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ABSTRACT 

While edge detection is an important first step for many vision systems, the linked 

lists of edge points produced by most existing edge detectors lack the higher level 

of curve description needed for many visual tasks. For example, they do not specify 

the tangent direction or curvature of an edge or the locations of tangent disconti

nuities. In this paper, a method is presented for describing linked edge points at 

a range of scales by selecting intervals of the curve and scales of smoothing that 

are most likely to represent the underlying structure of the scene. This multi-scale 

analysis of curves is complementary to any multi-scale detection of the original edge 

points. A solution is presented for the problem of shrinkage of curves during Gaus

sian smoothing, which has been a significant impediment to the use of smoothing 

for practical curve description. The curve segmentation method is based on a mea

sure of smoothness minimizing the third derivative of Gaussian convolution. The 

smoothness measure is used to identify discontinuities of curve tangents simulta

neously with selecting the appropriate scale of smoothing. The averaging of point 

locations during smoothing provides for accurate subpixel curve localization. This 

curve description method can be implemented efficiently and should prove practi

cal for a wide range of applications including correspondence matching, perceptual 

grouping, and model-based recognition. 
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1. Introduction 

Edge detection plays an important role in many computer vision systems ( and 

apparently biological vision) by identifying points of intensity discontinuity in an 

image. The locations of these intensity discontinuities usually reflect underlying 

discontinuities in the geometry or surface reflectance of a scene and thereby discount 

the effects of varying illumination and imaging parameters. For this reason, edges 

have proved to be one of the most reliable low-level features for bridging the gap 

between image intensities and scene properties. 

Unfortunately, most existing edge detectors treat edges as essentially point 

properties. The edge points can be linked together on the basis of image connec

tivity, but it is immediately apparent upon examining these linked sets that they 

do not correspond to geometric properties of the scene. When edges from objects 

that are widely separated in depth happen to intersect in the image, they are just 

as likely to belong to the same edge list as two edges of the same object. The solu

tion to this problem lies in the area of perceptual organization [7, 8, 20], in which 

higher-level groupings are created according to the likelihood that they arise from 

underlying properties of the scene rather than accidental properties of viewpoint or 

imaging. In the case of curve description, the most important property on which 

to base perceptual organization is smoothness or continuation. This is because the 

edges of most objects exhibit smooth continuation at some scales, whereas it is very 

unlikely that two objects separated in depth will happen to have edges aligning 

smoothly by accident. In addition, it is useful for many higher levels of analysis, 

such as further perceptual organization, correspondence matching or model-based 

recognition, to identify the larger scale smooth structures in the edge data and 

thereby to obtain stable measurements of local orientation and curvature. 

Unfortunately, smoothness is not encoded directly in the original edge data, 

and any attempt at a simple definition must face the effects of noise and local 

scatter in the positions of edge points. The major approach to this problem in 

the past has been to fit straight line segments [2, 9, 16, 18] and circular or elliptic 
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(a) 

(b) 

Figure 1: Two noisy curves a.re shown in (a.). The first curve would most naturally 
be described as a single circular arc, while the second would be described as two lines 
with a tangent discontinuity in the center. However, as is shown when the two curves 
are superimposed (b), they are identical over most of their length and in particular in the 
region surrounding the potential discontinuity. This suggests that corner detection can 
best be performed through a global search for smooth curve segments rather than a.s a 
local operation in the neighborhood of each potential corner. 

curves [4, 17, 19] to portions of the linked edge data, and to look for regions which 

satisfy various measures of goodness of fit. While this approach works well for 

certain industrial scenes that contain objects with only straight or circular edges, 

they force the introduction of arbitrary discontinuities in the description when faced 

with the more general classes of image curves found in most common scenes. 

Another approach that has been taken to curve segmentation is to look for 

the tangent discontinuities directly with local operators ( often known as corner 

detectors). The problem with this approach is that corner detection in the presence 

of noise is contingent upon scale selection and is no longer a local problem. Figure 

1 illustrates this with two curves, only one of which should be assigned a tangent 

discontinuity at its center. Yet both of these curves are identical over most of 
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their length, and in particular in the region surrounding this potential tangent 

discontinuity. Therefore, corner detection requires that a description be chosen on 

the basis of global properties of the curve rather than simply a local neighborhood. 

