
DESIGN AND IMPLEMENTATION 

OF A FERRY CLIP TEST SYSTEM 

by 

S.T. Chanson, B.P. Lee, N.J. Parakh, 
and H.X. Zeng 

Technical Report 88-24 

December 1988 

Department of Computer Science 

University of British Columbia 

Vancouver, B.C. V6T lWS Canada 





DESIGN AND IMPLEMENTATION 
OF A FERRY CLIP TEST SYSTEMt 

by 

S. T. Chanson, B. P. Lee, N. J. Parakh and H. X. Zeng 
Technical Report 88-24 

December 1988 

Department of Computer Science 
University of British Columbia 

Vancouver, B. C., 
Canada V6T 1 WS 

.t The work has been supported in part by the Natural Sciences and Engineering 
Research Council of Canada, and IDACOM Electronics Ltd. of Edmonton, 
Canada. 

LIMITED DISTRIBUTION NOTICE: 

This report has been submitted for publication outside of the University of British 
Columbia (UBC) and will probably be copyrighted if accepted for publication. It has 
been issued as a Research Report for early dissemination of its contents. In view of the 
transfer of the the copyright to the outside publisher, its distribution outside of UBC 
prior to publication should be limited to peer communications and specific requests. 

1 



Abstract 

The Ferry Clip concept can be used to build a Test System for protocol testing. By structur­
ing the system into a set of modules, it is possible to minimize the effort required in using such a 
system to test different protocol implementations. In this paper we describe a method for struc­
turing and implementing a Ferry Clip based Test System. Implementation issues encountered 
in building such a system under different environments are also discussed. 

Abbreviations 

ASP Abstract Service Primitive 
CPU Central Processing Unit 
FCP Ferry Control Protocol 
FCTS Ferry Clip based Test System 
FSM Finite State Machine 
FTMP Ferry Transfer Medium Protocol 
INET Internet 
IPC Intet'process Communication 
ISO International Standards Organization 
ITL Idacom Test Language 
LMAP Lower Mapping Module 

2 

LT Lower Tester 
MPT Multi-port Protocol Tester 
OSI Open Systems Interconnection 
PDU Protocol Data Unit 
PT Protocol Tester 
PTE Protocol Testing Environment 
SAP Service Access Point 
SUT System Under Test 
TM Test Manager 
TTCN Tree and Tabular Combined Notation 
UT Upper Tester 

1 ... 



1 Introduction 

Open Systems Interconnection (OSI) requires conformance testing of protocol imple­
mentations. Conformance testing involves determining whether a given protocol im­
plementation conforms to the specification as defined by the standards to which it 
purports to adhere. The purpose of conformance testing is to increase the probability 
that different protocol implementations can interwork together. Conformance testing 

can be done in test centers for certification purposes or by the implementors during 
protocol development for diagnostic purposes. Since diagnostic testing is performed 

by the vendor, all the available service access points (SAPs) may be used, including 
those the vendor does not wish to expose to the outside world. Hence, diagnostic test­
ing allows a higher degree of control and observation of the implementation under test 

(JUT). 
The International Standards Organization (ISO) has defined a set of abstract test 

methods for the conformance testing of computer protocols [6]. The Ferry Clip concept 

[2] [3] [4] is a test approach to realize those test methods and is a generalization of 
the Ferry Concept as defined by Zeng [1]. The main idea is to transport test data 
transparently from the system under test (SUT) to the test system thus allowing both 
the upper tester (UT) and the lower tester (LT) to reside in the test system (see Figure 
1). This simplifies the synchronization between the UT and the LT and reduces the 

amount of software that must reside in the SUT [1] [3]. A Ferry Clip system consists 
of two major components, an Active Ferry Clip which resides in the test system, and 

a Passive Ferry Clip which resides in the SUT (see Figure 1). The two ferries use 
the services of the ferry control protocol (FCP) to transfer test data between the Test 

Manager (TM) in the test system and an external IUT residing in the SUT. The FCP 
provides a standard interface on top of some existing protocol such as X.25 which 
actually transfers the test data, and which we shall call the ferry transfer medium 
protocol (FTMP). Once the FCP is standardized, the ferry clip test system can be used 
to test different IUTs with little change required to the test system. This is in contrast 
to an ad hoc scheme where the entire test system or at least a major portion of it has 

to be rewritten to test different IUTs. 
One of our main goals was to study the design and implementation issues involved 

in building a Ferry Clip based Test System (FCTS) on various hardware and software 
architectures. Emphasis was placed on structuring the FCTS so as to minimize the 

3 



amount of code that would have to be rewritten to test different IUTs or use different 
FTMPs. 

