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ABSTRACT 

In the paper we construct abstract algebras which yield invariants of graphs 

(including graphs with colored edges - chromatic graphs). we analyse properties 

of those algebras. We show that various polynomials of graphs are yielded by 

models of the algebras (including Tutte and matching polynomials). In particular 

we consider a generalization of Tutte's polynomial to a polynomial of chromatic 

graphs. We analyse relation of graph polynomials with recently discovered link 

polynomials. 

It is known that computing of the Tutte polynomial is NP-hard. We show that 

a part of Tutte polynomial (and its generalization) can be computed faster than 

.in exponential time. 





1. Introduction 

By a graph G = (V(G) ,E(G)) we understand a finite multigraph (i . e. we allow 

loops and multiedges). By m we denote the number of edges and by n the number of 

vertices of G. The number of connected components of G is denoted by p
0 

and its 

cyclomatic number by p1 . By G - ewe denote the graph obtained from G by 

removing edge e, by G/e the graph obtained from G - e by identifying the 

endpoints of e, and by G//e the graph obtained from G by removing endpoints of 

edge e. 

Let S be the family of all finite graphs and A be some set. By graph 

invariant we understand a function W: S ➔ A s.t. if G1 is isomorphic to G2 then 

By chromatic graph we understand a graph with a function on edges c: E(G) ➔ 

z x {d,i}. The first element of the pair c(e) will be called the color of e and 

the second the attribute (dark or light) of c. The family of finite chromatic 

graphs will be denoted by S'. 

By a plane graph we understand a planar graph together with its embedding on 

the plane. By a dual to a plane connected chromatic graph G we understand a 

graph G* s.t. V(G*) and E(G*) are defined as for nonchromatic graphs and if 

e* E E(G*) is the dual edge toe E E(G) then we assign toe* the same color as to 

e but the opposite attribute. The dual to a non-connected graph is the disjoint 

sum of duals to its connected components. 

By an isthmus we understand an edge whose removal disconnects graph and by a 

loop we understand such an edge (v,w) that v = w. A (connected) graph whose 

edges are all either isthmus or loops is called a (tree) forest with loops. 

The disjoint sum of the graphs G1 and G2 will be denoted by G
1
uG

2
. A graph 

of i isolated vertices is denoted by N . . 
l 

The paper is organised as follows: 
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In the next section we introduce abstract algebras for nonchromatic graphs 

and we show how these algebras yield known polynomials of graphs. 

In the third section we generalize the algebraic approach to chromatic 

graphs and other graphs with some additional structure. 

In the fourth section we introduce matched diagrams of links which 

(following the idea of Jaeger [J87)) establish a new relationship between links 

and graphs. 

In the last section we address some computational aspects of graph 

polynomials. 

The paper is an extended version of the manuscript [PP87]. In the meantime 

there appear papers dealing with similar problems, [M87), [K87), [Tr88], which 

affect the current version of the paper. 

2. Algebraic approach to graphs invariants 

One can observe that a very important class of graphs invariants, namely 

polynomials of graphs, including chromatic polynomial, Tutte polynomial [T84), 

Jaeger polynomial [A86), can be computed in a very similar manner. If we denote 

by WG polynomial of graph G then WG is a linear function of WG-e and WG/e' This 

gives a recursive definition of a polynomial for graph G: decompose G to G-e and 

G/e by removing and contracting some edge e and compute polynomials for obtained 

graphs. One of the differences between above polynomials is that computation 

rules for some of them forbid subtracting or deleting some kinds of edges (e.g. 

isthmus, loops). As a result differeent classes of graphs are considered as 

non-decomposable (i.e. polynomials for graphs in this class have to be computed 

explicitly) . 

In general we consider family of graph invariants which can be computed in a 

,. 
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recoursive way (i.e. to compute polynomial W(G) we compute polynomials 

W(G1), ... ,W(Gs) for simpler graphs G1 , ... ,Gs' and then combine the results). 

This computation process can be visualized with the help of a tree which has W(G) 

in its root, W(G1), ... ,W(Gs) are children of W(G) and so on. We will refer to 

such a tree as to a computation tree for W(G). Note that W(G) may have number of 

different computation trees (i.e. there may be many different ways of chasing 

G1 , ... ,Gs) but all of them must lead to the same result. 

In this chapter we introduce abstract algebras whose models yield graphs 

invariants. In particular many known graph polynomials (including matching 

polynomial) are models of one of the algebras. The construction of the algebras 

is based on the Conway algebra introduced for links in [PT87]. 

Consider an abstract algebra of the following type: 

~1 = <U, I , {a. } . I> 
l 1€ 

where u is a universum, is a two argument operation (I: u x u ➔ U) and 

{a.}. I are zero-argument operations (constants from U). Furthermore I satisfies 
l 1€ 

the following axiom: 

Axl : ( a I b) ( c I d) = ( a I c ) I ( b I d) 

We will use, for convenience, different index sets for the index set I, but all 

of them will be isomorphic to the set of natural numbers N. 

As a model for the above abstract algebra we can consider the algebra which 

has polynomials of variables A,B, {z.}. N as the universum. The operation I is 
l 1€ 

interpreted as follows: 

alb= Ba+ Ab 

and constants are defined as a. = z .. We will call this model the basic model. 
l l 
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Note that in this model we never multiply variables z .. In fact it would be 
1 

more natural to consider as a universum Z[A,B)-modul with free basis {z.}. N' So 
1 1€ 

i we could define U = Z[A,B,z], a. = z and obtain a model which is Z[A,B] 
1 

isomorphic to the above model. 

An important property of the algebra A-1 is that the word problem is 

decidable (i.e. we can decide in a finite time whether two words define the same 

element of the algebra). It follows from the fact that left and right sides of 

the relation in Axl have the same length. 

We will show how the above abstract algebra can be used to define graphs 

invariant. 

Let G/Te denote the graph G-elJT, where T is a tree without loops, if e is a 

loop and G/e otherwise. 

Theorem 2.1 Let Q.:: <U,1, {a.}. N> be a model of algebra 0.1 then the following 
1 1€ "" 

function W: J ➔ U is well defined and therefore is a graph invariant 

( i) 

(ii) 

W(N.) =a.where N. denotes a graph of n isolated vertices 
1 1 1 

VG€), Ve€E(G) 

W(G) = W(G-e) IW(G/Te) 

The proof follows by induction on pairs (p1 ,m) where p1 is the cyclornatic 

number and mis the number of edges. We order the pairs lexicographically. For 

p
1 

= 0,m = 0 the function Wis well defined by point (i). Assume that Wis well 

defined for all graphs with (p
1

,rn) < (i,j). We have to show that the value W(G) 

does not depend on the order of deleting and contracting edges. If m = 1 then we 

have no choice and the theorem follows immediately by the inductive step. Assume 

that rn ~ 2 and let e,f€E(G). Let 

1-
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L = W(G-e) IW(G/ e) 
T 

R = W(G-f) IW(G/Tf) 

Then by the inductivehypothesis W(G-e) ,W(G/e) ,W(G-f) ,W(G/f) are well defined so 

we can assume 

but 

W(G-e-f) = W(G-f-e) i W(G-e/Tf) = W(G/Tf-e) 

So by Axl L = R. 

Note that if Tis the empty tree G/Te = G/e. 

Choosing T = N1 gives us a nice formulation of duality theorem for planar 

graphs: 

Theorem 2.2. Let 0.= <U, I, {a,}. N> be the universal algebra of terms of algebra 
1 1€ 

Al and W: 5 ➔ Ube a function defined as in Theorem 2.1 for T = N1 then for any 

planar graph G holds 

W(G) = W(G*) 

where w is the reverse of the word Wand G* is a graph dual to G. 

Proof. Denote by G1 -G2 a graph obtained from G1 and G2 by identifying a vertex 

from G
1 

with a vertex from G2 . Note that G1 •G2 depends on the choice of vertices 

which are identified. 

We start the proof of the theorem with the following lemma: 
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Lemma 2.3 Let G = G1 •G2 and G' = G1uG2 then W(G') = W(G) + 1 where W + 1 denotes 

the word obtained from a word W by increasing every index in W by 1. 

So in particular W(G1 •G2) does not depend on the choice of points which are 

identified. 

Proof. Consider a computation tree of W(G). Construct a computation tree for 

W(G') by contracting and removing edges in the same order as in W(G). Then in 

each leaf of the computation tree of W(G') occurs a graph with one more isolated 

vertex than in the corresponding leaf of the computation tree for W(G) .Q 

We can continue now the proof of the theorem. The proof follows by 

induction on the number, m, of edges. If m = 0 then G is a set of isolated 

vertices and G = G* so the theorem follows. 

Assume that the theorem holds for any graph G with IE(G) I < m. Let e be an 

edge of G and e* be the edge of G* dual toe (i.e. e* joins vertices of G* 

corresponding to the faces of G separated bye). 

