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Abstract 
The curvature scale space representations of planar curves are computed by 

combining information about the curvature of those curves at multiple levels of 
detail. Similarly, curvature and torsion scale space representations of space curves 
are computed by combining information about the curvature and torsion of those 
curves at varying levels of detail. 

Curvature and torsion scale space representations satisfy a number of criteria 
such as efficiency, invariance, detail, sensitivity, robustness and uniqueness 
[ okhtarian & Mackworth 1986] which makes them suitable for recognizing a noisy 
curve at any scale or orientation. 

The renormalized curvature and torsion scale space representations [Mackworth 
& Mokhtarian 1988] are more suitable for recognition of curves with non-uniform 
noise added to them hut can only be computed for closed curves. 

The resampled curvature and torsion scale space representations introduced in 
this paper are shown to be more suitable than the renormalized curvature and tor­
sion scale space representations for recognition of curves with non-uniform noise 
added to them. Furthermore, these representations can also be computed for open 
curves. 

A number of properties of the representation are also investigated and 
described. An important new property presented in this paper is that no new curva­
ture zero-crossing points can be created in the resampled curvature scale space 
representation of simple planar curves. 

A. Introduction 
A multi-scale representation for one-dimensional functions was first proposed by 

Stansfield [1980] and later developed by Witkin [1983]. The function /(z) is con­
volved with a Gaussian function as its variance u2 varies from a small to a large 
value. The zero-crossings of the second derivative of each convolved function are 
extracted and marked in the x-u plane. The result is the scale space image of the 
function. 

The curvature scale space image was introduced in [Mokhtarian & Mackworth 
1986] as a new shape representation for planar curves. The representation is com­
puted by convolving a path-based parametric representation of the curve with a 
Gaussian function, as the standard deviation of the Gaussian varies from a small to 
a large value, and extracting the curvature zero-crossing points of the resulting 
curves. The representation is essentially invariant under rotation, uniform scaling 
and translation of the curve. This and a number of other properties makes it suit­
able for recognizing a noisy curve at any scale or orientation. 

Mackworth and Mokhtarian [1988] introduced a modification of the curvature 
scale space image referred to as the renormalized curvature scale space image. This 
representation is computed in a similar fashion but the curve is reparametrized by 
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arc length after convolution. As was demonstrated in [Mackworth & Mokhtarian 
1988], the renormalized curvature scale space image is more suitable for recognizing 
a curve with non-uniform noise added to it. However, unlike the regular curvature 
scale space representation, the renormalized curvature scale space applies only to 
closed curves. 

In this paper, we introduce a further refinement of the curvature scale space 
representation to which we refer as the resampled curvature scale space representa­
tion. It is shown that the resampled curvature scale space is even more suitable than 
the renormalized curvature scale space for recognition of curves with non-uniform 
noise added to them. Furthermore, the resampled curvature scale space can be com­
puted for open as well as closed curves. 

The properties of the new representation are also explored in this paper. It is 
shown that all the properties previously shown to be true about the regular and 
renormalized curvature scale space representations are also true about the resampled 
curvature scale space representation. A new property of the representation is also 
described. It is shown that no new curvature zero-crossing points can exist in the 
resampled curvature scale space image of simple curves. 

In the rest of this paper, sections starting with B are devoted to planar curves 
and those starting with C are devoted to space curves. Section B.I reviews multi­
scale representations of planar curves already proposed. Section B.11 introduces the 
resampled curvature scale space representation for planar curves. Section B.111 
describes the arc length evolution properties of planar curves and section B.IV 
discusses the significance of the results described in section B.111. Similarly, section 
C .I reviews multi-scale representations of space curves already proposed, section 
C.11 introduces the resampled curvature and torsion scale space representation for 
space curves, section C.ITI describes the arc length evolution properties of space 
curves and section C.IV discusses the importance of the results described in section 
C .III. Section D presents the conclusions of this paper. 

B.I. Multi-Scale Representations of Planar Curves 

A planar curve is the set of points whose position vectors are the values of a 
continuous vector-valued and locally one-to-one function. It can be represented by 
the parametric vector equation 

r(u) = (x(u),y(u)). (1) 

The function r( u) is a parametric representation of the curve. A planar curve has an 
infinite number of distinct parametric representations. A parametric representation 
in which the parameter is the arc length s is called a natural parametrization of the 
curve. A natural parametrization can be computed from an arbitrary parametriza­
tion using the following equation 

u 

s = f Ir( v) ldv. 
0 



It can be shown that the curvature ,c( u) of a planar curve is given by: 

( ) - i( u) y( u) - y( u) x( u) IC U - ___..,.......,_._. _ __. ____ ..__ 

(x( u)2 + y( ':')2)3/2 

Therefore it is possible to compute the curvature of a planar curve from its 
parametric representation. 

