaller triangles. Both graphs produced by this method consisted of 316

nodes and were given an arbitrary initial labelling.

The final group of 14 test problems was selected from the Harwell-Boeing collection

of sparse matrix examples. Table 2 contains a list of the selected problems, their size and

a short description briefly outlining the origin of each system. The key listed for each

problem is the original key assigned to the system in the Harwell-Boeing collection

and will be used to identify each problem during the remainder of this section. All

matrices selected were symmetric but the actual nonzero values of the systems were

only available for approximately half of the problems.

7 .3 Deficiency Tie breaking Test Results

So that comparison could be made between the tiebreaking MDA and the original

quotient graph MDA, both the norm and tie programs were applied to all test problems

discussed in the previous section. The goals of the new tiebreaking strategy were to

reduce the fill observed for the MDA orderings and to increase the fill stability of

orderings for problems sensitive to different initial labellings. To study the effectiveness

38

I Key N I Description
ERISll 76 1176 Symmetric Pattern of Erisman, Summer 1973
BCSPWR09 1723 Symmetric Structure Representation of Western US Power Network
BCSSTK09 1083 Symmetric Stiffness Matrix, Square Plate Clamped
BCSSTKlO 1086 Symmetric Stiffness Matrix, Buckling of Hot Washer
CAN1072 1072 Symmetric Pattern from Cannes, Lucien Marro, June 1981
DWT2680 2680 Symmetric Connection Table from DTNSRDC, Washington
LSHP3025 3025 Symmetric Matrix form A. George's L-shaped Problems 1978
NOS3 960 Symmetric Matrix, FE Approximation to Biharmonic Operator on

Plate
PLAT1919 1919 Splatzman Symmetric Finite Difference, Three Ocean Model
BLCKHOLE 2132 Connecitivity Structure of a Geodesic Dome on a Coarse Base
BCSSTK19 817 Symmetric Stiffness Matrix, Part of a Suspension Bridge
685BUS 685 Admittance Matrix 685 Bus Power System, D.F.Tylavsky, July

1985
1138BUS 1138 Admittance Matrix, 1138 Bus Power System, D.F.Tylavsky, July

1985
BCSSTK26 1922 Symmetric Stiffness Matrix, Reactor Containment Floor-Section

Table 2: Selected Harwell-Boeing Test Problems

of the tiebreaking MDA with respect to either goal it is necessary to consider more

than one initial labelling for each problem. As a result, the testing of each problem was

expanded to include five random relabellings of each graph, in addition to the original

labelling.

Table 3 provides a summary of the effect of the tiebreaking enhancement of the

MDA upon fill levels for all 25 problems. The mean fill value and standard deviation

for both the norm and tie programs was calculated using the fill values of all six initial

orderings for each problem. The final column of the table shows the percentage by which

the mean fill value of the normal algorithm is reduced by the tiebreaking enhancement.

All fill values record the number of new fill entries in L and not the total number of

nonzero entries in the factor.

The table also records the mean number of CPU seconds required by the norm and

tie programs when applied to the six initial orderings of each problem. It should be

noted that for testing purposes the 25 problems were divided into three broad classes

based upon their storage requirements. (Dynamic memory allocation is not possible in

39

Normal MDA Tie breaking MD A
Key Mean Std. Mean Mean Std. Mean % Improvement

Fill Dev. Time Fill Dev. Time in Mean Fill

random graph 977 20.5 3.08 966 8.9 3.59 1.1
5Pt 400 2633 127 3.48 2447 50.5 4.69 7.1
5Pt 900 7898 412 8.59 7235 174 11.7 8.4
5Pt 1600 17092 562 18.7 15135 319 22.1 11.4
5Pt 10000 182168 3049 260.7 142119 1104 176.5 22.0
9Pt 289 2576 70.7 2.52 2417 96.9 3.93 6.2
9Pt 1089 18396 674 13.1 15629 630 18.7 15.0
9Pt 4225 109757 5537 67.9 90224 3186 92.6 17.8
9Pt 16641 629647 45368 519.3 490111 23742 415.2 22.2

3hole 1589 15.2 2.08 1524 22.4 2.85 4.1
6hole 1751 59.6 2.16 1684 18.4 2.82 3.8

ER!S1176 648 36.3 25.8 553 14.3 24.9 14.7
BCSPWR09 2149 16.7 14.7 2088 14.6 10.1 2.8
BCSSTK09 48154 3623 41.7 42244 4097 71.3 12.3
BCSSTKlO 11811 260 23.4 11486 383 36.5 2.8
CAN1072 14032 391 22.1 13787 173 28.2 1.8
DWT2680 40604 707 61.9 39025 597 82.0 3.9
LSHP3025 63859 2138 38.0 61626 1709 52.5 3.5