Local tangent direction and curvature of a sampled curve are defined only with 

respect to some scale of smoothing. Due to the variable effects of noise (which leads 

to edge point scatter that is typically inversely proportional to intensity gradient) 

it is quite likely that different scales will be appropriate for different edges in the 

same image. The need for different scales of analysis is even more important when 

dealing with natural images which may contain small variations in the scene edges 

themselves ( e.g., the bark of a tree trunk). For the sake of higher-level analysis and 

stability, we would like to be able to derive the larger scale structure of curves even 

when the actual scene edge is not perfectly smooth. 

Therefore, we need a technique for smoothing arbitrary curves at multiple 

scales. The most promising candidate would seem to be smoothing with a low-pass 

Gaussian filter, as has been proposed in many other areas of image analysis, which 

allows for precise control in the frequencies that are filtered from the original data. 

Mackworth and Mokhtarian [10, 11, 14] have extensively studied the properties of 

smoothing two-dimensional parametric curves with Gaussians, and we will build 

upon their work in this paper. Similar approaches have been taken by Marimont 

[12] and Witkin [21]. A related method has been suggested by Asada and Brady [1], 

in which the parametric orientation function is smoothed rather than the coordinate 

functions. However, this seems to be more suited to calculating discontinuities of 

curvature rather than recovering the underlying smoothed point coordinates. 

One significant problem with Gaussian filtering of the coordinate functions is 

that it results in a shrinking of the size of closed curves. The larger the curvature 

or the degree of smoothing, the greater is this amount of shrinkage. Horn and 

Weldon [6] rejected the use of a Cartesian parametric curve representation because 

of this problem, and instead suggested that curves be represented in a form they 

term the extended circular image. However, Section 3 of this paper shows that this 
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shrinkage effect can be compensated for in an efficient and effective manner using 

the standard parametric representation for curves. 

Once the method of smoothing has been perfected, it can be applied at multiple 

scales and used to select smooth segments of the original curve. In Section 4 we 

show that a measure of smoothness that maximizes the length of each curve segment 

while maintaining a low rate of change of curvature can be used for segmentation 

and selection of the scale of smoothing. This can be implemented in an efficient 

manner, and results are demonstrated for natural images. 

A final issue is the relationship between smoothing of curves and smoothing of 

the original image. We believe that both forms of analysis must take place. It is 

quite possible that edge points or other feature tokens that can only be extracted 

from a fine-scale analysis of the original image will themselves have important larger

scale curve structure. Furthermore, it is likely that the multi-scale analysis of curves 

can be used to determine which scales of smoothing of the original image are most 

significant. We do not have a solution to the longstanding problem of combining 

different scales of image smoothing, but this paper does address this problem in the 

domain of image curves by providing a way to select from among multiple scales 

of smoothing for curve intervals. A biologically plausible implementation of these 

curve smoothing techniques would be the use of a non-linear operator to select 

and "mark" points of intensity discontinuity in an image. These marked points 

would then be low-pass filtered in a second stage and the resulting rate of change 

of curvature measured to select appropriate scales of analysis and the locations of 

tangent discontinuities. 

2. Curve smoothing 

This section will briefly present the basic methods and terminology for filtering a 

curve by Gaussian convolution. The reader is referred to Mackworth and Mokhtar

ian [11] for a more detailed development, and the proof of a number of important 

properties of smoothed curves. 
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The curve to be smoothed is represented as two coordinate functions of a path 

parameter t: 

x = x(t) and y = y(t). 

In order to filter out high frequencies in this curve, we convolve these functions with 

a one-dimensional Gaussian Gu(t) of standard deviation u: 

We will also make use of convolutions with the higher derivatives of this kernel: 

and 

Define X(t) as the convolution Gu(t) ® x(t) for some selected value of u. Since 

differentiation commutes with convolution, X' = G~ ® x and X" = G~ ® x, which 

provides a simple, numerically stable method for computing the derivatives. 