Given a planar curve 
r = {(x(w),y(w))lw E [0,1]} 

where w is the normalized arc length parameter, an evolved version of that curve is 
defined by 

ro- = {(X(u,u), Y(u,u))lu E [0,11} 
where 

and 

The curvature of r o- is: 

X(u,u) = x(u) @g(u,u) 

Y( u,u) = y( u) @g( u,u) 

The function defined implicitly by 

,c( u,u) = 0 

is the curvature scale space image of r [Mokhtarian & Mackworth 1986]. Figure 
1( a) shows a planar curve depicting the shoreline of Africa. Figure 2( a) shows the 
curvature scale space of that curve. 

Mackworth and Mokhtarian [1988] observed that although w is the normalized 
arc length parameter on the original curve r, the parameter u is not, in general, the 
normalized arc length parameter on the evolved curve r o-• Figure l(b) shows the 
shoreline of Africa with noise added to its lower half. Figure 2(b) shows the curva­
ture scale space of that curve. A comparison of figures 2(a) and 2(b) shows that 
there does not exist a good match of one curvature scale space image to the other. 
To overcome this problem, Mackworth and Mokhtarian [1988] proposed the renor­
malized curvature scale space image. 

Let 

R(u,u) = (X(u,u), Y(u,u)) 

and 
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where 
u 

f IRv{ v,u) I dv 
0 <I> er( u) = _l ___ _ 

JIR 11(v,u)ldv 
0 

Now define 

A -1 Y( w,u) = Y( <I> er ( w) ,u) 

That is, each evolved curve r er is reparametrized by its normalized arc length 
parameter w. 

The function defined implicitly by 

,c(w,u) = 0 

is the renormalized curvature scale space image of r. Figure 3(a) shows the renor­
malized curvature scale space of Africa and figure 3(b) shows the renormalized cur­
vature scale space of noisy Africa. It can be seen that the degree of match of figure 
3(a) to figure 3(b) is much better than the degree of match of figure 2(a) to figure 
2(b). 

B.II. The resampled curvature scale space of planar curves 

Note that as a planar curve evolves according to the process defined in section 
B.I, the parametrization of its coordinate functions x( u) and y( u) does not change. 
In other words, the function mapping values of the parameter u of the original coor­
dinate functions x( u) and y( u) to the values of the parameter u of the smoothed 
coordinate functions X( u,u) and Y( u,u) is the identity function. 

For both theoretical and practical reasons, it is interesting to generalize the 
definition of evolution so that the mapping function can be different from the iden­
tity function. Again let r be defined by: 

r = {(x(w),y(w))lw E [0,1]}. 

The generalized evolution which maps r to r er is now defined by: 

r-+ fer= {(X( W,u), Y( W,u)) I WE [0,1]} 
where 

X( W,u) = x( W) @g( W,u) 

Y( W,u) = y( W) ©u( W,u) 

Note that 
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W = W(w,u) 

and W( w,u0) where u0 is any value of u, is a continuous and monotonic function of 
w. This condition is necessary to ensure physical plausibility since Wis the parame­
ter of the evolved curve r q• 

A specially interesting case is when W always remains the arc length parameter 
as the curve evolves. When this criterion is satisfied, the evolution of r is reffered to 
as arc length evolution. An explicit formula for W can be derived [Gage & Hamilton 
1986]. 

Recall equation (1) 

r( u) = (x( u), y( u)). 

The Frenet equations for a planar curve are given by 

at ar 
- = l-l1en au au 
an ar 
- = -l-l1et. au au 

Let t = u2 /2. Observe that 

a ar 2 a ar ar ar a2r 
at (I au I)= at"(a;;- au)= 2(a;;- auat). 

Note that 

and 

ar 
- =,en at 

since the Gaussian function satisfies the heat equation. It follows that 

~(I ar 12) = 2(1 ar It _ _£._(,en)) = 2(1 ar It. ( a1e n - 1.£E..1 IC2 t)) = -21.£!..12 IC2. 
at au au au au au au au 

Therefore 

or 

~
1 
ar I= _

1 
ar l1e2. 

at au au 
Let L denote the length of the curve. Now observe that 

L L 1 

aL = f ~I ar jdu = -f I ar j1e2du = -f 1e2dw. 
at O at au O au O 

Since the value w0 of the normalized arc length parameter w at a point P measures 
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the length of the curve from the starting point to point P, it follows that 
w 

aaw = -J ,c2( w,t) dW 
t 0 

and therefore 
tW 

W( w,t) =-ff 1e
2

( W,t) dW dt. 
0 0 

Note that 

W(w,O) = w. 

The function defined implicitly by 

1e( W,u) = O 

is the resampled curvature scale space of r. 

(2) 

Since the function ,c( W,t) in (2) is unknown, W( w,t) can not be computed 
directly from (2). However, the resampled curvature scale space can be computed in 
a simple way: A Gaussian filter based on a small value of the standard deviation is 
computed. The curve r is parametrized by the normalized arc length parameter and 
convolved with the filter. The resulting curve is reparametrized by the normalized 
arc length parameter and convolved again with the same filter. This process is 
repeated until the curve is convex and no longer has any curvature zero-crossing 
points. The curvature zero-crossings of each curve are marked in the resampled cur­
vature scale space image. 