If e is neither isthmus nor loop then 

W(G) = W(G-e) IW(G/e) 

W(G*) = W(G*-e*)W(G*/e) 

and 

W(G/e) is a dual to W(G*-e*) 

W(G-e) is a dual to W(G*/e) 

and the theorem follows by induction. 

Assume now that e is an isthmus (the case when e is a loop is symmetric). 

Then e* is a loop . Then for G-e = G UG 
1 2 

W (G) = W (G1LJ G2) IW (G/e) 



- 7 -

W(G"') = W(G"'-e"') I ( (W(G"'-e"')I..JN1 ) = W(G'"-e"') I (W(G"'-e"') + 1) 

but G/e is dual to G"'-e"' and G"'-e"' is dual to G1 •G2 so by Lerrana 2 . 3 

W(G1 LJG2) = W(G"'-e"') + 1 . 

Note that the basic model yields (via Theorem 2.1) a graph polynomial (let 

us denote it B(G)). Also the following graph polynomials are yielded by algebra 

It 1 and Theorem 2 . 1 . 

2 . 1 
i-1 

Assume u = Z[µ,A,B], ai = µ , alb= Ba+ Ab, T = N1 then this algebra and 

Theorem 2.1 yields the Kauffman bracket defined in fK87] . 
. 

2.1 " Assume u = Z[t,x,y], a . = t , alb= ya+ xb and T be an arbitrary (fixed) 
1 

tree. Then this algebra and Theorem 2.1 yields a family of polynomials 

fT(G). In particular fT(G) for T =~was defined in [N87]. 

All these polynomials can be obtained from Tutte polynomial (see Remark 

2. 7). 

Theorem 2.1 gives a scheme for recursive construction of graph invariants 

assuming that non-decomposable graphs (i . e. graphs for which invariant is 

computed explicitly) are graphs composed of isolated vertices. In general it 

does not have to be the case. 

Consider now as the index set I the set P = Z+[x,y] (i.e. the set of 

two-invariable polynomials of non-negative integer coefficients). Consider also 

the following relation, R, on forests with loops. 

R(G,H) <=> there exist such orderings of connected components of G and H 
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s.t. G. and H. have the same number of edges and loops. 
l. l 

The equivalence classes of Rare in one-to-one correspondence with elements of 

l: 
ij 

k .. xiyj then the equivalence class corresponding 
l.J 

top (denoted by [p]) contains all forests which for all i,j contain k .. 
l. J 

connected components with i isthmus and j loops. The following theorem 

corresponds to Theorem 1.1: 

Theorem 2. 4 Let a.= <U, I, {a } p> be a model of algebra ~ 1 then the following p pe: 

function W: S ➔ u is well defined and therefore is a graph invariant: 

( i) VGe: [p] I w (G) = a p 

(ii) VGe:S, Vee:E(G) s.t. e is neither isthmus nor loop 

W(G) = W(G-e) IW(G/e) 

Proof. We start the proof of the theorem with the following lemma: 

Lemma 2.5 Let He:[p], Qe:[q]. Let G be a graph obtained from Hand Q by 

identifying a vertex from a connected component corresponding to a monomial 

il jl 
k1x y of the polynomial p with a vertex from a connected component 

i2 i2 
corresponding to a monomial k2x y of the polynomial q then Ge:[r] where 

il jl i2 j2 il+i2 jl+j2 
r = p + q - X y X y + X Y 

Proof. If is enough to notice that the equivalence class to which G belongs does 

not depend on choice of connected components in Hand Q corresponding to the 

given monomials as well as on the choice of the vertices used for joining those 

components. O 

Now we can continue the proof of Theorem 2.4. We have to show that W(G) 

does not depend on the order of contractions and deletions. Let k(G) be the 

number of edges of G which are neither loops nor isthmus. The proof will follow 

by induction on k(G). 
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For k(G) = o the theorem follows from point (i). 

Assume that the theorem is true for all graphs G with k(G) < i. If k(G) =1 

then we have no choice and W(G) is well defined by the inductive hypothesis. Let 

G be a graph s.t. k(G) = i~2 and e,f€E(G) s.t. e,f are not loops or isthmus. 

Consider the following cases. 

1. Assume that e is not an isthmus of G-f and not a loop of G/f. Then f is 

also not an isthmus of G-e and not a loop of G/e. So let 

L = W(G-e) IW(G/e) 

R = W(G-f) IW(G/f) 

By the induction hypothesis 

L = (W(G-e-f) IW(G-e/f)) I (W(G/e-f) IW(G/e/f)) 

R = (W(G-f-e) IW(G-f/e)) I (W(G/f-e) IW(G/f/e)) 

and W(G-e-f) = W(G-f-e), W(G-e/f) = W(G/f-e), W(G/e-f) = W(G-f/e), W(G/e/f) 

= W(G/f/e). So by Axl L = R. 

2. If f is a loop in G/e, then f and e are in the same multiedge so W(G-e) = 

W(G-f) and W(G/e) = W(G/f) and the theorem holds. 

3. Assume that f is an isthmus of G-e. Then f and e must appear in Gas in 

Figure 2.1. 

Figure 2.1 

Let 
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L = W(G-e) IW(G/e) = W(G-e) I (W(G/e-f) IW(G/e/f)) 

R = W(G-f) IW(G/f) = W(G-f) I (W(G/f-e) IW(G/f/e)) 

then by Lemma 2.5 

W(G/f-e) = W(G/e-f) 

and (by double application of Lemma 2.5) 

W (G-e) = W (G-f) 

(see Figure 2. 2) 

Figure 2.2 

so L = R. .R 

In this case we also have a duality theorem similar to Theorem 2.2. 

Theorem 2.6 

Let d= <U,l, {a.} > be the universal algebra of terms of algebra Jtl 
1 

iEZ+[x,y] 

and let W: S ➔ Ube a function defined as in Theorem 2.4. Then for any planar 

graph holds 

--"' W(G) = W(G"') 

where w"' is a word obtained from w by exchanging x for y (and the opposite) in 

every index of w. 

Proof 

The proof is similar to the proof of Theorem 2.2 and follows by induction on 
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the k(G) (the number of edges of G which are neither isthmus or loops). Since a 

loop in G corresponds to an isthmus in G* and an isthmus in G corresponds to a 

loop in G* the theorem is true for k(G) = 0. 

Assume that the theorem is true for any G with k(G) < i and let G be a graph 

with k(G) = i. Let e be an edge of G which is neither isthmus nor loop and let 

e* be the edge of G* dual toe. Then 

W(G) = W(G-e) lW(G/e) 

W(G"') = W(G"'-e"') lW(G*/e*) 

but G-e is a dual to G*/e* and G/e is a dual to G"'-e* so the theorem follows by 

induction. 0 

From axiom Axl and Theorems 2.1, 2.4 it follows that both families of 

jnvariants cannot distinguish two 2-isomorphic graphs with the same number of 

components nor a· pair of graphs s. t. one is a rotant of the other. · [W33], [TSO] 

Consider now models of algebra Jl-1 which yield graphs invariants via Theorem 

2.4. Note that the basic model is an example of such model. We have also the 

following polynomial models which lead to known graph polynomials: 

2.4.1 
i i 

U = Z[x,y]; alb= a+b for p = ~ k .. x y a , , lJ p 
lJ 

.,., ( i j ) kij 
= ~~ X y 

lJ 

This algebra yields Tutte polynomial (or dichromat) x(G) [T.84]. 

i i ' . k.' 
u = Z[t,z]; alb= a+b; for p = ~ k .. x y; a = n. (t(l+t) 1 (l+z)J) lJ 

, , lJ p lJ 
lJ 

2.4.2 

This algebra yields dichromatic polynomial Q(G) [T84]. 

Remark 2.7 
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Many graphs polynomials are equivalent (for connected graphs) to Tutte 

polynomial. We will show here how Tutte polynomial implies some other 

polynomials. 

1. For the polynomial introduced by basic model and Theorem 1.4 we have 

if X(G) then B(G) 

pO_pl_m-pl + ~ x 
= t y x X(G,1 t, 1 + fT(T)•=) 

X y 

h f (Tl t Po (-x+-yt) IE (Tl I were T = 

3. For Kauffman bracket we have 

To see that Kauffman bracket implies Tutte polynomial note that: 

<G> = Po-1 Am-pl 
1 + B 1 + A µ) 

Bm 
µ (Bl X(G, A 

µ, 
B 

let A t then = B 

<G> p -1 m-p 
<G>' 0 1 1 + l:!. 1 + t•µ) = = µ t X(G, t' Bm 

so µ = I (x-1) (y-1) = [Y:::1. 
t x-1 
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X(G,x,y) = <G' > 
m-p 

1 
2 

It is interesting to note that as long as we apply a linear homogeneous 

function as an interpretation of I and compute polynomial according to the 

recursive formula in Theorem 1.1 or 1.4 we cannot obtain anything essentially 

more than Tutte polynomial. 