As of this date, we have implemented the system on three different environments 
- Unix, MPT and OSI-PTE. Unix is a popular operating system which runs on many 
different mainframes and workstations; MPT [12] is a general-purpose protocol tester 
manufactured by ldacom Electronics; and the OSI-PTE is a sophisticated test system 

currently being developed at the University of British Columbia. This paper will focus 
on the design and experience gained in the implementation for the MPT environment 
with a brief description of the other two. In this paper the terms Active Ferry and 
Active Ferry Clip as well as the terms Passive Ferry and Passive Ferry Clip are used 
interchangeably. Following the introduction, section 2 describes a general scheme for 
structuring the Active and Passive Ferry Clips. Section 3 briefly describes the role of 

the TM in an FCTS, and a modular scheme for constructing an encoder/decoder (E/D). 
Section 4 discusses the implementation of the FCTS in the MPT environment. Section 

5 describes some of the protocols that have been tested by the FCTS and section 6 
concludes the paper. 

2 Structuring the Ferry Clips 

2.1 The Active Ferry Clip 

The functions performed by the Active Ferry are independent of the particular JUT 
being tested. Hence, changing the JUT has no effect on the Active Ferry. However, 
since the Active Ferry uses the services of an underlying FTMP, part of its code is 

FTMP specific. Nevertheless, a considerable portion of the Active Ferry's functions 
such as fragmenting, reassembly and buffering of test data are operations that are 

independent of the FTMP. 
To minimize the change to the Active Ferry when a different FTMP is used, it was 

decided to structure the Active Ferry into two modules (see Figure 2(a)) as follows. 

1. The Active Ferry Finite State Machine Module (Active Ferry FSM) 

All functions of the Active Ferry that are independent of the FTMP are incor­

porated into this module. The main function of this module is to implement the 
Active Ferry's protocol state machine - hence its name. Specifically, fragmenting 

4 



and reassembly of test data packets as well as buffering of test data to be sent to 
the Passive Ferry are performed by this module. 

The Active Ferry FSM interacts with the Test Manager module and the Lower 

Mapping Module (LMAP) through single interfaces by means of abstract service 

primitives (FM-ASPs and FT-ASPs respectively). These are discussed in [4] and 
listed in Appendices C and D. The state table of the Active Ferry is given in 
Appendix A. 

2. The Active Ferry Lower Mapping Module (Active Ferry LMAP) 

This module contains all the code that is dependent on the particular FTMP. 
Specifically, it maps the Active Ferry ASPs (namely the FT-ASPs) into the ASPs 
or commands specific to the FTMP being used. The complexity of this mapping 
and hence the corresponding size of the LMAP module depends on the FTMP as 
well as the interface it provides. 

By localizing the code specific to the FTMP in this module, it is possible to 
change the FTMP by simply rewriting this module. No change to any other part 
of the Active Ferry is required. A library of LMAP modules corresponding to 
different FTMPs can be set up. Thus, the problem of configuring the Active Ferry 
to use a particular FTMP supported by the SUT is reduced to simply selecting 
an appropriate Active Ferry LMAP module from the library. 

2.2 The Passive Ferry Clip 

The chief goal in designing a Passive Ferry is to keep it small and compact so that 
it may be possible to implement it in a SUT with memory limitations. The Passive 
Ferry's code depends on the IUT as well as on the FTMP being used. Once again, our 
aim was to structure the Passive Ferry to facilitate the replacement of both the FTMP 
and the IUT. Hence, it was decided to structure the Passive Ferry into three modules 
(see Figure 2(b)) as follows. 

1. Passive Ferry Finite State Machine Module (Passive Ferry FSM) 

This module contains all the functions of the Passive Ferry that are independent 
of the IUT and FTMP. It implements the Passive Ferry protocol state machine 
as described in [4] and listed in Appendix B. Fragmentation, reassembly and the 
buffering of test data packets (see section 4.1.3) are performed by this module. 

5 



The Passive Ferry FSM interacts with the FTMP via a set of Ferry ASPs (FT­
ASPs) and with the IUT Interface module (described below) via another set of 
ASPs (FD-ASPs) as described in [4] and listed in Appendix E. 

2. Passive Ferry Lower Mapping Module (Passive Ferry LMAP) 

This module contains the code for all the Passive Ferry functions that are specific 

to a particular FTMP, but independent of the IUT. It maps the Passive Ferry 
ASPs (FT-ASPs) into the ASPs specific to the FTMP being used. Hence, it is 

the only module that needs to be modified in the Passive Ferry when the FTMP 
is replaced by a new one. 

3. IUT Interface Module 

This module contains all the code specific to the IUT. The Passive Ferry interfaces 

with the IUT through its upper and/ or lower SAPs. Some data conversion is 
usually necessary to convert the data received by the Passive Ferry in a ferry 

protocol data unit (PDU) into a format that is accepted by the IUT. This format 
is usually unique to each IUT and hence this code needs to be rewritten or 

modified for each new IUT. 

2.3 The Ferry Transfer Medium Protocol 

In order to make the FCP simple and easy to implement, certain requirements have to 
be placed on the FTMP. Since the FCP cannot handle lost, mangled or out of sequence 

packets it is necessary that the FTMP guarantees end-to-end error free delivery of 
data and does not resequence data packets. The protocol used as the FTMP may 

be connection or connectionless oriented, and either stream ( eg. Unix INET stream 
sockets [5]) or packet ( eg. X.25 [8]) oriented. 

