
CLAUSE MANAGEMENT SYSTEMS (CMS) 

by 
George Tsiknis and Alex Kean 

Technical Report 88-21 

October 1988 





Clause Management Systems (CMS) 

George Tsiknis and Alex Kean 

Technical Report 88-21 

October 1988 

Department of Computer Science 
The University of British Columbia 

Vancouver, British Columbia 
Canada V6T 1 W5 

Abstract 

In this paper, we study the full extent of the Clause Management System(CMS) pro
posed by Reiter and de Kleer. The CMS is adapted specifically for aiding a reasoning 
system (Reasoner) in explanations generation. The Reasoner transmits propositional 
formulae representing its knowledges to the CMS and in return, the Reasoner can query 
the CMS for concise explanations w.r.t the CMS knowledge base. We argue that based 
on the type of tasks the CMS performs, it should represent its knowledge base E using 
a set of prime implicates P J(t). The classification of implicates as prime, minimal, 
trivial and minimal trivial is carefully examined. Similarly, the notion of a support (or 
roughly, an explanation) for a clause including prime, minimal, trivial and minimal 
trivial is also elaborated. The methods to compute these supports from implicates 
and a preference ordering schema for the set of supports for a given clause are also 
presented. The generalization of the notion of a minimal support for a conjunction of 
clauses is also shown. Finally, two logic based diagnostic reasoning paradigms aided 
by the CMS are shown to exemplify the functionality of the CMS . 
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1 Introduction 

In recent years, reasoning systems have rapidly evolved in sophistication and have pen

etrated almost every application domain. Such systems frequently have to cope with 

searching through huge knowledge bases in the attempt of finding explanations for a given 

query. The need for a supplementary system that can aid the reasoning systems to over

come this problem was recognized. For instance, there are the Truth Maintenance System 

(TMS) of Doyle (1979), the Assumption-Based Truth Maintenance System (ATMS) of de 

Kleer (1986) and the Clause Management System (CMS) of Reiter and de Kleer (1987). 

One strategy to facilitate a reasoning system ( or a Reasoner) is to have a supplementary 

system that maintains the Reasoner 's knowledge base I< B, and in return, the Reasoner 

can query the supplementary system for explanations. The explanations to the Reasoner 

's query computed by the supplementary system should be concise with respect to the 

knowledge base. The Reasoner can then use these explanations at its own discretion 

depending on the application domain. As a requirement, the supplementary system should 

be domain independent so that its functionality can be utilized in the wide range of domain 

dependent reasoning systems. There is considerable research in generating explanations 

including hypotheses generation method of Morgan (1971 ), reasoning in causes and effects 

by Cox and Pietryzkowski (1987), the THEORIST system of Poole et al. (1986) and etc. 

In this paper, we study the full extent of the Clause Management System {CMS) pro

posed by Reiter and de Kleer (1987). In the CMS paradigm, A problem solving environ

ment consists of a domain dependent Reasoner and a domain independent CMS . The 

Reasoner transmits a clause (it may be a 1st order formula) that describes some of its 

activities to the CMS. The CMS updates its knowledge base with this clause as a proposi

tional clause ( different atomic formulae correspond to different propositional variables). In 

the course of making a decision or performing a task, the Reasoner can query the CMS for 

explanations. The query consists of a propositional clause G, to which the CMS must re

spond with every smallest clause S such that SVG but not Salone is a logical consequence 

of the clauses so far transmitted to the CMS . Such a clause is called the minimal support 

clause (or loosely speaking, the explanation) for G with respect to the CMS knowledge 

base. 

In other words, the CMS informs the Reasoner that the negation S of every such S 

is a minimal hypothesis which, if known to the Reasoner, would sanction the conclusion 

G. The Reasoner can use these information to make a decision or choose the appropriate 

actions to perform. Thus, while the Reasoner's actions depend on the domain of expertise, 

the CMS is highly domain independent. Figure 1 illustrates a possible architecture for a 
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Figure 1: Reasoner-CMS Architecture 

There are many applications using the Reasoner-CMS architecture. For example, Reiter 

and de Kleer (1987) describe how abductive reasoning can be accomplished in the CMS 

paradigm and how searching among alternatives in the search space can be facilitated by 

the CMS . In addition, de Kleer and Williams (1987) demonstrate the use of Reasoner

ATMS (a special kind of CMS) architecture in diagnostic reasoning. The full potential 

of the Reasoner-CMS architecture is still relatively unexplored. The set of possible con

figurations in the Reasoner-CMS architecture is rather interesting and research into their 

adequacy is far from complete. For instance, the tradeoff between the CMS maintaining 

the entire Reasoner 's ]{ B versus the Reasoner maintaining its own I< B and transmitting 

to the CMS only relevant knowledges with respect to the task it performs. Nevertheless, 

in this paper we will concentrate on the functionality of the CMS and its computational 

problems and leave such investigation as future work. 

We will illustrate a possible Reasoner-CMS corporation schema by an example taken 

from (Reiter & de Kleer, 1987). Consider a reasoning system with knowledge base J(B 

and assume that the Reasoner in its attempt to prove "g" has discovered that 

J(Bpp/\q/\r--+g 

I( B p ,p I\ q --+ g 

KB p ,q I\ r--+ g. 

Thus, the Reasoner transmits to the CMS the clauses "p V 7j V 'f V g", "p V 7j V g" and 

"q V 'f V g". Suppose now that the Reasoner is interested in finding the minimal support 

for g. By querying the CMS with g it obtains the minimal support for g namely "p V q", 
"r" and "g''. This in turn implies that a minimal explanation1 for "g" is either "p I\ q", 
"r" or "g" since KB pp/\ q--+ g, I<B Fr--+ g. I<B pg--+ g. 

1 Notice that the notion of a support uses a disjunction and therefore, the negation of a support will 
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It has been shown that the the set of minimal supports MS( G, E) for a query G can be 

computed trivially from the set of prime implicates P J(E) of the CMS database E (Reiter 

& de Kleer, 1987). We shall present the full extent of the computation in section 4, 5 and 

6. Since the set P I(E) and E are logically equivalent, the CMS may choose to represent 

the set E as it is, the Simple-DB approach, or with extra effort and memory, compute and 

retain the set P J(E) on-the-fly, the PI-DB approach. We shall briefly compare these two 

approaches. 

Under the Simple-DB approach, the CMS stores the set of clauses transmitted by the 

Reasoner in its database without any alteration. Updating the CMS 's database E is 

trivially simple, i.e. E = EU { G}. Nevertheless the query processing is extremely expensive 

merely because the set MS( G, E) and consequently the set P I(E) must be computed for 

every different query G. Computing the set P I(E) is most expensive but once the set 

P I(E) is available, the set MS( G, E) can be computed very efficiently by using special 

indexing and ordering schemes on P J(E). 

Naturally, the PI-DB approach is aimed at minimizing the expensive computation of 

the set PI(E) by computing it incrementally (Reiter & de Kleer, pp 187, 1987). Thus 

under the PI-DB approach, the CMS stores the set of prime implicates, II = P l(E), of 

the clauses E it.has received so far. When a new clause Lis transmitted to the CMS, the 

CMS computes and stores PJ(II U {L}) using an incremental method discussed in (Kean 

& Tsiknis, 1988). As a consequence, the query processing for minimal support can be 

achieved very efficiently while updating the CMS database on the average is also relatively 

efficient using the incremental algorithm. 

In the actual modelling of a Reasoner-CMS architecture, one must be cautious with the 

tradeoff between the Simple-DB and PI-DB approaches. If the CMS task is to perform 

vast numbers of updates, then the Simple-DB approach is superior simply because updates 

in Simple-DB approach take constant time. Conversely, if the CMS task is heavily related 

to query processing i.e., computing minimal supports, then the PI-DB approach is more 

suitable. 

It is important to note that the size of the PI-DB database can be exponential, that is the 

number of prime implicates is potentially exponential (Chandra & Markowsky, 1978; Kean 

& Tsiknis, 1988). Consequently, the Pl-DB approach potentially needs exponential space 

to store the prime implicates, but this is also the case for the Simple-DB approach each time 

a query is processed. The difference is simply that t~e Simple-DB approach does not retain 

make it an implication. The choice of notation in using a disjunction in a support came from (Reiter & 
de Kleer, 1987) and in using implication in an explanation (or a cause) came from (Cox & Pietrzykowski, 
1986). 
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the potentially exponential space after it is used but requires heavy recomputation for each 

query, while the PI-DB approach uses potentially exponential space but recomputation is 

kept to a minimum. 

It is clear that both approaches require the same amount of space in the worst case. 

The remaining factor that discriminates between these two approaches lies in the time 

complexity of the query processing and update. In most reasoning environments, the turn

around time for the update can be compromised without affecting the Reasoner's activities. 

Conceivably, the Reasoner issues an update and resumes its own activity without awaiting 

for the completion of the update. On the other hand, the query response time is crucial 

to the Reasoner. When a query is issued by the Reasoner, it must receive the response 

before it can continue its activity. In this scenario, one would prefer a fast response time 

to the query and compromise the turn-around time for update. Thus the PI-DB approach 

is preferable simply because it provides a faster query processing. In addition, augmenting 

the PI-DB approach with the incremental prime implicates generator (section 3) reduces 

the compromise for update to a minimum. 

We shall begin by presenting the classification of implicates as minimal, prime, trivial 

and minimal trivial and their proper1ties in section 2. On the issue of update, an incremental 

method for updating a set of prime implicates has been studied in (Kean & Tsiknis, 1988) 

and is briefly presented in section 3. The notion of a support and minimal support for a 

single clause, and the methods to compute them using minimal implicates is presented in 

section 4. The notion of a prime support is presented in section 4.1 and trivial support is 

explained in section 4.2. We elaborate further by showing that the set of minimal supports 

can be computed using only prime implicates. The actual algorithm to compute the set 

of minimal supports for a clause is given in section 5 and a preference ordering on the set 

of minimal supports is also discussed. Furthermore, the generalization of the notion of a 

support for a conjunction of clauses is studied in section 6. 

Some extensive examples for two logic based diagnostic reasoning paradigms utilizing 

the CMS are presented to exemplify the functionality of the CMS in section 7. Finally, 

the conclusions and future work can be found in section 8. 

2 Implicates 

We shall begin with some definitions and notation that will be used throughout this paper. 

We shall assume a propositional language C with a vocabulary V containing a set of 
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countably infinitely many propositional2 variables and a set of logical connectives { /\., V,-,}. 
A variable is denoted by a lowercase letter possibly subscripted (eg. x, y, .. . ) and a literal 

is a positive variable x or a negative variable x ( or ,x ). We also call x and x a pair of 

complementary literals. We shall use the logical entailment relation, I=, with its standard 

logical definition and Th(E) for the set of all the logical consequences of E, where E ~ C. 

A clause, denoted by an uppercase letter possibly with subscript (e.g. A, B, .. . ), is 

a disjunction of literals without repetition. The disjunction of literals is denoted by the 

juxtaposition the literals ( e.g. xyz) and for simplicity, a clause is also assumed to be the 

set of its literals. An empty clause (false) is denoted by the symbol □. A formula is a 

conjunction of clauses without repetition (CNF and the dual is DNF) and for simplicity, a 

formula is also a set of clauses denoted by capital Greek letters, possibly subscripted (e.g., 

E, 11, ... ). For convenience, we will perform set operations i.e., union (U), intersection (n) 
and difference ( - ) on clauses and formulae and assume A U B to mean the same as A V B. 