Let us again change the index set I. Let I now be equal to Z+(y) (i.e. set 

of one-variable polynomials of non-negative integer coefficients). 

Consider the following relation, R', on graphs whose all edges are loops: 

R' (G,H) <=> there exist such orderings of connected components of G and H, say 

G = G1u ... uGk' H = H1u 

number of edges (loops). 

uHk' s.t. G. and H. have the same 
l l. 

The equivalence classes of R' are in one-to-one correspondence with elements 

i If pEZ+[Yl and p = r kiy then the equivalence class corresponding to 
i 

p (denoted by [p)) contains all graphs whose all edges are loops and which for 

each i have k . connected components with i loops. Then the following theorem 
l 

holds. 

Theorem 2.8 

Let (l = <U, I, {a} > be a model of algebra ~1 then the following 
p PEZ+ (y] 

function W: ~ ➔ U is well defined and therefore is a graph invariant 

Proof 

(i) 

(ii) 

VGE[p) W(G) = a p 

¥GE, VEE(G) s.t. e is not a loop 

W(G) = w(G-e) IW(G/e). 
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The proof follows by induction on the number of edges which are not loops. 

The proof is very similar to the proof of Theorem 2.4 but only the first two 

cases have to be considered. 

Note that for the invariant defined by the universal algebra of terms and 

Theorem 2.8 we don't have a duality theorem similar to Theorem 2.2 or 2.6. In 

particular two different dual graph to the same graph do not have to have the 

same invariant. Consider as an example the graphs drawn on Figure 2.3. 

r 
Figure 2.3 

Graphs G1 , G2 from Figure 2.3 have the same duals but have different invariants: 

Let us consider the following model of algebra ~1: 

i TI 
i i k. 

for k.y 1 p = ~ a = i ~ (k) zk) 
i 1 p 

k=O 

and alb= a + b 

then this algebra yields Jaeger polynomial V(G) [A86]. It is known that Jaeger 

polynomial implies Tutte polynomial (substitute tzj for z. to obtain dichrornatic 
J 

polynomial which implies Tutte polynomial). The opposite is not true. For 
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example G1 and G2 from the figure above have the same Tutte polynomial but 

different Jaeger polynomial. 

Also the pair of graphs on the figure below have the same Tutte polynomial 

and different Jaeger polynomial. 

Figure 2.4 

Note that the above examples show also that invariants yielded by Theorem 2.8 and 

models of algebra J 1 may distinguish two 2-isomorphic graphs. In particular 

they may distinguish graphs with the same deposition onto two-connected 

components. 

Consider now an abstract algebra obtained from Jtl by adding one more axiom. 

Let"42 be the algebra: 

with axioms: 

Jl2 = <U,l,{a.}. N} 
l 1€ 

a.e:U 
l 
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Axl ( a I b) I ( c I d) = ( a I c) I ( b I d) 

Ax2 ( a I b) I c = ( a I c ) I b 

Note that for the algebra Jr2 the word problem is also decidable. 

This algebra can be used to define graph invariants as follows. 

Theorem 2.9 

Let~= <U, I, {a.}. N be a model of J\2 then the following function W: S ➔ u 
l l€ 

is well defined and therefore is a graph invariant: 

( i) 

(ii) 

W(N.) = a. 
l 1 

for any edge e€E(G) 

W (G) = W (G-e) IW (G //e) 

when G//e denotes G without endpoints of e. 

Proof 

Proof follows by induction on the number of edges in E(G). If IE(G) I = O 

then the theorem is implied by point (i). Assume that theorem holds for any 

graph G.s.t. IE(G) I < m. For IE(G) I = 1 function Wis well defined by (i) and 

(ii). Let G be a graph with IE(G) I = m~2 and let e,f€E(G). We will consider two 

cases. 

1) Edges e and fare not adjacent then 

L = w(G-e) lw(G//e) = (w(G-e-f) lw(G-e//f)) I (w(G//e-f) lw(G//e//f)) 

R = w(G-f) lw(G// f)= (w(G-f-e) I (w(G-f//e) I (w(G//f-e) I (w(G//e//f)) 

and by Axl L = R. 

2) Edges e and fare adjacent then 

L = w(G-e)lw(G//e) = (w(G-e-f)lw(G-e//f))l(w(G//e) 

R = w(G-f) lw(G//f) = (w(G-f-e) I (w(G-f//e) I (w(G//f) but in this case 
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w ( G-e /If) = w ( G // f) 

and 

w(G-f//e) = w(G//e) 

so by Ax2 

L = R. 

Consider the following model of the algebra I 2: 

1his model yields the polynomial of graphs called matching polynomial (see 

[F76]) • 

3. Abstract algebras for invariants of chromatic graphs 

In this section we consider abstract algebras leading to invariants of 

graphs with some additional structure. In particular we consider graphs with 

colored edges. We associate with each edge color (number from Z) and the 

attribute dark (d) or light (i). By di(ii) we will denote an arbitrary dark 

(light) edge of color i. 

We will consider the following abstract algebra: 

J\ 3 = <U, { I . } . z , {a.} . I> 
l. 1.e: l. 1.e: 

with the infinite set of axioms: 

Ax .. : (al .b) I. (cl .d) = (al .c) I. (bl .d) for all i,je:Z. 
l.J l. J l. J l. J 



- 18 -

As in the previous section we will use for convenience as the index set I 

different sets isomorphic to N. 

The followin.~ model of JI, 3 will be considered as the basic model: 

= Z[{A.,B.}. z, {a.}. 
1

) 
l l lE: l lE: 

al .b = B.a + A.b 
l l l 

We can generalize Theorem 2.1 for algebra vt3 as follows: 

Theorem 3.1 

Let a.= <U, { I . ) . Z, {a,) . N> be a model of algebra JP then the following 
l 1€ l 1€ 

function W: S' ➔ U is well defined and therefore is an invariant of chromatic 

graphs. 

(i)Y W(N,) = A. where N. is a graph of n isolated vertices. 
~ l l l 

(ii) \/~ die:E (G) 

W(G) = W(G-di) liW(G/Tdi) 

(iii) \IL ~ie:E(G) 

W(G) = W(G/Tli) liW(G-li) 

where Tis a fixedfo~~t without loops. 

Proof 

The proof follows by induction on pairs (p
1

,m) assuming their lexicographic 

order and is similar to the proof of Theorem 2.1. For p1 = 0, m = 0 the function 

Wis well defined by point (i). Assume that the theorem holds for all graph with 

(p1,m) < (i,j) set G be a graph with p1 = i and m = j. If m = 1 then we have no 

choice and the theorem follows by the inductive hipothesis. Assume that m ~ 2 
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and let e and f be two edges of G. Assume that color of e is equal to i and 

color off is equal to j. Consider the following cases: 

1. Assume that attribute of e is equal to attribute off. Assume that this 

attribute is dark (for the attribute light the argument is symmetric). 

Let 

by the inductive hypothesis 

L = (W(G-e-f) ljW(G-e/Tf)) li(W(G/Te-f) ljW(G/Te/Tf)) 

R = (W(G-f-e) liW(G-f/Te)) lj (W(G/Tf-e) liW(G/Tf/Te)) 

so by axiom Ax . . L = R. 
l] 

2. Assume that the attribute of e is different than the attribute off. Assume 

that the attribute ate is dark (the case when the attribute of e is light 

is symmetric). 

Let 

then 

L = (W(G-e/Tf) ljW(G-e-f)) li(W(G/Te/Tf) ljW(G/Te-f) 

R = (W(G/Tf-e) liW(G/Te/Tf)) lj(W(G-f-e) liW(G-f/Te) 

so by Ax .. L = R. 
l] 

We define as a dual to a chromatic graph G _graph G• defined as follows: 
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- vertices and edges are defined as in a nonchromatic dual 

- if e€E(G) and e*€E(G*) is the dual edge toe then color of e* is equal to 

the color of e and the attribute of e* is opposite to the attribute of e. 

For such defined dual graph we have the following duality theorem 

corresponding to Theorem 2.2 in the previous section. 

Theorem 3.2 

Let 0.: <U, {I.}. z' {a.}. N> be the universal algebra of terms of algebra 
l 1€ l 1€ 

~3 and W be defined as in Theorem 3.1 for T = N
1 

then for any plan a graph G 

W(G) = W(G*). 

Note that Lemma 2.3 holds also for chromatic graphs. As in the proof of 

Theorem 1.3 we will proceed by induction on the number, m, of edges. 

Form= 0 G = G* and the theorem is true. Assume it is true of all graphs 

with E(G) < m. Let G be a graph with m edges. Let e€E(G) and let e*€E(G*) be 

the dual edge toe. Assume that e is neither a loop nor an isthmus. Let e = di 

for some i (the case when e = ii is similar), then 

W(G) = W(G-e) I .W(G/e) 
l 

W(G*) = W(G*/e*) I .W(G*-e*) 
l 

but W(G/e) is dual to W(G*-e*) and W(G-e) is a dual to W(G*/e*). 