Figure 4(a) shows the resampled curvature scale space of Africa and figure 
4(b) shows the resampled curvature scale space of noisy Africa. Note that a very 
close match can be observed when matching figure 4(a) to figure 4(b). 

B.III. Arc length evolution properties of planar curves 

This section contains a number of results on the arc length evolution of planar 
curves as defined in section B.II. Some of the results are generalizations of the 
results obtained for an earlier formulation of evolution of planar curves [Mackworth 
& Mokhtarian 1988] and others are new results. 

The first five lemmas express a number of fundamental properties of arc length 
evolution. 

Lemma 1. Arc length evolution of a planar curve is invariant under rotation, uni­
form scaling and translation of the curve. 

Proof: It will be shown that arc length evolution is invariant under a general affine 
transform. Let r u = (X( W,u), Y( W,u)) be an arc length evolved version of 
r = (x(w),y(w)). If r u is transformed according to an affine transform, then its new 
coordinates, X1 and Y1, are given by 
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X1( W,a) = aX( W,a) + b Y( W,a) + c 

Y1 ( W,a) = dX( W,a) + e Y( W,a) + f 
Now suppose r is transformed according to an affine transform and then evolved. 
The coordinates X 2 and Y2 of the new curve are 

X2 ( W,a) = ( ax( W) + by( W) + c) @g( W,a) 

Y2 ( W,a) = ( dx( W) + e y( W) + f) @g( W,a) 

Since the convolution operator is distributive [Kees 1982], it follows that 

X2 ( W,a) = X1( W,u) 

Y2( W,u) = Y1( W,u) 

and the lemma. follows. 

Lemma 2. A closed planar curve remains closed during arc length evolution. 

□ 

Proof: Let r = (x( w),y( w)) be a closed curve and let r u = (X( W,a), Y( W,u) be an 
arc length evolved version of r. On r: 

(x(0),y(0)) = (x(l),y(l)) 

therefore on r u: 

(X(O,u), Y(O,u)) = (X(l,u), Y(l,a)) 

and the lemma follows. □ 

Lemma 3. A connected planar curve remains connected during arc length evolu­
tion. 

Proof: Let r = (x(w),y(w)) be a connected planar curve and 
r u = (X( W,a), Y( W,a)) be an arc length evolved version of that curve. Since r is 
connected, x( w) and y( w) are continuous functions and therefore X( W,u) and 
Y( W,a) are also continuous. The rest of the proof is similar to that of lemma 2 in 
[Mackworth & Mokhtarian 1988]. 0 

Lemma 4. The center of mass of a planar curve is invariant during arc length evo­
lution. 

Proof: Let M be the center of mass of r = (x( w),y( w)) with coordinates (xM,Y~­
Then 
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1 

f x(w)dw 1 
0 

= f x(w)dw XM= 1 

fdw 
0 

0 

1 

f y(w)dw 1 
0 

= f y(w)dw YM= 1 

fdw 
0 

0 

Let r 17 = (X( W,u), Y( W,u)) be an arc length evolved version of r with N = (XN, Y N) 
as its center of mass. Observe that 

1 1 00 00 1 

XN= f X(W,u)dW= ff g(v,u)x(W-v)dvdW= f g(v,u)(fx(W-v)dW)dv 
0 0-oo -oo 0 

W covers r 17 exactly once, therefore 
1 

So 

Similarly 

f x( W-v)dW = xM. 
0 

YN= 'JM. 

It follows that Mand N are the same point. D 

Lemma 5. Let r be a closed planar curve and let G be its convex hull. r remains 
inside G during arc length evolution. 

Proof: Since G is simple and convex, every line L tangent to G contains that curve 
in the left (or right) half-plane it creates. Since r is inside G, r is also contained in 
the same half-plane. Now rotate L and r so that L becomes parallel to the y-axis. 
L is now described by the equation x = c. Since L does not intersect r, it follows 
that x( w0) ~ c for every point w0 on r. Let r 17 be an arc length evolved version of r. 
Every point of r 17 is a weighted average of all the points of r. Therefore X( W0 ,u)~c 
for every point W0 on r 17 and r 17 is also contained in the same half-plane. This result 
holds for every line tangent to G therefore r 17 is contained inside the intersection of 
all the left ( or right) half-planes created by the tangent lines of G. It follows that r 17 

is also inside G. D 

Theorem 1. Let r = ( x( w) ,y( w)) be a planar curve in 0 1 and let x( w) and y( w) be 
polynomial functions representing the arc length parametrization of r. A single 
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point on one curvature zero-crossing contour in the resampled curvature scale space 
image of r determines r uniquely up to uniform scaling, rotation and translation 
( except on a set of measure zero). 