Definition 2.1 (Subsumption) A clause A is said to subsume another clause B if A ~ 

B. 

Given a set of clauses E, the function SU B(E) is a subset of E such that for every 

clause CE SU B(E), there is no clause C' E E and C'-:/- C that subsumes C. The function 

SU B(E) is used when subsumption is required on a set of clauses. 

Definition 2.2 (Fundamental) A clause C is a fundamental clause if C does not contain 

a complementary pair of literals, otherwise C is non-fundamental.3 

Definition 2.3 (Minimal/Prime Implicate) Given a set of clauses E and a clause P, 

1. P is an implicate of E if E ~ P. 

2. P is a minimal implicate of E if P is an implicate ofE and there is no other implicate 

P' of E such that P' subsumes P. 

S. P is a prime implicate4 of E if P is an implicate of E and there is no other implicate 

P' of E such that~ P'-+ P. 

2Since we are dealing specifically with propositional logic, the adjective "propositional,, with be dropped 
whenever no ambiguity arises. 

3 Note that by the definition of a clause in this paper, a non-fundamental clause is a tautology. 
4The notion of a prime implicate (the dual of prime implicant) is first introduced in [Slagle, Chang & 

Lee'70]. 
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According to definition 2.3, the difference between a minimal implicate and a prime 

implicate is that the minimality relation, -+, for prime implicates excludes non-fundamental 

clauses whereas the definition of minimal implicate does not. 

Example 2.1 Let E = {ab,bc,cd,ae,be} and the vocabulary V - {a,b,c,d,e,f,g, ... }. 

The set of minimal implicates are 

{ab, be, cd, ac, ad, bd, e, aa, bb, cc, dd, fJ,gg, . . . } 

and the set of prime implicates are {ab, be, cd, ac, ad, bd, e}. 

Notice that the set prime implicates is finite if the set Eis so. According to the definition 

of implicate, a non-fundamental clause P is always an implicate of any set E. We shall 

distinguish such an implicate by the following definition. 

Definition 2.4 (Trivial Implicate) A non-fundamental clause P is a frivia l implica;te 

of any set E. A clause P is a minimal trivial implicate of E if P is both a minimal and a 

trivial implicate of E. 

In example 2.1, any clause of C that contains at least one pair of complementary literals 

is a trivial implicate of E but only aa, bb, cc, dd, fJ ... (note that ee is not minimal) are 

minimal trivial implicates of E. Note that the set of minimal trivial implicates can be 

infinite if V is infinite. The distinction between these different types of implicates is crucial 

in the understanding of the notion of a support later. 

Notation (Sets of Implicates) If Eis a set of clauses, /(E), MI(E), Pl(E), Tl(E) 

and MT I(E) denote the set of all implicates, minimal implicates, prime implicates, trivial 

implicates and minimal trivial implicates of E respectively. 

Naturally, the set /(E) is the set of theorems, Th(E), of E. Thus, if E is inconsistent, 

J(E) = C and E I= □, hence M I(E) = { □} and P I(E) = { □} because the empty 

clause subsumes every other implicates. The set MT J(E) = 0 because the empty clause 

is fundamental. If E is empty, then the set of all implicates J(E) are all the tautologies of 

C, i.e. J(E) = TJ(E). Consequently, P I(E) = 0 and M J(E) = MT I(E). 

Recall that only fundamental clauses can be prime implicates. In addition, the set 

MT I(E) contains only non-fundamental clauses. Naturally, the various sets of implicates 

defined here are closely related. The following lemmata and theorems illustrate the rela

tions between the sets PJ(E), MI(E) and MTI(E) of a set of clauses E. First, we show 

that all prime implicates are fundamental. 
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Lemma 2.1 (PI is Fundamental) Every prime implicate of a set of clauses :E is fun
damental. 

Proof : Let P E P I(:E) and assume that P is non-fundamental. Then for any implicate 

G of :E, F G -+ P which contradicts the fact that Pis a prime implicate of :E. D 
Following the lemma, the set of P I(:E) contains only fundamental clauses. Since the 

set MT I(:E) contains only non-fundamental clauses, the following corollary follows imme

diately. 

Corollary 2.1 For any set of clauses :E, PJ(:E) n MTJ(:E) = 0. 

Recall that the difference between P I(:E) and M I(:E) is the minimality relation. In 

fact, the minimality relation (-+) expressed in P I(:E) is similar to the minimality (~) in 

M I(E) if all clauses are fundamental. The following lemma states the relation between 

P I(E) and M I(E). 

Lemma 2.2 For any set of clauses E, P I(E) ~ M I(E). 

Proof: Let PE P I(E) and assume that P (/. M I(E). Then there exists an implicate Q 

of E such that Q subsumes P. But then F Q-+ P which contradicts P E P I(E). □ 

The motiviation for investigating the relations among M I(E), P I(E) and MT I(E) can 

now be expressed in the following theorem. 

Theorem 2.1 For any set of clauses E, M I(E) = P J(E) U MT I(E). 

Proof: If P E P I(E)UMT I(E), by lemma 2.2 and definition 2.4, P E M J(E). Conversely, 

assume that P E M I(E). If P is fundamental then there is no other ~mplicate Q of E for 

which F Q -+ P, since the existence of such Q implies that Q subsumes P contradicting 

P being minimal. Therefore P E P I(:E). If P is non-fundamental then by definition 2.4, 

P E MT I(E). Consequently, P E P I(E) u MT I(E). □ 

The inclusion relations between the defined sets of implicates with respect to a set of 

clauses E are depicted by figure 2. 

Figure 2 illustrates that the set M I(E) is being partitioned into two disjoint sets P I(E) 
and MT I(E). Since finite set of E implies finite set of P I(E), therefore M I(E) is finite iff 

MT I(E) is finite or V is finite. The investigation into the inclusion relations among these 

sets reveals that the set M I(E) can be constructed given only the set P I(E) because the 

set MT I(E) can be constructed on-the-fly. 
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MI = Minimal Implicates 
TI = Trivial Implicates 
PI = Prime Implicates 
MTI = Minimal Trivial Implicates 

Figure 2: Implicate Inclusion Relations 

Theorem 2.2 (Set of MTI) For any set of clauses E over a language C with the vocab

ulary V, MT I(E) = {xx Ix EV and no PEP I(E) subsumes xx}. 

Proof: Let T = {xx I x E V and no TE P I(E) subsumes xx}. If TE MT I(E) then Tis 

of the form xx, for if T = xxA for any clause A, then there is always a trivial implicate xx 

of E that subsumes T. Therefore T has the form xx where x E V and no other implicate 

(nor prime implicate) of E subsumes it. Consequently, T E T. Conversely, we assume 

that T E T. T is a trivial implicate in the form xx and T is not minimal iff there exist 

a minimal implicate Q that subsumes T. In this case, Q is either x or x or □. In either 

case, Q is fundamental and, by the lemma 2.1, Q E P I(E). Therefore TE MT I(E). □ 

We will illustrate the formation of the set M I(E) by assuming the set P I(E) and 

construct the set MT I(E) using P J(E) by the following example. 

Example 2.2 Let E = {pqr,pq,qr,pqs,rs,rpt}, 

then PI(E) = {r,s,pt,qt,pq}, 

MTI(E) = {xx Ix EV - {r,s}} 
and MI(E) = PI(E) u MTI(E). 

The notion of a logical entailment of a clause by a set of clauses E is expressed using 

the sets M I(E) and P I(E) by the following theorem. 

Theorem 2.3 (Entailment) Let E be a set of clauses, 

1. if G is a clause, then E I= G iff there is an ME M I(E) such that M subsumes G. 

2. if G is a fundamental clause, then E I= G iff there is a P E P J(E) such that P 
subsumes G. 
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Proof: Let E be a set of clauses and G be a clause. 

1. Assume E p G. By definition 2.3, G is an implicate of E. If there is no M C G 

such that E p M, then by the definition of minimal implicate (definition 2.3), GEM J(E) 

and G subsumes itself. Otherwise, by the definition of M J(E), there is an M E M J(E) 

such that M subsumes G. Conversly, assume that there is a M E M J(E) such that M 

subsumes G. By definition 2.3, E p M. Since M ~ G, EFG. 

2. Similar argument as above except that since G is fundamental, any proper subset P 

of G is also fundamental. Therefore, by the definition of prime implicate (definition 2.3), 
PE PJ(E). 0 

Consequently, the sets E, M J(E) and P J(E) are logically equivalent as expressed by 

the following theorem. 

Theorem 2.4 (Logical Equivalence) Suppose Eis a set of clauses, then E, M l(E) and 

P J(E) are all logically equivalent in the sense that if a clause C is in one of the above sets, 

then the others logically entail C. 

Proof : A direct consequence of definition 2.3 and theorem 2.3. □ 
_As a consequence of theorems 2.1, 2.2 and 2.4, the most important set of implicates of 

E is the set of prime implicates P J(E). In fact, the set of prime implicates of E plays the 

central role in the Clause ~Management System presented here and will be used extensively 

throughout the paper. 

3 Update 

The update problem in the PI-DB approach can be formulated as computing the set of 

prime implicates P l(II U { C} ), where II is the current CMS database (a set of prime 

implicates) and C is a new clause transmitted by the Reasoner to the CMS (Reiter & de 

Kleer, pp 187, 1987). Methods for generating prime implicates ( the dual of implicants) from 

Boolean expressions have been studied extensively in the area of switching theory (Bartee et 

al., 1962; Hwa, 1974; Slagle et al., 1970). It is obvious that all of the conventional methods 

for generating prime implicates are applicable to the CMS update problem. Nevertheless 

they are inefficient in this formulation because they do not exploit the fact that II is already 

a set of prime implicates. Intuitively, the property of implicates being prime implies that 

any effort to generate new prime implicates from a set of prime implicates II will only yield 

II itself i.e., P J(II) = II. 
We shall briefly present the method which generates prime implicates incrementally. 

Some definitions used in the algorithm are presented below however, a more detailed pre-
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sentation of the algorithm can be found in (Kean & Tsiknis, 1988). The algorithm is 

based on an idea similar to Tison's method (1967), adapted for the purpose of incremen

tally generating prime implicates. Given a set of clauses E = F1 /\ •.• /\ Fn, a variable x is 

a biform variable in E if x E Fi and x E F; for some 1 :5 i,j :5 n. Also, given two clauses 

A = xA' and B =YB', the consensus of A and B with respect to the biform vari~ble x is 

CS(A,B,x) = A'B' iff A'B' is fundamental. 

Incremental Prime Implicate Algorithm(IPIA) 

Input: A set of prime implicates Il of a set of clauses :E and a clause C. 

Output: The set nu Il is the set PI(IT u {C}). 

Step 1.0 Initialize n = { C}. Delete any D E nu Il such that there is another D' E nu II that 
subsumes D. If C is subsumed then STOP. 