NOS3 22804 670 20.8 20737 385 30.8 9.1
PLAT1919 49751 524 42.9 50996 1248 69.3 -2.5

BLCKHOLE 47220 729 29.0 45690 1467 40.0 3.2
BCSSTK19 4068 167 8.82 4098 254 10.1 -0.7

685BUS 1703 46.9 5.25 1614 28.5 5.69 5.2
1138BUS 689 9.7 6.35 644 3.6 4.79 6.5

BCSSTK26 26791 583 78.6 26977 676 89.7 -0.7

Table 3: Ordering Summary

40

Pascal and a recompilation of the programs for each different problem was avoided.)

It was observed that the amount of excess memory declared for reachable set and

adjacency set storage could effect the timings observed as much as 15 to 20%. As a

result, rigorous comparison of ordering times should only be made within the confines

of a particular test problem.

Of all test problems, the MDA enhanced with deficiency tiebreaking was the most

successful when applied to the five and nine point problems sets. The mean fill value for

the five point problems was improved by 7.1 to 22%, while the mean fill was improved by

6.2 to 22.2% for the nine point problems. The fill improvement is the most pronounced

for the largest problem in each class, with the tie fill levels for all initial orderings well

below their norm counterparts.

These values represent significant reductions in fill levels. In each class of problems

the fill improvements observed increased as larger and larger graphs were considered.

This trend was paralleled by an increasing proportion of tiebreaking opportunities in

which the deficiency tiebreaking strategy actually contributed towards a node selec­

tion. For both the five point problem of 10000 nodes and the nine point problem of

16641 nodes, in approximately 95% of all tiebreaking opportunities there were nodes of

minimum degree with differing connectivity values.

Although six different orderings is a relatively small sample of initial labellings, the

standard deviation values recorded in Table 3 for the five point problems show that for

each system the tiebreaking MDA has also increased the fill stability of the orderings.

The standard deviation values have been reduced by 43 to 63%. The fill values for

the tiebreaking ordering of the nine point problems also showed an increased stability

except for the 289 node problem.

For both the five and nine point problem sets, the CPU time required by the tie

program was comparable to the requirements of the norm program. One very encour­

aging trend observed in these timings is the general reduction in the CPU requirements

of the tie program with respect to the norm program as the size of the problems in­

creased. In fact for the largest problem in each set, the tiebreaking algorithm required

approximately 20 to 30% less CPU time. It is possible for the tiebreaking program

41

to require less time because of the reachable set updating scheme introduced to the

enhanced algorithm, which allows reachable set recalculations to be avoided.

The success of deficiency tiebreaking on the five and nine point problems is in stark

contrast to the results for the random graph. The ineffectiveness of the tiebreaking

scheme on this problem is a direct consequence of the small number of tiebreaking

opportunities for which the scheme was able to affect the node selection process. In

only 12% of all tiebreaking opportunities was there differing connectivity values amongst

the minimum degree candidates.

These results are typical of random graphs. In general, graphs produced in this

fashion lack the local nature of their adjacency structure, with very few short node

cycles being present. They typically have very low initial connectivity values or no

connectivity at all, as was the case for the random graph considered. The connectivity

of nodes in several randomly produced graphs was traced through the factorization

process. In each case the connectivity of essentially all nodes being selected was 0

until 80 to 90% of the nodes had been eliminated. At this point, the tiebreaking

scheme applied to the remaining node selections has little effect on the overall fill level

observed. Fortunately, very few practical problems exhibit such a total lack of local

nature to their graphs.

The deficiency tiebreaking MDA was moderately successful on the 3hole and 6hole

grid problems, reducing the mean fill levels by 4.1 and 3.8% respectively. In addition,

the fill reduction for the 6hole problem was accompanied by a large increase in fill

stability. Once again the CPU time requirements of the tie program were comparable

to those of norm.

The effect of the tiebreaking strategy on the problems selected from the Harwell­

Boeing sparse matrix collection were mixed. For approximately one half of the problems,

the tie program produced orderings with substantially reduced levels of fill, in compar­

ison to the norm orderings. The reduction in the mean fill values ranged from 3.5%

for the LSHP3025 problem to 14.7% for the ER/S1176 problem. The majority of this

subset of problems also showed a substantial reduction in the standard deviation of fill

values for the tie orderings in comparison to the norm orderings.