Proof: The proof of this theorem is similar to the proof of theorem 1 in 
[Mokhtarian 1988b]. Only the differences will be explained here. Recall that deriva­
tives at one point (at any scale) on any curvature zero-crossing contour in the cur­
vature scale space of r were computed and it was shown that the resulting equa­
tions can be solved for the coefficients of expansion of the curvature function of r in 
functions related to the Hermite polynomials. 

As before, we choose a point on a zero-crossing contour at any scale of the 
resampled curvature scale space image of r and compute the necessary derivatives. 
The value of <1 in the resulting equations is then set to zero. Consequently, the arc 
length evolved curve r u, where u corresponds to the scale at which the derivatives 
were computed, is reconstructed modulus uniform scaling, rotation and translation. 

The next step is to recover the original curve r. This is done by applying 
reverse arc length evolution to r u· Let the arc length evolved curve r u be defined 
by: 

r u = {(X( W,<1), Y( W,<1))1 WE [0,1]} 

A reverse arc length evolved curve r is defined by: 

r = {(x(w),y(w))lw E [0,1]} 
where 

x( w) = X( w,<1) ©DrA_ w,<1) 

y( w) = Y( w,<1) ©DN( w,a) 

where DN is a deblurring operator defined in [Hummel et al. 1987] and 
t w 

w( W,t) = J J ,c2
( w,t)dwdt 

0 0 

where t = q2 /2. As a result, r is recovered modulus uniform scaling, rotation and 
translation. 0 

Theorem 2. Let r be a planar curve in C2• If all arc length evolved curves r u are 
in C2, then all extrema of contours in the resampled curvature scale space image of 
r are maxima. 

Proof: Since by assumption all arc length evolved curves r u are in C2, the condi­
tions of the implicit function theorem are satisfied on contours ,c( W,t) = 0 in the 
resampled curvature scale space image of r and the proof is similar to the proof of 
theorem 1 in [Mackworth & Mokhtarian 1988]. □ 

Theorem 3. Let r = (x(w),y(w)) be a planar curve in C1 and let x(w) and y(w) be 
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polynomial functions of w. Let r u- = (X( W,u), Y( W,u)) be an arc length evolved ver­
sion of r with a cusp point at W0• There is a c5>0 such that r u--s intersects itself in a 
neighborhood of point W0• 

Proof: Theorem 2 in [Mackworth & Mokhtarian 1988] showed theorem 3 to be true 
about any parametrization of the curve therefore it must also be true about arc 
length parametrization or close approximations. 0 

Theorem 4. Simple curves remain simple during arc length evolution. 

Proof: Assume by contradiction that r is a simple curve which intersects itself dur­
ing arc length evolution. r must touch itself at point P before self-intersection. Let 
r u- be the first arc length evolved version of r which touches itself such that r u-+s is 
self-intersecting. There are two distinct, non-overlapping neighborhoods of r u- which 
contain point P. Let these neighborhoods be S1 and S2• Let u=O at point P. It fol­
lows that S1 and S2 can be approximated using the lowest non-zero terms in the 
polynomial representation of their coordinate functions: 

S1 = (um,u") 

S2 = { uP,u~ 

Assume w.l.o.g. that P is at the origin. It follows that m, n, p and q are at least 
equal to one. Assume further w.l.o.g. that n>m and q>p. We will now find approxi­
mations to arc length parametrizations of S1 and S2• On segment S1: 

X(u,u) = um 

Y( u,u) = u" 

Therefore 

Xu( u,u) = mum-1 

Yu( u,u) = nun-l 

and 
u 

s = I ✓x:2.s + 
0 

It follows from Taylor's theorem that about u=O: 

2 1/2 2 
{1 + ~u2(n-m)) ~ 1 + _!!,_u2(n-m) . 

m2 2m2 

Hence 
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u 
2 2 

s = J (mum-1 + _!:_u2n-m-l)du = um+ n u2n-m. 

0 
2m 4nm- 2m2 

It follows from the assumption n> m that 2n-m> m. Therefore s can be approxi­
mated as: 

so 
u !:: (s)l/m 

and 
Un!:: (s)nfm 

and an approximation to the arc length parametrization of S1 in a neighborhood of 
P is given by: 

X(s,u) = s 

Y(s,o-) = (s)nfm 

Now let r = s-1. Then 

X(r,o-) = r+l 

Y(r,o-) = (r+l)n/m 

It follows from Taylor's theorem that about r=O: 

Y(r,o-) ~ 1 + ..!:., + __r:!_(~l)r2. 
m 2m m 

Therefore the new arc length parametrization of S1 is given by: 

X(r,o-) = 1 + r 

Y(r,o-) = 1 + ..!:.r + __r:!_(..!!..-1)r2 • 
m 2m m 

We now deblur this arc length parametrization of S1 by an infinitesimal amount t. 