Step 2 .0 For each biform variable x occurring in C do 

Step 2 .1 For each S E n and P E II such that S, P have consensus on x do 

Step 2.1.1 T = CS(S,P,x) 
Step 2.1.2 n = nuT. 

Step 2.2 Delete any D E n U Il such that there is another D' E n U II that subsumes D. 

Intuitively, any biform variable of II U C that does not occur in C must occur in some 

P E II, but since II is a set of prime implicates, the consensus among them cannot yield 

any new prime implicates. Moreover, we need to consider only the consensus of a clause 

from n and a clause from II but never two clauses from the same set nor the set II in Step 

2.1. Intuitively, any possible consensus of two clauses that comes from the same set n or 

II is subsumed by a clause in n U II after completion of the algorithm. The correctness 

proof of the algorithm can be found in (Kean & Tsiknis, 1988). We shall demonstrate the 

incremental algorithm by the following example. 

Example 3.1 Let II = {lxy, abc, abc} and C = act a new clause. There are three iterations 

in the algorithm corresponding to the biform variables "a", "c" and "t", and the consensus 

with respect to each biform variable are shown below respectively. 

1) n = {act}, biform = a 

T = CS(act, abc, a) = bet 

2) n = { act, bet}, biform = c 
T = CS(act, abc, a)= abt 

3) n = {act,bct,abt}, biform = t 
T1 = CS(act,txy,t) = acxy 
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T2 = CS(bct, txy, t) = bcxy 

Ts= CS(abt,txy,t) = abxy 

n = { act, bet, abt, acxy, bcxy, abxy} 

The set [n U II = { act, bet, abt, acxy, bcxy, abxy, 1xy, abc, abc} after completion is the set of 

prime implicates of P J(II U { C} ). 

4 Support 

In this section, we shall present the notion of a support for a single clause ( cf. Reiter & de 

Kleer, 1987) and postpone the discussion of the support for a conjunction of clauses until 

section 6. 

Definition 4.1 (Support) Let E be a set of clauses and G be a clause. A clause S is a 

support for G with respect to E if 

1. E F S VG (or E F S-+ G) 

2. E ~S. 

A clause S is a mi:nimal s·upport for G w. r. t E if S is a support for G and there is no other 

support S' for G such that S' subsumes S. 

The intuition behind a support clause S is that S is a hypothesis that implies the 

conclusion G pertaining to the knowledge base E. Further, S is not inconsistent with E 

otherwise E would imply any conclusion whatsoever. A minimal support clause is the 

smallest such hypothesis that implies G. We shall illustrate the notion of a support and 

minimal support using the following example. 

Example 4.1 Assume that the CMS received the following set of clauses E = {p -+ 

ab, b -+ c,p -+ ad}. If "c" is the query, then {c,pa, b} is the set of minimal supports 

for "c". This is obviously true because every clause in this set is consistent with E and 

E F c -+ c, E F p I\ a -+ c and E F b -+ c. 

We have claimed that the set of minimal supports for a clause G w.r.t. E can be easily 

computed from the set of minimal implicates of E. The following lemma and theorem on 

minimal supports and sets of minimal supports are similar to Reiter and de Kleer (1987) 

and are given here without proofs. The reader should note that our notion of minimal 

implicate corresponds to the notion of prime implicants in (Reiter & de Kleer, 1987). We 

decided to adopt the terminology used in switching theory instead, because primeness is 

a much stronger property than minimality. 
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Lemma 4.1 (Minimal Support) Suppose E is a set of clauses, M I(E) is the set of 

minimal implicates of E and G is a clause. If the clause S is a minimal support clause for 

G with respect to E, then there is an ME MJ(E) such that Mn G =/- 0 and S = M - G. 

Let E denote a set of clauses, M I(E) denote the set of minimal implicates of E, and G 

be a clause, and let A= {M-G IM E MI(E) and MnG =I- 0}. The above lemma ensures 

that if S is a minimal support for G, then S can be found in the set A. Unfortunately, 

the converse of the lemma is not true in the sense that there are members of A that are 

not minimal supports for G. This is because subsumption might occur among members 

of A. Consequently, subsumption must be considered in the construction of the set as the 

following theorem indicates. 

Theorem 4.1 (Set of Minimal Supports) Let E denote a set of clauses, MI(E) de

note the set of minimal implicates of E and G be a clause. The set 

MS(G, E) = SUB({M - GI ME MJ(E) and Mn G =/- 0}) 

is the set of minimal supports for G with respect to E. 

There is a special case where the inverse of lemma 4.1 also holds in the sense that every 

support in A is also minimal. This is the case when the query is a clause with a single 

literal ( unit clause) as stated in the following corollary. 

Corollary 4.1 Suppose E is a set of clauses, M J(E) is the set of minimal implicates of E 

and G = l is a unit clause. Then clause S is a minimal support clause for G with respect 

to E iff there is a ME MJ(E) such that l EM and S = M -1. 

Note that if E is inconsistent, there is no support for G. This follows because the only 

clause in M I(E) is the empty clause. Since the empty clause does not have any intersection 

with any clause G, MS(G,E) = 0. Similarly, if EU G is inconsistent (even though Eis 

consistent), G has no support. On the other hand, if E is consistent and E F G, by 

theorem 2.3, there is an M E M I(E) that subsumes G. Thus the only minimal support 

for G is M - G = { □}. For the same reason, if the query G is a non-fundamental clause 

(tautology), then the only minimal support clause for G is the empty clause. 

4.1 Prime Support 

Recall in example 4.1 that "c" was a minimal support for "c". In fact, "c" trivially supports 

"c" in the sense that "cc" is a tautology. We shall distinguish this type of trivial support 
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and elaborate on their role in section 4.2, but we shall first discuss the type of supports 

that are nontrivial in the following sense. 

Definition 4.2 (Prime Support) Let E be a set of clauses and G be a clause. A clause 

S is a fundamental support for G with respect to E if S is a support for G and S U G is 

fundam ental. A clause S is a prime support for G if S is both a minimal and fundamental 

support for G. 

Fundamental and prime supports are more restricted notions of their counterparts de

fined in the previous section, in the sense that they have to preserve an additional property 

namely, SU G being fundamental. Consequently given a clause G, any support S for G 

that makes SU G non-fundamental ( called trivial support in section 4.2) is neither a fun

damental nor prime support for G. Not surprisingly, the set of prime supports for a clause 

G w.r.t. E can be easily computed from the set of prime implicates of E. 

Theorem 4.2 (Set of Prime Supports) Suppose E is a set of clauses, P I('f.) is the set 

of prime implicates of 'f, and G is a clause, then 

PS(G, E) =SUB( {P - GIPE P I('f.), P n G =J 0 and Pu G is fundamental}). 

is the set of prime supports for G w.r.t. E. 

Proof : If E is inconsistent or G is a tautology, PS( G, 'f.) = 0 and the theorem is true. 

We assume 'f, is consistent and G is fundamental. 

Let SE PS(G, 'f.). By construction, Sis a fundamental support for G. We shall prove 

that S is minimal. Suppose there is a minimal support S' for G such that S' C S. By 

theorem 4.1, S' = P - G for some PE M I('f.) and P n G =I- 0. If S' U G is fundamental, 

PE PI('f.) and S' E PS(G, 'f.) contradicting SE PS(G,E). If S'UG is non-fundamental, 

there is some literal x such that x ES' and x E G. But then S' (/,. S since x </. S. Therefore, 

S is minimal. 

Conversely, let S be a prime support for G. Since Sis also a minimal support for G, by 

theorem 4.1, there exists a PE M I('f.) such that P n G =I- 0 and S = P - G. Assume that 

PE MTJ('f.), then P = xx for some x EV. But then SUG is non-fundamental. Therefore 

P E P I('f.). Assume PUG is non-fundamental. Since P and G are both fundamental, 

there must exist a literal x such that x E P and x E G. But then SUG is non-fundamental. 

Therefore, S E PS( G, 'f.). D 
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Example 4.2 Let E = {adb, bee, pc} and the set of prime implicates PI(E) = {adec, adb, 
bee, pc}. If G = dbc, then PS( G, E) = SUB( {ae, a, p}) = {a, p}. Notice that the prime 

implicate P = bee has a non-empty intersection with G but PUG is non-fundamental. 

Also, the fundamental support "ae" is not prime because "a" subsumes it. 

4.2 Trivial Support 

As indicated in the previous sections, there are some distinguished types of minimal sup

ports that trivially support a clause G. Intuitively, if G = abc, then the negation of its 

literals "a", "b" and "c" are all potentially trivial supports for G. That is, since E F aVabc 
holds for any E, if E ~ a, then "a" is a trivial support for G. 

Definition 4.3 (Trivial Support) Let E be a set of clauses and G a clause. The clause 

T is a trivial support clause for G if T is a support for G and TU G is non-fundam ental. 

The clause T is a minimal trivial support clause for G if T is both a trivial and minimal 

support for G. 

Recall that according to corollary 2.1 and theorem 2.1, the set M I(E) is composed of 

two disjoint sets P J(E) and MT I(E). We have already seen M S(G, E) being constructed 

from MI ( E), and PS ( G, E) being constructed from PI ( E). Ideally, we would like to have 

a similar definition for the set of minimal trivial supports for a clause G w.r.t. E using 

MT J(E) only. Unfortunately, the following observation reveals such impossibility. Let 

6 = SUB({M-G IM E MTJ(E) and MnG # 0}). 

First, consider G = xxA for some x E V and fundamental clause A. Since G is a non

funtamental clause and if E is consistent, any support for G is a trivial one. Therefore, 

the only minimal trivial support for G is □. But, if x or x E P J(E), then xx r/. MT J(E) 

and therefore D r/. 6. 

The second problem arises when G = xy is a fundamental clause such that x E P J(E) 

and y r/. P I(E). Obviously, xx r/. MT I(E) and yy E MT I(E). Since P S(G, E) = { □}, no 

trivial support for G is minimal. But, according to 6, y is a minimal trivial support. To 

overcome these problems we resort to the following less appealing characterization of the 

set of minimal trivial supports. 

Theorem 4.3 If E is a set of clauses and G is a clause, then the set MTS( G, E) defined 

as 

1. ifE is consistent and G is non-fundamental then MTS(G,E) ={□}otherwise 
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2. MTS(G,E) = {M-G IM E MTI(E), A1nG # 0 and no clause in PS(G,E) 

subsumes A1 - G} 

is the set of minimal trivial supports for G w.r.t. to E. 

Proof : If E is consistent and G is non-fundamental then the only minimal and trivial 

support for G is □, therefore the theorem holds. If :E is inconsistent, MT J(:E) = 0 
and the theorem holds. Let E be consistent and G be a fundamental clause, and let 

SE MTS(G, E). Since MTl(E) ~ Ml(E), any such Sis a support for G (by theorem 4.1) 
and is trivial by construction (i.e. SU G is non-fundamental). Suppose S is not minimal. 

By construction, Sis a single literal x such that x E G and the only clause that subsumes 

S is □. But, if D is a support for G, D E PS( G, E) (because G is fundamental) which 

contradicts the hypothesis SE MTS(G, E). 