42

Of the remaining seven Harwell-Boeing test problems four showed a very slight

improvement in fill values. Their ordering stability increased or decreased slightly,

except for CAN1072, which showed a substantial reduction in the standard deviation of

fill values for the tie program. The tiebreaking strategy essentially had no effect upon

the mean fill levels for the BCSSTK19 and BCSSTK26 problems and both showed a

slight reduction in ordering stability. Finally, for PLAT1919 an increase in the mean

fill value of 2.5% for the tie program ordering was accompanied by a large decrease in

ordering stability as shown by the standard deviation values.

Once again the CPU seconds required by the tie ordering program were comparable

to the time requirements of norm. In addition, within each of the Harwell-Boeing test

problems, timings are essentially independent of the initial ordering. This stability is

also observed in all other test problems.

The tiebreaking strategy has clearly been shown to be very effective on the five

and nine problems, and it is suspected that the scheme would be equally effective on

problems arising from other discretization molecules or banded matrices. However, it

is difficult to predict to what extent the tiebreaking MDA will reduce fill for other

more general problems. It is clear that the initial graph of the system must have a

certain local nature, missing from most random graphs, for the tiebreaking algorithm

to have sufficient opportunity to influence the selection process and effect fill levels.

The initial connectivity of a graph is often a good indication of this property but many

exceptions do exist. Connectivity only considers the number of three member cycles and

totally ignores the four member cycles of these graphs, which quickly result in increased

connectivity as the first elimination take place. Except for this local structure, no

other common characteristic of the initial graphs was identified, for which tie was most

successful. There are many variable graph characteristics which together contribute

towards the overall fill level of a given ordering.

As outlined in Section 5.2, in the current implementation of the tie program, once

a node's reachable set is requested it is stored until the node is eliminated or absorbed

into an· uneliminated supernode as a nonrepresentative member. It is not difficult

to create an example for which the storage of reachable sets would quickly expand

to unacceptable levels. However, for all 25 test problems, the reachable set storage

43

requirements were well bounded and in each case the amount of primary reachable set

storage required was comparable to the size of the communal adjacency list storage. It

is important to note that in the current implementation the structure used for reachable

sets is very simplistic and requires one integer of overhead storage for each integer of

primary storage.

For the five and nine point problems, the primary storage required for reachable

sets ranged from 0.94 to 1.3 times the size of the graph's initial adjacency lists. For the

3hole and 6hole problems, the size of the primary reachable set storage required was

approximately the same or slightly smaller than the size of the appropriate adjacency

lists. Finally, the ratio of the maximum primary reachable set storage required to the

size of the adjacency lists for the Harwell-Boeing test problems ranged from 0.38 for

ER!S1116 to 2.0 for BCSSTK09. The latter problem was an exception, with the next

highest reachable set storage requirement being for the BLCKHOLE problem with a

ratio of 1.4. For the majority of Harwell-Boeing problems, however, the required size

of primary reachable set storage was less than the size of the problem's adjacency lists.

As a conservative rule of thumb, selecting the size of primary reachable set storage to

be 1.4 times the length of the adjacency list structure seems the most reasonable when

very little is known about a new problem.

As previously mentioned, the reachable set storage scheme selected for implemen­

tation is very simplistic. It represents the most storage intensive extreme of a whole

spectrum of possible storage schemes. The favorable timing results observed for the

tie program will allow for considerable experimentation with storage schemes which are

more restrictive. For many problems, such as the large five and nine point problems,

the size of the reachable set storage would have to be substantially restricted, forcing

many reachable set recalculations, before the tie program would require more CPU time

than the norm module.

7 .4 Factor and Solve Timings

For a select group of problems, the effect of a fill reduced ordering upon the remainder

of the solution process was investigated by comparing the factorization and solution

44

step timings for different orderings. For each of the nine problems considered, the

system was solved using the norm ordering exhibiting the highest level of fill and the

tie ordering with the lowest level of fill.

The timings were taken using the solve program previously mentioned. The pro­

gram consists of separate independent modules for the symbolic factorization, explicit

factorization and solve steps of the solution process. The explicit factorization and

solve steps were implemented using data structures and algorithms selected from the

discussion of these two steps presented in [6]. The system's original matrix before fac­

torization and the factor L after the Cholesky decomposition are both stored in the

same data structure, which is based upon the uncompressed scheme of George and Liu.