If e is an isthmus then for G-e = G1uG2 

W(G) = W(G1 G2) liW(G/e) 

W(G*-e*) + 11 .W(G*-e) 
l 
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and by the modified version of Lemma 2.3 the theorem holds . 

.I 

Consider now polynomials of chromatic graphs yielded by algebra Jt3 and 

Theorem 3.1. 

3 .1.1 
i-1 

Let T = N1 , u = Z[{A.,B.}. z,µ], a. = µ and al .b = B.a + A.b. 
l l 1€ l l l l 

This model gives Kauffman bracket <G> for chromatic graphs. 

3.1.1. Let T be any fixed tree and u = Z[{w.}. z,t], a. = ti 
l 1€ l 

a l .b = a+ w.b 
l l 

Then Theorem 3.1 gives a graph polynomial which we denote by QT. 

This should be compared with dichromatic polynomial Q for weighted graphs 

[Tr88] defined as follows: 

Let w(e) be•the weight associated with edge e (an element from some 

communtative ring with unity) then 

( i) if G = N. then Q(G;t,z) = ti 
l 

(ii) if e is not a loop then 

Q(G,t,z) = Q(G-e;t,z) + w(e)Q(G/e,t,z) 

(iii) if e is a loop then 

Q ( G; t, z) = ( l+w ( e) z) Q ( G-e; t, z) . 

Lemma 3.3 

The dichromatic polynomial, Q, for a weighted graph can be computed by 

computing a finite number of polynomials QT for different T. 

Proof ---
To obtain the dichromatic polynomial for weighted graphs assume that the set 

of different weights of G is taken as the index' set for colors (we remove edges 
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with weight equal to zero from the graph). Now compute QT(G) for 

This gives us the following sequence of polynomials 

pl (G) 
Q(G;t,1) 1 Q(G;t 1 t) ... 1 Q(G,t,t ) . 

Since the highest degree of z in Q is equal to p1 (G) this determines the 

polynomial Q(G;t,z). 

Assume now that the index set I is equal to P' = Z[{x.,y.}. 
2
]. Let pEP' . 

l l 1£ 

Denote by [p] the class of chromatic forests with loops s.t. 

TE [p] iff 

T has k connected components with n . isthrnu~sof color i and m. loops of 
l l 

'if n. mi 
color i iff the monomial kl\x. 1 y. occurs in p. 

i l ~ 

Consider the following quotient algebra of algebra Jl-3: 

-.,44 = <U,{I.}. Z' {a} P'> 
l 1£ p PE: 

with the following three groups of axioms: 

(A) \l'i.1jE:Z, (al .b) I. (cl .d) = (al .c) I. (bl .d) 
l J l J l J 

(B) 'lftj£Z,p0,p1 ,q E P1 

apo+plxj Ii (apo+plljaq) = apo+plxilj(apo+plliaq) 

(CJ V:i,j EZ, p1 ,p2£P'; let a be any word (term) of algebra ~4 and let a•yj 

denote the word obtained from a by multiplying every index in a by y. then 
J 

(a I.a )i.a•y. = (a I.a )i.a•y , . 
Pl J P2 l J Pl l P2 J l 

This algebra introduces a class of invariants of chromatic graphs via the 

following theorem: 

Theorem 3.4 
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a,= <U, {I} . I {a } J) be a model of algebra fl.~ then the following 
l.€, p peP 

w:5' ➔ u is well defined and therefore is a graph invariant: 

(i) VGe[p] w(G) = a p 

(ii) ¥Ge~', veeE(G) s. t. e is neither isthmus nor loop and col(e) = i. 

W(G) = W(G-e) I .W(G/e). 
l. 

Proof of the theorem is similar to the proof of Theorem 2.9 and follows by 

induction on number, K(G), of edges which are neither isthmuses nor loops. 

If K(G) = 0 it follows from (i). 

If K(G) = 1 then we have no choice and the theorem follows immediately. 

Assume that the theorem is true for any graph G with K(G) < n. Let G be a 

graph with K(G) = n~2. Let e,feE(G) and let e has color i and f has color j. 

Consider the foliowing cases: 

1. e is not an isthmus of G-f or a loop of G/f. Then the theorem follows 

2. 

immediately from (A). 

e is a loop of G/f 

L = W (G-e) I . W (G/e) = (W(G-e-f) I .W(G-e/f)) I .W(G/e) 
l. J l. 

R = W(G-f) I .W(G/f) = (W(G-e-f) I .W(G-f/e)) I .W(G/f) 
J l. J 

but W(G-e/f) = W(G-f/e) 

and G/e is equal to G/f with loop of color j replaced by loop of color i. 

So by (Cl L = R. 

3. Assume e is an isthmus of G-f but not a loop of G/f. Then 

L = W(G-e) I .W(G/e) = W(G-e) I. (W(G/e-f) I .W(G/e/f)) 
l. l. J 
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R = W ( G- f ) I . W ( G / f ) = W { G- f ) I . { W / G / f -e) I . W { G / e / f ) ) 
J J l 

but by the argument similar as in Lemma 2.5 

W(G/e-f) = W{G/f-e). 

To see that W(G-f) = W(G-e) consider computation trees for W(G-f) and W(G-e) 

obtained by deleting and contracting the same edges and in the same order. 

Then corresponding leaves of those trees look the same except one isthmus which 

corresponds to f in the tree of W{G-e), and toe in the tree of W(G-f). So by 

(Bl the theorem follows . 

.& 

In the above algebra we have ignored the fact that edges also have 

attributes dark or light. In order to define an algebra which leads to 

invariants of chromatic graphs with attributes on edges light or dark we need 

some additional duality axioms. Define index set I to be P" = 

Z[{x.,y.,x.,y.). zl• For pe:P" define [pl as class of forest with self loops s.t. 
l l l l lE: 

Te: (p] iff 

T has k connected components with 

n. isthmuses of color i and attribute 
l 

n. isthmuses of color i and attribute 
l 

rn. self loops of color i and attribute 
l. 

rn. self loops of color i and attribute 
l. 

iff 

n. m. 
l. l. 

x. y, 
l. l 

occurs in p. 

light 

dark 

light 

dark 

y. 
l. 

m. 
l 
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The additional duality axioms can be formulated as follows. 

( a I . a ) I . a - = ( ap +p I 1, aq) I J' ap +p x-
P o +P 1 J q 1 Po+plxj O 1 0 1 i 

(C
1

) V,i,je:Z, Vp
1

,p
2
e:P". Let a be a word then 

= a•y . I . (a I. a ) 
l. J pl l. P2 

Let us call this new algebra .flS. For this algebra we can reformulate 

.Theorem 3.3 as follows. 

Theorem 3.5 

Let (t. = <U
1 

{ I . } . Z {a } P" > be a model of algebra /rs then the following 
l. l.€ , p pe: 

function W: S' ➔ u is well defined and therefore is a graph invariant, 

(i) 

(ii) 

Proof --

VGe:[p] W(G) = a p 

v. if di, ii are not isthmus or loop then 
~ 

The proof is similar, up to technical details, to the proof of Theorem 3.4 

and is left to the reader. JI 
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For planar graphs we have also the following duality theorem. 

Theorem 3.6 

Let C!= <U{I}. Z {a} P"> be the universal algebra of terms of the algebra 
1€ I PP€ 

JtS and let w be defined as in Theorem 3.4 then for any planar chromatic graph G 

and its dual G* 

" W(G) = W(G*) 

where w* is equal tow with all x changed toy and the opposite. 

Proof 

Proof of this theorem is very similar to the proof of Theorem 3.4 and is 

left to the reader. 

Algebra ~'tS together with Theorem 3.6 leads for example, to the following 

graph polynomials. 

where 

Let U = Z[t,z,{x.}. 1J and let G€[p) (for p€P") then 
l 1€ 

Po(G) k. r. 
a = t rr ((l+x.z) 1 (x.+t) 1

) 
p i l l 

r. - number of isthmuse~of color i, 
l 

k. - number of loops of color i. 
l 

Let also 

al .b = a + x.b 
l l 

Then if G is a weighted graph and I is the set of different weights, this model 

yields the dichromatic polynomial for weighted graphs [Tr88). 

If in the above we assume number of colors equal to two and additionally 

-1 
x 1 = x 2 , then we obtain an invariant for signed graphs Pr(x,y,z) defined in 
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[M87] as follows: 

-1 -1 
Pr(x,y,z) = y Q(G;y,z,x,x ) 

We may also consider invariants of graphs with a homomorphism h: n1 (G) ➔ H 

where His a group and n1 (G) is the fundamental group of G. This situation 

occurs, for example, for embedded graphs. Then we may consider as H the 

fundamental group of the surface. Then we can associate with graphs G-e and G/e 

homomorphisms induced by H. To obtain an invariant of embedded graphs we have to 

associate with each pair (graph, homomorphism) a properly chosen element from 

so.me universum u. 