Conversely, let S be a minimal trivial support for G. By definition 4.3 and theorem 4.1, 

SE MS(G, E), i.e. there exists an ME MJ(E) such that S = M-G, MnG # 0 and SUG 

is non-fundamental. Consequently, there exists an x E V such that x E SUG and x E SUG. 

Assume that M E P J(E), since x, x cannot both occur in M or in G, therefore either 

x E M and x E G or vice versa. Assume that M = xAB and G = xAC with A -::/; 0 and 

BnC = 0, hence S = xB. Neither x nor x can be in P I(:E) since their presence contradicts 

the assumption that M E P I(E). Therefore by theorem 2.2, M' = xx E MT I(:E) which 

implies that S' = M' - G = x is a support for G and S' C S contradicting the assumption 

that Sis a minimal trivial support. Therefore ME MTI(E). Moreover, no PE PS(G, :E) 

can subsume S because Sis minimal. Consequently, SE MTS(G, :E). D 
Alternatively, the set of minimal trivial supports for a clause G w.r.t. a set :E can be 

defined as follows: 

1. if Eis consistent and G is non-fundamental then MTS(G,E) = { □} 

2. if PS(G, E) = { □} then MTS(G, E) = 0, otherwise 

3. MTS(G,:E) = {M - GI ME MTI(E) and Mn G # 0} 

The following corollary gives an even more simplified way of expressing the set of min

imal trivial supports and is used in the algorithm given in the next section. 

Corollary 4.2 If :E is a set of clauses and G is a c,lause, then 

1. if E is consistent and G is non-fundamental then MTS(G, E) = { □} 
2. if PS(G,:E) ={□}then MTS(G,E) = 0, otherwise 
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3. MTS(G,"f.) = {x Ix E G andx rt PI("f.)} 

The theorem below explicitly summerizes the relations among the various sets of sup

ports. 

Theorem 4.4 If "f. is a set of clauses and G a clause, then 

PS(G, "f.) n MTS(G, E) = 0 and MS(G, E) = PS(G, E) u MTS(G, "f.). 

Proof: The theorem is a direct consequence of the theorems 2.1, 4.1, 4.2 and 4.3. D 
A trivial consequence of the theorem is that if the set MS( G, "f.) is available, the sets 

PS(G, "f.), MTS(G, "f.) can be computed from 

MTS(G,"f.) ={TI TE MS(G,"f.) and TUG is non-fundamental} 

and PS(G, E) ={PIPE MS(G, E) and Pu G is fundamental}. 

In summary, we have presented methods to compute the sets MS(G,"f.), PS(G, "f.) and 

MTS( G, "f.). We have shown that any of these sets can be constructed from the set P I("f.) 

which justifies it as the only set of implicates of "f. that we need to maintain in order 

to efficiently compute any set of supports for any clause. Also, the distinction between 

minimal, trivial and prime supports suggests that under certain circumstances, if the trivial 

supports for a clause G are of no concern to the Reasoner , the CMS might as well not 

compute them at all. 

Conversely, if the Reasoner has a need for trivial supports for a query G, the CMS 

can compute the set of minimal trivial supports given the set of prime supports. In the 

case of a single clause query, the minimal trivial support can be easily computed. There 

is no obvious application for this type of minimal trivial support beside determining the 

triviality of the query. On the other hand, if the query is a conjunction of clauses, the 

minimal trivial support for each clause is needed for the construction of minimal supports 

for the conjunction (section 6). Moreover, observed that the minimal trivial support for 

a conjunction of clauses is closely related to minimal models (minimal number of truth 

assignments). For example, if "f. is empty and :Fis a CNF formula, then the minimal trivial 

support S i.e., F S V :F and ~ Scan be shown to correspond to a minimal model of :F. 

We shall leave the investigation into this issue for future research. 

5 Query 

Recall that a CMS query has, for the time being, the form of a single clause G. The 

CMS replies with the set of minimal supports, MS(G, "f.), for G with respect to the CMS 
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knowledge base E. Since trivial and prime supports for G may have different meaning for 

the Reasoner, the CMS differentiates among them. To this end, the reply to a query G 

consists of two disjoint sets: MTS(G, E) and PS(G, E). The Reasoner can obtain useful 

information about G by a simple inspection of these sets. 

1. If both sets are empty, EU G is inconsistent; 

2. if MTS(G, "£,) = { □} and PS(G, "£,) = 0, G is a tautology; 

3. if PS(G, E) = { □}, G is a logical consequence of"£, 

4. if PS(G, "£,) = 0 and MTS(G, "£,)-::/: 0, G is consistent with E but not related to it. 

We believe that in most applications only the prime supports are important for the Rea

soner -the section on diagnostic reasoning supports our claim. Nevertheless, the minimal 

trivial supports are indispensable for computing the prime supports for conjunctive queries 

as the later section indicates. The following algorithm is the amalgamation of the results 

presented thus far. 

Algorithm for Minimal Supports 

Input: a set of clauses P 1(1::) and a clause G. 

Output: MS(G,l::) = PS(G,'f,)UMTS(G,1::). 

Step 1.0 If PJ('f,) ={□}then MTS(G,'f,) = 0 and PS(G,1::) = 0, GOTO 6.0. 

Step 2,0 If G is non-fundamental then PS(G,:E) = 0 and MTS(G, :E) ={□},GOTO 6.0. 

Step 3.0 PS(G, :E) =SUB( {P - GI PE PI(:E), P n G-:/: 0 and Pu G is fundamental}) 

Step 4.0 If PS(G,:E) ={□}then MTS(G,:E) = 0, GOTO 6.0. 

Step 5,0 MTS(G, :E) = {x Ix E G and x </. PI(:E)} 

Step 6.0 RETURN: MS(G,:E) = PS(G,'f,)u MTS(G,l::). 

Example 5.1 We demonstrate the algorithm with the following example. Let"£,= {abed, 

cf g, dhj, gu, hv, w }. The set of prime implicates of"£, are 

P J("E,) = { ( 1) abfujv, 

( 5) abcjv, 

( 9) abed, 

(13) dhj, 

( 2) abfuhj, 

( 6) abchj, 

(10) cf u, 

(14)gu, 

( 3) abf gjv, 

( 7) abdfu, 

(ll)cfg, 
(15) hv, 

( 4) abf ghj, 

( 8) abdfg, 

(12) djv, 

(16) w }. 

The following four queries for the set of clauses "£, above illustrate the type of minimal 

supports obtained using the algorithm. For clarity, each support clause is accompanied 

by a number indicating which prime implicate in P J(E) the support is generated from. 

18 



Throughout the example, 6 represents the set of potential prime supports for the query 

i.e., the set constructed at Step 3.0 of the algorithm before the application of the SUB 

operator. 

Query A (Minimal Support): G = ajd 

6 = {bfuv(l), bjuh(2), bfgv(3), bjgh(4), bcv(5), bch(6), bfu(7), bjg(8), bc(9)} 

PS(G, E) = {bc(9), bf 9(8), bfu(7)} 

MTS(G, E) = {a, 'J, d} 

Notice that in query A, the prime implicates (12) and (13) do not contribute to a 

fundamental support clause because the union of the prime implicate and the query is 

non-fundamental. In the set PS(G, E), notice that the prime support clause (7) subsumes 

(1) and (2); (8) subsumes (3) and (4); and (9) subsumes (5) and (6). The set of minimal 

trivial supports includes the negations of the goal literals because none of them is in P I(E). 

Th us, the set of minimal supports for the clause "aj d" is the set PS ( G, E) U MTS ( G, E). 

Query B (Entailment): G = hv 
6 = {abfuj(l), abf gj(3), abcj(5), dj(12), □ (15)} 

PS(G, E) = { □} 
MTS(G, E) = 0 

In query B, the query G is entailed by E, that is, by theorem 2.3 there is a prime 

implicate (15) that subsumes G. Thus the only minimal support for G is the empty 

clause, as shown in the set 6 and consequently in the set PS(G, E). · 

Query C (Tautology): G = ww 

PS(G,E) = 0 
MTS(G, E) = { □} 

In query C, the query is a tautology (non-fundamental). According to the definition of 

minimal support (definition 4.1), the only minimal support clause for a tautology is the 

empty clause found in the set MTS( G, E). This is obtained from Step 2.0 in the algorithm. 

Query D (Inconsistent): G = w 
6= 0 
PS(G,E) = 0 
MTS(G,E) = 0 
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Finally, in case D, the query is inconsistent, that is, EU G F D or E F G. Such a query 

does not have any intersection with any prime implicate in P/(E), consequently PS(G, E) 

is the empty set. Also, the negation of G, "w", is the clause (16) in P I(E) therefore the 

set MTS(G, E) is also empty. 

5.1 Preference Ordering 

Normally, the set of minimal supports for a query contains more than one clause. It would 

be interesting to design a method to distinguish among these minimal supports, in fact, 

the notion of preferences in minimal support has been advocated in the literature. For 

instance in (Cox and Pietrzykowski, 1986), a basic cause for a query G is equivalent to our 

notion of a prime support S for G such that there is no other prime support S' for G that 

satisfies E F S' -+ S. In (Poole, 1988), a least presumptive hypothesis is comparable to 

a minimal support S such that there is no other minimal support S' for G that satisfies 

E F S' -+ S. Poole (1988) also observed that there is a need for not only basicness and 

least presumption, but more complete specification of their preference ordering. We shall 

attemp to provide a preference ordering schema for a set minimal supports for a query 

w.r.t. E. 

Recall that subsumption was used as the ordering relation in the set .of minimal supports 

for a query G. Since any support for any clause is by nature fundamental, the same ordering 

can be used. If S1 and S2 are supports for G w.r.t. E, S1 subsumes S2 if F S1 -+ S2. 

Note that this ordering relation is independent of any set E. Interestingly enough, we can 

further define a more restricted ordering relation among the elements of MS(G, E) that 

depends on E as follows. 

Definition 5.1 (Minimal Support Preference Ordering) Let E be a set of clauses, 

Ga clause, MS(G, E) the set of all minimal supports for G w.r.t. E and <I>~ E. We say 

that 

1. S1 precedes S2 w,r.t. W {S1 "--+ S2) if<I> F S1 -+ S2 for distinct S1,S2 E MS(G,E). 

2. S is an upper minimal support w.r.t. <I> {S "--+) if there is no other S' E M S(G, E) 

such that <I> F S -+ S'. 

3. Sis a lower minimal support w.r.t. <I> ("--+ SJ if there is no other S' E MS(G, E) such 

that <I> F S' -+ S. 

If S is both upper (S ~} and lower ("--+ S) minimal support w. r. t. <I>, then S is 

called isola.ted and is denoted by itself. Also, if <I> = E, the resulting ordering is called 

a canonical ordering of MS(G, E). 
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The above definition allows the Reasoner to provide a set of ordering constraints ( de

pending on the application domain) which together with <I> allows some degree of discrim

ination among the minimal supports. In the absence of such constraints, E can always be 

used to serve the purpose. From here on, we will concentrate on canonical orderings and 

note that theorem 2.3 ensures that for any A,B E MS(G, E), A"'--+ B iff there exists a PE 

P/(E) that subsumes AV B. 