The same data structure can be used to store the original matrix and the factor be­

cause the inner product form of Cholesky factorization was used to create L. Finally,

in the solve module the solution of the two lower triangular systems, Ly = Pb and

LT Px = y, is calculated using the outer product and inner product forms of triangular

solution respectively.

Table 4 summarizes the factorization and solve timings observed for each of the

nine problems considered. Two lines of data are recorded for each problem. The norm

ordering was used to produce the data of the first line, while the data recorded in

the second was observed for the tie ordering. The values in the third column of the

table record the number of fills entries for each ordering. The final two columns record

the CPU seconds required to factor the original matrix and solve the two triangular

systems.

In each case, the CPU seconds saved in the factor and solve steps was substantial

when fill reduced orderings were used. As expected, due to the higher complexity

of the factorization process, the reduction in the factor time began to outweigh the

reduction in solve time as the size of problems increased. In all cases the savings in

factorization time alone more than recovered any additional time required by the tie

program over that needed by norm. For some larger problems the savings in factor time

were larger than the tie ordering time itself. In addition, for a given reduction in fill,

the factorization time in most cases, is reduced by a larger factor. For example, a 24%

reduction in fill for the 10000 node five point problem translates into a 42% reduction

45

Name Fill I Factor Time I Solve Time I
5Pt 400 Normal 2792 5.93 1.42

Tiebreaking 2393 4.68 1.28
5Pt 900 Normal 8334 22.4 3.97

Tiebreaking 7007 17.0 3.4
5Pt 1600 Normal 17653 57.5 8.10

Tie breaking 14691 42.1 6.97
5Pt 10000 Normal 184646 1287 79.6

Tie breaking 140470 749.9 63.1
9Pt 289 Normal 2676 7.28 1.45

Tiebreaking 2278 5.63 1.32
9Pt 1089 Normal 19223 81.3 8.97

Tiebreaking 14586 48.7 7.23
9Pt 4225 Normal 115643 816.4 50.4

Tiebreaking 83742 416.6 38.3
BCSSTK09 Normal 54062 529.9 24.0

Tiebreaking 37501 269.0 17.7
NOS3 Normal 23570 137.3 11.7

Tiebreaking 20118 103.8 10.3

Table 4: Solution Time Summary

46

in the factorization time, while for BCSSTK09 a 30% reduction in fill decreases the

corresponding factorization time by 50%.

7 .5 Secondary Tiebreaking Test Results

As described in Section 6, three different secondary tiebreaking schemes were proposed

for the deficiency tiebreaking MDA. The three strategies were implemented by aug­

menting the tie program to produce the sec group of programs. Each sec program was

applied to all test problems described in Section 7.2.

The first two secondary tiebreaking strategies failed to meet the goals of Section 6.

There was no observed improvement in fill levels for the orderings of the test problems,

using either secondary tiebreaking algorithm, in comparison to the orderings produced

by the MDA enhanced by deficiency tiebreaking alone. Nor was there a significant im­

provement in ordering stability. In addition ordering times were dramatically increased.

When the deficiency tiebreaking MDA was augmented by the third secondary

tiebreaking scheme, the resulting program was very successful for the nine point prob­

lems and the Harwell-Boeing example referred to as BCSSTK19. For the remainder of

the test problems no improvement in ordering quality was observed.

For each of the four nine point problems, fill levels were completely stabilized at

a very low fill level. For each of the group's three smaller problems, the fill level for

each initial labelling differed by only one fill entry from the lowest fill level observed

when tie was applied to the same group of initial orderings. The 16641 problem also

exhibited a similar stabilization and each fill value was within 0.3% of the lowest fill

value observed for a tie ordering of the problem. The timings for the sec program, using

the third secondary tiebreaking criterion, are not as high as for the other two strategies.

However, CPU time requirements did increase from those of tie on the same graphs by

a factor ranging from 1.4 for the 289 node problem to 3.0 for the 16641 node version.

This increase in the relative time requirements is matched by an increase in the average

number of nodes considered by each secondary tiebreaking. In addition, the timings

were found to be relatively independent of the initial ordering.

When the tie ordering program was applied to the problem BCSST[(19, there was

47

no apparent improvement in the quality of orderings from those of the norm program.

However, in comparison to the norm orderings, a 9% reduction in the mean fill level for

orderings of this problem was achieved by the sec program. In addition, the standard

deviation was reduced from 167 for norm to 33. The ordering time required by the sec

program is 3.0 and 2.6 times that required by norm and tie for this problem.