4. Dichromatic graphs and link diagrams 

We will consider two methods of assigning to a plane graph a link diagram. 

The first method is based on the idea of Jaeger (J87] and the second is the 

classical one (see [BZ85] or [K87a]). 

By a (oriented) link we understand several (oriented) circles embedded in 

s3 . we say that two links L1 and L2 are isotopic iff there exists an isotopy 

F: s3 x I ➔ s3 x I such that Fa= Id and Fl(Ll) = L2. If the links are oriented 

the isotopy must preserve the orientation. Informally two links are isotopic if 

one can be continuously transformed to the other. 

By links invariant we understand link isotopy classes invariant. 

A diagram D of a link Lis a regular projection of Lin the plane together 

with an overcrossing-undercrossing structure denoted as in Figure 4.1 
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Figure 4.1 

By L ,L ,L
0 

we will denote diagrams of links which are identical, except 
+ -

near one crossing point where they look like in the figure below 

X X 
L 

Figure 4.2 

We associate a sign (+or-) to each crossing according to the above 

convention. Important isotopy invariants are link polynomials. We will define 

here three such polynomials. 

1. The skein (named also Flypmoth, Homfly, generalized Jones, 2-variable Jones, 

Jones-Conway, twisted Alexander) polynomial, P
1

€Z[a+1 ,z+1), of oriented 

links is defined recursively in the following way [FYHLM085J, [PT87]. 

(i) p = 
~ 

1 

(ii) aPL 
-1 

PL + a PL = z 
+ 0 

where ocorresponds to a trivial link of one component (i.e. to a single 

circle) . 

2. Jones polynomial of oriented links (the precursor of the skein polynomial) 

[Jo85], [Jo87], V(t)€Z[t;1/ 2
J is defined recursively by 

I 

( i) 
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(ii) (h - -1
-) VL (t). 

ft 0 

3. The classical Alexander polynomial of oriented links [A28] (as normalized by 

J. Conway [Co69», V1 (z)EZ[z) 
1
is defined recursively by 

( i) 

(ii) 

In particular V1 (z) = P1 (ia,iz). 

We may also assign a polynomial to a nonoriented link diagram. Such a 

polynomial has been defined in [K87a] and is called Kauffman bracket. It is 

defined recursively by 

( i) <X> = B<-::::::, > + A< ) ( > 

(ii) < ><> = A<"::::::.> + B<) l > 

(iii) <O ... 0> i-1 
= µ 

where )/,, X , ;:::: and ) ( denote four diagrams of links which are identical exept 

near one crossing, as shown on the diagram. If we assign B -1 
= A I 

2 -2 µ=-(A +A ) 

then Kauffman bracket gives a variant of the Jones polynomial (for oriented 

_! 
links). Namely for A= t 4 

where w(D) is the planar writhe (or twist) of D defined by taking algebraic sum 

,,,71 '~ of the crossings, counting,.,..~and /,._ as +1 and -1 respectively. 

Consider now a chromatic graph with number of colors equal to two. Such a 
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graph will be called dichromatic graph. The two colors of the dichromatic graph 

will be denoted+ and -

d+ ( d) '11 d d k d f 1 ( l d by n+ By resp. we wi enote a ar e ge o co or+ resp.- an ~ 

(resp.i) we will denote a light edge of color+ (resp. -) . Let G be a 

dichromatic plane graph. we can associate with Gan oriented diagram of a link 

(D(G)) (together with chess-like coloring of the plane) according to the 

following rules: 

(4 .1) 
d+ 

1) v ------t w (two positive crossings) 

2) 
d (two negative crossings) V w 

3) 
R.+ 

·•~-w (two positive crossings) V w 

.,/ // 
4) i 

~~ 
(two negative crossings) V w 

" 
Figure 4.3 

i.e. the edge (v,w) is replaced by one of the above diagrams so that vertices v 

and w remain in the black regions as in the Figure 4.3. In particular 

Figure 4.4 

We assume also D(•l =[?. Diagrams of links obtained in the above manner are 

called matched diagrams [APR87). 
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Remark 4.2 

If G* is the dual to the chromatic plane graph G then D(G) = -D(G*) with 

black and white regions exchanged and -D(G) denotes the link diagram with 

reversed orientation of each link component. 

Define W(G) to be W(G) = PD(G) (a,z) then the following holds: 

(4. 3) W(G) -1 + -2 + = a zW(G-d) - a W(•G/d) 

W(G) -2 + -1 + 
= -a W (G-i ) + a zW(G/i ) 

- a2W(G/d-) W(G) = azW(G-d ) -

2 - -
W(G) = -a W (G-i ) + azW(G/i ) 

-1 . 
W(N.) = (~)1-1 

l z 

Note that function W satisfies Theorem 3 . 1 for dichromatic graphs assuming that+ 

and - denote colors. So it defines invariant for all (not necessarily plane) 

graphs. This is in fact an equivalent definition of Kauffman bracket of 

dichromatic graphs (Example 3.1.1 of Theorem 3.1), forµ= 

-1 a z, A = 2 
2 

-a I 

-1 a+a 
z 

Now let us associate with dichromatic graph Gan unoriented link diagram DN(G) 

(together with chess-like coloring of the plane) according to the following 

rules l'-'. 4) : 

V 

+ I -
cJ I " w 

Figure 4.5 
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Lemma 4.5 

Let G be a dichromatic planar graph, DN(G)- unoriented link diagram obtained 

from G by rules 4.4 and D(G)-oriented link diagram obtained by rules 4.1. Let 

in+(resp. in_) be the number of positive (resp. negative) edges of G. For an 

oriented link diagram D define w(D) (writhe or twist of D) to be equal to~ sgn p 

where the sum is taken over all crossings of D. 

2 -2 

-1 1/2 Then for B =A= a , 

µ=-A -A holds: 

Proof 

3 . . - 1n -in 
( ) (-a2) + - ( 1) <DN G > = PD(G) a,-

3 1 - - w(D(G)) 
2 2 

= (-a ) PD (G) (a, -1) 

Note that for z = -1 we can rewrite 4.3 as follows: 

3 1 1 
2 

PD(G) (a,-1) 
2 p (a,-1) 2 p -a = a + a 

D(G-d+) D(G/d+) 

3 1 1 
2 

PD(G) (a,-1) 
2 p (a,-1) 2 p -a = a + a + D(G/R.+) D(G-R. ) 

3 1 1 
2 2 (a,-1) 2 -a PD(G) (a,-1) = a p + a p - -

D(G-d ) D(G/d 

3 1 1 --
2 2 (a,-1) 2 -a PD (G) (a, -1) = a p + a p - -D(G-R. ) D(G/R. 

(a,-1) 

(a,-1) 

(a,-1) 
) 

(a,-1) 
) 

p 
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-1 i-1 
PD (N ) (a1-1) = [- (a+a ) ] 

1 

Note also that operations G-d+,G_d-,G/t and G/e- change~ to j L, and 

operations G/d+, G/d-, G- / and G-<,- change ~to~. 

Combining this with the definition of the Kauffman bracket for B = A-1 , 

2 -2 
µ = (-A -A ) Lemma 4.5 follows. ll 

In particular if we can orient DN(G) (to get D~r(G)) in such a way that its 

orientation agrees with that of D(G) (i.e. positive crossings of D~r correspond 

to positive crossings of D(G)) then the following holds: 

Corollary 4. 6 

V (t) 
Dor (G) 

B 

= PD(G) (a,-1), for a = t 

1 
-2 

In [Ko87] there are given necessary and sufficient conditions for existence 

of D~r (G) . 

It is an open question whether any link has a matched diagram. It is very 

unlikely, however, on the other hand, any 2-bridge link (BZ85] possesses a 

matched diagram. One can hope to use Lemma 4.5 and some properties of the skein 

polynomial and the Kauffman bracket to find a link without a matched diagram. 

One more observation should be mentioned. If we change .2. edge in a planar 

graph G to 
+ (denote the new graph G' ) then the edged DN(G') = DN(G) and 

therefore <DJ,')> = <DN(G)>. Now by Lemma 4.5 PD(G') (a,-1) 
-3 

PD (G) (a,-1). = a 

The last equality can be put in more general context as follows: 

Consider the following move on the oriented link diagrams (called in [P86] 
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t . rnove 
l 

Figure 4.6 

-3 
It can be easily checked (see [P86]) that Pt (D) (a,-1) = a PD(a,-1). On the 

3 

other hand one can go from D(Gl to D(G') by a t
3 

move and isotopy as it is 

illustrated in Figure 4.7. 

- e>~j 

iso-lo P1 

Figure 4.7 

5. Complexity aspects of computing the polynomial 
for chromatic graph 

D(,') 

+ Let g,f: N ➔ R. We will say that f is 0(g) iff there exist constants c > 

0, n
0

eN st. for every n > n0 >f(n) i cg(n). 