3 The Test Manager and Encoder /Decoder 

3.1 The Test Manager 

The TM is that component of the FCTS that oversees the operation of the system. It 
reads and executes the test script and logs all incoming and outgoing data exchanges 

6 



for future analysis. Furthermore, it is the responsibility of the TM to continue or abort 
the execution of a test script if an abnormal condition is detected. 

The TM communicates with the Active Ferry through the E/D module (see Figure 
1). Communication between the TM and the Active Ferry is via the set of FM-ASPs 
(see Appendix D). The test data is encoded by the E/D module so as to make it easy for 
the IUT Interface to convert the test data into a form that the IUT accepts. Similarly, 
data received by the Active Ferry is sent to the TM through the E/D module so that 
it can be converted into a format the TM understands. 

With the Ferry Clip approach, events for both SAPs of an IUT can be specified in 
the same test script. Furthermore, since both the UT and LT can be merged together 
within the TM on the test system, the synchronization problems between the UT and 
LT do not occur in a FCTS. 

The Ferry Clip concept could be extended to incorporate multiple Ferry Clips inside 
the SUT. Interaction and synchronization between different IUTs could be specified in 
a single test script. This could prove to be a useful feature for testing a protocol stack, 
allowing observation of the protocol exchanges at various layer boundaries. 

3.2 The Encoder /Decoder 

The E/D has to be rewritten for each IUT. To facilitate its replacement, the interface 

it provides to the TM and Active Ferry modules should be clear and concise and the 
E/D itself should be well structured. 

The E/D module was subdivided into two parts: the primitive specification and 
the encoding/ decoding parts. Different implementations of the same protocol might 
require the same primitives to be encoded differently. Hence, it should be possible for 
the encoding/decoding part to be replaced independently of the primitive specification 
part. 

The primitive specification part defines the primitives available and their parame­
ters. It describes what the TM is allowed to send and receive. The encoding/decoding 
part is called by the primitive specification part. It does the actual transformation 
from primitives to PDUs or whatever representation the IUT requires. 

The primitive specification part should be defined as completely as possible. It 

should include all possible primitives and all the parameters for the primitives, even 
those that are not supported by the particular IUT. The encoding/decoding part could 

choose to ignore those parameters in the primitive specification part which are not 

7 



supported by a particular IUT. In this way, when a different IUT has to be tested, only 
the encoding/ decoding part needs to be changed. _ 

To minimize the effort in replacing the E/D module, encoding and decoding formats 
could be specified externally instead of being coded into the E/D module. One possible 
solution is to build an interpreter that would accept PDU specifications in some format 
similar to that of the PDU definition part ofTTCN-GR [14]. The primitives, parameter 

names for each primitive, parameter length and the allowable range for each parameter 
could be listed in the PDU definition part. Each IUT would now have its own PDU 

definition part from which its E/D could be automatically generated. 

4 Implementation of the Active Ferry Clip 

One of our main goals was to study the issues involved in implementing a FCTS in 
different environments. Three different environments were chosen. Interesting design 
and implementation issues were encountered in all the environments. Certain parts 
of the system such as the buffering scheme used were dictated by the environment. 
However, the proposed scheme for structuring the ferries ( described in sections 2 and 
3) was used consistently and proved to be extremely useful in all the environments in 
which the FCTS was built. 

4.1 The ldacom MPT Environment 

The MPT368.2 [12] is a portable protocol tester (PT) manufactured by Idacom Elec­
tronics. It runs a proprietary operating system with a built in Forth interpreter and 
contains three Motorola 68000 CPUs, two of which are available for implementing the 
FCTS. Even though memory is partitioned between the three CPUs, a CPU can access 
another CPU's memory partition. Communication between the CPUs is via inter-CPU 

messages. The operating system is event driven. Events are triggered by an incoming 
frame, a keyboard entry, a timer expiration or an inter-CPU message. 

Two protocol testers were used - one for the test system and the other for the SUT. 
The two PTs were connected via an RS-232C serial cable. The TM, E/D and Active 
Ferry were implemented as a single process on one CPU of the test system. The Passive 
Ferry and IUT reside on different CPUs in the SUT. 

8 



4.1.1 The Test Manager and Encoder /Decoder 

Keyboard events are processed immediately. Frame events are passed to the Active 
Ferry for further processing by the Active Ferry LMAP module. Timeout events as 
well as decoded test data packets received from the Passive Ferry are placed in the 
TM's event queue. 

The test language used is an enhanced version of Idacom test language (ITL) [13]. 
It is a state-based language which has the control and expression evaluation features of 
Forth. Each state defined in the test script is associated with a list of events expected to 
be received, the corresponding action to be taken for each event, and an optional state 
change command. An example of a test script written in ITL and the corresponding 
test log generated are given in Figures 3(a) and 3(b) respectively. 

A Forth procedure is defined in the E/D for each primitive that can be sent. In­
voking this procedure either from the keyboard or from the test script would cause a 
corresponding primitive to be sent via the ferry. Decoded primitives received from the 
IUT via the ferry become events on the TM's event queue. 