Example 5.2 Consider Query A in example 5.1. G = ajd and MS(G, E) = {be, bfg, 
Iifu, a,'J, d}. The canonical ordering forces the following relations among the elements of 

MS(G,E): 

be "--+ b Jg , be "-+ b Ju , bf g "--+ bf u , bf u "--+ , "--+ be , 
a I d 

The graph in figure 3 provides a visual presentation of the preference ordering on 

MS( G, E). The arrows in the graph correspond directly to the preference ordering re

lation "--+. The minimal trivial supports "a", ""'J" and "d" are isolated; the prime support 

"be" is the lower and "bf u" is the upper minimal support w.r.t. to E. 

be 

bfg------- bfu 

a 
"T 

J d 

Figure 3: Canonical Ordering in MS(G, E) 

We have mentioned earlier that in many applications only the set of prime supports is of 

interest, consequently, a preference ordering for the prime supports is needed instead. By 

restricting the ordering relation defined in this section (definition 5.1) to the set PS(G, E), 

a similar preference ordering on the set of the prime supports for a query G can be obtained. 

6 Conjunctive Queries 

To generalize the functionality of the CMS, Reiter and de Kleer (pp 185, 1987) proposed 

the notion of a minimal support for a conjunction of clauses. In this section, we shall 
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present a method for computing the proposed set of minimal supports. Initially, we shall 

present the method for finding the minimal support for a conjunction of two clauses and 

subsequently, generalize it to multiple conjuncts. The notion of a support for a conjunc

tion of two clauses G1 /\ G2 is derived from the definition of support (definition 4.1) by 

substituting G = G1 /\ G2. Intuitively, the set of support for G1 /\ G2 can be constructed 

by first constructing the set of minimal supports MS( G1, E) and MS( G2, E) respectively, 

and taking the pairwise union (disjunction) of their minimal supports provided they sat

isfy certain conditions. In the following, if A and Bare clauses, AV B denotes the clause 

obtained by joining the literals of A and B without repetitions. 

Theorem 6.1 Let E be a set of clauses and G = G1 /\ G2 the conjunction of two clauses. 

Let 

The set MS( G, E) = SUB(~) is the set of minimal supports for G w.r.t. to E. 

Proof: Let SE MS(G,E). We shall prove that Sis a minimal support clause for G. 

a. (support} By definition, S = S1 V S2 where S1 E MS(G1, E) and S2 E MS(G2, E). 

Since E F S1 V G1 and E F S2 V G2, then by propositional reasoning E F (S1 V S2) V 

(G1 I\ G2)5• By the construction of MS(G, E), there is no other minimal implicate that 

subsumes S and hence, by theorem 2.3, E ~ S. Consequently, S is a support for G w.r.t. 

E. 

b. {minimality) Let R be a support for G, i.e. E F RV ( G1 /\ G2) and E ~ R, such that 

RCS. Since E F RVG1 and E F RVG2, Risa support for G1 and G2 respectively. Hence 

there exist a R1 E MS(Gi, E) and a R2 E MS(G 2 , E) such that R1 ~ Rand R2 ~ R. 

Therefore R1 V R2 ~ Rand since E ~ R, by theorem 2.3 there is no M E M I(E) that 

subsumes R1 V R2. This means that R1 V R2 E ~. Therefore either R1 V R2 E MS(G,E) 

or it is subsumed by some R' E MS(G, E). Since R' ~ R1 V R2 C S, S is subsumed by 

some element in M S(G, E) contradicting the assumption that SE M S(G, E). 

Conversely, let S be a minimal support for G = G1 /\ G2 w.r.t. E. We shall prove that 

S E MS(G, E). Since E F S V (G1 /\ G2), hence E F S V G1, E F S V G2 and E ~ S 
i.e., S is a support for G1 and G2 respectively. By the definition of minimal support 

(definition 4.1), there exist S1 ~ Sand S2 ~ S such that S1 , S2 are minimal supports for 

Gi, G2 respectively i.e. S1 E MS(G1, E) and S2 E MS(G2, E). Since E F S1 V S2 VG and 

E ~ S1 V S2 because S1 U S2 ~ S, no M E M I(E) subsumes S1 V S2, hence S1 V S2 is a 
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support for G and also S1 V S2 E A. If S1 V S2 C S, then Sis not minimal contradicting 

the assumption that Sis, consequently, S = S1 V S2 and therefore SE MS(G,"E-). D . 

Example 6.1 Let r, = {pq,qr,pt} and G = r At. Then 

P J("E,) = {pq, qr,pt, pr} 
MS(r, "E-) = PS(r, "E-) u MTS(r, "E-) = {q,p} U fr} 
MS(t, "E-) = PS(t, "E-) u MTS(t, "E-) = {p} u {l} 
A = { qp, qt, p, pt, rp, rt} 
MS(r At, "E-) = {qt,p, rt} 

An obvious generalization of theorem 6.1 can be obtained as follows. If G1 , ••• , Gn are 

n clauses and G = G1 A ... A Gn, then we define 

MS(G,"E-) = SUB({ S1 V S2 V ... V Sn I 
for each i, 1 :5 i :5 n, Si E MS(Gi,"E,) and 

no ME M J("E,) subsumes S1 V S2 V ... V Sn}). 

Notice that in the above method, if S1 V S2 is subsumed by some Si VS~ where S1, Si E 
n 

MS(G 1 , "E-), S2 , S~ E MS(G 2 , "E-) and W = V Si E MS(Gi, "E-), then obviously 
i=3 

which means that we have generated a lot of non-minimal supports that are subsumed 

later. The above scenario suggests that we should remove non-minimal supports as early 

as possible preventing the unnecessary combinatorial explosion. 

The following theorem is a generalization of theorem 6.1 and gives the basis for a 

recursive algorithm for computing the minimal supports for the conjunction of an arbitrary 

(finite) number of clauses. The theorem exploits the local non-minimality condition and 

remove non-minimal supports as soon as possible. 

Theorem 6.2 If "E, is a set of clauses and Gi, ... , Gn, n 2:: 2 are n clauses, the set of 

· minimal supports for G = G1 A ... A Gn can be defined as 

MS(G1A ... AGn,"E-) = SUB({SvS'I SEMS(G1 A ... AGn_1,E) and 

S' E MS(Gn, E) and 

no M E M J(E) subsumes S V S'} ). 
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Proof: By simple induction on the number of clauses in the conjunction and theorem 6.1. 

□ 
Notice that the condition "no ME M /(E) subsumes SV S"' can actually be replaced by 

(i) S VS' is fundamental and (ii) no P E P I(E) subsumes S VS'. The above replacement 

is an obvious consequence of theorem 2.3 and the following corollary restates theorem 6.2 

in a simplified manner. 

Corollary 6.1 If E is a set of clauses and G1 , •.• , Gn, n 2:: 2 are n clauses, the set of 

minimal supports for G = G1 /\ .•• /\ Gn can be defined as 

MS(G1 I\ ... Gn, E) =SUB( {S VS' I SE MS(G1 I\ ... I\ Gn-1, E) and 

S' E MS(Gn, E) and 

no PEP I(E) subsumes S VS' and 

S V S' is fundamental } ). 

Example 6.2 In example 6.1, if the query is G = r I\ t I\ q, we can construct the minimal 

support for G by taking the set of minimal supports lvf S(r I\ t, E) computed in example 6.1, 

and pairing with the set MS ( q, E) as follows: 

M S(r I\ t, E) = {qt, p, rt} 
MS(q, E) = {p, q} 
~ = {pq1, qt, p, pq, prt, qrt} 

MS(r I\ t I\ q, E) = {qt, p} 

Before we leave this section we present an alternative for computing the set of minimal 

supports for a finite conjunction of clauses6 • 

Theorem 6.3 Let E be a set of clauses and G = G1 A ... A Gn a conjunction of n 2:: 2 

clauses. For any clause S, SE MS(G, E) iff SE PS(u, E') where, u is a new propositional 

variable not occuring in E U G and E' = E U { G --+ u} . 

Proof : We need to prove that for any clause S which contains no occurences of u, S is a 

support for u w.r.t. E' iff S is a support for G w.r.t. E. 

Assume S is a support for u w.r.t. E', then E' I= S Vu or EU { G --+ u} I= S Vu and 

E I= ( G --+ u) --+ S Vu. By propositional reasoning, E I= S V G Vu, since u does not occur 

6This alternative was brought to our attention by Prof. Raymond Reiter in a personal communication 
on October 1988. 
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in either of E, Sor G, E I= S VG. Moreover, since E' ~ Sand E ~ S, therefore Sis a 

support for G w.r.t. E. 

Conversely, assume S is a support for G w.r.t. E, i.e. E F S V G and E ~ S, 

then E' F ( S V G) A ( G -+ u) and E' F S V u. In addition E' ~ S, for otherwise 

E I= (G -+ u) -+ S which by propositional reasoning implies that E I= S V "'ff. Since u 

does not occur in E or S, E F S which contradicts our hypothesis. Consequently Sis a 

support for u w.r.t. E'. D 
The recursive algorithm implied by theorem 6.2, although it looks complicated, it is 

actually better in complexity terms than the method proposed by theorem 6.3. The latter 

technique requires first transforming the (DNF) formula G -+ u into an equivalent formula 

F in CNF, and then computing the prime implicates of E U F. This transformation has 

a combinatorial explosion in general. Moreover, if F has m clauses, m applications of the 

incremental algorithm are required to obtain the new set of prime implicates. This also 

implies that for each query, the knowledge base E must be duplicated before adding the 

augmented query clause in order to preserve the set E for other queries. 

The algorithms discussed in this section generate the set of minimal supports for a 

conjunction of clauses in a rather direct way. Unlike the algorithm in section 5, these 

algorithms do not explicitly generate the sets of prime and minimal trivial supports for a 

conjunction, therefore, some extra effort is needed to partition the minimal supports into 

prime and trivial ones. More specifically, let E be a set of clauses and G = G1 A ... A Gn is a 

conjunction of n 2:: 2 clauses. By theorem 4.4, for any clause SE MS(G, E), SE PS(G, E) 

iff for some i, 1 ~ i ~ n, Gi US is fundamental, otherwise SE MTS(G, E) . Consequently? 

when a conjunctive query G is presented to the CMS, it computes MS(G, E), applies the 

fundamentality test on MS(G,E) and replies with the sets PS(G,E) and MTS(G,E) . 

7 Diagnostic Reasoning 

In this section, we shall demonstrate the utilization of the CMS in diagnostic reasoning. 

Diagnosis is an act of investigation or analysis of the cause or nature of a condition, 

situation, or problem. A diagnostic reasoning system as studied in Artificial Intelligence is 

a computational system that performs diagnosis. In rectrospect, conventional diagnostic 

systems employed some form of rule-based production system. The knowledge encoded in 

such system is usually in the form of a relation between possible causes and possible effects. 7 

Many new strategies have emerged in the realm of diagnostic reasoning (Milne, 1987); 

7Usually, causes represent the possible states of the system components (malfunction, correct states 
etc.) or possible diseases in the medical domain, while effects are the results of the causes. 
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nevertheless we shall concentrate on the use of the CMS in two logic based methodologies: 

consistency based and explanation based diagnostic reasoning. These paradigms are chosen 

for the purpose of exemplifying the functionality of CMS. A comprehensive study on the 

adequacy of these paradigms can be found in (Poole 1988a). 