It is well known that computing Tutte polynomial for graphs is NP-hard (even 

if we restrict ourselves to planar graphs). It is also easy to see that if 

p1 (G) . 

x(G;x
1
y) is the Tutte polynomial of graph G and x(G.;x,y) = I 

i=0 

l q. (x)y 
l 

k+l 
then polynomial qp (G)-k can be computed in 0(m l steps, each of them being a 

1 

summation of two polynomials. This follows from the fact that if we consider a 

computation tree which has in its leaves forests with loops then a polynomial of 
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(m) 
degree p

1
(G)-k may occur in at most k leaves. So the number of internal nodes 

l'nvolved in the computation of · O( k+l) qpl(G)-k lS m , 

th Similarly for a graph G the k coefficient (starting from the highest one) 

of the chromatic polynomial P where 

P(G;A) = (-1) IV(G) I (-A)X(G;l-A,0) 

can be computed in a polynomial time on the number of edges (assuming that k is a 

constant) . 

In this section we address the question: How difficult it is to compute 

coefficients of the polynomial of a chromatic graph? We also show a substitution 

which reduces <G> to a one-variable polynomial which can be computed in a 

_polynomial time. 

Some obvious properties of <G> are given by the following lemilla: 

Lemma 5.1 

(i) 

where 

11s11 - the number 

the edges 

ex. - the number 
l 

ex. ' - the number 
l 

~- - the number 
l 

<G> = 11s11-1 µ 
n 
JI 

i=l 

a.+a . ' 
A. l l 

l 

~. +~.' 
B. l l ) 

l 

of points after removing edges in sand contracting 

(in this section we use G/e to denote G/N e). 
1 

of contracted dark i th colored edges 

of deleted light i th colored edges 

of deleted d k .th ar 1 colored edges 

the rest of 
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~-' - the number of contracted light i th colored edges. 
l. 

(ii) The highest power of A. in <G> is equal to the number of i th colored edges. 
l. 

Proof 

(i) is a natural state model for <G> and (ii) follows immediately from (i) .R 

Let B.' = B.µ. Then we can rewrite the recursive definition of <G> as 
l. l. 

follows: 

«G» = B' .µ- 1«G-di» + A. «G/di» 
l. l. 

(5. 2) «G» = A. «G-ii» + B' . µ-1«G/ii» 
l. l. 

«N. » i-1 = µ 
l. 

Denote by Gd (respectively Gi) the graph obtained from G by removing all light 
edges (respectively all dark) and by deg P maximal degree ofµ in the 
polynomial P. µ 

deg µ «G» 
Let «G» = L 

j=O 

Lemma 5.3 

q (A I B' 
j 1 1 

A I B\ ) j 
I••• µ • 

2 2 

The lemma is immediately true if G = Gd. If G has a light edge ii 

i \ -1 i 
then an inductive arugument show that max (degl\,(Ai<<G-( >>,deg)'\.Bit,,\, <<G/< >> = 

P0 (Gd) + P1 (Gd) -1, so the lemma follows. 
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Immediately from this lemma and from 5.2 follows: 

Lemma 5.4 

Let 1 be a light edge and d be a dark edge, then 

deg <<G-1>> = deg <<G>> 
µ µ 

{ 
deg «G» + 1 

deg <<G/1>> = degµ<<G>> - 1 
µ µ 

[

deg «G» + 1 
deg <<G-d>> = degµ<<G>> - 1 

µ µ 

deg <<G/d>> = deg <<G>> 
µ µ 

Immediately from Lemma 5.3. 

if both ends of 1 belong to the same 
connected component of Gd 

otherwise 

if dis an isthmus in Gd 

otherwise 

Immediately from the above lemma we have the following corollary: 

Corollary 5. 5 

All powers ofµ with non-zero coefficients have the same parity . 

Note that in Lemmas 5.2 and 5.3 only the attribute of an edge was important, 

not its color. In particular if G = Gd (or G = G1) (all the edges are black) 

then we can argue, in a way similar as in the case of Tutte polynomial, that cost 

of computing qb(G)-k is polynomial. 

We will show that if G is a planar graph the cost of computing qb(G)-k can 
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be bounded by a function which grows slower than exponentially. 

Definition 5.6 

A rooted tree T of high mis called (s,k,a)-unbalanced (where O <a< 1 and s,k 

are natural numbers) iff it satisfies the following: 

If m < s then Tis a regular binary tree. Otherwise each internal node has 

two children or is a root of at most k (s,k,a)-unbalanced trees of high at most 

raml (where rx1 denotes the smallest integer greater or equal to x). 

Furthermore, every path in T which starts in the root of T and goes s times right 

(and arbitrary number of time left) contains a vertex being a root of 

(s,k,a)-unbalanced tree of high raml. 

Informally this definition says that (s,k,a) unbalanced tree of high mis a tree 

in which after going at mosts times right we always reach a root of (s,k,a) 

unbalanced tree of high ram1. The lemma below says that such a tree has number 

of nodes much smaller than full binary tree of high m. 

Lemma 5.7 

. c ln m + s-1 
A (s,k,a)-unbalanced tree of high m has O(m ) nodes where c = 

1 
1· 

in -
a 

The proof follows by induction on s. The first step of the induction bases 

on the observation that the function which counts the number of leaves in a 

(l,k,a)-unbalanced tree of high m, is bounded by function f(m) satisfying f(m) -

f(m-1) = k•f(am). So it grows slower than a function g(x) such that g' (x) = 

k•g(ax) and that in some interval ( l'anl ,n), g(x) ~ f(x). But such a function 

clnx g(x) grows slower than x 
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1 for cl 1 . The inductive step follows by the similar argument. The details 
in -

a 

of the proof are left to the reader. 

We will use this lemma to prove the following theorem: 

Theorem 5.8 

Let G be a planar connected chromatic graph with md dark edges and mi light 

edges then the polynomial qb- 2j can be computed in 

c1max(ln md,1)+4j+3 j+l 
O(md +c 2 ·mi ) where c1 ,c2 are same constants. 

Proof 

First note that the only reason to introduce max (ln md 1 l) was to obtain a 
. 1 

correct formula for md = 0. In this case the result O(c 2miJ+) follows by the 

same argument as 'for Tutte polynomial. If mi = 0 then we can use the duality 

theorem to reduce this to the case when md = 0. So assume md # 0 and mi 1 0. 

We will start with the proof for j = 0. By Lemma 5.4, it follows that 

computing the polynomial of a chromatic graph G can be reduced in a polynomial 

time to computing the polynomial for a graph G' s.t. IE(Gd') I i IE(Gd) I, 

IE(Gi') Ii IE(Gi') I, IV(G') Ii IV(G) I and Ga' forms a spanning tree for G'. This 

follows from the fact that if an edge, say e, is not a dark isthmus of Gd or is a 

light edge connecting two components of Gd, then the result of the computation of 

one of either G-e or G/e does not influence the value of qb. 

In the rest of the proof we will show that if G is such a graph that Gd is a 

spanning tree for G then we can remove and contract edges of Gin such an order 

5 that corresponding computation tree is isomorphic to a (4,8, 6)-unbalanced tree. 
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Furthermore, the next edge to be deleted or contracted can always be determined 

in a polynomial time. 

The basic fact used by our algorithm is that the polynomial of a 

disconnected graph is equal to the product of polynomials for its connected 

p -1 
components timesµ O and that the polynomial of connected graph is equal to the 

product of polynomials of its biconnected components. We will choose for the 

consecutive steps of the computation a sequence of edges which leads quickly to a 

decomposition of the original graph into connected or biconnected components of 

5 size at most 6 md where by the size of G we understand the number of dark edges. 

Assume that G is embedded on the plane. A construction of a 

5 (4,8, 6)-unbalanced computation tree of high md is given by the following 

algorithm: 

1. Find an edge eEE(Gd) whose removal disconnects Gd into two subtrees Ga' and 

1 2 
Ga", each of them of size in the range <i md' i md> or a vertex v s.t. one 

can draw a simple closed curve going through v which divides Gd into two 

parts, Ga' and Ga", of sizes in the same range. 

This can be done by the following simple algorithm: 

1.1 Choose a vertex, say u, to be the root of Gd. 

1.2 Let v1, ... ,vk be the children of u listed in an order defined by the 

embedding. Compute recursively for each v. the number m(v.) equal to 
l l 

the number of edges in the subtree rooted at v. plus one (for the edge 
l 

(u,v.)). 
l 

1.3 If for some i,½ md i m(vi) if md then the algorithm returns edge 

(u,v.). 
l 
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1.4 If for some i,m(vi) > ½ md then go to step 1.2 with u = vi. 