The curvature ,c(t) of a Gaussian filtered curve can then be computed in terms 

of these derivatives of X and Y (note that ,c is equal to 1/r, where r is the local 

radius of curvature): 
X'Y" - Y 1X 11 

IC=------(X'2 + y'2)3/2 · 

Although it is true that X'2 + Y'2 = 1 for a path length parameterized curve, it 

should be noted that even if the original curve is parameterized by path length, 

the smoothed curve will not be in general. Therefore, it is not possible to drop the 

denominator in the above expression. 

3. Smoothing without shrinkage 

The major difficulty with the above methods for curve smoothing is that they will 
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systematically shrink the size of a curve towards the center of curvature. The source 

of this shrinkage arises from the fact that each point on a curve is being averaged 

with its neighbors, which in both directions curve towards the local center of cur

vature. Therefore, even if the curve is entirely smooth to begin with, convolution 

with any averaging filter will cause each point to migrate towards the center as a 

monotonic function of curvature and degree of smoothing. For any application in 

which it is important to know the location of a curve in the image, which includes 

most aspects of higher-level vision, this variable migration would be a critical defect. 

However, since this shrinkage is due to the amount of smoothing and the local 

curvature, we can use the known value of u and the measured curvature of the 

smoothed curve to compensate for the degree of shrinkage that must have occurred. 

In fact the same argument can be applied to each coordinate function independently, 

as the shrinkage is a result of tlie underlying filtering process which is applied 

separately to x(t) and y(t). 

Our goal then will be to predict the degree of shrinkage for each point of 

the smoothed curve X(t) as a function of degree of smoothing u and local curvature 

measureX"(t). Consider a circle of radius r passing through the origin and centered 

at the point (r,O). The coordinate function x(t) for this curve, for a path length 

parameter t, will be 

x( t) = T ( 1 - COS ; ) , 

Now consider the convolution of this function with Gu(t) 

X(t) = Gu(t)@ x(t) 

Joo 1 -(t-u):i ( u) = _ ~e :io-
2 r 1 - cos - du. 

-oo Uy 2,r T 

We would like to compute the value of this convolution at the point t = 0. Since the 

original curve passes through the origin at this point, the value of the convolution 

represents the amount of shrinkage as a function of u and r. The following solution 
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was obtained with the aid of the Macsyma system for symbolic algebra: 

(1) 

However, we do not actually know the value of the original curve radius r, but 

rather must make use of the measured second derivative of the smoothed curve X": 

x"(t) = G~(t) © x(t) 

-----
r 

at t = 0. (2) 

This last result shows that r ~ 1/X", as expected, for small values of u. In fact, 

this approximation can be used to correct for most of the shrinkage error for typical 

values of u, since it is correct to within 13% for u < r /2. However, in practice the 

shrinkage correction will be implemented by table lookup and interpolation, so we 

can afford to solve (2) numerically for r. 

This method has been implemented and tested on a wide range of examples, 

with results that indicate elimination of the shrinkage effect. A table is built giving 

the shrinkage error values (1) as a function of the second derivative of convolution 

X". Then, for each point coordinate of the smoothed curve, we interpolate the 

appropriate error value and subtract if from the original smoothed value. 

The results of applying this method to a noisy circle are shown in Figure 2. 

This circle was generated by adding uniformly distributed random noise in the radial 

direction to points lying on a circle. Following smoothing by a Gaussian with u = 8, 

we recover the smooth circle shown in Figure 2(a), but it has shrunk significantly 

in size. However, following the method for shrinkage correction given above, we 

instead get the results shown in 2(b). Here the smoothed circle maintains the same 

radius as the original curve. 
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Figure 2: A noisy circle can be smoothed with a Gaussian to recover the original smooth 
circle, but the radius of the circle will shrink as shown in (a). By applying the shrinkage 
correction technique described in this paper (b), it is possible to remove noise with any 
desired scale of smoothing while also retaining the original radius. 