This is done by convolving each of X 1 and Y1 with the function .};e_,,:z(l- v2), an 

approximation to the deblurring operator derived in [Hummel et al. 1987] . This 
approximation is good for small values of t, the scale factor controlling the amount 
of deblurring. Note that t = u2/2. On the deblurred segment: 

X1(r,u) = 1 + r 

Y1 ( r,o-) = 1 + ..!!.., + __!!_( ..!:._ 1)( r2 - 2t). 
m 2m m 

Similarly, an arc length parametrization for the deblurred segment S2 is given by: 

X2(r,o-) = 1 + r 

Y2(r,o-) = 1 + .!Lr+ L(.!L-1)(r2 -2t). 
p 2p p 

Let ..!!.. be larger than .!!... It follows that at r=O, Y1 is less than Y2• However, as r 
m p 
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grows, YI becomes larger than Y2. Therefore the curve intersects itself just before 
touching itself. This is a contradiction of the assumption that the curve was simple 
before touching itself. It follows that a simple curve remains simple during arc 
length evolution. D 

Theorem 5: Let r = ( x( w), y( w)) be a planar curve in C1 and let x( w) and y( w) be 
polynomial functions of w. Let r (7 = (X( W,a), Y( W,a)) be an arc length evolved 
version of r with a cusp point at W0• There is a h>O such that r t7+o has two new 
curvature zero-crossings in a neighborhood of W0• 

Proof: It will be shown that this theorem holds for an arbitrary parametrization of 
r (7' Therefore it must also be true of arc length parametrization or close approxima­
tions. 

Let ( x( w), y( w)) be an arbitrary parametrization of r '7 with a cusp point at u0• 

Using a case analysis similar to the one in the proof of theorem 2 in [Mackworth & 
Mokhtarian 1988] to characterize all possible kinds of singularities of r (7 at u0, we 
can again conclude that only the singular points in cases 1 and 4 are cusp points. In 
case 1, the curve is approximated by ( u11

\ u") in a neighborhood of "o where m and 
n are both even. As shown in the proof of theorem 2 in [Mackworth & Mokhtarian 
1988], this type of cusp point can not arise on r c, if r is in CI. We now turn to the 
cusp points of case 4. Recall that in case 4, the curve r c, is approximated, in a 
neighborhood of "o, by ( u'"', u") where mis even and n is odd. Observe that 

and 

x(u) = mum-I x(u) = m(m-1) um-2 

y( u) = nun-I 

,c( u) = i( u) y( u) - ri( u) x( u) 
(x(u)2 + ri(u)2)3/2 

y(u) = n(n-1) un-2 

mn(n-1) um+n-3 - m(m- l)num+n-3 

- ( m2u2m-2 + n2u2 n-2) a/2 

Since n> m, ,c( u) is always positive on either side of the cusp point in a neighbor­
hood of "o· Therefore no curvature zero-crossings exist in that neighborhood on r c,• 

We now derive analytical expressions for r c,+c5 so that it can be analyzed in a 
neighborhood of "o· To blur function /( u) = u", we convolve a rescaled version of 

that function with the function .};-e-i', the deblurring operator, as follows: 

00 00 

F(u) = f J;-e-i'f(u+2xv't)dx= J;-J e-z
2
(u+2xv't)kdx 

-00 -oo 

where t is the scale factor and controls the amount of blurring. Solving the integral 
above yields 
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1.3_5 ... (p-l) (2t)Pl2k(k-1) ; · · (k-p+l) uk-p_ 
p. 

k 

F(u) = E 
p=O 

(p euen) 

The following are four functions of the form/( u) = uk and their blurred versions: 

a. /(u) = u2 

b. f(u) = u3 

c. f(u) = u4 

d. /(u) = u5 

F(u) = u2 + 2t 
F(u) = u3 + 6tu 
F( u) = u4 + 12tu2 + 12t2 
F( u) = u5 + 20tu3 + 60t2u 

An expression for r <1+6 in a neighborhood of the cusp point can be obtained by 
by blurring each of its coordinate functions: 

m-2 m 

+ C m-2 t 2 u,2 + C m t 2 

2 

n-1 

Y( u) = un + c;tun-2 + c~t2un--4 + · · · + c'n-1 t 
2 u. 

2 

-
2 

Note that all constants are positive, all powers of u in X( u) are even and all powers 
of u in Y( u) are odd. It follows that all powers of u in 

are odd, all powers of u in 

are even, all powers of u in 

are even and all powers of u in 

Y(u) = n(n-l)un-2 + (n-2)(n-3)c{tun--4 + 

are odd. 

m-2 

+ 2c m-2 t 
2 u 

2 

m-2 

+ 2c m-2 t 2 

2 

n-1 
I 2 + C n-1 t 

2 

n-3 
I 2 + C n-3 t 

2 

The curvature of r <1+6 in a neighborhood of u0 is given by 

,c( u) = X( ~) Y( u) - _Y( u)X( u) . 
(X(u)2 + Y(u)2)3/2 

(3) 

Since the denominator of (3) never goes to zero in a neighborhood of u0, the zero­
crossings of ,c ( u) are the same as those of 
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,c'(u) = X(u) Y(u) - Y(u)X(u). 