8 Concluding Remarks

This paper has introduced the use of nodal deficiency as the basis of a tiebreaking

strategy for the minimum degree algorithm. Deficiency tiebreaking has been success­

fully integrated into the quotient graph form of the MDA and has been shown to be

compatible with the mass elimination of indistinguishable sets represented by unelim­

inated supernodes. To avoid the practical limitations of Rose's minimum deficiency

algorithm [10], the connectivity list data structure was introduced to maintain the de­

ficiency values of a strictly regulated subset of uneliminated nodes.

The MDA enhanced by deficiency tiebreaking was found to produce orderings with

improved quality for a variety of different sparse problems. The goals of reduced fill

and increased fill stability were met, at least in part, for more than two thirds of

the test problems. For each sparse example, the CPU requirements of the deficiency

tiebreaking MDA implementation were comparable to the requirements of the normal

MDA implementation. In addition, the timings of the tiebreaking MDA were found to

be essentially independent of the initial labelling assigned to the graph of the system's

matrix.

The deficiency tiebreaking strategy was found to be the most effective on the five

and nine point finite differencing problems, with reductions of up to 22% in the mean

fill level observed for the two largest sparse systems. For the majority of problems in

these group a substantial increase in the stability of fill levels with respect to the initial

labelling was also observed. The enhanced MDA was generally ineffective, however,

on randomly produced graphs. This emphasized that if the tiebreaking strategy is to

have a positive impact on ordering quality, the initial graph of a system's matrix must

exhibit a certain local nature. The tiebreaking strategy is less successful on systems

48

whose initial graphs have few short node cycles. In such cases insufficient opportunities

to apply the tiebreaking criterion arise before the majority of node eliminations have

occurred.

Implementations of the deficiency tiebreaking MDA discussed introduced the long

term storage of reachable sets, substantially increasing the storage requirements of the

enhanced MDA implementation. However, the increased levels of storage, introduced

to reduce timings, are not essential to the execution of the algorithm because reachable

sets are always implicitly represented by the current quotient graph. The favorable

timings observed for the tiebreaking MDA will permit the consideration of less storage

intensive implementations as practical alternatives.

Finally, this paper considered three secondary tiebreaking strategies for the defi­

ciency tiebreaking minimum degree algorithm. One secondary tiebreaking strategy,

which attempts to maximize the number of minimum degree nodes after each elimi­

nation, dramatically stabilized the fill levels of orderings for the nine point problems

and reduced the fill levels observed for the orderings of one symmetric stiffness matrix.

Otherwise, the secondary tiebreaking schemes failed to meet the goals of reduced fill

levels and increased fill stability.

References

[1] I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmet­

ric linear equations. ACM Transactions on Mathematical Software, 9(3):302-325,

September 1983.

[2] S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A.H. Sherman. Yale sparse ma­

trix package I. the symmetric codes. International Journal For Numerical Methods

In Engineering, 18(8):1145-1151, 1982.

[3] J. A. George and J. W. H. Liu. An automatic nested dissection algorithm for irregu­

lar finite element problems. SIAM Journal of Numerical Analysis, 15(5):1053-1069,

October 1978.

49

[4) J. A. George and J. W. H. Liu. A quotient graph model for symmetric factorization.

In I. S. Duff and G. W. Stewart, editors, Sparse Matrix Proceedings, pages 154-175.

SIAM, 1978.

[5) J. A. George and J. W. H. Liu. A fast implementation of the minimum degree

algorithm using quotient graphs. ACM Transactions on Mathematical Software,

6(3):337-358, September 1980.

[6) J. A. George and J. W. H. Liu. Computer Solution of Large Sparse Positive Definite

Systems. Prentice-Hall, Inc., New Jersey, 1981.

[7) J. A. George and J. W. H. Liu. The evolution of the minimum degree ordering

algorithm. (to appear in SIAM Review), 1988.

[8) J. W. H. Liu. Modification of the minimum-degree algorithm by multiple elimina­

tion. ACM Transactions on Mathematical Software, 11(2):141-153, June 1985.

[9) H. M. Markowitz. The elimination form of the inverse and its application to linear

programming. Management Science, 3:255-269, 1957.

[10) D. J. Rose. A graph-theoretic study of the numerical solution of sparse positive

definite systems of linear equations. In R. C. Read, editor, Graph Theory and

Computing, pages 183-217. Academic Press, New York, 1972.

[11] W. F. Tinney and J. W. Walker. Direct solutions of sparse network equations by

optimally ordered triangular factorization. Proceedings of the IEEE, 55(11):1801-

1809, November 1967.

[12) M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM Journal

on Algebraic and Discrete Methods, 2(1):77-79, March 1981.

50