An example of the application of this technique to a more complex curve is 

shown in Figures 3. In Figure 3(a) a map of Africa is smoothed with a Gaussian 

filter with a= 8. The shrinkage is apparent in that the smooth curve is systemat

ically displaced towards the inside of each curved region. The result of shrinkage 

correction is shown in 3(b). Figure 3(c) shows the smoothed curves before and after 

correction overlaid upon one another. This illustrates the fact that the corrected 

curve has zeros of curvature at the same locations as the uncorrected curve. How

ever, additional inflection points may occasionally be introduced when the original 

curve has local minima of curvature that are positive or maxima that are negative. 

4. Identifying smooth curve segments 

Given the ability to smooth a curve at different scales, it is necessary to develop 

some way to determine which intervals of the curve and which scales of smoothing 

are most likely to reflect the underlying structure of the scene. As described earlier, 
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Figure S: A map of Africa is shown with Gaussian smoothing at a == 8 using the standard 
method (a) and with the shrinkage correction technique (b). It can be seen that the 
corrected curve tracks the original edge points much more closely than the non-corrected 
curve. The two curves are shown superimposed in (c), with the shrinkage corrected curve 
drawn with a darker line. 
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when two independent objects project to the same region of an image, their edges 

are unlikely to align smoothly; therefore, any list of edge points containing two 

independent object edges will likely contain a tangent discontinuity where the edges 

meet. This might lead one to believe that we should look for points of low curvature 

along an edge, as these are likely to be between the tangent discontinuities, which 

in theory have infinitely high curvature. However, the underlying image data is 

noisy and must be smoothed to recover a curvature estimate. Once this is done, 

a tangent discontinuity in the scene will often have a lower curvature than some 

genuinely curved edge in the image. Given that any curved object edge can project 

to arbitrarily high image curvature by simply becoming more distant from the 

camera, we can expect many instances of high image curvature in any natural 

scene. 

Therefore, we have found that the third derivative, or rate of change of curva

ture, is a more useful measure of the underlying degree of smoothness of an edge. 

Edges which have a high curvature that is changing only slowly will still be con

sidered smooth. Perhaps the reason that the rate of change of curvature has not 

been given more consideration in earlier work on segmentation is that it is often 

assumed that higher derivatives are very sensitive to noise. An underlying reason 

for the noise sensitivity is that higher derivatives tend to amplify high frequencies, 

which is where local forms of noise have their major impact. However, in the case of 

a Gaussian filtered curve, the high frequencies have all been removed and therefore 

do not influence the result of higher derivatives. Simple inspection of the shape 

of the third-derivative kernel will show that it is only slightly more responsive to 

higher frequencies than the first derivative. Interestingly, Binford [3] has argued for 

the importance of detecting discontinuities of curvature for high-level segmentation, 

which would naturally be detected by a third-derivative operator. 

There are two criteria that must be balanced in selecting the smoothest seg

ments to represent a curve. One is to minimize the rate of change of curvature, and 

the second is to maximize the lengths of the curve intervals that are described by 
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a single segment. Surprisingly, perhaps, we have found that the second criterion 

tends to override the first . Even if some interval at some scale has a very low rate 

of change of curvature, it will tend to introduce a false discontinuity if we select this 

interval over an interval at another scale that covers a longer portion of the curve. 

We can see the reason behind this if we consider that the goal of segmentation is 

to uncover true tangent discontinuities such as occur at the intersection between 

two object edges, but to otherwise find some scale that will represent the under

lying smooth structure of an edge. Although we have experimented with many 

much more complex criteria, the best method appeared to be one that simply sets 

a threshold on the size of the rate of curvature change that is sufficient to eliminate 

most tangent discontinuities, and to search across multiple scales of smoothing for 

intervals that cover the maximum length of the curve. Once one interval is selected, 

that portion of the curve is removed from consideration and the same method is 

applied to the remaining portions. 