When the TM calls the E/D to send test data to the IUT, the E/D module does 
not return to the TM until the Active Ferry accepts the packet. The E/D module will 
invoke the FTMP to clear the output packets if the buffers of the Active Ferry become 
full. 

Multiple E/D modules can be compiled on top of the test system. Different E/D 
modules for different layers can mix and match in order to do multi-layer protocol 
testing. 

4.1.2 The Active Ferry Clip 

The Active Ferry was structured into two modules - Active Ferry FSM and LMAP. 
The Active Ferry FSM module maintains a finite set of buffers. The buffers are used 
to store packet fragments before they are accepted by the FTMP for transmission to 
the Passive Ferry. 

Fragmentation and reassembly of data packets is required since the FTMP places 
a limit on the maximum size of a packet it will accept. The Active Ferry accepts data 
packets of arbitrary size from the TM and fragments it so that each fragment can fit 
into an FTMP packet. The packet fragments are reassembled at the Passive Ferry. The 
Passive Ferry performs similar fragmentation of data packets received from the IUT 

9 



before transmitting them to the Active Ferry. 

The underlying FTMP could refuse to accept data from the Active Ferry FSM once 

the FTMP's local buffers fill up. Since the Active Ferry buffers have finite capacity, 
some mechanism is needed to inform the Test Manager when its local buffers are full. 

The scheme used is described below. 
When the Test Manager sends a packet to the Active Ferry for transmission to 

the Passive Ferry, the Active Ferry FSM calculates how many packet fragments will 
result when the data packet is fragmented. If there are enough buffers to store all 

the fragments, the data packet is accepted, fragmented and stored in the Active Ferry 

FSM buffers for later transmission to the Passive Ferry. Otherwise, the Test Manager 

is informed that the packet cannot be accepted in which case the Test Manager simply 
retries at a later time. The Active Ferry FSM attempts to send as many data fragments 

as it can to the Active Ferry LMAP module, thereby clearing the buffers as soon as 

possible for more packets from the Test Manager. In this fashion, a fast Test Manager 

will not swamp a slow Active Ferry with data. 
A special ASP called FM-FLUSH was introduced. Its specific purpose is for the 

Test Manager to call the Active Ferry periodically, instructing it to send any waiting 
data thereby clearing the Active Ferry FSM buffers. 

From our experience in using Unix INET stream sockets and X.25 as the FTMP, 
we observed that the fl.ow control schemes used by different protocols and the methods 

for accessing them vary a great deal. For example, with Unix INET domain sockets 
there was no convenient way to query the protocol for the status of the socket buffers. 

A "write" operation to the socket would have to be made. The operation would block 

if the socket buffers were full (it would fail if the "write" operation was made non­

blocking). In our version of X.25 Packet Layer, it was possible to query the status of 

its buffers before a "write" operation was issued. 
For uniformity and to minimize the code that needs to be rewritten for different 

FTMPs, it was decided to implement a simple fl.ow control scheme at the Ferry protocol 

level. The scheme is independent of the flow control facilities offered by the underlying 
FTMP. The tradeoff is that the functionality of the Active and Passive Ferries increases 

thereby increasing the size of their code. Hence, the flow control scheme should be 

simple and compact. 

The scheme used was as follows. The "reserved bits" in the control field of a 

FY-CNTL PDU [4] were used to implement two additional control functions, namely 

10 



"fl.ow control on" and "flow control off". When the Passive Ferry discovers its local 
buffers have filled past a certain "high-water mark" it sends a "flow control on" control 

message to the Active Ferry. The Active Ferry then ceases to send any further data 
to the Passive Ferry. However, it continues to accept data packets sent to it by the 
Passive Ferry, thereby allowing the Passive Ferry to clear its buffers. When the Passive 
Ferry's local buffers clear below a "low-water mark", it sends a "flow control off" control 
message to the the Active Ferry, informing it to resume sending data packets. 

The "high-water mark" must be chosen carefully. This is because before the "flow 
control on" message gets to the Active Ferry, data may still be sent to the Passive Ferry 
which must be ready to accept them. Hence, the "high-water mark" must be chosen so 
that there will still be enough space in the Passive Ferry's local buffers to accept data 
until the "flow control on" message gets to the Active Ferry. The additional buffers 
required can usually be estimated quite easily as follows: 

E = Maximum packet delay from Passive to Active Ferry. 

B = Baud rate of the line. 
P = Maximum number of bits in a packet fragment. 
N = Number of buffers required above the "high-water mark". 

N = fB XE/Pl 

Generally, there is no problem in estimating "N". Only in the case of long haul 
networks where the end-to-end delay has a high degree of variance does "E" become 
tricky to estimate. Overestimating "E" simply results in some buffer space not being 
used sometimes, but underestimating it could result in overflowing the Passive Ferry's 
local buffers. 

4.1.3 The Passive Ferry 

The Passive Ferry was implemented on one of the two available CPUs in the SUT. 

The other available CPU was used to run the IUT. The structuring was done in this 
manner so that the Passive Ferry would not interfere with the operation of the IUT. 