Observe that the term with the highest pow:el' of. u in X(u) Y(u) is mn(n-l)um+n-3 

and th~ tei:1:Il with th~ higP.-est power of u in Y(u)X(u) is m(m- l)num+n-3 and that in 
both X( u) Y( u) and Y( u)X( u), all po~ers ~f u are even an~ all .. constants are posi­
tive. Furthermore, note that at u=O, X( u) Y( u) is zero and Y( u)X( u) > _O. '.f.herefore 
a.t u .. o, ,c < 0. As u grows larger in absolute value, the terms in X( u) Y( u) and 
Y( u)X( u) with highest powers of u become dominant (all other terms have positive 
powers of t=6 in them). Since the dominant terms have equal powers of u, the one 
vyith ~Jie larger coefficient becomes the larger term., Sin~~ n > m, the largest term in 
X( u) Y( u) becomes larger than the largest term in Y( u)X( u). Therefore as u grows in 
absolute value, ,c becomes positive. It follows that there are two curvature zero­
crossings in a neighborhood of "o on r u+6• These zero-crossings are new since it was 
shown that no zero-crossings exist in a neighborhood of tLo on r u· 

This completes the proof of theorem 5. □ 

B.IV. Discussion 

Lemma 1 showed that arc length evolution of a planar curve is invariant under 
rotation, uniform scaling and translation of the curve. This shows that the resam­
pled curvature scale space of a planar curve has the invariance property 
[Mokhtarian & Mackworth 1986]. The invariance property is essential since it makes 
it possible to match a planar curve to another of similar shape which has undergone 
a transformation consisting of arbitrary amounts of rotation, uniform scaling and 
translation. 

Lemmas 2 and 3 showed that connectedness and closedness of a planar curve 
are preserved during arc length evolution. These lemmas show that arc length evolu­
tion of a planar curve is a physically plausible operation. Consider a closed, con­
nected planar curve that represents the boundary of a two-dimensional object. If 
such a curve is not closed or connected after arc length evolution, then it can no 
longer admit a physically plausible interpretation. 

Lemma 4 showed that the center of mass of a planar curve does not move as 
the curve evolves and lemma 5 showed that a planar curve remains inside its convex 
hull during arc length evolution. Together, lemmas 4 and 5 impose constraints on 
the physical location of a planar curve as it evolves. These constraints become useful 
whenever the physical location of curves in an image or their locations with respect 
to each other is important. A possible application area is stereo matching in which 
it is advantageous to carry out matching at coarser levels of detail first and then 
match at fine detail levels to increase accuracy. 

Theorem 1 showed that the resampled curvature scale space of a planar curve 
determines that curve uniquely modulus uniform scaling, rotation and translation. 
This shows that the resampled curvature scale space satisfies the uniqueness pro­
perty [Mokhtarian & Mackworth 1986]. This property ensures that curves of 
different shapes do not have the same representation. 
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Theorems 3 and 5 together locally characterize the behaviour of a planar curve 
just before and just after the formation of a cusp point during arc length evolution. 
This behaviour can be used to detect any cusp points that form during the arc 
length evolution of a planar curve. Such cusp points can then be used effectively to 
facilitate matching since they provide us with a set of distinctive and easily recog­
nizable featUl'es. 

Theorem 2 showed that if a planar curve remains smooth during arc length 
evolution, then no new curvature zer~crossings will be observed in its resampled 
curvature scale space image. Theorem 3 showed that every planar intersects itself 
during arc length evolution ju.st before the formation of a cusp point and theorem 4 
showed that simple curves remain simple during arc length evolution. Combining 
theorems 2, 3 and 4, we conclude that no new curvatuxe zer<rcrossing points are 
created during arc length evolution of simple curves. This is an important result 
since simple curves are a very important subclass of planar curves. Note that a sub­
class of self-crossing curves also shares this property. 

The result stated by theorem 4 is also very important. Simple planar curves 
usually represent the boundaries of tw~djmensional objects. Arc length evolved ver­
sions of those curves can only have physical plausibility if they are also simple. 
Theorem 4 shows that this is in fact the case. Figure 5 shows a simple curve and its 
evolved versions as defined in [Mokhtarian & Mackworth 1986]. It can be seen that 
the curve intersects itself during evolution. Figlll'e 6 shows the same curve and its 
arc length evolved versions. As expected, the curve remains simple during arc 
length evolution. 

C.I. Multi-Scale Representations of Space Curves 

A multi-scale representation for space curves (Mokhtarian 1988c] can be 
obtained by generalizing the concepts described in section B.I. A space cUl've is 
represented by the continuous, vector-valued and locally one-to-one function 

r(u) = (x(u),y(u),z(u)). 