One other issue that must be addressed is the smoothing of curves out to 

the termination of the underlying list of edge points. The convolution kernels are 

defined over an infinite range, but can be safely truncated at a distance of 3a from 

their center. Nevertheless, without some special method for handling terminations, 

this would leave an undefined region of 3u at the end of each curve, which would 

be a serious loss of data for most practical applications. There appears to be no 

ideal solution to this problem, but good results were achieved by estimating the 

endpoint tangent by extrapolating from the measured tangent and curvature of the 

closest curve point for which a reliable estimate is available. The curve is reflected 

about an axis normal to this extrapolated tangent to provide data for smoothing 

up to the endpoint. This method of extrapolating from local tangent and curvature 

measurements is similar to that used to define co-circularity by Parent and Zucker 

[15]. 
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5. Implementation and results 

All of the methods described above have been implemented in Sun/Lucid Common 

Lisp. Edges are first detected by the Canny [5] edge finder and are linked on the basis 

of image connectivity to yield lists containing edge points that are one pixel apart. 

While this does not produce exact path-length parameterization, it is close enough 

that any deviation will only have a minor effect on the local scale of smoothing. 

These lists are then used as input to the following sequence of operations: 

Initial smoothing. Each edge is smoothed by Gaussians at a range of scales with 

u increasing by a factor of vf2 from one scale to the next. In the examples to be 

presented, 7 scales of smoothing were used with u ranging in value from v'2 pixels 

to 8v'2 pixels. The first and second derivatives are also calculated at each point 

by convolution with the appropriate kernels, and the shrinkage compensation is 

applied. Curvature ,c is calculated at each point, and then change in curvature 1e' is 

computed by using the finite difference of points that are u units apart. Curvature 

is scaled by a factor of u and change of curvature by a factor of u 2 to make them 

scale invariant, so that a single threshold can be used across all scales. 

Interval formation. The linked lists of edge points at each scale are broken into 

intervals in which all points in an interval have change of curvature below some 

scale invariant threshold. For the following examples we chose a threshold value 

of u2
1e' < 0.2. Reducing this threshold forces curves to be smoother, at the cost 

of introducing more discontinuities into the description. There is also a minimum 

length threshold of 2u required for each interval, which prevents zero-crossings of 

,c' near corners from being considered as short smooth intervals. 

Interval selection. We consider all of the intervals at all scales for a given edge, 

and select the interval that covers the greatest length of the original edge list. 

This interval is extended at each end using the method for handling terminations 

described above. Then the portions of all other intervals that overlap this selected 

interval are removed from consideration, and the selection process is repeated. This 
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results in the final set of selected intervals covering as much of the original curve as 

possible. The output curves are represented as a sequence of linked points that are 

spaced at a separation proportional to the measured local radius of curvature (this 

is a user-defined parameter that trades off the degree of data reduction with the 

maximum angular separation of adjacent points). The specification of each output 

point includes the smoothed location to sub-pixel accuracy, the tangent direction, 

the curvature, and the scale of smoothing. 

The output of this smoothing and segmentation process for some realistic examples 

are shown in Figures 4 and 5. The image shown in Figure 4 is of a totem pole 

digitized from a grainy photograph originally taken in 1896. The Canny edge finder 

was used to produce the linked edge points shown in Figure 4{b). The results of 

applying the smoothing and segmentation methods described above are shown in 

4(c). The displayed width of each smoothed output curve is proportional to the u 

of smoothing used for that curve. In general, the method has been successful at 

selecting scales of smoothing that remove large amounts of noise and yet correctly 

identify locations of tangent discontinuity. The noisy totem pole image illustrates 

the capability for recovering the underlying scene curvatures from degraded edges 

without a high degree of initial image blurring that would otherwise merge edges 

and lead to a loss of data. Figure 5 contains an example of the results for an image 

of the type found in current robotics applications. In most cases, the tangents and 

curvatures of these smoothed edges seem to provide good estimates for the projected 

values of the underlying scene curves. The accuracy of the curve smoothing can 

be judged from the greatly enlarged examples of Figure 6, showing the smoothed 

curves superimposed on the original linked edge points. 