To simplify the discussion, we assume a propositional diagnostic Reasoner and leave the 

issues of the protocol between the 1st order Reasoner and the CMS as future research. The 

system's knowledge or system description) is encoded as a set of formulae (SD) expressing 

the ontology of the domain and its tasks. The strategy of the encoding can be ( i) causes 

-+ effects or (ii) effects -+ causes where causes and effects are formulae. Without lost 

of generality, we will assume a cause to be a literal. We shall designate a set of causes 

C = { cause1 , • •• , causen} where each causei is a disguintished literal. Furthermore, an 

observation ( 0 BS) is a set of formulae expressing the observed behavior of the system and 

of course is related to effects. Occassionally, there is also a set of constraints C embedded 

in SD expressing the relation between causes, for example, certain causes are mutually 

exclusive w.r.t. the same effect. 

7 .1 Consistency Based Diagnostic Reasoning 

In the consistency based diagnostic reasoning paradigm (Reiter, 1987), t·he system to be 

diagnosed is described by formulae of the form effects -+ causes 8 , The objective of the 

diagnosis is to extract every minimal subset of causes that is consistent with the system 

description SD and the observation OBS. More formally, a diagnosis for (SD, OBS) is a 

minimal set of causes b. ~ C such that 

SD LJ{cause I cause Eb.} LJ{-,cause I cause EC - b.} LJ OBS (1) 

is consistent. 

A set T ~ C is an inconsistent subset of causes with respect to SD and OBS if SD U 

OBS U {-,cause I cause E T} is inconsistent. Such a set T is a minimal inconsistent 

subset of causes if no proper subset of it is an inconsistent subset of causes9 • Thus if 

SD U OBS U { -,cause1 , ••• , -,causek} is inconsistent or SD U OBS F cause1 V .•• V causek, 

then using theorem 2.3 and 2.4, there is a prime implicate P of PI(SD U OBS) that 

8Some authors claim that such a representation describes the normal state of the system. The reason 
for this can be illustrated by an example. If arthiritis is known to cause aching_elbow, the formula 
aching_elbow -+ arthiritis is equivalent to -.arthiritis -+ -.aching..elbow, which describes the condition 
of a normal person w.r.t. arthiritis. 

9de Kleer (1986) refered to it as nogoods and Reiter (1987) refered to it as minimal conflict set. 
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subsumes cause1 V .. • V cause". Also, by the minimality of prime implicate, we know that 

the causes in P are a minimal inconsistent subset of causes. 

There is a close relationship between the minimal inconsistent subsets of causes and the 

set of diagnoses for (SD, OBS). Notice that in equation (1), the set of causes C-.6. cannot 

be a superset of a minimal inconsistent subset T for otherwise equation (1) is inconsistent. 

Assuming we have all the minimal inconsistent subsets of causes, say T1 , T2 and n as 

shown in figure 4, then equation (1) is consistent if the set C - .6. is not a superset of any 

minimal inconsistent subset T,, that is, for every T,, T, n .6. =/ 0. 

Figure 4: Computing Diagnoses 

Suppose T1 , ..• , Tn are all the minimal inconsistent subsets of causes w.r.t. SD and 

OBS, where Ti= {causeii, ... , cause,k;} for 1 ~ i ~ n. Let Tf = causei1 V · • • V cause,ki 

for 1 ~ i ~ n. Clearly, SD U OBS F T{ A ···AT~. Finally, let D = D1 V · · · V Dm be 

a minimal (number of conjuncts) DNF formula equivalent to T{ A••• AT~. Since there 

are not complementary literals among the T/'s and consequently among the Di, D is 

unique and minimal and can be computed by the technique of normal form transforma

tion and subsumption10 . It can be shown, following Reiter's (1987) theorem 4.4, the set 

{D1 , ••• , Dm} is the set of diagnoses for (SD, OBS). 

In this framework the CMS can be used to compute all the minimal inconsistent subsets 

of causes as follows. When an observation OBS is made, the Reasoner transmits to the 

CMS all the clauses that are related to OBS. A clause is related to OBS in case it contains 

non-logical symbols (propositional symbols) that occur in OBS or occur in another clause 

that is related to OB S11 • 

Obviously, the observation OBS is also transmitted to the CMS and in addition, the 

10The existence of complementary literals in D does not ensure minimality and therefore uniqueness. 
This problem is similar to the minimization of Boolean functions in switching theory (Bartee et al., 1962). 

11Craig's interpolation lemma (Shoenfield, pp 80, 1967) can be used to show that these clauses are 
sufficient for our purpose. Note that the Reasoner -CMS protocol we describe here is a rather simple and 
therefore inefficient one. A thorough study of the Reasoner -CMS protocols is among the issues for our 
future research . 
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Reasoner supplies the CMS with a set C of distinguished literals that represent causes. 

The CMS computes the set of prime implicates of its database and returns a subset of 

prime implicates such that each prime implicate P consists solely of causes (P ~ C) to the 

Reasoner. As discussed earlier, these prime implicates are the minimal inconsistent subsets 

of causes. The Reasoner then computes diagnoses from the set of minimal inconsistent 

subsets of causes using the normal form transformation technique. 

Clearly, any fast transformation method from CNF to DNF is suitable for this purpose. 

For example, we can represent the CNF formula as a matrix and use the connection method 

(Bibel, 1987) to construct a set of all paths 'P through the matrix. It can be shown easily 

that the minimal DNF formula is the set of all paths 'P' that are not subsumed by other 

paths in the set P. Furthermore, such a technique can be optimized for our setting since 

no complimentary literals exist in clauses, and subsumptions can be greatly reduced by 

examining the structure of the matrix. 

Finally, observations ( or measurements) in incremental fashion can also be accommo

dated in our framework. A measurement is simply treated as an additional observation. 

Whenever a measurement M is performed, the result is transmitted to the CMS which 

incrementally computes the new set of prime implicates and subsequently, minimal incon

sistent subsets of causes, which in turn may lead to a new set of diagnoses. 

Example 7.1 A medical diagnosis involves identifying a disease or illness from its signs 

and symptoms. The following set of propositional formulae, taken and simplified from 

(Poole et al., 1986), describes the type of symptoms ( effects) that are produced by several 

diseases ( causes). 

C = {tennis..elbow, dishpan..hands, arthritis}. 
SD= { aching..elbow-+ tennis_elbow V arthritis, 

aching..hands -+ dishpan.hands V arthritis, 
aching.Jenee -+ arthritis}. 

OBS= { aching_elbow, aching..hands}. 

(*) 
(*) 

PI(SD U OBS)= { tennis_elbow V arthritis, 
dishpan..hands V arthritis, 
aching..hands, aching..elbow, aching Jenee V arthritis}. 

The prime implicate indicated by ( *) is a clause consists solely of causes of in C ( the minimal 

inconsistent subset of causes). The conjunction of the minimal inconsistent subset of ca uses 

is T = (tennis...elbow Varthritis) I\ (dishpan_handsVarthritis) and the minimal DNF of 

T is D = arthritis V ( tennis_elbow I\ dishpan-hands) which gives two minimal causes for 

the observation namely, "arthritis" alone or "tennis_elbow I\ dishpan_hands". 
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Example 7.2 A second example deals with circuit diagnosis. Consider a full adder (Re

iter, 1987) shown in figure 5. The gates X1 and X2 are xor gates; A1 and A2 are and gates; 

and 0 1 is an or gate. 

0 

Figure 5: A Full Adder 

The system is described be the following set of clauses: 

C = {ab(X1), ab(X2), ab(A1), ab(A2), ab(O1)} 
SD= { 

-i(K = 0) V -i(L = 0) V ab(X1) V (N = 0), 
-i(I( = 0) V (L = 0) V ab(X1) V -i(N = 0), 
(K = 0) V -i(L = 0) V ab(X1) V -i(N = 0), 
(K = 0) V (L = 0) V ab(Xi) V (N = 0), 

(K = 0) V (L = 0) V ab(A1) V -i(Q = 0), 
-i(K = 0) V ab(A1) V (Q = 0), 
-i(L = 0) V ab(A1) V (Q = 0), 

-i(P = 0) V -i(Q = 0) V ab(Oi) V (S = 0), 
(P = 0) V ab(01) V -i(S = 0), 
(Q = 0) V ab(O1) V -i(S = 0) } 

-i(N = 0) V -i(M = 0) V ab(X2) V (R = 0), 
-i(N = 0) V (M = 0) V ab(X2) V -i(R = 0), 
(N = 0) V -i(M = 0) V ab(X2) V -i(R = 0), 
(N = 0) V (M = 0) V ab(X2) V (R = 0), 

(M = 0) V (N = 0) V ab(A2) V -i(P = 0), 
-i(M = 0) V ab(A2) V (P = 0), 
-i(N = 0) V ab(A2) V (P = 0), 

The causes considered here are possible abnormalities of the components and are repre

sented by the predicate ab(-). The system description contains, for each component, a set 

of clauses that describe the normal state (correct function) of the component. Although 

not shown explicitly, every clause in SD is in the form effects -+ causes . As an il

lustration, the first clause in SD describing gate X 1 is equivalent to "(K = 0) /\ (L = 

0) /\ (N = 1) -+ ab(X1)". Similarly, the second clause for gate X1 is the same as 

"(K = 0) /\ (L == 1) /\ (N = 0) -+ ab(X1 )". For simplicity, we have chosen to use a 

one value system i.e., for every wire in the sytem it can be 0 or not equal to 0, thus the 
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fact that a wire A has a value 1 is represented by the proposition -i(A = 0). Alternatively 

one can use O and 1 value together with some additional clauses expressing the constraint 

that each wire has at most one value. 
When the observation12 OBS = ,(I<= 0) /\ (L = 0) 1\-i(M = 0) /\ -i(R = 0) /\ (S = 0) 

is transmitted to the CMS , it computes the the set of prime implicates 

PJ(SD u OBS)= { 
ab(A2) V ,(P = 0) V ab(X1), 
ab(X2) V ab(A2) V (P = 0), 
ab(X2) V ab(X1), (*) 
,(N = 0) V ab(A2) V (P = o), 
(N = 0) V ab(A2) V ab(01), 
( Q = 0) V ab( 01), 
,(K = 0), ,(R = O), ,(M = 0), 

ab(A2) V ab(X1) V ab(0 1 ), (*) 
ab(X1) V ,(N = 0), 
ab(A1) V (Q = 0), 
(N = o) V ab(A2) V ,(P = 0), 
(N = o) V ab(X2), 
(P = 0) V ab(Oi), 

L = 0, S = 0} 

and returns the prime implicates "ab(A2 ) Vab(X1 ) Vab(O1 )" and "ab(X2 ) Vab(X1)" which 

constitute the minimal inconsistent subsets of causes. Consequently, by transfromation we 

obtain "ab(A2 )/\ab(X2 )", "ab(O1)/\ab(X2 )" and "ab(X1 )" as the diagnoses for (SD, OBS). 
Suppose now that point P was measured and found to have value 1. Let TI= P !(SD U 

OBS), the clause -i(P = 0) is sent to the CMS and the CMS incrementally generates the 
new set of prime implicates 

PI(II u {,(P == ·o)}) = { 
ab(X1) v ,(N == 0), ,(N = 0) V ab(A2), 
(N = 0) V ab(X2), ab(X2) V ab(X1), (*) 
,(M = 0), ,(I(= 0), ,(R = 0), ,(P = 0), S = O, 

ab(A1) V (Q = 0), 
ab(X2) V ab(A2), (*) 

L = 0, ab(01) (*)}. 