An evolved version of a space curve 

r = {(x(w),y(w),z(w))lw E [0,1)} 

where w is the normalized arc length parameter, is defined by 

rcr = {(X(u,u), Y(u,u),Z(u,u))lu E [0,1)} 
where 

X(u,u) = x(u) @g(u,u) 

Y( u,u) = y( u) @g( u,u) 

and 

Z(u,u) = z(u) @g(u,u). 

It can be shown [ Goetz 1970] that the curvatlll'e of each r er is given by: 
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where 

A= 
Yu( u,u) Zu(u,u) 

B= 
Zu(u,u) Xu(u,u) 

Yuu( u,u) Zuu(u,u) Zuu( u,u) Xuu( u,u) 

C= 
Xu(u,u) Yu( u,u) 
Xuu(u,u) Yuu( u,u) 

and that the torsion of each r 17 is given by: 

Xu( u,u) Yu( u,u) Zu( u,u) 
Xuu( u,u) Yuu( u,u) Zuu( u,u) 
Xuuu( u,u) Yuuu( u,u) Zuuu( u,u) r(u,u) = ..;..._ __________ _ 

A2 + B2 + (j1, 

The function defined implicitly by 

,c( u,u) = c 

is the curvature scale space image of r and the function defined implicitly by 

r(u,u) = 0 

is the torsion scale space image of r. The curvature and torsion scale space images 
of a space curve constitute a multi-scale representation of that curve. 

Every evolved curve r 
17 

can be reparametrized by its normalized arc length 
parameter w using the function cl> u( u) defined by 

u 

JIRv(v,u)ldv 
0 w = cl> u( u) = _l ___ _ 

f lRv( v,u) ldv 
0 

where 

R(u,u) = (X(u,u), Y(u,u),Z(u,u)). 

The function defined implicitly by 

,c( w,u) = c 

is the renormalized curvature scale space image of r and the function defined impli­
citly by 

r(w,u) = 0 

is the renormalized torsion scale space image of r. 
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C.11. The resampled curvature and torsion scale space of space 
curves 

The resampled curvature and torsion scale space images of a space curve can be 
obtained by generalizing the concepts defined in section B.II. 

An arc length evolved version of 
r = {(x(w),y(w),z(w))lw E [0,1]} 

is defined by 

where 
ro- = {(X(W,u), Y(W,u),Z(W,u))jWE [0,1]} 

X( W,u) = x( W) @g( W,u) 

Y( W,u) = y( W) @g( W,u) 

Z( W,u) = z( W) @g( W,u) 

and W( w,u0), where u0 is any value of u, is a continuous and monotonic function of 
w. Furthermore, W always remains the arc length parameter as the curve evolves. 
Again, an explicit formula for W can be derived. Let 

r(u) = (z(u),y(u),z(u)). 

The Frenet equations for a space curve are given by: 

at = 
1 
ar IKD 

au au 
an ar ar 
au = -I au I K, t + I au IT b. 

Let t = u1-/2. Observe that 

a ar 2 a ar ar ar a2r 
at(1 au I ) = at( a;;-a;;) = 2( au· auat ). 

Note that 

and 

ar - = ,en at 
since the Gaussian function satisfies the heat equation. Therefore 

.£..(I ar 12)=2(1 ar It . .-£...(,cn))=2(l~lt. ( aK n-1~1 K 2 t+1~1,crb))=-21~1 2
1e

2 

at au au au au au au au au 
which is identical to what was derived in section B.11. Therefore it follows again 
that 
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tW 

W(w,t) =-ff ,c2( W,t) dWdt. 
00 

The function defined implicitly by 

,c( W,u) = c 

is the resampled curvature scale space of r and the function defined implicitly by 

r(W,u) = 0 

is the resampled torsion scale space of r. 

(2) 

In practice, however, the resampled curvature and torsion scale space images of 
a space curve are computed using a procedure similar to the one described in section 
B.11. The arc length evolution of the curve continues until the number of curvature 
level-crossings drops to zero and the number of torsion zero-crossings drops to two. 
The resampled curvature and torsion scale space images of a space curve together 
constitute a multi-scale representation of that curve. 

C.III. Arc length evolution properties of space curves 

This section contains a number of results on the arc length evolution of space 
curves. These results are generalizations of results obtained for an earlier formula­
tion of evolution of space curves [Mokhtarian 1988c]. 

The first five lemmas express a number of fundamental properties of arc length 
evolution. 

Lemma 6. Arc length evolution of a space curve is invariant under rotation, uni­
form scaling and translation of the curve. 

Proof: Similar to proof of lemma 1 in section B.111 and to proof of lemma 1 in 
[Mokhtarian 1988a]. D 

Lemma 7. A closed space curve remains closed during arc length evolution. 

Proof: Similar to proof of lemma 2 in section B.111 and to proof of lemma 3 in 
[Mokhtarian 1988a]. D 

Lemma 8. A connected space curve remains connected during arc length evolution. 

Proof: Similar to proof of lemma 3 in section B.111 and to proof of lemma 2 in 
[Mokhtarian 1988a]. D 

Lemma 9. The center of mass of a space curve is invariant during arc length evolu­
tion. 