1.5 If neither 1.3 nor 1.4 holds then we can split Gd in the vertex u into 

G ' and G" of required sizes. The algorithm returns vertex u. d d 

2. If the algorithm from step 1 returned an edge, say e, then the computation 

of the polynomial for G-e can be reduced (by Lemma 5.3) in a polynomial time 

to computation of polynomials of few connected components spanned by Gd' and 

Ga", each of them of size at most f md. So by induction computation tree 

for polynomials of Ga', Gd" is (4,8,¾)-unbalanced. 

3. Assume that in step 1 we have found a split vertex v. Perform the algorithm 

defined in step 1 for the bigger of Ga' and Ga"· 

4. If the algorithm in step 3 returned an edge, say e, or a vertex, say w, 

different than v then removing e (or any edge e' on the path from v tow) 

disconnects· Gd into two parts, each of them at size in the range 

Now similarly as in step 2, we can reduce computation of polynomial for G-e 

(or G-e') to computation of polynomials of two connected components, each of 

5 
them of size at most 6 md . 

5. Assume (opposite to the previous step) that algorithms from steps 1 and 3 

returned the same vertex, say v. Then we can draw on the plane two (closed) 

Jordan curves t 1 , £2 which divides Gd according to the splits found in steps 

1 and 3 such that: 

(i) neither of them cut a light edge more than once, 

(ii) both of them are going through vertex v and some vertex, w, on the 

external face. 
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Curves i 1,i2 divide the plane into four parts, I, II, III and III', 

containing respectively dark subtrees T1 ,T2,T3 ,T3 ' (see Figure 5.1). 

t' 
" 

5.1 

Consider now graph G* dual to G. Note that dark edges of G* (corresponding 

to light edges of G) form a spanning tree for G*. In particular light edges 

which are cut by i 1 and i 2 correspond to a dark subtree in G* denoted by 112 . 

This subtree may look like in Figure 5.2. On this figure w denotes the vertex 

corresponding to the external face. 

w ---·----------
a) b) c) 

Figure 5.2 

By removing four edges in the case of a) and two edges in the case of b) this 

subtree breaks down to linear pieces. These four (respectively two) edges will 

be called branching edges. Removing an edge in G dual to a branching edge will 

be called a critical step. 

Consider first case c. Since there is no branching edges, curves i 1 and i 2 

meet exactly the same light edges. This means that there are no light edges 
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between nodes in subtree T3 or subtree T3
1 and subtree T1 or subtree T

2
. So 

vertices in parts I and II are in different biconnected components than vertices 

in parts III and III'. So v splits G into two (non-necessary connected) parts 

5 each of them of size at most 6 md. So computation of the polynomial for G can be 

reduced to computation of polynomials of those parts. 

Consider now case a (case bis similar). If we remove branching edges then 

(G*)d breaks down into five connected components. By Lemma 5.3 we can reduce the 

computation of the polynomial for G* without branching edges to the computation 

of five connected components. By the duality the computation of the polynomial 

for G without edges dual to branching edges can be reduced to computation of 

polynomial of five connected components. Note that with the exception of the 

connected component containing vertex v the vertices of all connected components 

may lay on at most two parts of the plane. These two parts correspond to left 

and right side of the parts of i 1 ,i2 corresponding to one of the paths of L12 

obtained by removing branching edges. So all connected components except one are 

f 
. 5 

o size at most 6 md. On the other hand, vertex vis a cut vertex for the 

remaining connected component. So computation of the polynomial for this 

connected component can be reduced to the computation of polynomials for four 

graphs, each of them of size at most¾ md. This finishes the case a. 

We have shown that after at most four consecutive critical steps the 

computation on the branch of the computation tree on which those steps occur can 

be reduced to the computation of polynomials of at most eight graphs of size at 

5 
most 6 md. 

We can think about critical steps as about steps going right in the 

computation tree. To finish the proof we should show that if between those 
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critical steps will be some number of steps "going left", then after this mixed 

sequence of steps the computation can also be reduced to computing polynomials of 

5 at most eight graphs of size at most 6 md. But if going right on computation 

tree means to contract a light edge, then going left means to delete this edge. 

Since deleting a light edge does not increase sizes of connected components we 

can use the graph 112 (with one edge contracted) to determine the next branching 

edge (if any). So even if critical steps (i.e. steps right) are alternated with 

removing light edges crossed by 11 or 1
2

, (i.e. by steps left) four critical 

steps suffices to reduce the computation to computation of polynomials of at most 

8 graphs of size at most 5/6 m, so the computation tree obtained in this way is 

5 (4,8, 6)-unbalanced. 

This finishes the proof for j = O. For j ~~we have to extend the 

computation tree used for j = 0. We can do it in such a way that the "extended" 

tree will be (4j+3,8,%)-unbalanced . 

.H 

One should notice that from the fact that Theorem 4.7 is dealing with planar 

graph it follows (by duality theorem) that we can replace md by min(m
1

,md) and m
1 

by max (m1 ,md). 

Theorem 4.7 has its application to knot theory. 

It follows from the fact that every planar graph defines (by the rules 4.1) 

a link (more exactly a matched diagram of •• oriented link). So we can translate 

Theorem 4.7 to polynomials of links in the following way: 

Corollary 5. 7 

Consider a matched diagram of an oriented link (4.1) and its skein 

i 
polynomial P

1
(a,z) = ~ bi (a)z where bm(a),bM(a) ~ 0. 

i=m 

M 
Then 



(i) 

(ii) 
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m = 1 - S(L) where S(L) is the number of components of the link L, 

b +· (a) can be computed in O(n(D)c ln n(D)+ 3+~j time for some constance c. 
m J 

n(D) denotes the number of crossings of the matched diagram D. 

(i) follows from Lemma 4.2, namely if G is a planar dichromatic graph and D(G) 

its matched diagram then p0 (Gb) + p1 (Gb) is equal to the number of 

components of the link with matched diagram D(G). Point (i) is also shown 

in [LM87] . 

(ii) follows from Theorem 5.6 and the relation between bracket <<G>> of a planar 

dichromatic graph G and skein polynomial PD(G) (a,z) of the corresponding 

matched diagram D(G). The variable z in PD(G) (a,z) correspond to the 

variable µ -l in «G». .& 

It is an open question whether corollary 5.7(ii) holds for any oriented link 

diagramJThe relation between matched diagrams and planar graphs introduced by 

4.1 allows us also to translate results concerning knots to graph theory. 

If we substitute µ = 0, A. = 1 and B. = (-1) i+lB in the Kauffman bracket 
l l 

then for the simplified bracket <G>B€Z(B] we have the following: 

Proposition 5.7 For planar graphs <G>B can be computed in polynomial time. 

Proof. --- Operations I. from the definition of the Kauffman bracket, Example 3, are 
l 

reduced to 

4 . 7 

<·> = 1 . 

(-l)i+lB <G/ i> 
i 

For a planar graph G and associated oriented link diagram D(G), 4.7 can be 
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translated as 

<O> = l. 

This is exactly the Alexander polynomial for B = z, Example 3 of Section 4. It 

is well known that the Alexander polynomial can be computed in a polynomial time 

-1 
(first computing the Seifert matrix V of the link Land then Det(.ft VT - .ft V). 

This is exactly the Alexander polynomial of L for z = .ft - L; see [BZ85] . 
.ft 

ll 
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Appendix 

to the manuscript: "Invariants of chromatic graphs" by T.Przytycka and J.H.Przytycki 

Algebraic structures underlying Tutte polynomial 

of graphs 

In the paper we considered abstract algebras which yielded, via corresponding 

theorems, invariants of graphs. This concept can be generalized to invariants of matroids in 

a similar way as graphs invariants can be generalized to invariants of matroids [B088]. We 

present a further generalization which allows to define invariants for other families of 

subsets of a given set. 

A.1 Notation and definitions 

By a graph G = (V(G),E(G)) we understand a finite multigraph. G-e denotes the 

graph obtained from graph G by removing edge e, and 0/e denotes the graph obtained 

from G by contracting edge e (i.e removing e and identifing its endpoints). 

Definition A.1: A setoid is a pair (E,:J') where Eis a set and ::re 2E. 

For example, a graph matroid, where E is a set of edges of a graph G and ::r is a set 

of spanning forests, is a setoid. The notions introduced below are easily seen to be 

analogous to the corrresponding notions for graphs. Let (E,:J') be a setoid. 

Definition A.2 : An element eeE such that for every Te:J', eeT is called an isthmus. An 

element eeE such that for every Te:J', e$T is called a.loop. 
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Definition A.3 : The dual of a setoid G=(E,:3=') is the setoid G* = (E,:3=' *) where 

:l='*={T C EI (E-T)e:3='}. 

Remark A.4 : An element eeT is an isthmus of G if and only if it is a loop of G*. 

Definition A.S : Let G=(E,:J:')be a setoid and eeE be neither an isthmus nor a loop. We 

define setoids G-e and G/e in the following way: 

G-e = (E-{e}, {TC E-{e} I T&:3='}), 

G/e = (E-{e}, {TC E-{e} I TU{e}e:3='}). 