The prime implicates "ab(X2) V ab(X1)", "ab(X2) V ab(A2 )" and "ab(Oi)" are the new 

minimal inconsistent subsets of causes making "ab(X2 ) I\ ab(O1 )" and "ab(X1 ) I\ ab(A2 ) A. 

ab(O1 )" the new diagnoses for the added observation. 

7.2 Explanation Based Diagnostic Reasoning 

In explanation based diagnostic reasoning paradigm (Poole, 19886), the system SD is 

described by formulae of the form causes~ effects together with some possible constraints. 

Given an observation OBS, a diagnosis for (SD, OBS) is a minimal conjunction of causes 

E such that SD I= E ~ OBS and SD U E is consistent. Such a conjunct E is called a 

minimal explanation for OBS with respect to SD. Obviously, a conjunct E is a minimal 

explanation for OBS w.r.t. SD iff E (the negation of E) is a minimal support for OBS 

w.r.t. SD, that contains only the negations of causes. We shall call these supports cause 

12Note that for the consistency method, the observation has to be represented as the conjunction "input/\ 
output" instead of the more natural "input -+ output". 
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based minimal support for OBS (Tsiknis & Kean, 1989). Indeed, SD f== E ~ OBS iff 

SD f== EV OBS, and SD U Eis consistent iff SD ~ E given that SD alone is consistent. 

The role of the CMS in this framework is now clear. The Reasoner transmits to the 

CMS the clauses in SD that are related to the observation and indicates to the CMS 

the set of distinguished literals that denote causes. When the Reasoner requests for the 

cause based minimal supports of the observation OBS, the CMS computes them by the 

method described earlier for computing minimal supports with the following restriction: 

consider only the minimal support S = P - OBS that consists solely of the negations 

of causes (S ~ C)13
• Thus, the Reasoner negates each cause based minimal support and 

obtains all the diagnoses for (SD, OBS). Similarly, measurements are treated as additional 

observations. More specifically, if a measurement M is performed, the new diagnoses are 

obtained as the minimal explanations for OBS AM w.r.t. SD. 

Example 7.3 The domain of example 7.1 has the following description in this paradigm. 

C = {tennis...elbow, dishpanJtands, arthritis}. 
SD= { tennis_elbow-+ aching_elbow, dishpanJiands-+ aching.hands, 

arthritis -+ aching_elbow, arthritis -+ achingJiands, 
arthritis -+ aching_knee}. 

Suppose we observe OBS= aching_elbo'w A aching_hands. Since 

PI(SD) = { -,dishpanJiands V achingJtands, -,arthritis V achingJiands, 
-,tennis_elbow V aching_elbow, -,arthritis V aching_elbow, 
-,arthritis V aching.Jenee}, 

the set { -,arthritis, -,tennis_elbow V -,dishpanJiands } is the set of cause based min

imal supports for the observation. Thus, by transformation, we obtain "arthritis" and 

"tennis_elbow A dishpanJiands" as the diagnoses for (SD, OBS). 

Example 7.4 We now consider the system presented in example 7.2. The complete sys

tem description as well as the observation are shown in the appendix. Note that in this 

paradigm, SD describes both the normal and erroneous states. Specifically, for each com

ponent in the circuit, SD contains a set of clauses that define the normal state of the 

component (as in example 7.2) followed by a similar set that specifies the faulty state of 

that component. Additionally, the observation is in the form input ~ output which is a 

more natural description of the state of a circuit component. The interested reader can find 

discussions on these issues in (Poole, 1988a) and note that the representation presented 

above is crucial for the correctness of this paradigm. 

13 Alternatively, we could use the CMS to generate all the minimal supports for OBS and assign to the 
Reasoner the responsibility of filtering out the cause based ones. 
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In this example, the procedure for computing the diagnoses deviates slightly from the 
general procedure set out in this section. For efficiency reasons, instead of computing 
the minimal explanations of OBS w.r.t. SD, we compute the minimal explanations of 
output w.r.t. SD U { input} . This is justified by the fact that for any E, SD I= E -+ 
(input-+ output) iff SD F (EA input)-+ output or simply SD U {input} FE-+ output. 
Consequently, when 

OBS= -i(J( = 0) A (L = 0) A -i(M = 0) --+ -i(R = 0) A (S = 0) 

is observed, the Reasoner sends to the CMS the clauses in SD together with the input 
{ ,(K = 0), (L = 0), ,(M = 0)}. Subsequently, the Reasoner queries for the cause 
based minimal supports for the output ",(R = 0) A (S = 0)". The negation of the cause 
based minimal supports shown below are the explanations for OBS: 

{ ,ab(X2) A ,ab(01) A ab(X1) A ,ab(A2) A ,ab(A1), 
-iab(X2) A ab(X1) A ab(01) A ab(A1), 
,ab(X2) A ab(X1) A ab(01) A ab(A2), 
ab(X2) A ,ab(O1) A ab(A2) A -iab(X1) A -iab(Ai), 
ab(X2) A -iab(A2) A -iab(X1) A ab(01), 
ab(X2) A ,ab(X1) A ab(O1) A ab(A1) }. 

The following table shows the corresponding faulty (ab(_)) and normal (,ab(-)) components 

in each explanation: 

II faulty II normal II 
1 X1 X2 01 A2 A1 
2 X1 01 A1 X2 
3 X1 01 A2 X2 
4 X2 A2 01 X1 A1 
5 X2 01 A2 X1 
6 X2 01 A1 X1 

Table 1: The diagnoses for ,(R = 0) A (S = 0). 

Notice that in row (5), the gate A1 does not have a status. Regardless of the status of 

A1 , if gates X2 and 0 1 are faulty and gates A2 and X1 are normal, then the observation is 

explained. Also, to emulate the result of (Reiter, 1987) shown earlier i.e., minimizing the 

faulty components, the minimal explanations are filtered according to only faulty compo

nents. That is, restricting to the faulty column, the rows are extracted and subsumption is 

applied to yield {Xi}, {X2, A2} and {X2, 0i}. Conversely, maximizing the set of normal 

components that explain the observation can be obtained similarly. First, the rows under 

the normal column are extracted and perform the inverse of sumbsumption i.e., no superset 
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of a row is in another row. In the above table, the maximal subsets of normal components 

that explain the observations are {X2,01,A2,Ai}, {01 ,Xi,Ai} and {A2,Xi}. 

Note that it is not necessarily the case that the maximal subset of normal components 

is the difference between the set of all components and the set of faulty components. 

The minimal explanation in row (5) is such an example. In general, there are potentially 

many possible types of causes and whether to maximize or minimize the causes is domain 

dependent. Thus, the task of extracting preferred causes is performed by the Reasoner 

and the task of the CMS is to return all the minimal explanations for each query. 
Finally, we assume that the same measurement as in example 7.2 was performed i.e., 

point P was measured and found to have value 1. To compute the new diagnoses, the 
Reasoner queries the CMS for the cause based minimal supports of the new output -
"-,(R = 0) I\ (S = 0) I\ -,(P = 0)". The negations of these cause based minimal supports 

{ -,ab(X2) I\ ab(01) I\ ab(X1) A ab(A2), 
ab(X2) I\ ab(01) A -iab(A2) A -,ab(X1) } 

constitute the minimal explanations for the new observation 

with respect to SD. 

8 Conclusion 

In this paper we have presented a supplementary system for aiding reasoning systems 

called the Clause Management System (CMS). The CMS supplements the Reasoner by 

generating explanations for a given query with respect to the knowledge the Reasoner 

sends to the CMS . To accomplish this task, the CMS relies heavily on the concept of 

implicates of a set of clauses. We have distinguished three important kinds of implicates: 

minimal, prime and minimal trivial implicates. We have argued that prime implicates are 

most important, and that the CMS should represent its knowledge base by the set of prime 

implicates of the clauses it receives from the Reasoner, instead of the clauses themselves. 

An incremental algorithm that updates the CMS knowledge base when a new clause is 

received was also presented. 

Subsequently, the notions of minimal, prime and minimal trivial supports for a single 

clause were introduced and the algorithms to compute them were discussed. We then 

generalized these algorithms to compute these supports for a finite conjunction of clauses. 

The latter enables the CMS to compute support for any propositional formula. In addi

tion we defined a preference ordering on the supports that gives some ground for further 

discrimination among the same type supports for a formula. 
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Finally, we highlighted the functionality of the CMS by choosing two logic based di

agnostic reasoning paradigms: the consistency and explanation based paradigms. As for 

future research, the Reasoner -CMS protocol which is highly domain dependent was not 

addressed in this paper. We intend to study such protocols for some well known types of 

reasoning systems in our future work. For example, to investigate the corporation hew

teen consistency techniques (Mackworth, 1977) and the CMS in the realm of constraint 

satisfaction problems; and to study the protocol for the 1st order Reasoner and the CMS 

in the theorem proving environment. Among other future work, there is the study of the 

CMS in aiding assumption based reasoning systems (Tsiknis & Kean, 1989) for such tasks 

as nonmonotonic reasoning. Also stated as future research is the investigation into the 

correspondence bewteen minimal trivial supports and minimal models for a formula. The 

reward of this study is the extension of the capability of the CMS in aiding reasoning sys

tems such as the logical system for depiction and map interpretation (Reiter & Mackworth, 

1988). 

We are very grateful to Raymond Reiter, Paul Gilmore, Alan Mackworth, Jane Mulligan 

and David Poole for their comments and criticism. 
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Appendix 

The following is the complete sets of formulae for the explanation-based approach in diagn08tic rea.
soning (see figure 6). The causes C are the set of all ab(U) for U denoting all the five gates in the full 

adder. The system description is a set of formulae describing the causes and effects of the gates for all the 

possible combination of observations. 