The Passive Ferry was structured into three modules - Passive Ferry FSM, LMAP and 
the IUT Interface module. The IUT Interface module resided on the same CPU as the 

IUT. Communication between the Passive Ferry FSM and the IUT Interface modules 
was by means of inter-CPU messages. 

11 



Three sets of buffers were maintained in the Passive Ferry. The first set was to 
store data packets received from the Active Ferry before they could be worked on. The 

other two sets of buffers were used to store packets to be sent to the Active Ferry - one 
set for data packets and the other for control packets. The reason for separating the 

"data" and "control" buffers was so that higher priority could be given to packets in 
the control buffer. This would ensure that a "flow control on" control message could 
be sent before any waiting data packets. 

4.1.4 The Lower Mapping Module 

The LMAP module resided in the same CPU as the Passive Ferry FSM module. Com­
munication between these two modules was achieved via the FT-ASPs (Appendix C). 

In the MPT version of X.25, the user specifies the frames and packets to be gen­
erated. For example, a "SABM" command would send across a SABM frame, and 
a "CALL" would send a "call request" packet to the peer entity. It is LMAP's re­
sponsibility to map the FT-ASP's into the MPT X.25 commands and vice-versa. For 
example, an FT-CONNreq requires the Active Ferry LMAP module to send a SABM 
frame and wait for a UA frame after which it must send a CALLreq packet and wait for 
a CALLcnf packet before returning a FT-CONNcnf to the Active Ferry FSM module. 
This is complicated further by the fact that other frames and packets could be received 
by the Active Ferry LMAP module during the process of setting up the link. These 
must be handled by the LMAP module. With this interface, the mapping between the 
Ferry ASPs and the FTMP commands is not trivial. To best realize this mapping it 
was decided to implement the LMAP module as a finite state machine. 

In the OSI-PTE version of the Test System, the X.25 used as the FTMP provides the 
user with a set of X.213 ASPs [9]. As an example, the user could invoke the N _CONN req 
ASP to set up a network connection. If the peer entity accepts the connection, a 
N_CONNcnf ASP would be returned to the user. With this interface, there is a one­

to-one mapping between the Ferry and FTMP ASPs. In this case, the LMAP module 
is very simple, and constitutes only a small portion of the overall size and complexity 
of the Active and Passive Ferries. An example of the mapping between the connection 
oriented Network service primitives (X.213) and the Ferry service primitives can be 
found in [4]. 

12 



4.1.5 The IUT Interface Module 

In the MPT environment, the IUT interface was placed together with the IUT on a 
single CPU. The IUT Interface was compiled on top of the IUT, and was divided into 
three parts: the Passive Ferry interface, an input handler and an output handler for 
each layer. 

The Passive Ferry interface is essentially an arbiter for incoming events. Several 
handlers are installed in the interface for event handling. Simple message passing 

IPC is used to communicate between the Passive Ferry FSM and the IUT interface. 
The Passive Ferry FSM can send two type of messages to the IUT interface, namely 

initialize-IPC and incoming-packet. 
When the Passive Ferry has a packet for the IUT, it sends the connection point ID 

and a buffer address with the incoming-packet message. The handler specified in the 
connection point ID is then called to send the packet to the correct SAP of the IUT. In 
this implementation, only one handler, the input handler was installed. It simply puts 
the packet into the IUT's buffer, and frees the buffer allocated by the Passive Ferry by 
replying to the incoming message. 

Whenever the IUT has output, the output handler is invoked. It simply allocates a 
common buffer and messages the Passive Ferry to handle the packet. 

The entire IUT interface was implemented in about 150 lines of Forth code. 
In the three environments in which the Ferry Clip Test Systems was built, the test 

system and the SUT had the same CPU architecture. Hence, the basic data types 
had the same representation on both the test system and the SUT. A more general 
situation would be where the test system and the SUT have different architectures. In 
such an environment the representation of even the basic data types could differ. It 
would be useful to adopt some standard data representation such as ASN.1 [11]. This 
would save considerable amount of work which would otherwise have to be performed 
to convert between different data types. 

4.2 The Unix Environment 

Unix is a powerful and widely used operating system. The Unix environment used 

to develop the FCTS consisted of a pair of SUN 3/50 workstations connected via an 
ethernet local area network. Each workstation ran a version of Unix BSD 4.2 (Sun/OS 

3.2). 

13 



The FCTS was implemented as a set of three processes. The Test Manager, E/D 
and Active Ferry were structured into a single process running on one . workstation. 
The Passive Ferry and IUT were implemented as two processes running on the other 
workstation. 

Communication between the ferries was achieved using Unix stream sockets in the 
internetwork domain [5]. This particular type of socket was chosen since it best fit the 

FTMP requirements (see section 2.3). 

4.3 The OSI-PT Environment 

The OSI-PTE [15] [16] is a new environment for the implementation and testing of 
computer protocols designed to run on an Idacom PT. It is a realization of the OSI 
Reference Model [7] within a single operating system process for efficiency. Besides 

providing an operating environment which is close to the OSI reference model, the 
OSI-PTE also allows the incorporation of a Test Manager into the test system. The 
system supports all test methods suggested by ISO as well as passive monitoring, 
logging and analysis capabilities. 