Proof: Similar to proof of lemma 4 in section B.111 and to proof of lemma 4 in 
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[Mokhtarian 1988a]. □ 

Lemma 10. Let r be a closed space curve and let G be its convex hull. r remains 
inside G during arc length evolution. 

Proof: Same as proof of lemma 5 in [Mokhtarian 1988a]. □ 

Theorem 6. Let r = ( x( w), y( w), z( w)) be a space curve in 0 1 and let x( w), y( w) 
and z( w) be polynomial functions representing the a.re length parametrization of r. 
A single point on one torsion zero-crossing contour in the resampled torsion scale 
space image of r determines r modulus function f3(w) = 1e

2(w)r(w) (except on a set 
of measure zero). 

Proof: Similar to proof of theorem 2 in [Mokhtarian 1988b]. The only difference is 
that an arc length evolved curve r u (rather than r) is recovered, modulus function 
/3( W,u), to which reverse arc length evolution is applied to recover r modulus {J(w). 
The procedure is similar to the one described in the proof of theorem 1 in section 
B.111. □ 

Theorem 'I. Let r = ( x( w), y( w), z( w)) be a space curve in 0 1 and let x( w), y( w) 
and z(w) be polynomial functions of w. Let fu= (X(W,u), Y(W,u),Z(W,a)) be an 
arc length evolved version of r with a cusp point at W0• There exists a o>O such 
that either r u-6 intersects itself in a neighborhood of point W0, or two projections of 
r u-6 intersect themselves in a neighborhood of W0• 

Proof: Theorem 1 in [Mokhtarian 1988a] showed theorem 7 to be true of any 
parametrization of the curve therefore it must also be true of arc length parametri­
zation or close approximations. □ 

Theorem 8. let r = (x( w), y( w), z( w)) be a space curve in 0 1 and let x( w), y( w) and 
z( w) be polynomial functions of w. Let r u = (X( W,u), Y( W,u), Z( W,u)) be an arc 
length evolved version of r with a cusp point at W0• There exists a 6>0 such that 
either a torsion zero-crossing point exists at W0 on curves r u-6 and r u+6, or r u+6 has 
two new torsion zero-crossings in a neighborhood of W0• 

Proof: Theorem 2 in [Mokhtarian 1988a} showed theorem 8 to be true of any 
parametrization of the curve therefore it must also be true of arc length parametri­
zation or close approximations. 0 

C.IV. Discussion 

The arguments made in this section are similar to some of the arguments made 
in section B.IV. Lemma 6 shows that the resampled torsion scale space of a space 
curve has the invariance property [Mokhtarian 1988c]. Lemmas 'I and 8 show that 
arc length evolution of a space curve is a physically plausible operation and lemmas 
9 and 10 impose constraints on the physical location of a space curve during arc 
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length evolution. Theorem 6 shows that the resampled torsion scale space of a space 
curve is usually sufficient to distinguish that curve from other space curves to which 
it is being compared. Theorems 7 and 8 together locally characterize the behaviour 
of a space curve just before and just after the formation of a cusp point during arc 
length evolution. 

D. Conclusions 
The concept of arc length evolution was defined in this paper and the resam­

pled curvature and torsion scale space representations were proposed as new multi­
scale representations for planar and space curves. 

It was shown that the resampled curvature scale space representations are more 
suitable than the renormalized curvature scale space representations for matching a 
curve to another curve of similar shape with added non-uniform noise. 

A number of arc length evolution properties of planar and space curves were 
also investigated in this paper. A new result obtained is that simple planar curves 
remain simple during arc length evolution. Combining this with other results, we 
conclude that no new curvature zero-crossing points can exist at higher scales in the 
resampled curvature scale space representation of simple curves. 
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(a) Coastline of Africa. 

(b) Coastline of Africa with added noise. 

Figure 1. Two planar curves used as test data. 
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(a) The curvature scale space image of Africa. 
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(b) The curvature scale space image of noisy Africa. 

Figure 2. The curvature scale space images of Africa and noisy Africa. 



(J' 

w 

(a) The renormalized curvature scale space image of Africa. 
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{b) The renormalized curvature scale space image of noisy Africa. 

Figure 3. The renormalized curvature scale space images of Africa and noisy Africa. 
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( a) The resampled curvature scale space image of Africa. 
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(b) The resampled curvature scale space image of noisy Africa. 

Figure 4. The resampled curvature scale space images of Africa and noisy Africa. 



(a.) A simple curve (b) Convolved with o-=4 

(c) Convolved with o-=16 ( d) Convolved with u=25 

( e) Convolved with u=32 (D Convolved with u=48 

Figure 5. A simple curve during [ regular] evolution. 



(a) A simple curve (b) After 3 iterations 

( c) After 6 iterations (d) After 10 iterations 

(e) After 30 iterations (f) After 50 iterations 

Figure 6. A simple curve during arc length evolution. 