Q 

Figure 6: A Full Adder 

C = {ab(X1) , ab(X2), ab(A1), ab(A2), ab(01)} 

SD= { 
-i(K = 0) V -i(L = 0) V ab(X1) V (N = 0), 
-i(K = 0) V (L = 0) V ab(X1) V -i(N = 0), 
(K = 0) V -i(L = 0) V ab(X1) V -i(N = 0), 
(K = 0) V (L = 0) V ab(X1) V (N = 0), 

-i(K = 0) V -i(L = 0) V -iab(Xl) V -i(N = 0), 
-i(K = 0) V (L = 0) V -iab(Xl) V (N = 0), 
(K = 0) V -i{L = 0) V -iab(Xl) V (N = 0), 
(K = 0) V (L = 0) V -iab(Xl) V -i(N = 0), 

(K = 0) V (L = 0) V ab(A1) V -i(Q = 0), 
-i(K = 0) V ab(A1) V (Q = 0), 
-i(L = 0) V ab(A1) V (Q = 0), 

(K = 0) V (L = 0) V -iab(Al) V (Q = 0) 
-i(K = 0) V -iab(Al) V-i(Q = 0), 
-,(L = 0) V -,ab(Al) v-,(Q = 0), 

-,(P = 0) V-i(Q = 0) V ab(01) V (S = 0), 
(P = 0) Vab(01) V -,(S = 0), 
(Q = 0) V ab(Oi) V -i(S = 0) 

-.(N = 0) V -.(M = 0) V ab(X2) V (R = 0), 
-,(N = 0) V {M = 0) V ab(X2) V -i(R = 0), 
(N = 0) V -i(M = 0) V ab(X2) V -i(R = 0), 
(N = 0) V {M = 0) V ab(X2) V (R = 0), 

-,(N = 0) V -i(M = 0) V -iab(X2) V -i(R = 0), 
-,(N = 0) V (M = 0) V -.ab(X2) V (R = 0), 
(N = 0) V-i{M = 0) V -,ab(X2) V (R = 0), 
(N = 0) V (M = 0) V -.ab(X2) V -.(R = 0), 

(M = 0) V (N = 0) V ab(A2) V -.(P = 0), 
-.(M = 0) V ab(A2) V (P = 0), 
-.(N = 0) V ab(A2) V (P = 0), 

(M = 0) V (N = 0) V -.ab(A2) V (P = 0), 
-,(M = 0) V -.ab(A2) V -i(P = 0), 
-,(N = 0) V -iab(A2) V -.(P = 0), 

-.(P = 0) v-.(Q = 0) V -.ab(Ol) v-.(S = 0), 
(P = 0) V -.ab(Ol) V (S = 0), 
(Q = 0) V -.ab(Ol) V (S = 0) } 

Assuming that the Reasoner has observed the following observations: 

input= {-i(I( = 0), L = 0, -.(M = 0)} 
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output= {-i(R = 0), S = 0} 
OBS = input --+ output 

The Reasoner transmits to the CMS the input and the CMS computes the set of prime implicates for 
SD U input as shown below. 

P I(SD u input) = { 
(L = 0), 
-,(M = 0), 
-iab(Al) V-i(Q = 0), 
ab(Al) V (Q = 0), 
ab(A2) V -,(P = 0) V ab(Xl), 
-,(N = 0) V -,ab(X2) V (R = 0), 
-i(N = 0) V ab(X2) V -i(R = 0), 
(P = 0) V ab(Ol) V -,(S = 0), 
(Q = 0) V ab(Ol) V -,(S = 0), 
-iab(Xl) V-iab(A2) V -,(P = 0), 
ab(X2) V (R = 0) V ab(Xl), 
-iab(X2) V -,(R = 0) V ab(Xl), 
ab(Ol) V -i(S = 0) V -,ab(Al), 
-iab(Xl) V ab(A2) V (P = 0), 
(N = 0) V -,ab(A2) V (P = 0), 
-i(P = 0) V -,(Q = 0) V ab(Ol) V (S = 0), 
ab(A2) V -i(P = 0) V -,ab(X2) V (R = 0), 
-iab(X2) V -i(R = 0) V -,ab(A2) V -i(P = 0), 
-,(P = 0) v-.ab(Ol) V -i(S = 0) V ab(A 1), 
(N = 0) V ab(A2) v -iab(Ol) V (S = 0), 
ab(A2) V ab(Xl) V-iab(Ol) V (S = 0), 
ab(Ol) V -i(S = 0) V-i(N = 0) V -,ab(A2), 
-,ab(Xl) V -iab(Ol) V (S = 0) V -iab(A2), 
-.ab(X2) V -.(R = 0) V ab(A2) V (P = 0), 
-,ab(A2) V (P = 0) V -,ab(X2) V (R = 0), 
ab(Ol) V (S = 0) V -.ab(A2) V ab(Xl) V ab(Al), 
ab(Ol) V (S = 0) V -iab(Xl) V ab(A2) V ab(Al), 
ab(Ol) V (S = 0) V -i(N = 0) V ab(A2) V ab(Al), 
-.(Q = 0) V ab(Ol) V (S = 0) V (N = 0) V -,ab(A2), 
-i(Q = 0) V ab(Ol) V (S = 0) V -iab(A2) Vab(Xl), 
-i(Q = 0) V ab(Ol) V (S = 0) V -iab(Xl) V ab(A2), 
-i(Q = 0) Vab(Ol) V (S = 0) V -i(N = 0) V ab(A2), 

-.(K = 0), 
ab(Xl) V -.(N = 0), 
-,ab(Xl) V (N = 0), 
(N = 0) V ab(A2) V -.(P = 0), 
-.ab(X2) V (R = 0) V -,ab(Xl), 
ab(X2) V -.(R = 0) V -,ab(Xl), 
(P = 0) V -iab(Ol) V (S = 0), 
-,(N = 0) V -.ab(A2) V -.(P = 0), 
(Q = 0) V -,ab(Ol) V (S = 0), 
(N = 0) V ab(X2) V (R = 0), 
(N = 0) V-iab(X2) V ...:,(R = 0), 
-i(N = 0) V ab(A2) V (P = 0), 
-,ab(Ol) V (S = 0) V -,ab(Al), 
-,ab(A2) V (P = 0) V ab(Xl), 
-i(P = 0) V ab(Ol) V (S = 0) V ab(Al), 
ab(A2) V -i(P = 0) V ab(X2) V -.(R = 0), 
ab(X2) V (R = 0) V -.ab(A2) V -i(P = 0), 
-i(P = 0) V -i(Q = 0) V -,ab(Ol) V -,(s = 0), 
(N = 0) Vab(A2) Vab(Ol) V -i(S = 0), 
ab(A2) V ab(Xl) V ab(Ol) V -,(S = 0), 
-iab(Ol) V (S = 0) V -,(N = 0) V -.ab(A2), 
-iab(Xl) V ab(Ol) V -,(S = 0) v-.ab(A2), 
ab(X2) V (R = 0) Vab(A2) V (P = 0), 
-iab(A2) V (P = 0) V ab(X2) V -.(R = 0), 
ab(Ol) V (S = 0) V (N = 0) V -iab(A2) V ab(Al), 

-,(q = 0) V-iab(Ol) V-i(S = 0) V -i(N = 0) Vab(A2), 
-i(Q = 0) V-iab(Ol) V -i(S = 0) V -.ab(Xl) V ab(A2), 
-i(Q = 0) V-iab(Ol) V -i(S = 0) V -,ab(A2) V ab(Xl), 
-i(Q = 0) V-iab(Ol) V -i(S = 0) V (N = 0) V -iab(A2), 
-.ab(Ol) V-i(S = 0) V-i(N = 0) V ab(A2) V ab(Al), 
-.ab(Ol) V-i{S = 0) V -.ab(Xl) Vab(A2) V ab(Al), 
-.ab{Ol) V -.(S = 0) V -iab(A2) V ab(Xl) V ab(Al), 
-.ab(Ol) V-i(S = 0) V (N = 0) V -iab(A2) V ab(Al), 
ab(A2) V ab(X2) V-i(R = 0) V ab(Ol) V-i(S = 0), 
ab(A2) V ab(X2) v-,(R = 0) v -,ab(Ol) v (S = 0), 
ab(A2) V -,ab(X2) V (R = O) V ab(Ol) V-i(S = 0), 
ab(A2) V -iab(X2) V (R = 0) V -,ab(Ol) V (S = 0), 
ab(X2) V (R = 0) V -iab(Ol) V (S = 0) V -.ab(A2), 
ab(X2) V (R = 0) V ab(01) V -i(S = 0) V -iab(A2), 
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-.ab(X2) V -i(R = 0) V -.ab(01) V (S = 0) V -,ab(A2), 
-.ab(X2) V -,(R = 0) V ab(Ol) V -,(S = 0) V -,ab(A2), 
ab(Ol) V (S = 0) V -.ab(A2) V -,ab(X2) V {R = 0) V ab(Al), 
ab(Ol) V (S = 0) V -,ab(A2) V ab(X2) V -.(R = 0) V ab(Al), 
ab(01) V (S = 0) V -,ab(X2) V -.(R = 0) V ab(A2) V ab(Al), 
ab(01) V (S = 0) V ab(X2) V (R = 0) V ab(A2) V ab(Al), 
-i(Q = 0) V ab(Ol) V (S ;:: 0) V ,ab(A2) v-,ab(X2) V (R = 0), 
-.(Q = 0) V ab(Ol) V (S = 0) V -,ab(A2) V ab(X2) V -,(R = 0), 
-.(Q = 0) Vab(Ol) V (S = 0) V -,ab(X2) V-.(R = 0) V ab(A2), 
-.(Q ::: 0) V ab(Ol) V (S = 0) V ab(X2) V (R = 0) V ab(A2), 
,(Q::: 0) v-,ab(Ol) V -,(S = 0) V ab(X2) V (R = 0) V ab(A2), 
-,(Q = 0) Y -,ab(Ol) v -.(S = 0) v-.ab(X2) V -.(R = 0) V ab(A2), 
-.(Q = 0) v -.ab(Ol,) V -.(S = 0) V -.ab(A2) V ab(X2) V -.(R = 0), 
-i(Q = 0) V -.ab(Ol) V -.(S = 0) V -.ab(A2) V ,ab(X2) V (R = 0), 
-.ab(Ol) v-.(S = 0) Vab(X2) V (R = 0) Vab(A2) V ab(Al), 
,ab(01) V -,(S ;:: 0) V -.ab(X2) V ,(R = 0) v ab(A2) V ab(Al), 
-iab(Ol) v ,(S = 0) v -.ab(AZ) V ab(X2) V -.(R = 0) V ab(AI), 
-.ab(Ol). V -,(S = 0) V -iab(A2) V -.ab(X2) V (R = 0) V ab(Al) } 

In the explanation based approach, the diagnoses are the minimal supports for the output that consist 
solely of causes as shown below. 

output= {-.(R = 0), (S = O)} 
the set of minimal supports for output w.r.t. SD U input is: 

{ ab(X2) V ab(Ol) v -.ab(Xl) V ab(A2) V ab(Al), 
ab(X2) V--iab(Xl) y-,ab(Ol) V -.ab(Al), 
ab(X2) V-.ab(X 1) v -,ab(Ol) V --.ab(A2), 
,ab(X2) V ab(Ol) V -,ab(A2) V ab(Xl) V ob(Al), 
-.ab(X2) V ab(A2) v ab(Xl) V -.ab(Ol), 
-,ab(X2) V ab(X 1) V -.ab(Ol) V -.ab(Al) }. 

After examing the diagnoses for the output given above, the Reasoner proceeds to test the circuit and 
discovered that the wire P has a non-zero value. The Reasoner queries the CMS with the new information 
and obtained the following diagnoses. 

output = { ,(R = 0), (S = 0), -.(P = 0)} 
the set of minimal supports for the new output w .r .t. SD U input is: 

{ ab(X2) V -.ab(Ol) v-.ab(Xl) V --.ab(A2), 
-.ab(X2) v-,ab(01) V ab(A2) V ab(Xl) }. 
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