The current implementation of this system is in Common Lisp and was not 

designed with a great concern for efficiency. Running time is about 2 minutes on a 

Sun 3/60 for these examples. However, there is every reason to believe that it can be 

implemented as efficiently as any other curve segmentation method. In the current 

Common Lisp implementation, each scale of Gaussian smoothing is calculated inde-
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Figure 4: (a) A noisy image of a totem pole digitized from an 1896 nitrate negative 
(reproduced by permission of the B.C. Provincial Museum); (b) Edges detected by the 
Canny edge finder; ( c) The final curve segments output by the multi-scale smoothing 
and segmentation algorithm. The thickness of each curve is proportional to the scale of 
smoothing selected for that curve. 
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Figure 5: Similar results as for figure 4, but for a higher quality image of an industrial
type scene. 
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Figure 6: (a) An enlarged view of the linked edge points from around the eye of Figure 
4, showing the pixel quantization error. (b) The smoothed curves superimposed on these 
edges, demonstrating the accuracy of interpolation. 

pendently, yet much greater efficiency could be achieved by an incremental method 

that bases the results at larger scales of smoothing on the results of each previous 

scale. 

6. Conclusions and future research 

The ability to combine smoothing and segmentation at multiple scales is an im

portant capability for many applications of computer vision. In most cases, the 

final output of the method described in this paper can be expected to reflect the 

underlying structure of the scene in terms of segmentation, scale, tangent direction 

and curvature. This means that these descriptions will tend to remain stable across 

changes in viewpoint and imaging conditions, and therefore could play an important 

role in correspondence matching in stereo or motion. The increased measurement 

accuracy in the locations of edges, resulting from the local averaging, should also 

be of value in stereo or motion interpretation. The specific application that we 

intend to develop is in model-based vision, in which smooth curve segments can be 

matched to models with arbitrarily curved surfaces and markings. The stability of 

tangent and curvature measurements should allow these measurements to play an 
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important role in model-based matching. 

Possibly an even more important application will be in the area of perceptual 

organization. The smoothing and segmentation process is itself an aspect of percep

tual organization, as it involves identifying higher level structures in the linked edge 

data on the basis that such smooth curves are unlikely to arise by accident from 

independent scene edges. But these smooth curves can also play an important role 

in later stages of grouping which are based upon curvilinearity, parallelism, prox

imity of terminations, and other relationships [8]. Since these forms of grouping 

require local tangent and curvature estimates as well as segmentation at tangent 

discontinuities, they could not be applied to the original linked edges without this 

higher level of smoothing. 

There are a number of areas in which the methods described in this paper could 

be improved. One straightforward improvement would be to use an edge finder 

that interpolates the position of edge points to subpixel accuracy. This should 

provide a substantial improvement to the segmentation results at the finest scales 

of smoothing, as these are currently being dominated by pixel quantization effects. 

Another useful improvement would be to allow for retention of multiple scales of 

description for a single curve segment when they are qualitatively different. While 

this would tend to clutter and detract from the appearance of output to a human 

observer, these multiple scales of description could prove useful for many higher 

level matching and organization processes. There is also clearly a need for further 

study of the underlying theory of optimal detection of tangent discontinuities in the 

presence of varying noise and curvature. 

An important problem for further research is in combining these techniques 

for curve description with multi-scale methods for the underlying edge detection. 

The use of a curve smoothness criterion allows a second dimension of analysis to be 

used to select among multiple scales of description, in addition to the scale-space 

behavior of edge points as suggested by Marr & Hildreth [13] and Witkin [21]. 

While it is true that an edge will tend to have a stable position across a range of 
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scales, our own empirical examination of images shows that many non-edges appear 

to also have this behavior. Thus we hypothesize that the use of smoothness criteria 

along the length of an edge will prove necessary for selecting among multiple scales 

of image smoothing. Some recent work by Zucker et al. [22] provides a biologically 

plausible model that combines early vision with the inference of curve properties. 

Availability 

In order to facilitate the further development and use of these methods, the original 

Common Lisp code is being made available to any researcher who would like to exper

iment with these techniques. This code can be requested through electronic mail to 

"lowe@vision.ubc.ca." 
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