The OSI-PTE is an event driven system. Each protocol is structured as a single or 
a group of protocol entities. Communication between protocol entities is through an 
event-posting scheme whereby one protocol entity posts an event to another protocol 

entity. The important events are incoming ASPs from the upper or lower SAP and 
timer expiry events. 

When a protocol entity receives an ASP event, it also receives the parameters that 
correspond to that ASP. Overall the system resembles the OSI Reference Model much 
more closely than the other two environments discussed. 

Only the Passive Ferry was built in this environment. The IUT Interface was sub­
divided into a "lower" and an "upper" IUT Interface which performed the mappings 
for the lower and upper SAPs of the IUT respectively. The Passive Ferry consisted of 
three entities, namely the Passive Ferry FSM, the Lower and the Upper IUT Interfaces. 
The FTMP (X.25) and the IUT were in turn independent protocol entities. 

14 



5 IUT 

5.1 The NULL IUT 

The simplest IUT possible is a protocol which returns data sent to it without altering 
the data in any way. Our version of the NULL IUT simply returns test data received 
by its upper SAP through its lower SAP and vice versa. 

The NULL IUT allows the IUT interface to be tested. This is not the same as 
using the ferry loopback mode which only tests the Active and Passive Ferries as no 

data is sent to the IUT. Hence, it is useful to use a NULL IUT to confirm that the IUT 
Interface is functioning correctly before testing the actual IUT. 

5.2 Some IUTs That Were Tested 

The FCTS is not restricted by the fact that a particular IUT may only present the 
tester with a single SAP. Greater control and observation of the IUT could be achieved 
if both SAPs are accessible, but the IUT can still be tested through a single SAP. 

Two versions of the X.25 packet layer have been used as the IUT, one in the Unix 
environment and the other in the MPT environment. 

The Unix version of the X.25 packet layer was a single Unix process that allowed 
the tester to connect to it through a Unix socket. The IUT Interface was fairly trivial 
since little format change was required to bring the data in a FY-DATA PDU into the 
form the IUT required. Access was possible to both the upper and lower SAPs of the 

IUT. 
In the MPT environment, the X.25 packet layer IUT ran on a single CPU in the 

MPT . The IUT Interface was once again quite simple since the E/D module encoded 
the test data in a format that the IUT could accept. However, the Packet layer IUT 
for the MPT does not have a clearly defined upper SAP, since it was taken from a 
reference emulation of X.25 designed to work with a test responder. We chose not to 
test the upper SAP at all, and were able to adapt existing test scripts with minimal 
modifications. A sample test script and the corresponding test log are given in Figure 

3. 

15 



6 Conclusions 

This paper has presented some interesting issues encountered in building a Ferry Clip 

based Test System (FCTS). A method was presented for structuring the Active and 
Passive Ferry Clips so as to minimize the effort required to test different IUTs as well as 

to use different FTMPs. An FTMP independent flow control scheme as well as the use 
of a standard data representation scheme such as ASN .1 was also suggested to increase 
the portability of the FCTS. 

The FCTS has been developed on three different environments as part of the 

UBC /Idacom research project to develop the next generation of protocol test systems. 
Our experience has convinced us that the Ferry Clip approach is a powerful and useful 

technique for protocol testing. This technique has also been submitted to ISO and is 
currently under study to replace the Ferry Concept in Annex B of ISO DP9646-4 [6]. 

Acknowledgement 
The authors would like to acknowledge the financial support from the Natural Sciences 
and Engineering Research Council of Canada and Idacom Electronics in this work, and 

useful discussions with Dr. Dave Rayner. 

16 



References 

[1] H. X. Zeng and D. Rayner, The impact of the ferry concept on protocol testing, 

in Diaz, M. (ed.), Protocol Specification, Testing, and Verification V, p.533-544, 

North-Holland, 1986. 

[2] H. X. Zeng, X. F. Du and C. S. He, Promoting the "Local" Test Method with the 

New Concept "Ferry Clip", Proceedings of the 8th IFIP Symposium on Protocol 
Specification, Testing and Verification, Atlantic City, June 1988. 

[3] H. X. Zeng. Q. Li, X. F. Du and C. S. He, New Advances in Ferry Testing Ap­

proaches, Journal of Computer Networks and ISDN Systems, 15,1 (1988). 

[4] H. X. Zeng, S. T. Chanson and B. R. Smith, On Ferry Clip Application in Protocol 

Testing, Submitted for publication, June 1988. 

[5] S. Sechrest, An Introductory ,4.9BSD Interprocess Communication Tutorial, MT 

XINU Manual, 4.3BSD with NFS, Programmer's Supplementary Documents, Vol­
ume 1, PSl, 1986. 

[6] ISO /TC 97 /SC 21 N, 2nd DP 9646, Conformance Testing Methodology and Frame­

work, 1987. 

[7] CCITT Draft Recommendation X.200, Reference Model of Open System Intercon­
nection for CCITT Applications, 1988. 