We say that G-e (resp. G/e) is obtained from G by removing (resp. contracting) element e. 

Setoids which can be obtained from a given setoid by a sequence of removing and 

contracting elements are called minors of the given setoid. A property P of a setoid is said 

to be closed under minors if P(G) implies P(G') where G' is a minor of G. 

Remark A.6: G*-e = (G/e)* and G*/e = (G-e)*. 

Assume that E is a countable set. We introduce an order I on its elements: 

Definition A. 7 : A computation tree C [(G) of the setoid G with respect to the order I is a 

rooted binary tree (possibly infinite) whose leaves are setoids and which satisfy the 

following conditions: 

(i) if 'v eeE, e is either an isthmus or a loop then C1(G) is a leaf equal to G, 

(ii) otherwise let e be the smallest element of E which is neither an isthmus nor a loop; the 

left subtree of the root of C1(G) is the tree C1(G-e) and the right subtree of the root of 

C1(G) is the tree C1(G/e). 
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Note that every leaf of C1(G) corresponds to a set in 0-. An element e chosen in 

point (ii) is called a branching element of C1(G). 

Definition A.8 : Let Te 0-. An element eeT (resp. e♦T ) is called internally (resp. 

externally) stable for set T with respect to an order I if e does not occur as a branching 

element of C1(G) on the path from the root to the leaf corresponding to T. 

Remark A.9 : An element eeT (resp. e♦T ) is internally (resp. externally) stable for a set 

T with respect to an order I if and only if e is externally (resp. internally) stable for the set 

T* in the dual setoid with respect to the order I. 

Note that there is an obvious correspondence between the above notions and the 

notions used to define Tune polynomials for graphs, namely an internally (resp. externally) 

stable element ~orresponds to an internally (resp. externally) active edge. 

From the definitions of an isthmus and a loop it follows immediately : 

Lemma A.10: 

(i) f is an isthmus of G/e ~ e is a loop of G-f, 

(ii) f is an isthmus of G-e => e is an isthmus of G-f, 

(iii) f is a loop of G/e => e is a loop of G/f. 

Note that in graph theory contracting an edge never introduces an isthmus and that 

removing an edge never introduces a loop. 

Consider a class of setoids that satisfy the additional properties P 1 and P2 defined as 

follows: 

P 1: If f is not an isthmus (resp. a loop) of G then, for any ee E that is neither an isthmus 

nor a loop, f is not an isthmus of G/e (resp. a loop of G-e). 
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P2: If e is neither an isthmus nor a loop of a setoid G and f is an isthmus (resp. a loop) of 

the setoid G-e (resp. G/e) then interchanging element e and element fin each set of :J' 

gives a setoid identical to G. 

Definition A.11: A setoid for which properties Pl and P2 hold and are closed under 

minors is called a P 1 /2-restricted setoid. 

Definition A.12: Let 9 be a family of setoids. A function W: 9-> X is called an 

invariant of setoids in this family if and only if for any two isomorphic setoids G1,G2 e9, 

W(G1) = W(G2), 

A.2. Invariants of Pl/2-restricted setoids 

Assume that the set Eis finite. Consider an abstract algebra A defined as follows: 

A= (U, I, {ailieQ) 

where I : U x U -> U satisfies the axiom: 

Axl : (alb)l(cld) = (alc)l(bld). 

and Q is the set of two variable monomials with coefficient one. 

For p= xiyj define [p] to be the class of setoids (E,:J') such that every element eeE 

is either a loop or an isthmus and such that the number of isthmuses is equal to i and the 

number of loops is equal to j. The following theorem shows that models of algebra A yield 

invariants of Pl/2-restricted setoids. 

Theorem A.13: Let 0. = <U, I ,{aiJiEQ> be a model of algebra A and let 9 be the class 

of all Pl/2-restricted setoids, then the function W: 9 -> U, given by conditions (i) and (ii) 

below, is well defined and therefore is an invariant of setoids in 9: 
(i) if Ge[p] then W(G) =ap, 
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(ii) otherwise let eeE be an element which is neither an isthmus nor a loop then 

W(G)=W(G-e) I W(G/e). 

Proof: To prove the theorem we have to show that W(G) does not depend on the method 

of computation (i.e on the choice of an element in step (ii)). The proof follows by induction 

on the number, say k, of elements that are neither isthmuses nor loops. If k~l then the 

theorem follows immediately from (i) and (ii). Assume that the theorem holds for all 

numbers less than k. Consider a setoid which has k (~2) elements which are neither 

isthmuses nor loops and let e and f be two such elements. We will show that W(G) does 

not depend on which of e,f is used in point (ii). 

If f is neither an isthmus of G-e nor a loop of G/e then formula (ii) applied to e gives: 

L = W(G-e)IW(G/e) 

Simmilarly formula (ii) applied to f gives: 

R=W(G-f)IW(G/f) 

By the inductive hypothesis invarants for G-e, G/e, G-f, 0/f are well defined so we can 

use formula (ii) to get 

L = W(G-e-f)IW(G-e/f)) I (W(G/e-f)IW(G/e/f) and 

R = W(G-f-e)IW(G-f/e) I (W(G/f-e)l(W(G/f/e). 

But G-e-f = G-f-e, G/e/f = G/f/e, G-e/f = 0/f-e, G-f/e = G/e-f. So by Axl we have: 

(W(G-e-f)IW(G-e/f)) I (W(G/e-f)IW(G/e/f)) = (W(G-f-e)IW(G-f/e) I (W(G/f-e)l(W(G/f/e)) 

and L=R in this case. 

If f is an isthmus of G-e (the case when f is a loop of 0/e is similar) then again 

formula (ii) applied to e gives: 

L = W(G-e)IW(G/e) 

Similarly formula (ii) applied to f gives: 

R=W(G-f)IW(G/f). 

By the inductive hypothesis, invarants for G-e, 0/e, G-f, 0/f are well defined. By P2 

W(G-e) = W(G-f) and W(G/e) = W(G/f) so L=R. 
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By property P 1 these are all the cases we have to consider.[] 

Example A.14: Chose a model Cl.I= <U, I ,{ailieQ> as follows: 

U=Z[x,y]; alb= a+b; for p= xiyj define ap= xiyj 

then W(G) is a generalization of the Tutte polynomial for graphs to Pl/2-restricted setoids. 

Denote this polynomial by l: (G). It is easy to check that if n:' is a basis of a matroid 

(E,:T') then (E,:T) defines a Pl/2-restricted setoid. Note that P 1 does need to hold when 

:T is a basis of a greedoid (the set of maximal elements), where a greedoid is a setoid 

(E,%) satisfying the following conditions ([KL82]): 

(i) 0e%, 

(ii) if 0;cXe% then 3aeX, X-{a}e%, 

(iii) X,Ye%, IXl>IYI then 3aeX-Y, Yu{a}E%. 

An example of such a greedoid is given by Gl=(E,%) where E={a,b,c,d}, 

%={0,{b},{c},{d},{a,b},{b,c},{d,b},{c,d}} and ::r={ {a,b},{b,c},{d,b},{c,d} }. 

Note that polynomial l: is undefined for this greedoid (orders a,c,b,d and c,a,b,d lead 

respectively to polynomials xy2+y+6 and y2+2y+xy+4). 

The class of Pl/2-restricted setoids is, however, larger then matroids. An example 

is given by the following setoid: G2=(E,:T) where E={a,b,c,d}, :T={ {a},{b},{c},{d}, 

{a,b,c},{a,c,d},{a,b,d},{b,c,d} }. It is easy to check that this is not a matroid but it is a 

Pl/2 restricted setoid and l:(G2)=4x+4y. 

Note that by Definition A.9 for any Pl/2-restricted setoid we have: 

where iT is the number of internally stable elements in T and his the number of externally 

stable elements of T with respect to a given order I of elements of E. This formula 

generalized Tutte's state model for l: to the class of Pl/2-restricted setoids([T84]). 
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Example A.15: Consider the following model Cl.2 = <U, I ,{aiJieQ> of algebra A: 

U=Z[x±l,y±l]; alb= y-la+x-lb; ap=l. 

Denote by S(G) (Laurent) polynomial invariant of Pl/2-restricted setoids yelded by this 

model. Observe that if all elements of a:' have the same cardinality.say h, then 

:t(G)=xhylEl-hs(G). The invariant S(G) can be extended to countable setoids (values of 

S(G) will be in (Laurent) infinite series of variables x and y). The state formula for S(G) 

can be written: 

where iT (resp. jT) is the number of externally (resp. internally) unstable elements of T 

with respect to a given order I of elements of E. We assume that x-• = y-• = 0. For 

example if E is the set of natural numbers, a:'= { { i,j} I i;tj } then S(G) = x-2y2 1 
2 . (1-y) 
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