[8] CCITT Draft Recommendation X.25, Interface Between DTE and DCE Terminals 

Operating in Packet Mode, 1988. 

[9] CCITT Draft Recommendation X.213, Network Service Definition for OSI for 

CCITT Applications, 1988. 

[10] CCITT Draft Recommendation X.223, Use of X.25 to Provide OSI Connection­

Mode Network Service, 1988. 

[11] G. V. Bochmann and C. S. He, Ferry Approaches to Protocol Testing and Ser­

vice Interfaces, Proceedings of the 2nd International Symposium on Interoperable 

Information Systems, Tokyo, Japan, November 1988. 

17 



[12] IDACOM Electronics Ltd., MPT968.e User Manuals - Forth Programming, 
November 1987. 

[13] B. R. Smith /TL - IDACOM Test Language - Language Specification, Version 1.0, 

UBC-IDACOM Project Documentation, 7 October 1988. 

[14] ISO Working Document DP 9646-3, The Tree and tabular Combined Notation, 12 
July 1988. 

[15] R. I. Chan, OSI PT Environment, Version 1.32, UBC-IDACOM Project Docu­

mentation, 21 September 1988. 

[16] R. I. Chan et el., A Software Environment for OSI Protocol Testing Systems, 
Submitted for publication, January 1989. 

18 



----

Test System System Under Test 

-- -- ----- ------ -- --, • - - - - - -- --- ---j 

Test 

Manager 

Encoder/ 

Decoder 

-d_ 1:--

Active 

Ferry 

Clip 

1 - -- __ _, _ _ _ 

I 
I 
I 

' I 

I 

I I 

' 

j 
I 
I 

; 
I 
I 

; 
I 

Ferry Transfer Medium Protocol 

I 
Passive 

Ferry 

Clip 

~ 

Figure I - Schematic Diagram of Ferry Test System 

I I JUT 

Test Sy_stem 

Test Manager 

( Upptr I Lower Tester > 

Encoder I Decoder 

- - - - -- 7 

,t,.ct1vo Forry FSM 

Lower Mapping Module 

I 
_ _ ____ .J 

Forry Tran,rtr Mtdlum 

2Cal 

Actlv" 
Ferry 
Clip 

Sy_stem Under Test 

Passive 
Ferry 
Clip 

,- -- -- -- ----- - -
' 

I 
I 

Pa!!ilYe Ftrry FSM 

Lower Mapping 
Moe'.lule 

--, 

L --- -
___________ J 

Ftrry Transfer Medium 

21b) 

Figure 2 • The FelT)' Oips 

I U T 



SAMPLE ,ERRY CLIP ITL TEST SCRIPT 

PURPOSE : Send a Re:,tart Request, expect. a ?.estart Confirm . 
Send a Call Request, expect a Cal: Confirm. 
Send a Clear Request, expect a Cl~ar Confirm. 

ENTER ,UNCTION KEY Cfl TO START THE TEST 

( Initialize Test Manager) 
TCLR 

( State 0 : Wait for CNTL-Fl to be pressed, t~en send Ferry Connect Request) 
0 STATE{ ,K C,l ACTION{ 

JSTATE 

- PRINT TIME 
"TEST STARTING" BTYPE NCR 20 COUNTERl ! 
f CONN 1 NEW STATE 

!ACTION -

State 1 Wait for Ferry Connect Confirm, send Restart Request) 
STATE{ , CONN CONF 1 ?RX ACTION{ 

l STATE 

- - PKT:RESTART 
2 NEW STATE 

IACTION -
OTHER EVENT ACTION{ 

- " VERDICT " RTYPE " INCONCLUSIVE" YTYPE NCR 
TH STOP 

!ACTION 

( State 2 : Wait for Restart Confirm, send Call Request 
2 STATE{ RESTARTcnf l ?RX ACTION{ 

}STATE 

PKT:CALL 3 NEW STATE 
JACTION -

OTHER EVENT ACTION( 
- " VERDICT : " R':"YPE • FAILED" RTYPE WCR 

F DISC TM STOP 
}ACTION -

( State 3 : Wait for Call Confirm, send Clear Request) 
3 STATE{ CALLcnf 1 ?RX ACTION{ 

)STI\TF. 

PKT:CLEAR 
4 NEW STATE 

}ACTION -
OTHER EVENT ACTION( 

"VERDICT: • RTYPE" ,AILED" RTYPE WCR 
F DISC TH STOP 

!ACTION -

State 1 Wait for Clear Confirm, send Ferry Dioconnect Requeot) 
STATE{ CLEARcnf 1 ?RX ACTION{ 

) 'T;-.T:-: 

F DISC 
"- VERDICT : "RTYPE • PASSED" BTYPE WCR 
• TEST FINISHED" BTYPE WCR TM STOP 

}ACTION -
,)THER EVENT ACTION I 

F DISC 
• - VERDICT : "RTYPE" FAILED" RTYPE WCR 
"TEST FINISHED" BTYPE WCR TM STOP 

}ACTION -

Piqu~e 3( ~) - Sample ITL Test Script 

PRESS CFl TO START 
OCTOBER 13 1988 17 : 39 : 45 
TEST STARTING 
SEND FERRY CONNECT 
RECV FERRY CONNECT CONFffiM 
SEND LOWER SAP PKT:RESTARTreq 
RECV LOWER SAP PKT:RESTARTcnf 
SEND LOWER SAP PKT:CALLreq 
RECV LOWER SAP PKT:CALLcnf 
SEND LOWER SAP PKT:CLEARreq 
RECV LOWER SAP PKT:CLEARcnf 
SEND FERRY DISCONNECT 
VERDICT : PASSED 
TEST FINISHED 

Figure 3(b) - Test Log 



State Event Action Next State 

FM-CONNn:,q FT-CONNffll conncctUlg 
FM-DISCreo IDie idle 

idle FM-CN'Jl. "'II FM-DISC ind idle 
FD-DATAreq 

FT-DISC ind DOiie idle 
FT-ERROR ind FT-DISCreq 

FM-DISCreq FT-DISCreq idle 

connecting FT-CONNcnf FM-CONNcnf connected 
FT-DISC ind FM-DISC ind idle 
FT-ERROR ind EXCEPTION idle 

FM-DISCreq FT-DISC n:,q idle 

FM-CN'Jl. "'II FT-DATA req(FY-CN11..) connected 
FD-DATAreq FT-DATA req(FY-DATA) 

connected 
FT-DATA ind Pl: FD-DATA ind connected 

P2: conaol lClions 

FT-DISC ind FM-DISC ind idle 
FT-ERROR ind EXCEPTION 

Notes: 
• {n any StMe. lhe .:uan and lrlnSibon film for e'IUU IIOl listed in lhe table arc the same IS 

those listed for the FT-ERROR ind eYent, t-t. if an FM-CNI1. req is received in lhe c_c,­
ing Slllle, the EXCEPTION action should be latm and 1he Slale should change to idlt. 

• EXCEPTION indicates the dual actions FT-DISC req and FM-DISC ind. 

Pl (predicate 1)-lhe FT-DATA ru:eived isan FY-DATA PDU. 
• P2 (predi~ 2) - ihe FT-DATA received is an FY-CJlrIL POU; action is to process FY­

CNTI, flag bill and gcncnte FM-Om. cnf. 

Appendix A - State Table for Active Ferry 

Ff-OONNECT iequest 
Ff-OONNECT indication 
Ff-OONNECT response 
Ff-OONNECT confirm 
Ff-DISOONNECT iequest 
Ff-DISOONNECT indication 
Ff-DATA iequest 
Ff-DATA indication 
Ff-ERROR indication 

(Fl'-OONN ieq) 
(Fl'-OONN ind) 
(Fl'-OONN rsp) 
(Fl'-OONN cnf) 
(Ff-DISC ieq), 
(Ff-DISC ind), 
(Ff-DATA rcq), 
(Ff-DATA ind), and 
(Ff-ERR ind). 

Appendix C - FT-ASPS 

[test system only], 
[SUTonly], 
[SUTonly], 
[test system only], 

State Event Action Next State 

FT-CONN ind Pl: FT-CONN np connected 
1n. ~-nH:r- :,11.. 

idle FT-DISC ind IDie idle 
FT-ERROR ind FT-DISCreq 

FD-DATAreq none idle 

FT-DISC ind none idle 
rn-. cnnnn ,_., r::T."'"" -

P3: FT-DATA req (loop back) 
connected FT-DATA ind P4: FD-DATA ind connected 

nc. _....,_•-• 

FD-DATAreq P6: FT-DATA req{FY-DATA) conneaed 
P'J: none 

Notes: 
• In any state. the action and lrmBilion latm for eftlllS not listed in the table are lhe same IS 

those liSted for lhe FT-ERROR ind effl!L 

Pl (predicate 1)-lhe incoming FT-CONN ind itaa:eplable. 

P2 - lhe incoming FT-CONN ind is miacceptable. 

P3 - lhe passive ferry clip is in I~ mode.. 
P4 - ~ved data is FY -DATA PDU and the )m!ive feny clip is not in loop-badt mode. 

• PS - l'!Ceived data is FY -CNTL POU and the pusi.Ye ferry clip is not in loop-back mode. ~­
Conn appropriate control actiom lllld geneme FY-<Nll.. (ming FT-DATA rcq) back to aam, 
ferry. 

• P6 - lhe pllSSive feny clip is mt in ~baclc mode. 

Appendix B - State Table for Passive Ferry 

FM-OONNECT request 
FM-OONNECT confirm 
FM-DISCONNECT request 
FM-DISCONNECT indication 
FM-OONTROL request 
FM-OONTROL confirm 

(FM-OONN req), 
(FM-OONN cn0, 
(FM-DISC rcq), 
(FM-DISC ind), 
(FM-CN1L rcq), and 
(FM-CN1L cnf). 

Appendix D - FM-ASPS 

FD-DATA request 
FD-DAT A indication 

(FD-DATA mt), and 
(FD-DAT A ind). 

Appendix E - FD-ASPS 


